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No information can be more important to transport planners, designers, 
and analysts than reliable forecasts of the peak and off-peak travel volumes 
on transport networks. Yet, no reasonably complete and valid method9logy 
has been proposed-much less developed and verified-that will permit the 
transport planner and analyst to properly differentiate travel by time of 
day; to determine realistically the duration and level of peaking and recog­
nize its dependence on the transport system design and performance; and to 
account for shifts in trip-making from one hour to another, from one mode 
to another, and from car pooling to driving alone in response to changes in 
transport system design, in service, or in price. Further, the usual travel 
forecasting process treats trip generation as though trip-making were in­
dependent of transport system changes, and it treats the trip distribution, 
modal-split, and route assignment phases as though trip-making choices­
whether to travel, final destination, mode, and route-are made sequentially 
and apart from the circumstances attendant with the other phases. Accord­
ingly, the purpose of this paper is to formulate a model structure such that 
these phases can be treated simultaneously, that the total amount of trip­
making (as well as the destination, modal, and routes choices) canbevaried 
with the transport system and its performance and price characteristics 
(among other factors), that shifts from car pooling to driving alone can be 
represented, that shifts from one hour of travel to another can be charac­
terized, and that the amount of travel during peak and off-peak hours (i.e., 
the absolute buildup or decrease in peak or off-peak flow) can be determined. 

•THE TRANSPORT PLANNER and analyst have fashioned numerous models dealing 
completely or in part with the travel forecasting problem. The literature is vast and 
hardly needs repeating or a review. To my knowledge, though, none of the available 
models and techniques deal realistically or structurally with the matter of peaking. 

More precisely, none of the models and techniques appropriately recognize that 
travel during peak periods is dependent both in concept and in actuality on the nature 
and extent of the transport system, on its performance and price characteristics dur­
ing both peak and off-peak periods, and on the attendant socioeconomic conditions and 
preference patterns of travelers for peak and off-peak travel choices. 

As we design, analyze, and evaluate marginal or major adaptations to an existing 
system, what is it that we need to know? In part, we want to know how usage and per­
formance of the system and its parts will be affected. How much extra travel will 
there be? Which and how many people will shift from one road or mode to another? 
How many people will shift out of car pools either to driving alone or another mode? 

• Obtaining data by time of day is vital. Will the peak-period volumes increase? Will 
people shift from other hours of the day to the peak period as capacity is added? Will 
the peak period shorten and by how much? Will total daily traveling increase? 
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Such questions cannot be answered by our current models and certainly not by either 
our simplistic peak-hour factoring techniques or our trip-purpose models developed as 
a proxy for time-of-day or peaking models. · Nor can the analyst properly evaluate the 
benefits and costs stemming from one design or another without having knowledge of 
both peak and off-peak travel conditions. 

To formulate a methodology suitable for forecasting travel volumes and performance 
conditions during peak and off-peak periods, distinctions must be made between the pre­
diction process requisite for shorter time periods and that relating to longer time peri­
ods. For the former, the transport system, population, employment, and land-use pat­
terns can be regarded as fixed. The latter considers the transport system as it affects 
and is affected by the land-use pattern as well as the growth and distribution of popula­
tion and employment. It also will be necessary to distinguish between "demand" and 
"supply." Demand involves the propensity of people to travel with respect to travel 
service, price, and socioeconomic conditions. Supply describes the performance of the 
transport system with respect to the amount and composition of travel sustained by it. 

LONG TERM VERSUS SHORT TERM FORECASTING 

For the distinction pertaining to the time frame for our forecasting, we must ask: 
Are we attempting to determine the amount of travel taking place at some point in time, 
given the transport system, land-use, population, and employment patterns? Or are 
we trying to develop a more dynamic forecasting model capable of forecasting both the 
short- and long-range travel and land-use conditions? 

For the first of these time-frame questions, we must be concerned with travel fore­
casting in some static or partial equilibrium sense. Specifically, as a basis for analyz­
ing and evaluating our planning, policy, or design actions, we need to know how much 
travel will take place and the associated travel conditions, both hourly and daily, given 
the following information: 

1. The socioeconomic characteristics of the people; 
2. The location and character of business, industry, and residence; and 
3. The physical and operating characteristics of the transportation system. 

For such short-run or daily travel forecasting involving the transport system, home 
and business locations and the transit fleet can be regarded as fixed. By contrast, it 
is hardly clear that the automobile fleet or ownership should be regarded as fixed, even 
when forecasting trip-making and modal-split over the short run. As travelers choose 
among modes on a day-to-day basis, many or most of those who travel by auto, particu­
larly those driving alone, probably made that modal choice at the time they purchased 
the auto and thus are not making a new decision based on the marginal daily service 
and price circumstances each day. 

This is not a simple problem conceptually or operationally, but it is an important 
one. In terms of predicting the number or percentage of travelers using one mode or 
another, this auto distinction may not seem important because most auto travelers are 
car poolers and may well be viewing the travel conditions for the various modes based 
on the marginal day-to-day circumstances. In terms of examining traffic congestion, 
however, and the effects of changes in mode or capacity on its reduction, it is the num­
ber of drive-alone vehicles that is most important because these vehicles represent the 
great bulk of the total auto fleet during peak hours and because their drivers probably 
made their modal-choice decision on more than day-to-day marginal costs. 

Also, and to cast this matter in a slightly different fashion, consider the urban 
dweller who is examining the tradeoffs associated with a suburban versus central-city 
dwelling unit. Although the living space, privacy, school conditions, type of neighbor, 
and housing cost are probably the most important factors he considers, no doubt he 
also takes into account the available modal choices with respect to travel time, con­
venience, and cost. For the latter, he probably thinks about the total auto ownership 
and operating costs because a second car often will be required. In short, he buys the 
second car based on the day-to-day travel time and convenience expectations and on the 
long-range travel cost factors. If these hypotheses are correct, our modal-split mod­
els must indicate these short- and long-range considerations. 
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Once the analyst has developed the capability of forecasting daily travel volumes and 
_performance conditions, he can tur n to the more for midable problem of long-range fore­
casting . He can ask a host of location-living-transportation behavioral questions such 
as: How does the buildup of congestion and the attendant costs, taken with other factors 
of production and preferences (with r esJ?eCt to patterns of living, quality of life indices, 
work/employment/shopping/ business locations, and so fo rth), influence changes in em­
ployer's plant or business growth and location, and in home or work location? How do 
these shifts then change the performance of the transport system, which in circular 
fashion then influences other locational shifts or growth patterns? How will native pref­
erences about transportation services and living patterns (to take but two aspects of im­
portance) change over time, either in response to income changes or in response to 
shifts in society's scale of values and mores? Because shifts in location and growth 
stem partially from expectations about the daily travel conditions at different points in 
time, a relation exists between long- and short-range forecasting. Essentially, the 
long-run changes in growth, location, and transport service are the result of the ac­
cumulated short-run or daily circumstances and conditions which occur over the longer 
time period. 

The interrelationship and distinction between short- and long-range travel forecast­
ing can be expressed in a number of ways, one of which is shown in Figure 1. This 
flow-chart representation for the general equilibrium or long term forecasting problem 
is particularly weak in at least one respect. Even though locational shifts and land-use 
growth do occur incrementally from year to year (or whatever time lag seems appro­
priate for modeling of this sort), one should not infer that the yearly shifts or growth 
result simply from the present-day equilibrium flows, prices, performance levels, 
costs, and so forth. Rather, it seems likely that dwellers and businessmen, in shifting 
to new home or work locations and making modal choices (decisions which are partially 
interdependent with the former), are responding both to the present-day transport, land­
use, and socioeconomic conditions and to those that are expected for all (foreseeable) 
future years. As a consequence, the time-lag type of procedure for linking the static 
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Figure 1. Schematic diagram for travel forecasting process. 
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rui.d long term forecasting models is considerably more complicated than is illustrated 
here; the adjustments from year x to year x + 1 and some shortrun decisions rely not 
simply on the year x equilibrium conditions but on those for years x, x + 1, x + 2, ... N 
(assuming an N-year planning horizon). 

THE ROLES OF DEMAND AND SUPPLY IN THE 
TRAVEL FORECASTING PROCESS 

The distinction between demand and supply is an important one and is crucial to the 
formulation of an appropriate travel forecasting methodology. 

Usually, demand ~s regarded incorrectly as the number of trips that will be made 
within, for example, the urban region at some future date. Demand is regarded, there­
fore, as the need or the requirement that must be met. This view of demand is some­
what analogous to the concept implicit in the trip-generation phase of most current fore­
casting models. As such, all that remains to be determined is between which zonal 
pairs and by what mode and route these trips will be made. 

Contrarily, demand should be viewed as a statement of people's trip-making propen­
sities; that is, it should be viewed as a demand function or conditional trip-making 
relationship. Thus, a demand function represents the dependence of the demanded 
quantity of trip-making on the price of or service afforded by trip-making. Implied, of 
course, is that more trips (in the absolute and relative sense) will be demanded (or 
generated) if either the price is reduced or the service is increased, whereas increased 
traffic congestion will tend to reduce trip-making. (As will be discussed in the next 
section, the demand function characterizes much more than trip generation; the demand 
function simultaneously incorporates the trip distribution, modal-split, and perhaps 
even route assignment phases as well.) Clearly, though, this functional and behavioral 
view of demand should give one pause when thinking about the common notions of "meet­
ing the demand," or "needs," or "requirements," or constant trip-generation rates. 

Another aspect of demand pertains to changes or shifts in demand. Over the short 
run, demand will not shift or increase; and thus changes in the amount of trip- making 
that occur in response to price or service changes should be regarded as movements 
along the demand function (or demand schedule) rather than as increases in demand. 
By contrast, increases in demand or shifts of the demand function will stem from long­
run changes in population, income, tastes, and so forth. 

The concepts of supply and demand are useful mainly because of the analogies that 
can be drawn from microeconomic theory, particularly in terms of specifying the in­
teraction between supply and demand and of determining equilibrium prices and quanti­
ties demanded. Although a direct analogy can be made between the economist's and 
the transport analyst's characterization of travel demand and between their equilibra­
tion of supply and demand, there is only an approximate analogy for supply when applied 
to transport networks or links of a network. 

