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A procedure was developed to evaluate layered systems with nonuniform 
material properties. The procedure consists of defining the layered sys
tem by a physical model consisting of mass points tied together by springs 
and bars. The variability of the material is simulated by assigning dif
ferent characteristics of the material properties to springs connecting the 
mass points. Assignment of values representing the material properties 
is done on a random basis. The random values are generated in a manner 
that produces a model with mean characteristics corresponding to the 
mean properties of the materials in the various layers of the pavement, 
and with a coefficient of variation compatible with the coefficient of vari
ation of the corresponding paving material. 

Results from the study show that the response of the layered system is 
influenced by the statistical characteristics of the materials. The statis
tical nature of the response is influenced by both the variability of the ma
terial and the nature of the variability. A large area with slightly less 
than average stiffness has a greater influence on the response of the sys
tem than a large difference in stiffness over a small area. Thus, detailed 
analyses are necessary to obtain a comprehensive understanding of the 
behavior of the system. Much work still needs to be done to obtain a 
complete picture of the statistical nature of pavement response. Pre
liminary results strongly indicate a need for the type of analysis presented 
in the paper as a guide for establishing realistic quality control criteria 
for paving materials. With results from such a procedure it is possible 
to establish a cost benefit from higher quality control criteria. 

•PAVING MATERIALS, because of their heterogeneous nature, have natural or inherent 
variations in their physical properties. This natural variability is compounded by non
uniformity in the material due to construction processes and techniques. Taken to
gether, these variations may have a profound effect on the behavior and performance 
of pavement systems. 

Little is known about the manner and extent of influence that material variability has 
on the behavior of pavements. It is known that pavements do exhibit significant varia
tions in response to loads (1, 2, 3, 4), and this variability can often be attributed to 
nonuniformity in the paving-materiais. What is not clear is what role the variability 
in the various layers of the pavement plays in the nonuniform behavior of the overall 
pavement. 

To evaluate the effects of nonuniform paving materials on the behavior of pavements 
it is necessary to (a) know the effect of the magnitude of material variability on the be
havior of the pavement system, (b) know the effects of the size of the defect on the be
havior of the pavement system, and (c) know the magnitude of variability of in-place 
paving materials. In this paper, a procedure is developed that can deal directly with 
items a and b. Item c can be evaluated indirectly by correlating the observed behavior 
of actual pavements with the results obtained from the procedure outlined here. 
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It is important to know the relationships between material variability and pavement 
behavior due to the increased use of statistical quality control techniques. The present 
statistical quality control plans are based on the present level of control being deliv
ered. The procedure developed herein can be used to evaluate various levels of ma
terial variability so that the optimum level of control can be determined. 

Knowledge of the effect of defect size and severity on pavement performance is im
portant for aiding inspectors in applying non-statistical sampling techniques. If the 
material is only slightly substandard or if U1e quantity of defective material is small, 
the decision between acceptance and rejection becomes unclear. The procedure pre
sented here can be used to determine whether the substandard or defective material 
is critical, i.e., whether it would cause a noticeable decrease in pavement perfor
mance. The relationship between the size of the critical defect and its deviation from 
the standard would define the characteristics of the critical defect. 

The specific objective of this paper is to describe the procedures developed to eval
uate the statistical nature of load-induced stresses, strains, and deflections in pave
ments having materials with variable physical characteristics. While the procedure 
can be applied to a three-dimensional problem, the example solutions and applications 
given in this paper are limited to the two-dimensional plane strain case because of 
limited capacity of available computer systems. 

DEVELOPMENT OF THE SOLUTION PROCEDURE 

The method for determining the response of the pavement system due to variable 
material properties is based on a mathematical discrete element model. By using this 
type of model to represent the pavement system, the material properties can be varied 
from point to point, and in this way the variability of the material properties can be in
corporated into the solution. The nature of the variability of the response can be de
termined by randomly selecting for every point in the model values for the material 
properties from their respective statistical populations and repeatedly solving the lay-
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Figure 1. A typical section of the interior of the 
discrete element model. 

ered structural system using sets of ma
terial properties selected on a random 
basis. A sufficient number of solutions 
must be developed to evaluate the statis
tical nature of the pavement response. 

Discrete Element Model 

The discrete element mathematical 
model used in this work was developed 
by Ang and Harper (5, 6). The physical 
analog of the mathematical model consists 
of a two-dimensional rectangular grid of 
mass points connected on the diagonals 
by stress-strain elements. The mass 
points form the basis for deflection anal
ysis while stresses, strains, and their 
relationships are defined at the intersec
tions of the stress-strain elements, i.e., 
at the stress points. A typical section 
of the physical model is shown in Fig
ure 1. 