In microeconomic theory, the term "supply" refers to the supply schedule-the amount 
of a product that will be supplied by the industry at different price levels. It is the 
amount supplied collectively by all firms producing that same product or service while 
assuming marginal cost pricing. In the context of this paper, "supply" is meant to 
characterize either the dependent relationship between travel service and the usage on 
the travel facility or that between travel price where the combined money and nonmoney 
time, effort, and expense of travel are placed on a commensurate value scale and usage. 
Alternatively, these expressions may be viewed as performance or service functions 
and are entirely analogous to capacity-restraint functions that have often been used in 
travel forecasting processes. 

Employing the concepts of demand and performance functions to forecast trip-making 
at some point in time and for a given land-use plan and transport system requires that 
we follow a three-step process: 

1. Describe trip-making behavior; i.e., specify demand functions (rather than point 
estimates or projections) of the form q = f(price, service, socioeconomic characteris ­
tics), where q is the quantity of trip-making demanded for the price, service, and other 
specified conditions. 
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2. Describe system service or performance; i.e., specify service-performance 
functions of the form p = f(system capacity, technology, controls, operating and price 
policies, volume of usage), where pis price resulting from the volume, capacity, and 
other specified conditions. 

3. Interrelate supply and demand; i.e., equilibrate demand and performance func­
tions for the region and transport network in question, so that point estimates of actual 
or equilibrium volumes and service or price levels can be determined. 

In other words, we must find the values of Px and <Ix that will satisfy the following 
constraints: 

where Ex is a vector of the price or performance conditions occurring in year x; qx is 
the flow occurring in year x; Cx is the system capacity in year x; OPx is the operating 
or control policy in year x; PPx is the pricing policy in year x; and ~ is a vector of 
the socioeconomic conditions in year x. The resultant p and qx values are the equili­
bri,um prices (or service levels) and flows and thus are 11ie forecast for that system, 
that pricing policy, that year, etc. Figure 2 shows this interaction and the resultant or 
equilibrium price and volume levels. 

Simplistically, the equilibrium flows and prices for a facility before and after im­
provement (for a one-link facility) can be as shown in Figure 3. As noted before, the 
induced traffic or increase in equilibrium flow from VA to VB that stemmed from the 
improvement and reduction in congestion or price should be regarded as a movement 
along the demand function or as an increase in the quantity of trips demanded rather 
than as an increase or shift in demand. 

Demand, however, can and usually does shift or increase over time as a result of 
increases in population, income, etc., and because of changes in taste that generally 
affect the equilibrium flows and prices as shown in Figure 4. Thus, yearly increases 
in flow will stem from shifts in demand. Each yearly increase is generally slightly 
less than that for the previous year because of the exponential nature of queueing delays 
and thus the price-volume or performance curve. 
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mo ney and non- money time, effort 
and exp e n se o f trave l. 
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Figure 2. Simplified equilibrium relationships. 
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Figure 3. Equilibrium conditions for different facilities. 

These simple notions about supply and demand and their interaction can be extended 
to explain hour-to-hour differences in trip-making and the peaking phenomenon that ac­
companies them. First, the demand for travel (as distinct from the equilibrium or ac­
tual flow) will fluctuate from hour to hour in response to people's preferences for travel­
ing at specific times of day; in general, the demand for travel at starting-to-work or 
going-home-from-work times will be higher and less sensitive to congestion than that 
for other times of day. For illustrative purposes, then, demand throughout the day 

DX is the demand curve for the ~th year. 

qx is the equilibrium flow for year ~· 

Figure 4. lntertemporal demand and price-volume relationships. 
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may be represented by a series of hour-by-hour demand functions as shown in Figure 
5(a). (These relationships are oversimplified in some important ways which will be 
clarified in a later section.) Second, the interaction of the hour-by-hour demand func­
tions with the price-volume curve determines the hour-to-hour equilibrium volumes 
which then may be plotted as volume versus time of day, as shown in Figure 5(b). 

Considerably more discussion about the equilibration problem and about the full­
scale development of appropriate demand and performance functions is given in the fol­
lowing section. These opening remarks are intended merely to introduce the aspects 
of forecasting and to indicate how demand and performance functions are related in the 
overall forecasting process. 

DEVELOPMENT OF DEMAND FUNCTIONS 

Demand When Considered in a Behavioral Context 

The following points will be the basis of the model development. 
First, demand for travel is a derived demand; that is, it is derived from a funda­

mental desire to do something else rather than travel without purpose. Thus, an under­
standing of travel relations must rely, to some degree, on the commodities and ser­
vices being acquired at the trip destination. More simply, the value of a trip and, there­
fore, the extent to which it will be demanded depend on the importance of that trip to 
that individual. Is it a work trip? A pleasure trip? A doctor's visit? Is it important? 
Is the trip of little consequence and can it be foregone easily? Even work trips are 
given up when travel conditions are bad enough. These remarks suggest, at a mini­
mum, that demand should be stratified by trip purpose. 

Second, an individual's demand for goods and services depends on his social charac­
teristics: family size, tastes, upbringing, income, etc. Stratification by income at 
least seems important. 
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Third, destinations differ in terms of the services and goods offered or number of 
opportunities; or they may differ locationally, aside from travel; or there may be just 
"perceived differences." We will need to specify demand, therefore, in terms of speci­
fic destination. 

Fourth, in deciding whether to travel and what mode to choose, trip-makers invari­
ablyconsiderthecircumstances for both directions of the trip. One may not go down­
town by commuter railroad, for example, if he cannot come back until after the last 
train leaves. 

Fifth, trip-makers choose modes on the basis of service and price differences and 
their value scales as they perceive them. Because the analyst's differentiation by ser­
vice and price is not sufficient to explain trip-making behavior, we must assume that 
some influence variables are overlooked or improperly measured. Along this line of 
reasoning, mode-specific stratification should treat drive-alone car and car pooling as 
two separate modes. 

Sixth, travelers probably view the route selection problem in a fashion somewhat 
analogous to choosing modes, though it is conceivable that route switching occurs along 
the route as events or information along the way changes one's perception. Route stra­
tification does, however, seem in order. 

Seventh, the hour of day for both ends of a trip appears to be an important considera­
tion. The time of travel and the mode chosen are independent neither of one's time-of­
day preferences nor of the travel conditions duringthepreferredandother-than-preferred 
times of day. 

Characteristics of Simplified Demand Functions and Some of Their Forms 

One essential characteristic of demand function is sensitivity or elasticity. For ex­
ample, the "elasticity of demand with respect to price" is a dimensionless measure of 
the degree to which travelers respond to price changes. Specifically, the elasticity 
(ep or 11p) is defined as the percent change in quantity demanded that accompanies a 1 
percent change in price; or: 

or = relative change in quantity = ~ or Aq/q 
ep Tip relative change in pr ice ap/ p 4p/p 

The elasticities for two forms of single-variable demand functions are shown in Figure 
6. For a linear demand model the elasticity varies over its entire range whereas for a 
nonlinear model of the hyperbolic form the elasticity is constant. 

From the designer's point of view, the measure of elasticity permits determination 
of the changes in toll revenues and volume and thus road capacity (or toll booths) which 
stem from altering the toll structure. For a transit operator, changes in the number 
of buses needed and gross revenues can be calculated. 

The practical usefulness of knowledge ab0ut elasticities, which is virtually unused 
in urban transport circles, cannot be overstated. If transit fares, for example, are 
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Figure 6. Single variable linear and nonlinear demand functions. 
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currently within the elastic portion of the demand curve, a decrease in price (without a 
change in service or schedule frequency) will increase ridership and gxoss revenues. 
(An increase in net revenues may or may not result, depending on the increase in costs 
stemming from the extra ridership.) On the other hand, if fares are presently within 
the inelastic region of the demand function, an increase in fare (without changing service 
or schedule frequency) will increase the gross and net revenues but decrease ridership. 
Similarly, the utility of such knowledge (that is, knowing if the demand is elastic or in­
elastic and to what extent) to toll authorities, railroads, airlines, etc., is all too obvious. 
Clearly, though, this knowledge can be exploited fully only by having similar types of 
information on the accompanying cost changes. 

It is also important to recognize that utilization of this type of demand function, in 
contrast to the more usual trip-generation/trip-distribution approach, permits the 
analyst to assess directly the effect of price or performance changes. He is able to 
note increases or decreases in congestion caused by a change in technology or operat­
ing policy on the overall amount of trip-making or trip generation. Trip generation 
thus need not be calculated independently of or insensitive to the transport system per­
formance characteristics and improvement. Furthermore, once these simplified single­
variable demand models have been extended to incorporate multimodal and multi-time­
period aspects, the ability to ascertain both the amount of trip-making by mode and by 
time of day and the shifts among modes and times of day can be achieved and the changes 
in trip-making, as well as in its modal and time-of-day distribution, that stem from 
changes to the transport system (or other influence variables) can be reflected. 

Both of the previously mentioned linear and hyperbolic type of nonlinear demand 
models (Fig. 6), as well as a host of others, are in a form convenient for estimating 
parameter values. In both cases, linear regression techniques can be employed for 
estimating the parameter values (that is, for estimating o: and /3). For the nonlinear 
model, though, it is first necessary to convert the primary demand function into its 
log/log form. That is, given 

q = cxp/3 

and taking the logarithm of both sides of the equation, we get 

log q = log o: + /3 log p 

(1) 

(2) 

which is a linear model (though in log form) that can be employed for estimating param­
eter values. 

A third form that can be used for the demand model is the exponential in which 

q = cxefjp 

Taking the natural log of both sides, we get 

lnq=lncx+fjp 

thus again providing a linear form for parameter estimation. 

Extensions of Demand Models to Account for Modal Split and Peaking 

(3) 

(4) 

First, demand models may be constructed to handle multiple service, price, or 
performance variables, such as enroute (or line-haul) travel time, access travel time, 
money price, and number of transfers. For example, if the money expense p and total 
trip time t were the only influence variables, the demand model might be formulated in 
one of the following ways: 

or 
q = °' - f3p - yt 

q = cxp/3t y 

(5) 

(6) 
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Our interest then will focus on elasticity with respect to price and elasticity with 
respect to travel times. Quite properly, this more complete form (to include as 
many service variables as is appropriate) implies that the package of service-price 
levels is what influences trip-making. A priori, we would expect both the time 
and price elasticities to be nonpositive; in advance of gathering field information, 
however, nothing can be said about whether they fall within the elastic or inelastic 
region of the demand function or about whether price or time elasticities are larg­
est. Knowledge about the elasticities in both absolute and relative terms is vital, 
however, because it will permit the analyst, designer, or operator to judge whether 
changes in service or price will beneficially affect ridership or revenues. 

Second, and in a similar vein, these types of demand models may be extended to han­
dle modal choice. One may differentiate between modes in one of two ways: 

1. In terms of the technological difference, as usually is done, thus identifying bus, 
rail, and auto modes, for example; or 

2. In terms of the service, price and performance differences, thus classifying 
modes only by differences in the service-price-performance package. 

Should two technologies have identical service-price-performance characteristics, 
then travelers will be indifferent in choosing between them so long as all the price, 
service, and performance variables which influence the trip-making and modal choice 
have been incorporated. However, because travelers are not indifferent to the available 
modal choices but show a preference for one or another even though the price and ser­
vice levels for the modes as defined and measured by the analyst are identical, then 
one may assume either that all the price-service-performance variables influenc~ng 
behavior were not included or that the measurements of these variables were incorrect. 
In such a case, it will be necessary to abandon the latter type of differentiation and 
make use of the technological classification. 

As a simple example, consider the demand functions for modes 1 and 2 with the 
price of each mode being the only measurable influence variable. Then, to take two al­
ternative formulations, 

1. Linear model form: 

(7) 

(8) 

where o:1 p 1 and ')'2 p~ are direct demand relations, and o:2 p 1 and y 1 p 2 are the cross rela­
tions, which reflect the substitutability; and 

2. Nonlinear model form: 

For both model forms, the direct elasticities are respectively 

1 d 2 aq./qi d oq/ qa 
e an e or ~ an ~ 
P1 P2' 0Pi,P1 °Pv P2 

(9) 

(10) 

The cross elasticities reflect the substitutability of one mode for another and are de­
fined as the percentage change in quantity of travel demanded for one mode which ac­
companies a 1 percent change in the price of another mode; e.g., the cross elasticity 
of demand for mode 1 with respect to price of mode 2 is 

el - cl qlf q~ 
P2 °P2 P2 
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It is important to emphasize that this type of demand model (in contrast to that im­
plicit in the usual trip-generation/trip-distribution/model-split/route-assignment pro­
cess) directly accounts for the following "real world" facts: 

1. The travelers' decisions to travel or not and to select one mode or another are 
treated simultaneously. That is, one does not decide to travel irrespective of the al­
ternatives afforded him and their service characteristics. 

2. Both the amount of trip-making (summed over all modes) and the split among 
modes can and do vary with changes in travel service or price. 

Third, but only to the extent that the amount or nature of trip-making is affected, it 
will be necessary for our demand models to incorporate the socioeconomic conditions 
of potential travelers who may originate trips at zone i and of the opportunities at a 
potential destination zone j. That is, q (ij, m) = f(transport service-price and socio­
economic variables), where q(ij, m) is the quantity of travel going from zone i to j by 
modem. Just one of many possible model forms might be 

M 0 M cp 
fJ y ( o ( X) m, x ( x) m, x q(ij, m) = am (Yi) m (Pi) m Ej) m n Pij n tij 

x=l x=l 
(11) 

where Yi is an income measure for zone i travelers, Pi is a population measure for 

zone i, El· is an employment measure for zone j, p~. is the money price for trips from 
l] 

i to j by mode x, t~. is the travel time for trips from i to j by mode x, and M is the 
lJ 

number of travel modes available for trips from i to j. 
For this hyperbolic form, as before, the exponents are the elasticities with respect 

to the particular variables; e.g., fJm is the elasticity of demand for travel by modem 
with respect to the zone i income measure. Similarly, 0m x (for x "f m) is the cross 

' elasticity of demand for travel from i to j by mode m with respect to the money price 
for travel from i to j by mode x. The exponent am mis the direct elasticity of demand 
with respect to the money price for travel from i to j by mode m. Also, to clarify, 

M ( ~)0m, x -( _;)em, 1 ( -~)em, 2 ( ¥)em, M 
Il P1J - P1J P11 · · · P1J 

x=l 

Fourth, the most important part of the demand analysis and travel forecasting prob­
lem concerns peaking; that is, the ability to differentiate travel by time of day and to 
measure the magnitude of peak loads, how long they last, and the extent of the accom­
panying congestion. No presently available methodology adequately copes with this 
aspect of travel forecasting, at least not when examined from a conceptual and be­
havioral point of view. 

This is to suggest that the use of trip-purpose models, coupled with peak-hour fac­
toring, is an unreliable technique for predicting peak-hour as well as peak-period 
travel conditions. Rather than attempt a critique of present-day methods and of their 
strengths and weaknesses, in the paragraphs that follow I shall attempt to discuss the 
aspects that conceptually, at least, should be incorporated in our demand models if 
peaking is to be reliably predicted. 

Thus, it will be well to consider the various aspects contributing to or influencing 
the times of day at which people travel, as well as their modal choices (where they ap­
pear to be linked). 

At the outset, one may hypothesize that three aspects are of prime importance to 
any discussion of peaking: 

1. Trip purpose; 
2. Institutional and physical system constraints, including transit scheduling and 

transport capacity; and 
3. Time-of-day preference, both as related to and independent of trip purpose and 

institutional constraints. 
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Stratification of demand by trip pur­
pose clearly helps to explain trip-making 

-behavior. Work travelers, for example, 
generally will tolerate more congestion, 
higher trip prices, and more inconve­
nience than will shoppers simply because 
the work trip will provide them with more 
net value (in whatever terms and whether 
in earnings or job satisfaction). Travel­
ers, therefore, would suffer greater net 
losses by foregoing a work trip than by 
foregoing a shoppingtrip. Furthermore, 
one would expect work travel to be less 
elastic than shopping travel (i. e ., the 
percentage change in work trips caused 
by 1 percent change in travel time or 
price should be less than that for shop-
ping trips). Both of these hypothesized 

1r1p !'rice or Travel Time 

Shopping Trips 

No. of Trips 

Figure 7, Hypothetical demand functions for work and 
shopping trips. 

conditions are shown in Figure 7 and can be extended to all other trip purposes. A 
rough validation of these hypotheses can be inferred from the analysis and data incor­
porated in a report to the U.S. Department of Transportation (1). 

Institutional and physical system constraints (here broadly defined) influence trip­
making behavior in two important ways. First, work and school schedules (and any at­
tendant flexibility) and opening-closing hours for businesses, professionals, and shops 
all significantly affect and limit the times of day at which trips of different purposes 
are made. Second, both the transit schedules and the transport system capacity can 
and often do constrain and influence the times at which trips are made. Changes either 
in the hours for various activities or in the transit schedules and available capacity 
can lessen or increase peaking, can either reduce or increase the total amount of trip­
making, and can shift trip-making among modes. 

In the same fashion, as travelers make tradeoffs among mode and route choices, 
based on their preferences of relative and absolute' travel service and price conditions, 
they also must make them among different time-of-day choices. For instance, workers 
can often choose between getting to work on time but "fighting traffic" and getting to 
work early (or late) but avoiding congestion. In any case, a wide range of travel times 
and time-of-day scheduling choices will be available to travelers and must be matched 
with their preferences and tradeoffs, thus affecting both the amount and extent of peak­
ing as well as the modal choices. 

Some of the more practical situations relating to the three aspects noted previously 
can be explained by a number of illustrations and examples. To begin, consider the 
effects of increasing highway capacity. Three possibilities (or some combination 
thereof) come to mind: 

1. As more capacity is added, the same amount of daily auto trip-making can take 
place with the same time-of-day distribution, thus leading to a reduction in congestion, 
particularly during peak hours and peak periods; 

2. The same amount of daily auto trip-making can take place but some trip-makers 
formerly traveling before or after the peak period (of some defined length) will shift 
into the peak period, thus changing the time-of-day distribution; in this case, conges­
tion during off-peak periods will be reduced and that during peak periods may or may 
not be reduced (depending on the extent of shifts, on volume levels, and on the capa­
city); and 

3. An increased amount of daily auto trip-making (whether from car pool to drive­
alone shifts, from "induced" trips, or from modal shifts) can take place, some or all 
of which can occur during the peak period; also, shifts from one time -of- day period to 
another can occur; congestion may or may not be reduced either during peak or off­
peak periods. 
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TABLE 1 

HYPOTHETICAL TRANSIT SCHEDULE AND TRAVEL CONDITIONS 
FOR ZONE i TO ZONE j TRAVELERS 

Morning Total Enroute Arrival at Destination 

Bus Schedule Time (min) Expected Time Preferred Time 

7:30 25 7:55 8:45 
8:00 45 8:45 8:45 
8:30 30 9:00 8:45 

8Schedule delay is equal to the preferred minus the expected time of arrival at one's destination, 

Schedule 
Delaya 
(min) 

+50 
0 

-15 
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Clearly, though, none of these possibilities (the last of which is without question the 
most likely one) can be forecast properly without having available models that simul­
taneously treat the amount of trip-making, the modal split, and the time of day at which 
trips are made. Furthermore, it should be evident that the first and most unrealistic 
of these three possibilities characterizes the assumptions implicit in our present travel 
forecasting techniques. The major reasons are that trip generation is not made func­
tionally dependent on the equilibrium service, price, and performance conditions that 
will result from a system change, and that time-of-day preferences and constraints are 
not incorporated in the methodology and are not related simultaneously to trip-making 
and modal split. 

The necessity of incorporating time-of-day preferences and constraints of the sort 
described earlier, and their relationship both to trip-making and modal choice, can be 
emphasized by more concrete examples. 

Transit Example No. 1-Assume that travelers potentially going from zone i to zone 
j (and each having identical preferred time of arrival at zone j) are faced with the bus 
schedule and travel conditions given in Table 1. Even if we assume that these travelers 
were going to travel by bus, regardless of the conditions for travel by auto, it is hardly 
clear which of the three buses would be preferable and to whom-at least not without 
having demand functions that incorporate time-of-day and service preferences. For 
instance, some travelers may be willing to arrive slightly later than preferred in order 
to avoid the possibility of standing and the extra enroute time. Others may feel quite 
strongly about getting to their destination "just on time," even at the expense of spend­
ing extra time enroute and standing. Another group may be particularly impatient about 
enroute delays and thus choose the earliest bus even though the arrival was 50 minutes 
earlier than preferred. In sum, one can scarcely deal with the practical real-life fore­
casting problems by failing to consider the full range of service differentials or of trav­
elers' time-of-day preferences, both of which are related to the choices available to 
them; nor can these problems be dealt with by simply comparing enroute travel times. 