In mathematical terms, the model 
used is the central finite difference ap
proximation of the basic differential equa
tions from the theory of elasticity as
suming plane strain. From the theory 
of elasticity the differential equations for 
relating deflection and strain are 
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au av au ov 
{x = ax' E:y = oy' and Yxy = oy + ax 

where x and y are the two coordinate axes (Fig. 1), u and v are the deformations in the 
x and y dil·ections respectively, Ex and Ey are the axial strains in the x and y direc
tions respectively, and Yxy is the shear strain (1_). The corresponding central finite 
difference equations relating strain and deflection at stress point I, J (Fig. 1) are 

and 

Ui+l,j - ui,j -1 
"-

Y _ Ui+l,j-1 - ui,j + Vi+l,j - vi,j-1 
'Yxyl J = I, J - )._ 11. , 

where )._ is the diagonal spacing of the mass points. 
Again from elastic theory the equations relating stress and strain are 

and 

where 

C 
E(l - µ) 

(1 + µ ) (1 - 2µ ) 

B == (1 + µrr1 _ 2+£ ) 
E 

G -= 2(1 + µ ) 

ax CEx + BEy 

cry Cf.y + Bt:x 

T xy Gyxy 

ax and cry are the normal stresses in the x and y directions respectively, T is the shear 
stress, E is Young's modulus of elasticity, andµ is Poisson's ratio (7). Since no 
differentials are involved in these equations, the central finite difference forms for 
these equations are identical with those for the elastic theory. 

This problem is being solved in terms of deflections, and therefore the only other 
equations needed are the equilibrium equations. Assuming that body forces and ac
celerations are zero (4), the differential equation for equilibrium in the x direction 
is (J_) -

The corresponding central finite difference approximation for this equation at mass 
point i, j (Fig. 1) is 

(axI,J+i) ½ + (Tr,J) ½ - (crxI-1,J) - (Tr-l,J+1)½ = 0 

Dividing by the volume represented by each mass point (11. 2 /2) and rearranging gives 

a - a 
xr, J+l XI-1, J + 

"-
TI,J - TI-1, J+l 

)._ 
0 
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The corresponding differential and finite difference equations for equilibrium in the 
y direction are 

clTxy 
+ 

aay 
0 

clX ay 

and 
T -rl- 1 J 

a - a 
IIJ+l Y1 J YI-1

2 
J+l 

- 0 I + z 
A A 

By substitution, the equilibrium equations for point i, j can be expressed in terms of 
the deflections of point i, j and the eight surrounding points. These equations are pre
sented in the form of computational molecules as shown in Figure 2. A portion of the 
equilibrium equation in the x direction would be 

l::Fx = ( C1-l,J) Ui-1,j-l + ( BJ-1,J + GJ-1,J+l) Vi-1,j + · · · 

+ ( C1 J+l) ui+l 1·+1 = O 
' ' 

Boundary Conditions 

To apply the model to typical pavement structures it is necessary to define con
sistent boundary conditions for the model (5). Three types of boundary conditions 
must be evaluated: (a) the boundary conditions at the pavement surface, including a 
means for applying external forces; (b) boundary conditions for the remainder of the 
perimeter; and (c) the boundary conditions for the interfaces between layers. 
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Figure 2. Computational molecules representing 
the equilibrium equations for an interior mass point 

in terms of deflections. 

The equations defining the surface 
boundary condition can be determined by 
defining the equilibrium of the surface 
mass points. The equilibrium equations 
can be developed in terms of the deflection 
of the mass points at the surface. A typ
ical surface mass point with the stresses 
acting on the point is shown in Figure 3. 

The computa tional molecules for the 
equilibrium equations of the surface mass 
points are shown in Figure 4. Note that 
the computational molecule is the same as 
the lower half of its corresponding mole
cule describing the equilibrium of an in
ternal mass point but that the top half has 
been replaced by the function of applied 
stresses and >.. shown on the right side of 
the equation. 

The boundaries around the remainder 
of the perimeter are assumed to be im
moveable, and values for u and v for mass 
points along the perimeter are set at zero. 

The boundary condition between layers 
is assumed to be perfectly rough; that is, 
there can be no relative movement between 
any point on the bottom of the upper layer 
and the corresponding point on the top of 
the lower layer. This condition is satis
fied for the numerical model by defining 
the boundary through a row of mass points 
and defining the material properties for 
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Figure 3. A typical section of the surface of the model. 
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Figure 4. Computational molecules representing the 
equilibrium equations for a surface mass point in terms 

of deflections. 
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the stress points above the boundary to correspond with the material in the upper layer 
and the properties below the boundary to correspond to the material below the boundary. 

Solving the Equilibrium Equations for Unknown Deflections, 
Strains, and Stresses 

The equilibrium equations must be solved for the deflections at each mass point in 
the model. A modification of the Gauss elimination procedure was used to solve the 
equations for this study. The form of the unmodified coefficient matrix is shown in 
Figure 5. 