Transit Example- No. 2-The bus schedules and travel conditions are identical to those 
outlined in Transit Example No. 1 except that the high demand for an 8:45 arrival time 
(relative to scheduled bus capacity) causes P percent of those trying to catch the 8: 00 
bus to fail in getting either a seat or standing room. Those attempting to gain space on 
the 8: 00 bus, therefore, have to consider the probability of the bus being full, resulting 
in an extra 30 minutes waiting time and in their being 15 minutes late. Some travelers 
will be willing to gamble and accept the penalties; others will find the risk too costly 
to accept, thus shifting either to the earlier or later bus. Again, without knowing trav­
elers' time-of-day preferences and without accounting for all service conditions influ­
encing trip-making behavior, it seems unlikely that we can successfully predict how 
much travel will take place, when it will occur, and by what mode. 

Auto Expample-The following example should demonstrate that the sorts of issues 
and problems that arose with the transit case (and involved the tradeoffs among time­
of-day preferences, service conditions, bus schedules, and capacity) also are experi­
enced with auto travel and thus affect both peaking and modal choices. 

The auto example concerns one-way traffic flow across a bridge during the morning 
peak period. Tlie following assumptions are given: 
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1. Fifteen hundred travelers start to work in zone A at times that are spread uni­
formly between 8 and 9 a. m.; 

2. All workers drive alone and must cross the bridge to get to work in zone B; 
3. Arrivals at the bridge entrance (or end of the queue) are uniformly spaced over 

time period T (in hours); 
4. The bridge can service arrivals at a constant rate µ, of 1,000 vph; and 
5. It takes exactly 15 minutes to cross the bridge (after gaining entrance) and to 

complete the work trip. 

Under these simplified conditions, one of the following (or some combination thereof) 
would result: 

1. All 1, 500 workers would arrive at the bridge entrance uniformly between 7: 45 and 
8: 45. The arrival rate 11. would be 1,500 vph for a time period T of 1 hour, and the ser­
vice rateµ would be 1,000 vph. The average queueing delay for the arrivals during 
time T is approximately ~) 

- . (11. ) T 11. tq = µ - 1 2 for µ > 1 

As a consequence, virtually all workers would suffer queueing delays, and (depending 
on how workers 01·dered themselves in the queue) all could (and most would) arrive 15 
minutes late to work, on the average. In this case, the average enroute travel time of 
30 minutes (to include queueing delays) would automatically incorporate the average 
schedule delay (or preferred minus the expected time of arrival at destination). 

2. The 1,500 workers will adjust to the potential queueing delays and thus will ar­
rive lllliformly at the bridge entrance between 7:15 and 8:45. In this case, the arrival 
rate will fall to 1,000 vph for an arrival time period T of 1 ½ hours. There will be 
no queueing delays, and 500 of the workers will arrive at work 15 minutes early, on 
the ave1·age. Note, however, that the enroute travel time of 15 minutes will not include 
or account for the schedule delays. 

3. The 1,500 workers will adjust to the potential queueing delays and thus will ar­
rive uniformly at the bridge entrance between 7: 30 and 9: 00. In this case, there also 
will be no queueing delays, but 250 of the workers will arrive at work about 8 minutes 
early and 250 of the workers will arrive 8 minutes late; note again that the enroute 
travel time of 15 minutes will not account for these schedule delays. 

In auto situations of this sort, which are typical for peak periods in many large 
cities, it is not clear how the traveling public will adjust. Some will prefer to arrive 
either early or late to avoid congestion and queueing delays; others will decide to shift 
to other modes of travel or to car pooling; and so forth. But without constructing de­
mand models that simultaneously incorporate time-of-day preferences, the full range 
of service conditions, and modal possibilities, it seems evident that neither modal split 
nor the extent of peaking can be forecast appropriately. 

Inadequacy of Traditional Models-To bring these points closer to reality, one might 
ask why the h·aditional modal-split and peak factoring models are unsuitable for pre­
dicting the split and peaking, both as a general case and as applied to a city like New 
York. First, most if not all modal-split models and peak factoring techniques make 
use only of enroute travel times (including waiting times, queueing delays, and transfer 
times) and thus ignore the inconvenience (termed herein as "schedule delay") that re­
sults from arriving early or late to avoid or reduce congestion. Second, present mod­
els and forecasting techniques do not account for the way in which modal split and peak­
ing are related and the extent to which they are affected by the strengths of travelers' 
time-of-day and service tradeoff preferences. 

Turning to the first of these points, it should be evident that modal choice is not based 
simply on the enroute travel conditions of the alternatives and certainly does not dis­
count the enroute travel conditions during alternative times of day. For example, why 
do most downtown New York workers who commute by auto travel to work during peak 
periods and endure extremely high enroute travel times when they could be significantly 
reduced if they would only travel either before or after the rush period? The answer 
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depends jointly on the knowledge that the commuting time could be significantly reduced 
only by starting to work very early or very late (relative to work starting times) and on 

• their distaste for these other time-of-day alternatives (i.e., on a strong preference for 
leaving home no sooner than necessary and for arriving at work no sooner or later than 
necessary). On the other hand, if the peak period were not so lengthy, some peak trav-

• elers would shift to off-peak hours, the extent of switching depending of course on their 
time-of-day preferences and on the reduction in enroute travel time versus increase in 
schedule delay. 

In a similar vein, one can begin to understand both modal split and peaking as well 
as their interrelationship. Clearly, as the level of congestion and as the length of the 
peak period for auto travel increases, shifts from auto to transit and from drive-alone 
auto to car pool will occur. Specifically, as more intense and longer peak periods oc -
cur, the amount of schedule delay generally will increase because the working, shopping, 
and business hours appear to remain virtually the same. Increased schedule delay, 
coupled with travelers' time-of-day preferences, will lead some people to shift to those 
facilities capable of handling higher peak loads, however uncomfortable or inconvenient 
they may be. In New York City, for example, it is extremely doubtful that the existing 
modal split (much less the level and extent of peaking) can be explained satisfactorily 
by making modal-split curves that employ the usual enroute travel times (to include 
allowances for waiting and transfers), money expenses, and income differentials. For 
example, transit riders in New York are probably aware that a shift to auto, in addition 
to entailing an arduous and lengthy trip that would permit avoidance of the subway 
"crush", would probably be accompanied by an early or late arrival at work. 

Furthermore, it is of considerable importance to note that the data used to compare 
the travel times, to compute travel time ratios, and so forth, are usually incorrect. 
The modal-split percentages, which are based on empirical data and are incorporated 
in the curves for predicting future splits, often are computed on the basis of one set of 
data and then applied while making use of a different set. For example, empirically 
based modal-split percentages by trip purpose often have been calculated for travel 
time ratios that are based on the actual origin-destination (0-D) travel times of the 
travelers having that trip purpose. When this model is applied to future trip-making, 
different travel times are used for computing the ratios. More specifically, suppose 
that the empirical modal-split percentages for work trips were based on actual travel 
time data for work trips. The travel times then would be heavily concentrated during 
the peak hours, in the order of 65 to 75 percent of the total daily work trips occurring 
during the 4 peak hours. Given this basis for the modal-split model, it would be in­
correct to use (as is often the case) off-peak or average daily travel time data or to 
use other travel time data for a different time period to calculate future modal splits. 

Along similar lines, other inaccuracies arise because the 0-D modal travel time 
data used in determining modal-split curves often are derived from different time 
periods and then are applied to still different ones. Transit work trips, for example, 
are usually more peaked than auto work trips. The degree of peaking depends on the 
extent and duration of highway congestion and on the availability of transit capacity. 
The 0-D travel times for auto work trips thus are spread over a longer peak period 
than are those for transit work trips, and we can be assured that modal splits are being 
computed either for people having different working hours or for those having different 
amounts of schedule delay. 

This aspect becomes of extreme importance in those situations having high and 
lengthy traffic congestion, particularly when considerable transit capacity is available. 
In Washington, D. C ., for example, where transit capacity is somewhat limited (and in 
much the same way as auto travel is limited by congestion and street capacity), the 
percentage of daily transit work trips arriving at work during the morning peak hour 
is roughly 22 percent as compared to about 18 percent for daily auto driver work trips 
during the same hour (3). (Based on 1955 survey data, these results apply to work 
trips for the entire region rather than solely for the downtown sector; if similar per­
centages were available for downtown work trips, the transit percentage would probably 
be slightly higher and the auto percentage somewhat lower.) 
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In downtown New York City, however, where congestion periods are extremely in­
tense and lengthy and which is served by very high peak-period transit capacity, about 
16 percent of the daily work trips leave work during the peak 10 minutes and about 31 
percent depart during the peak hour (4). (For the morning, the corresponding per­
centages are 10 and 31.) Although these figures represent the combined peaking for 
auto and transit work travel, they mainly reflect the peaking patterns for transit travel 
which account for almost 95 percent of the downtown work trips. 

A Workable Demand Model-To formulate a workable demand model capable of in­
corporating the most significant of the modal-split and peaking aspects is, of course, 
no mean task. Moreover, the demand models, to be fully operational and meaningful, 
should not be formulated without considering the related problems of formulating con­
sistent and compatible price and performance functions and of equilibrating the two sets 
of functions. Even so, before discussing these latter two aspects, it will be useful to 
propose two forms of demand models that treat peak and off-peak conditions. The first 
does so in a highly simplistic way; and the second, in a more satisfying and complete 
way (conceptually, at least). 

Simplified Peak/Off-Peak Demand Model-The peak-period demand model has the 
form 

(12) 

and the off-peak-period demand model may be represented as 

(13) 

where qp is the hourly volume of trips demanded dur.ing the peak period, q0 is that de­
manded during the off-peak period, tp is the peak-period travel time, and t0 is the off­
peak-period travel time. We would expect the parameters O!p, O!o, 'Yp, and /30 to be 
nonnegative and f3p and 'Yo to be nonpositive. 

This model expresses some simple though important and logical relations. First, 
as congestion (i.e., travel time) during the peak period increases (while that during the 
off-peak period remains unchanged), some peak-period trip-making will be discouraged; 
some people will cancel trips altogether and others will shift to off-peak hours. If travel 
conditions during the peak-period are improved (but those during off-peak hours are 
unchanged), the peak-period flow will be increased and that during the off-peak period 
will be reduced. Second, both the total amount of daily flow and the split of the flow 
among peak and off-peak hours can change in response to changes in travel conditions 
during either or both of the time periods. 

Composite Multimode and Time-of-Day Demand Model-Among the many ways of 
specifying significant influence variables, model forms, demand relations, and cross 
relations, the following general formulation seems sufficiently complete and logical to 
serve as a point of departure for further exploration and study. (In form, this demand 
model is not unlike the intercity and multimode passenger demand model which was 
developed for the Northeast Corridor by Gerald Kraft ~).) 

q~'t = a (Y· )i:hi (P· ?m (E· t)6m,t 
lJ m 1 l J, 

( 
x,y )8m,t,x,y (.:x,y)cpm,t,x,y 

II C.. II I.. 
Vx,y lJ Vx,y IJ 

(14) 

where 

q~•t = quantity of trip-making between zones i and j by modem during 
1J time period ; 

Yi = income measure for zone i residents; 
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Pi = population measure for zone i residents; 
Ej,t = employment measure for zone j during time period t; 

n = the product of terms for all values of x and y ranging from 1 to M 
Vx,y and T respectively; the expression therefore represents the product 

of M · T terms (of course, some elasticity values can be zero, thus 
r educing t he number of t erms); 

c~!Y = congestion measure for travel between zones i and j by mode x dur-
IJ ing time period y; 

C!Y = fare or money cost measure for travel between zones i and j by mode 
11 x during t ime per iod y; and 

flm, Ym, 6m t = the demand elasticities for modem (or modem and time period t) 
' travel with respect to the income, population, and employment mea­

sures respectively. (Some of these measures will be stated in ab­
solute terms and others in relative terms, though for this discussion 
it will not be necessary to be more specific.) Finally, 

am t x Y = elasticity of demand for mode m during time period t with respect to 
' ' ' congestion on mode x during time period y 

0 
m,t / m, t 

= qij / ~j · and 

0 x,1/ x,y ' 
cij cij 

'Pm t x y = elasticity of demand for mode m during time period t with respect 
' ' ' to fare or money cost on mode x during time period y. 

The two elasticities, as x and y vary from 1 to M and T respectively, will represent 
the cross elasticities (i.e., they will reflect the percent change in quantity of travel 
demanded for one mode and time period with respect to the percent change in congestion 
or cost of another mode and time period). When x and y are equal tom and t respec­
tively, however, the elasticities then will represent the direct demand elasticities. We 
would expect the direct elasticities to be nonpositive and the cross elasticities to be 
nonnegative. It is likely that empirical analysis will show that some if not many of the 
cross elasticity values will be zero, thus reducing materially the number of terms in 
the individual demand functions and the complexities to be confronted in equilibrating 
demand and performance functions for transport networks. For example, suppose the 
24-hour day could be suitably represented by five time periods (i.e., time period 1, 
7 to 9 a. m.; time period 2, 9 a. m. to 3 p. m.; time period 3, 3 to 6 p. m.; time period 
4, 6 to 9 p. m.; and time period 5, 9 p. m. to 7 a. m.). For such a breakdown, it can be 
argued that the demand for travel during period 1, for instance, would be particularly 
sensitive to travel conditions during that time period and somewhat sensitive to those 
during periods 2 and 5. The same demand would be practically insensitive to the travel 
conditions during time periods 3 and 4. The cross elasticities for demand during time 
period 1 with respect to travel conditions during time periods 3 and 4, therefore, will 
be zero (or at least will be small enough to be ignored). 

Equation 14 gives the demand for only one mode and time period combination out of 
M·T possible combinations. Thus, M•T demand functions will be required to fully 
specify the demand for each zonal or ij pair. Clearly, then, in situations where many 
modes are available the number of combinations and demand functions necessary to 
explain trip-making can become cumbersome, particularly when many time periods are 
required to reasonably explain people's time-of-day tradeoffs and preferences. With­
out a considerable amount of data analysis and parameter estimation it is difficult to 
even guess how finely the modes, submodes, and time-of-day periods should be strati­
fied. For cities having these alternatives available, at least six modes probably should 
be specified: bus transit, rail transit, commuter railroad, taxi, drive-alone auto, and 
car pool. It seems that there are significant service and/or price differentials among 
these choices (that is, significant from the standpoint of influencing the amount of trip­
making, the time-of-day in which trips are made, or the modal choice), and that by 
aggregating modes in the usual fashion (i.e., all auto versus all transit) the differentials 
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are made much less sharp, thus obfuscating the modal-choice question and the ability 
to differentiate between modes and to predict future choices. 

Probably the worst aspect of this type of aggregation involves lumping drive-alone 
auto and car pool trips together in a single auto mode. Drive-alone a-qto travel has service 
and price characteristics that are distinctly different from both transit modes and car pool 
travel. Car pooltravel, however, is not unlike transit travel with respect to service and 
price. Also, although drive-alone has service features that are all clearly superior 
to those for transit, car pool has some important service features that are far worse 
than those for transit. For instance, car poolers are restricted to a single work-trip 
time schedule and to a single 0-D pair, whereas transit riders can take earlier or later 
buses to and from work and can stop off at intermediate zones or change their final des­
tination. Aggregating the two auto submodes thus produces an average auto trip that is 
difficult to differentiate from a transit trip. 

The problem of specifying the different modal possibilities and of defining how finely 
they must be stratified for forecasting purposes does not end here. Different people 
choose to use different modes for different parts of their door-to-door trip. For ex­
ample, when comparing a.uto to rail transit, the service and price differentials would 
depend in part on whether the people traveled to the rail transit station by foot, by feeder 
bus, by "kiss-and-ride" auto, or by "park-and-ride" auto. Modes should be defined, 
therefore, by the overall modal combination for the door -to-door trip. Extending the 
modal-choice definition in this fashion, however, can easily triple and perhaps quadru­
ple the number of transit modes and double the number of demand functions required. 
Consideration of these practical sorts of problems is hardly trivial, and careful data 
analysis will be required to reach firm conclusions about which modal combinations 
are significant and worth inclusion. 

Specifying the number of time-of-day periods necessary to accurately portray the 
time-of-day volume variation pattern is no less difficult and certainly no less important 
than delineating the modal breakdown. If too few time periods are specified, it is likely 
that substantial inaccuracies will occur in predicting travel volumes and travel times 
during different times of day. This will result because the aggregated data used for 
estimating parameter values will mask and shift the peaks. On the other hand, if many 
time-of-day periods are specified, the number of demand functions will be multiplied 
enormously, making the task of equilibrating demand and performance functions for 
multimodal transport networks virtually impossible (from a computational standpoint); 
furthermore, the data requirements for parameter estimation would be enormous if 
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Figure 8 . A suggested breakdown for time-of-<lay demand periods. 
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not out of reach for the data that presently are available. Ideally, at least eight time­
of-day periods would be incorporated as shown in Figure 8. A time period on each side 
of the morning and afternoon major rush periods would be necessary to identify and 
account for shifting peak situations in which some workers (or perhaps rush-period 
shoppers) would go to work either early or late because of congestion during the more 
preferable time-of-day period. Analysis of empirical data will be necessary, however, 
to establish the necessity of different numbers and lengths of time-of-day periods. 

Finally, it should be pointed out that to properly identify and measure time-of-day 
elasticities and cross elasticities, it probably will be necessary to stratify demand by 
trip purpose, as well as by mode and by time-of-day period. Although more clarity and 
accuracy will be provided by this additional stratification, the tasks of parameter esti­
mation and of network equilibration also will be compounded considerably. No firm 
statements can be made about the fineness to which trip purposes should be defined; but 
at a minimum, two purposes-work trips and nonwork trips-should be used. 

DEVELOPMENT OF PRICE-SERVICE-PERFORMANCE FUNCTIONS 

The essence of the problem is to develop functions that will express the price, ser­
vice, and performance conditions as a function of the facility design, vehicle technology, 
volume and character of usage (percent of tructs, etc.), operating and pricing policies, 
and so forth. Our concern is with the representation of performance and prices as 
viewed by the traveler. 

To approach this problem, the performance function may be characterized in one of 
two ways: 

1. Use a vector of service and price characteristics (such as time enroute, waiting 
time, schedule delay, and out-of-pocket money payments), or 

2. Use a single price or performance variable that represents the cumulative value 
of money and nonmoney service and price components. In this case, it is necessary to 
establish commensurate values for the various components of service and price. 

Whichever type of performance function is adopted, single variable or multivariate, 
it must be consistent and compatible with the demand function. That is, if q = f(p, 
socioeconomic conditions, etc.), where p represents the combined money and nonmoney 
time, effort, and expense of travel, only a single performance function is needed or, 
for example, p = f(q, Cx, ... ), where Cx is a capacity measure for facility type x. How­
ever, if q = f(p, tv t 21 ••• , socioeconomic conditions, etc.), where p represents only 
the money expenses, t 1 is the access travel time, and t 2 is the line-haul travel time, 
then the following set of performance functions is required: 

p = f(Cx, q, ... ) 

t 1 = f(Cx, q, ... ) 

t 2 = f(Cx, q, ... ) 

Characteristics of Performance Functions 

The essential aspects and characteristics of performance functions can be illustrated 
by using the simpler single-variable performance function rather than the more com­
plete function involving both service and price variables. For this discussion, then, 
assume that 

(15) 

where Cx is a capacity measure for facility x, and Py r epresents the yth pricing policy 
in use for the facility. For this single-variable model, the performance or price p 
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represents the combined value (in dollars or other commensurate terms) of the money 
payments, time, effort, and hazards of travel, but only to the extent perceived by trav­
elers. All travelers, however, are assumed to be homogeneous with respect to the 
values of the service and performance components. (This assumption is adopted merely 
for the purposes of illustration rather than for its realism.) 

A rather typical example of a set of travel time versus volume (or so-called capacity 
restraint) curves is shown in Figure 9; these would be applicable when travel time is 
the only significant price or service variable affecting demand. The representation in 
Figure 9 is incomplete in two respects: 

1. It fails to apply certain capacity-reducing or bottleneck types of facilities; and 
2. It fails to relate travel time delay to the time interval or period over which the 

volume rate is sustained. 

Though somewhat tangential, these two points are important enough to be clarified. 
In capacity-reducing type of facilities, the service rate (or capacity) can be reduced 

by the shock waves produced when the traffic volume reaches a critical level. For such 
situations-as occurs at uncontrolled intersections and expressways, or at uncontrolled 
merging points-flow and the resultant performance is unstable where demand is high. 
Figure 10 depicts performance functions for both capacity-reducing and non-capacity­
reducing types of facilities . At present, though, capacity-restraint functions used in 
traffic assignment have failed to represent the more complex and dynamic performance 
function for the former type of facility. 

The second aspect-the time interval or period over which volume rate is sustained­
arises partially because of a failure to differentiate between steady-state andnon-steady­
state queueing situations. (The effects of queues existing at the start of time periods 
are discussed in a later section.) To deal with the latter, the following functional form 
is necessary: 

(16) 



Unit Travel Time 

...., J unction for Capacity-Reducing Facilities 

FW1ctlon for Non-
''- Capacity Reducing 
', Facilities 

'\ 

rApprod_mnt n Maximum 
Output Volutoe Rate 
(Before capacity 

1 reductions} 

V .. 
Sustained Input 

Volume Rate 
(e.g., v.p.h.) 

Figure 10. Approximate (non-time-dependent) relationships for travel 
time (or cost) versus flow for different types of facilities. 
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where q and Cx are stated in flow rates (e.g., vph) and T is the time interval or period 
over which flow rate q is sustained. In contrast, steady-state queueing, and most 
capacity-restraint functions, assume that X (the arrival rate) is constant for all time 
and that X < µ (where µ is the service rate). (The switch in notation from q to X and 
from Cx to µ was made so that the terms would correspond to those common to the 
queueing theory literature. To avoid confusion, however, it should be emphasized that 
there is a one-to-one correspondence between q and X and between Cx andµ; a differ­
entiation and distinction is made simply because the transportation planner is more 
familiar with one set of definitions and notations and the queueing theorist with another.) 

Figures 10 and 11 show the usual steady-state queuing model. Clearly, though, X 
often does exceedµ for 1- to 2-hour rush periods (sometimes more, sometimes less) 
in downtown areas and on radials, thus building long queues which are worked off during 
later time periods when the arrival rate declines. Delays for these peak periods are 
not infinitely large, as implied by steady-state queueing relationships. 

Thus, we need transient queueing functions, particularly ones for dealing with the 
exploding queue case (i.e., with the X >µcase). Take a simple example in which 

Delay or, say, p 

1.0 

Figure 11. Generalized queueing curve for steady-
state conditions. 

1. Intersection capacity or service rate = 
µ = 1,000 vph, 

2. Arrival rate = X = 2,000 vph, and 
3. Service is uniform or constant and 

arrivals are equally spaced. 

Case 1: Let the arrival rate of 2, 000 vph 
be sustained for a time period of ½ hour, 
and let there be no queue at the beginning of 
the time period. Then, it will take 1 full 
hour to clear all those arriving during the 
½-hour period, and their average wait will 
be 1/.i hour to clear the facility. 

Case 2: Let the arrival rate of 2,000 vph 
be sustained for a time period of 1 full hour, 
and let there be no queue at the beginning. 
Then, it will take 2 full hours to clear all 
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Figure 12. Time-dependent travel-time-versus-volume relationships for 
constant service and uniform arrival case. 
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T3> T2> Tl 
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those arriving during the 1-hour 
period, and their average wait till 
clearance will be ½ hour. 

In short, even though X was 
greater than µ (i.e., p > 1), delay 
was not infinite; and, quite impor­
tantly, delay obviously is a function 
of the time period over which the 
arrival rate is sustained. 

Figure 12 shows these time­
dependent, non-steady-state queue­
ing relationships for the uniform 
service and uniform or equally 
spaced arrival case, and Figure 13 
shows them for the random arrival 
and service case. 

Figure 13. Time-dependent travel-time-versus-volume 
relationships for random arrivals and service. 

This discussion and the examples 
emphasize that travel time and pric( 
functions (for each link) must in­
corporate the time dependency and 
must match and be compatible with 
the length or time period of the cor­
responding demand interval. For 
example, if the demand function for 
the i th time-of-day period covers 2 
hours, then the travel time versus 
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delay or capacity-restraint function must represent the travel conditions that occur for 
yolume rates sustained over 2 hours. Of equal importance, it should be recognized 
that the traffic engineer, when gathering field data to establish capacity-restraint func­
tions, must not gather data for different time periods and then factor the data to hourly 
i:ates and incorporate them into a single travel-time-versus-hourly-volume rate func­
tion. Note also that the arrival volumes and travel times of interest here are those for 
vehicles arriving at the upstream side of the intersection or facility during the time 
period in question, regardless of whether they clear the intersection or facility during 
that or a later time period. Also, the engineer when recording the field data should 
include information on the length of the queue in existence at the start of the time period. 

Pricing P olicy as a Determinant of the "Price" or Performance Function 

It was suggested earlier that the price perceived by users was made of certain money 
and nonmoney payments which reflected their money, hazard, time, and discomfort 
"expenses." In a rough sense, one might assume that the price function now in existence 
on public roads and streets is equivalent to the short-run average variable cost function. 
Essentially, this implies the following: 

1. Perceived vehicle operating pavements = variable vehicle costs; 
2. Perceived parking fee payments = variable parking costs; 
3. Perceived user gas tax payments ea variable highway costs; and 
4. Perceived time, effort, hazard and discomfort expenditures or payment = varia­

ble time, effort, hazard, and discomfort costs . 

For this discussion, short-run cost functions are those applying to time periods that 
are too short to alter the capacity of transport systems or links; thus the facility is 
fixed and neither the capacity nor the capital investment (as well as the overall travel 
costs for a given volume q) can be altered. In the long run, however, the facility capa­
city and cost relationships can be altered (both upward and downward), and thus can 
change the short-run cost functions. The distinction between fixed and variable costs 
also is important. For a particular facility, fixed costs are those that do not vary with 
changes in usage (i.e., with changes in q) over the short run, whereas variable costs 
are those that vary or change with changes in usage. Alternatively, the fixed costs may 
be viewed as those costs that are nonseparable with respect to nonzero volume levels 
and thus are common to all units of the volume using the facility. 

For travel on public highways, for the existing user gas tax type of highway pricing, 
and for these four assumptions, the short-run average variable cost function (the 
sravcx(q) curve shown in Figure 14) would represent appropriately the price or perfor­
mance function to be used in equilibration. Using this function presumes that travelers 
either do not pay or do not perceive any portion of the fixed vehicle or highway costs. 
Also, the curves shown in Figure 14 only apply to controlled highways and do not rep­
resent the relations applicable to uncontrolled roads and streets on which shock-wave 
action and backward-bending-delay-versus-volume situations often occur. 

Similarly, one might argue that a comparable situation presently exists for most 
transit facilities and that the short-run average variable cost function can serve as an 
appropriate price or performance function for transit trip-making. To accept this as­
sumption would imply that the transit fare just covers and equals the variable costs for 
operating and maintaining transit vehicles, trackage, stations, and maintenance facili­
ties and that the transit system's fixed costs are covered through other revenue sources. 

For other kinds of pricing policies, cost functions different from the short-run aver­
age variable cost curve would have to be used. For example, to represent the overall 
money and nonmoney price for highway toll facilities or for transit systems in which 

.the toll or fare covers both the fixed and variable costs and in which the toll or fare is 
uniform throughout the day (that is, the fixed costs are distributed evenly among all 
daily users), use of the short-run average total cost function, as described by the 
sratcx(q) curve in Figure 14, might be appropriate . Should a peak-load p ricing policy 
based on marginal costs be employed, then the marginal cost curve as shown by srmcx(q) 
would apply. 
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Figure 14. Basic short-run cost functions and relationships for a given transport 
facility. 

The way in which these different cost and price functions can vary with facility size 
is shown in Figure 15. 

EQUILIBRATION OF DEMAND AND PERFORMANCE FUNCTIONS 

Once the demand and performance functions have been formulated, and their param­
eter values estimated, various techniques can be used to equilibrate them for given 
transport networks and pricing policies. In notational form, the task is to find the 
equilibrium volumes and prices (i.e., and Pi and qi values for all n time-of-day periods) 
that will satisfy the following set of demand and performance or price functions: 

4i = f(p 11 ••• , Pni socioeconomic variables) (17) 

and, for i = 1, ... , n, 

Pi = f( 4i, Cx, Py, Ti) (18) 

The effect of queues in existence at the start of time periods on performance or price 
is discussed in the next section and also by Kraft and Wohl (.§_). 
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Figure 15. Short-run cost functions for three facility sizes. 
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It will be helpful to illustrate the interaction between these functions under different 
demand conditions and pricing policies; to do so, some oversimple demand and perfor­
mance functions and a simple one-link unimodal transport network will be employed. 

Example 1: Average Variable Cost Pricing Policy and Linear Demand 

Let us consider two cases: one in which we assume that there are no hour-to-hour 
demand cross elasticities and that demand is linear (this last assumption is made to 
simplify the example); thus, for i = 1, ... , n time-of-day periods, 

(19) 

and the second in which we assume there are hour-to-hour demand cross elasticities; 
thus, for i = 1, ... , n, 

qi = ~i - °'i• 1P1 - • • • - ai, nPn (20) 

For both equations, qi is the quantity of trips demanded during the i th time-of- day 
• period but expressed in trips per hour (aver aged over the time period), and Pi is the 

average price experienced during the i th time period. 
For both demand cases, a time-dependent price or performance function will be 

used to represent the short-run average variable cost relationship. For simplicity, 
let us employ the following relationship. For qi > Cx , 
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(
q. )T· 

Pi = Pmin + 'Yi c~ - 1 -,j (21) 

and, for qi ,,; Cx , 

Pi= Pmin (22) 

in which Pmin is the (constant) minimum overall trip price for unsaturated flow condi­
tions, 'Yi is the unit value of travel time a nd congestion during the i th time period, Cx 
is a capacity measure for the facility (expressed as an hourly rate), and Ti is the num­
ber of hours in the i th time-of-day period. 

This clearly is an oversimple model, first because the effects of stochasticity are 
not incorporated, second because it suggests that the unit value of travel time and con­
gestion is constant for all levels of travel time and congestion (i.e., an extra minute is 
worth the same to trips of 5 minutes as il is lo lhuse of 50 minutes), and third because 
it applies only to non-backward-bending flow ·situations. The concern at this stage of 
the discussion, however, is with the equilibration process and the interactions between 
demand and performance functions rather than with the validity of the particular models 
and functions employed. 

Case 1: Without Hour-to-Hour Demand Cross Elasticities-For this case, conges­
tion during the i th time-of-day period does not affect the extent of trip-making, the 
congestion, or the price during any other period; thus, there are no shifts of travel 
from one period to another. Direct solution therefore is possible, either analytically 
or graphically. For the former, after inverting the demand functions and equating to 
Pi (one unknown in each equation), the following equations (each having one unknown) 
are derived, and the price equation having the highest value and thus providing the 
smallest value of q is selected: 

f31 ql 
a1 - °'1 = Pmin or 

= Pmin + 'Y1({t - 1) ~ 

/3i q. 
- - -1.= p . or 
'½. ai mm 

= Pmin + 'Yi(~~ - 1) ~ 

/3n - qn = Pmin or 
an an 

= Pmin + 'Yn(~: - 1 )~ 

The values of q1, ... , qn can be determined directly; and those of p1, .. . , Pn, by sub-
stitution into Equation 21 where Pmin does not apply. _ 

Case 2: With Hour-to-Hour Demand Cros s Elasticities-For this case, congestion 
and thus price during the i th demand period will affect flow during other periods or 
times of day; i.e., people are shifting from hour to hour, depending on the alternatives 
and their preferences, and thus the hour-to-hour and total amount of daily trip-making 
is affected. Stated functionally, though in linear form, the set of demand and price 
functions might be somewhat as follows: 



r 
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1. n demand equations: 

2. n price equations (select the largest of each pair): 

P1 = Pmin or 

(
q1 t) T

2
1 

= Pmin + 'Y 1 Cx -

Pn = Pmin or 

Alternatively, the n price equations can be stated as a series of inequalities as follows: 

Pn 2: Pmin and Pn ~ Pmin + 'Yn(~~ - 1) T2n 

Then demand functions and n price functions cannot be solved directly for the equili­
brium qi and Pi values because of the interdependencies that stem from the time-period­
to-time-period cross elasticities. Thus, iterative numerical or programming tech­
niques must be employed for their solution. For this simplified example, linear pro­
gramming can serve as one practical technique for solving the equations simultaneously. 
A suitable linear programming format for accomplishing this is the following. 

Determine the q1, ... , 4n and p 1, . .. , Pn values that will 

n 
Maximize Z = :E ki4i 

i=l 

as subject to nonnegativity restrictions (i.e., all qi and Pi values must be nonnegative) 
and to the following constraints: 

4n = fjn - o:n, lPl - · · · - o:n,nPn 
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and 

Pn ;e Pmin 

Pn ;i: Pmin + Yn(~: - 1) ~n 

The objective function (maximize Z) has no particular significance other than to bring 
about an appropriate equilibration between the demand and price functions. Also, ki is 
the number of hours in the i th time-of-day period. 

Example 2: Average Variable Cost Plus Uniform Fixed Facility Cost 
Toll Pricing Policy and Linear Demand 

The pricing policy to be considered for this example is roughly equivalent to that 
experienced by travelers using toll facilities and, in some cases, transit systems (and 
may be viewed as an average total cost type of pricing policy). For this pricing policy, 
the overall money and nonmoney price (which reflects the total time, effort, and money 
expenses perceived by and expended by users) will include both the variable money and 
nonmoney components described in the discussion of the average variable cost pricing 
policy and the uniform money toll to cover fixed facility costs. Thus, Pi, the price dur­
ing the i th demand period, will be equal to the toll plus the short-run average variable 
cost and may be regarded as r oughly equivalent to the shortrun aver age total costs 
as shown earlier in Figure 14. If, for simplicity, we again assume that the time­
dependent functions described by Equations 21 and 22 are suitable for representing the 
short - run average variable cost s, then for this average total cost type of pricing policy 
the appropriate price or performance function for the i th time period would be as fol­
lows for qi ,, Cx: 

Pi = toll + Pmin (23) 

and, for qi > Cx: 

(
q· ) T· 

Pi =toll+ Pmin + Yi c~ - 1 T (24) 

For situations in which the toll (or fare) was adjusted to raise revenues sufficiently 
to just cover the fixed facility costs (including interest), and in which the toll (or fare) 
remained uniform throughout the day, an average total cost pricing policy would result 
and the toll t would be 

n n 
t = AFCx + 365 L k•q• = Fx + L k-q• 

i=l l l i=l l l 
(25) 

where AFCx is the annual fixed costs and Fx is the daily fixed costs for facility x, qi 
is the hourly trip volume during the i th time-of-day period, ki is the number of hours 
during the i th time period, and n is the number of time periods per day. 
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Accompanying these price and toll 
functions will be demand functions that 
incorporate the time-of-day cross 
elasticities. Thus, the demand func­
tions for the n time-of-day periods 
are 

(26) 

~/iqt To determine the equilibrium flows 
and prices (q1, ••• ,4n and P.1.1 •• -,Pn 

Figure 16. Linearization of nonlinear toll function. respectively) that will simultaneously 
satisfy both the demand and price func­
tions (Eqs. 23, 24, and 26 respectively) 
will require the use of iterative num-

erical or programming techniques because of the interactions resulting from time-of­
day demand cross elasticities and from the toll function. Again, both these interactions 
and a solution technique capable of recognizing can be expressed by making use of a 
linear programming format. To accomplish this, however, the nonlinear toll functions 
must first be linearized; that is, the curvilinear toll function must be replaced or ap­
proximated by a series of piecewise linear functions. Then the price and toll functions 
must be expressed as inequalities, and an appropriate objective function must be chosen. 
Linearization of the toll function is illustrated in Figure 16; although only three linear 
segments or pieces were used to approximate the nonlinear function in Figure 16 (i.e., 
w = 3), the number of segments {w) can be increased without limit and can provide what­
ever accuracy is desired or necessary. 

The linear programming format for this example would be as follows: Determine 
the q 1, ••• ,qn, Pi, ... ,pn, and t values that will 

n 
Maximize Z = L kiqi 

i=l 

as subject to nonnegativity restrictions and to the following constraints: 

and 

Pn ,!, t + Pmin 

(27) 
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(
qn ) Tn 

Pn 2 t + Pmin + 'Yn Cx - 1 2 (28) 

and 

(29) 

For purposes of illustration, this format will be applied to a situation that is par­
tially hypothetical and partially empirically based. The example is intended to be ap­
plicable to a six-lane, urban toll facility which is 5 miles in length; the total annual 
fixed costs were set at $1.260 million (for all 5 miles), a figure that corresponds to a 
facility construction and right-of-way cost of roughly $4 million a mile. The toll func­
tion associated with this fixed facility cost is shown in Figure 17 in both its nonlinear 
and linear form; for the piecewise linear approximation of the toll function, the form 
of which is described by Equation 29, six linear segments were used. 

Eight time-of-day periods were used to delineate demand. The specific times of day 
and the time period lengths were as shown in Figure 8, and the hypothesized demand 
functions for the eight time periods are given in Table 2. Although all eight functions 
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Figure 17. Linearization of average-toll-versus-daily-traffic-volume 
relationship for 5-mile, six-lane, urban toll facility. 
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incorporated direct demand relations (that is, the effect of the price during the i th time 
period on the amount of travel during the i th time period), it was not necessary to in­
clude demand cross relations (that is, to account for the effect of travel prices during 
other time periods on the amount of travel during the ith time period) for all cases. 
For example, it was assumed that nighttime travel between 7 p. m. and 6 a. m. was un­
affected by peak-period travel prices and by those just before the morning peak and just 
after the evening peak. By contrast, travel during the morning peak-period is affected 
by the travel prices of both before and after the morning peak-period. 

The price function used in this example represents the combined value of the toll 
plus the short-run average .variable costs (Eq. 28); for convenience, the oversimple 
relationship described by Figure 12 and Equations 21 and 22 was used to represent the 
short-run average variable costs. (In brief, this relation ignores the effects of sto­
chasticity; even so, neither the model structure nor the interactions are affected 
greatly.) The exact price functions (which embody the parameter values for 'Yi and Cx) 
used for this purpose are given in Table 3; the values for 'Yi, the unit value of travel 
time, congestion, and so forth, vary from time period to time period; and the value 
for Cx, the capacity measure, was set at 4,000 vph, and that for Pmin was set as 64 
cents. 

By varying the 'Yi values, it is implied that travelers during different periods react 
to increases in travel time and congestion to different degrees. For example, shoppers 
traveling during off-peak periods may be less willing or prone to tolerate some given 
level of congestion than will workers traveling during peak periods; or, put differently, 
those workers traveling to work early or late to avoid the heaviest rush periods may 
find travel time and increases in congestion more onerous than will those workers will­
ing to endure the congestion occurring during the heaviest part of the rush period. 

TABLE 3 

PRICE FUNCTIONS FOR 5-MILE SIX-LANE (RUN 1) AND 
EIGHT-LANE (RUN 2) URBAN TOLL FACILITY EXAMPLE 

Price Functions For Run 1 For Run 2 

p
1 

2 64 + t and p
1 

2 44 + \ + 0.Q05q
1 

p 1 2 44 + t + 0.00333q, 

p, 2 64 + t and P, 2 39 + t + 0.00625q, P, 2 39 + t + 0.00416q, 

p, 2 64 + t and p, 2 44 + t + 0.005q
3 

p
3 

2 44 + t + 0.00333q
3 

p
4 

2 64 + t and p, ~ 32 + t + 0.008q, p, 2 32 + t + 0.00534q
4 

P, 2 64 + t and p
5 

2 44 + t + 0.005q
5 

p
5 

2 44 + t + 0.00333q
5 

p
6 

2 64 + t and p
6 

2 34 + t + 0.0075q
6 

p
6 

2 34 + t + 0.005q
6 

P, 2 64 + t and p
7 

2 44 + t + 0.005q
7 

p
7 

2 44 + t + 0.00333q
7 

P, 2 64 + t and p
8 

2 28 + t + 0.009q
8 

p 2 28 + t + 0.006q 
8 B 

Note: The"' lu nr:1ions "" ' of the form P; 2 t + Pmin + Y; [lq1/Cxl · 1] !T;f2}. Alth00gh the Y· and 
Ti vgluea \raried from time pa.riod to time period, Pmin 1nd Cx were held consta nt and sei equal 
to 64 cents and 4,000 vph respectively for Run 1, and to 64 cents and 6,000 vph for Aun 2. 
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forth are independent of transportation but to imply that the characterization of this 
interaction should be made within an intermediate and long-run time frame. 

One objective of the travel forecasting process is to list the equilibrium flows and 
associated performance or price levels (or, perhaps, a vector of money and nonmoney 
prices if certain price and time elements are to be differentiated). If we assume that 
all money and nonmoney elements can be combined into a single price, the desired out-

puts for t he system would be ~th and p~,h for a ll values of m (the variable designating 

mode), for all values of h (the time- of-day period), and for all combinations of i and j 
(ol"igin and destination zones ) except for i equal to j. 

For the system and region shown in Figure 18, there would be at least four modes-
drive-alone auto, car pool, bus transit, and taxi-and thus m = 1, ... , 4. If the time-
of-day demand periods outlined in Figure 8 are adopted, then h = 1, ... , 8. The number 
of combinations (of ij pairs) for z zones can be computed by using the following com­
binatorial formula: 

N f 
. . . z ! z (z - 1) 

o. o 1J pairs = 21 (z _ 2)! = 2 

However, the number of directed interzonal transfer possibilities (e.g., from i to j and 
from j to i) will be twice this number. For the four zones in Figure 18 havi ng land uses, 
there will be six ij combinations (ab, ac, ad, be, bd, and cd) and thus the number of 
directed trip pair combinations (e.g., trips from a to b) will be equal to 12. In all, 
there will be M times H demand functions to be used for each directed ij interzonal pair 
and a tota l of M· H· z(z - 1) demand functions to be dealt with for the region. h 

The total flow for a directed ij zonal pair during tim e-of-day period h, or 4ij• would 
be 

M 
'I;"" m,h 
~1 qij 

(30) 

where M is the number of modes. Similarly, the total daily flow by mode m, or q~ can 
be determined by summing over all H time-of-day periods; that is, lJ 

m H h 'I;"" m, 
q . . = L., qiJ" 

lJ h=l 
(31) 

Neither of these flow totals, however, can be determined directly or in advance of as­
certaining the equilibrium flows by mode and time of day. Nor can the total daily flow 
originating or ending at any zone be determined exogenously or prior to forecasting 
equilibrium interzonal flows by mode and time of day. Thus, qi, the total daily trips 
originating at zone i, would be 

(32) 

The most difficult problems in carrying out the forecasting process (once the de­
mand functions have been specified) are those involving the determination of the path or 
route that has the best price and value characteristics. There are two aspects of this 
phase of the forecasting process that deserve special mention. First, the prices to be 

used in a demand function of the form q~•h = f(price for i to j trips by different modes 
lJ 

and during different times of day; socioeconomic characteristics of residence zone i 
and destination zone j) are the equilibrium prices that will result from demand and 
supply interaction for the entire system and region. These prices also result from the 
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accumulated travel conditions over the various links of the travel paths between zones 
j and j. For example, assume that an drive-alone auto trip (m = 1) from zone a to zone 
b follows a route involving the links connecting intersections (2, 4), (3, 4), (3, 3), and (3, 2) 
as well as access between the zone centroids and the first and last intersections. (An 
iJltersection can be identified by its x and y or column and row coordinates respectively; 
thus, in Figure 18 intersection (4, 1) is that at which the fourth column and first row 

intersect.) As a consequenc e, and if we let p (l ,h ) ( , ') repr esent the price of traveling 
x,y - x ,Y 

by mode 1 during time period h over the link between intersect ions (x, y) and (x ',-y ') , the 
lb 

total price for trip from zone a to zone b, or pab , would be 

1,h _ 1,h 1,h 1,h 1,h 1,h (33 ) 
Pab - Pa-(2,4) + p(2,4)-(3,4) + p(3,4)-(3,3) + p(3,3)-(3,2) + p(3,2)-b 

The first and last terms represent the price for gaining access to or from the origin 
and destination zone and the initial and last links of the route. 

Second, and as noted in an earlier section, if demand is not stratified by route as 
well as by mode and time of day, then some route assignment procedure must be adopted 
for assigning trips to the best path between ij pairs in an all-or-nothing fashion or for 
splitting trips among the different paths. The conceptually correct procedure, of course, 
would be to stratify demand to include route choices, but it would greatly enlarge the 
number of demand functions and the complexity of forecasting equilibrium flows and 
prices. However, by adopting some route assignment procedure as an alternative to 
stratifying demand by route, one assumes implicitly that neither the amount of trip­
making nor the modal or time-of-day choices are affected significantly. (Short of a 
full-scale system analysis, the assumption will be difficult if not impossible to test.) 
All things considered, though, the adoption of an arbitrary route assignment procedure 
seems to be the wisest course; this judgment is embodied in the travel forecasting 
process shown in Figure 19. Although this flow chart incorporates a minimum-path 
route assignment procedure, such a technique was adopted merely for computational 
and illustrative convenience rather than as a result of any hard analysis of alternative 
procedures. 

Several things come to mind with respect to the travel forecasting process. First, 
the analyst would like to know how different route assignment procedures would affect 
the equilibrium travel volumes and associated trip prices as well as the data process­
ing requirements. Second, it is important to ask how much accuracy is necessary or 
feasible in equilibrating the demand and performance or price functions (i.e., how many 
iterations are necessary for satisfactory closure). Third, one must wonder whether a 
system of demand and performance functions will be sufficient to define a unique equili­
brium (that is, whether more than one set of travel volumes and prices will satisfy the 
demand and performance function constraints for a given transport system and land-use 
pattern). 

Although there are day-to-day variations in travel volumes and prices on urban trans­
port networks (because of fluctuations in weather, people's living habits, etc.), at any 
one point in time and on any one day there is a unique amount of flow and level of con­
gestion. Our problem, of course, is to predict this unique flow and to represent the 
variance associated with the flow and travel conditions. The latter aspect has been 
._ignored throughout this paper, as it is a separate aspect from that of predicting the 
unique equilibrium values. 

CONCLUSIONS 

The foregoing methodology for forecasting travel on urban transport networks is 
offered with the sincere hope of generating both dialogue and research on the subject 
and of leading to analysis that will permit the development of models capable of realis­
tically forecasting peak and off-peak travel volumes. The data gathering and process­
ing requirements for the development of models along the lines suggested will be 
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formidable but necessary to develop our forecasting procedures to a higher and more 
fruitful level of achievement than has been possible heretofore. 

It can be argued that a better or more fundamental conceptualization of the forecast­
ing process (perhaps in the direction of that outlined herein) will be needed to improve 
materially our predictive capabilities. It cannot be argued with certainty, however, that 
the requisite effort, in the last analysis, will prove to have been worthwhile and to have 
improved significantly the decision-making process . For the present, and at best, one 
can only hope or judge that such will be the case. It is in this sense that I urge con­
tinued improvement of our forecasting methodologies and support the commitment of the 
research funds required for that improvement. 
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Appendix 

TRAVEL FORECASTING PROCESS FOR MULTIMODAL TRANSPORT NETWORKS: 
PARTS A THROUGH G 

A. Initialization 

1. Land-use data for z zones, 
2. Socioeconomic data for z zones, 
3. Transport system definition and capacity measures for M modes and all links, 
4. Pricing and/ or control policies, 
5. Parameter values for M · H · z (z - 1) demand functions, 
6. Parameter values for transport link performance (or price) functions, and 

7. Initial estimates of equilibrium prices or pm(x,h)-(x' ') values for transport sys-
tem links. ,Y ,Y 

B. Determine Minimum (i. e., Least Price) Paths 

For each ij pair, by mode and time of day, accumulate link prices for each alternate 

conllecting r oute and determine least-price path. (0utput will be p~'h values for all ij 

pairs, m and h.) 

C. Determine Interzonal Volumes 

a· f t· f th f m,h r( 1,1 1,2 M,H-1 M,H . . 1ven unc ions o e orm qij = pij , pij , ... , pij , pij ; soc10econom1c 

variables), determine the volume of trips demanded between zone pairs by mode and 

time period for all ij pairs and for all values of m and h. (0utput will be q~•h values 

for ij pairs and for all values of m and h) 
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D. Assign Volumes to Routes 

Assign interzonal volumes (i.e., q;,h values), by mode and time of day, to mini­

mum price route between ij pairs. 

E. Compute Link Volumes 

Determine the volumes, by mode and time of day, on the transport system links. 

(0utput will be q~:~)-(x', y') values for all links and all values of m and h. For modes 

using common facilities, such as drive-alone auto, car pool, bus transit and taxi, the 
modal-link volumes will be combined in commensurate vehicle or passenger flow units, 

whichever is appropriate.) 

F. Compute Initial Queues 

For each link, by mode and time of day, compute the initial queue lengths at the 
start of each time period. This can be accomplished by comparing link volumes 

(or q::~)-(x',y') values) and link capacities (or ct;;)-(x', y') values)· (Output will be 

Q::~)-(x',y') values for all links and all value of m and h) 

G. Performance Functions 

G. 1u t· f th f m,h r( m,h Qm,h cm,h . 1ven nc ions o e orm P(x )-(x' ') = q(x )-( , ')i ( )-( , '); ( )-( 'y')' ,Y ,Y ,Y: x, y x,y x ,Y x,y x, 

Pk; Th; etc.) and given modal-capacity measures for all links (1. e., c[;;)-(x',y') 

values), pricing and/or control policies (Pk values), initial link queue lengths at start 

of time period (Q::;)-Cx',y') values), and time of day period lengths (Th values), de­

termine resultant link prices .for all links, modes, and times of day. ( Output will be 

p::;)-(x', y')• values for all links and for all values of m and h.) 