The modification of the Gauss elimination procedure consists of operating on only 
the non-zero coefficients in the matrix. Two large groups of zero coefficients are lo
cated above and below the band of non-zero coefficients shown in Figure 6. Other 
groups are located in the cross--hatched areas also shown in Figure 6. The modified 
form of the coefficient matrix is shown in Figure 7. 

The solutions to the equilibrium equations are obtained by operating on the modified 
matrix using a bookkeeping system that relates the location of the coefficients in the 
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modified matrix to the corresponding 
coefficients in the unmodified matrix. 
The storage requirement for the modi
fied matrix and constant vector is 
4M2N + 6MN for a model with M x N 
mass points and where N ;e M. 

Generation and Assignment of 
Random Variables 

A random number generator was 
used to assign the material properties 
to stress points in the model. The 
method used is based on the central 
limit theorem of statistics. To obtain 
a standard normal, pseudo-random 
variable this procedure, a series of 12 
uniformly distributed pseudo-random 
numbers were generated, normalized, 
and summed. Since the mean of the 
sum was 6, with a standard deviation 
of 1.0, subtracting 6 from the sum re
sulted in a standard normal random 
variable; that is, a variable with a 
mean of 0 and standard deviation of 
1.0. A frequency distribution of 100,000 
pseudo-normal, random numbers was 
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Figure 5. Form of the coefficient matrix for the equili
brium equations for a problem 10 points deep and 5 

points wide. 

generated in this manner to test the validity of the procedure. This frequency distri
bution is shown in Figure 8. 

After the random material properties have been generated, they must be assigned 
to the stress points. The most straightforward method of assigning the values of a 
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Figure 6. A section of the coefficient matrix of the equilibrium equations of a problem 5 points 
deep before the elim ination of unneeded zeros. 



random material property to the model 
is to generate a series of normal ran
dom values with the appropriate mean 
value and standard deviation and to as
sign each in turn to the stress points 
of the layer being considered. Typical 
assignments thus developed are shown 
in Figure 9. 

When the material for a given pave
ment layer is produced by a batch type 
of process, a random step function 
must be used to represent the batch
to-batch variability. The level of each 
step in the step function is determined 
by generating normal random numbers 
using the mean value for the layer and 
the batch-to-batch standard deviation 
as parameters. The width of each 
step, except the first, is related to the 
area covered for a given batch size. 
In order toprevent a possible bias, the 
size of the first step is determined so 
that it will be a uniformly distributed 
random value that will be less than the 
size of the other steps in the layer. 
The within-batch variability of the ma
terial is superimposed on the random 
step function representing the batch 
means. By applying this procedure, 
material properties characterized by a 
batch-wise variability can be assigned 
to the stress points of any layer in the 
pavement. Figure 10 shows an ex
ample of two typical assignments. 
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Figure 7. A section of the coefficient matrix and con
stant vector for a problem 5 points deep after the elimi

nation of unneeded zeros. 
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Figure 8. Frequency distribution of 100,000 normally distributed pseudo-random numbers. 
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Figure 9. Assignments of normal random numbers (mean = 5 x 10
4 

psi, coefficient of variation = 20) 
assuming that each value is independent of all other values. 
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Figure 10. Assignments of normal random numbers (mean= 1 x 105 psi, external coefficient of variation= 
10 percent, internal coefficient of variation = 1 percent) to represent a batch process . 
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Figure 11. Assignments of normal random numbers (mean = 5 x 104 psi, external coefficient of variation= 
10 percent, internal coefficient of variation= 0 percent) to represent a continuous process. 
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When the material for a given layer is produced by a continuous type of process, a 
continuous random function can be used to represent the external variability. This 
function is generated by passing an interpolation polynomial through equally spaced 
normal random variables, using the layer mean value and the external standard devia
tion as parameters. The spacing of the points is the minimum distance needed so that 
the values representing the material property are independent random variables from 
point to point. Again, the function can be translated a random distance horizontally so 
that bias due to maximum and minimum values occurring in the same place for succes
sive solutions can be eliminated. The within-batch variability can then be superim
posed upon this random function to provide values for all of the stress points in the 
layer. Examples are shown in Figure 11. 

LIMITATIONS 

Three possible sources of error that might decrease the value of the model for 
evaluating pavement systems are (a) the constraints due to the fixed boundaries of the 
model, (b) the spacing of the mass points, and {c) roundoff error. Sources a and b 
can be minimized if the computer system is large enough to handle very large prob
lems with many mass points. Unfortunately, most computer systems available for 
general use do not have the storage capacity for handling large problems. Thus, the 
size of the model must be carefully chosen to give the maximum accuracy within the 
limits of the computer capability. The effect of each of the sources of error is ex
amined in the following. 

Boundary Constraints 

The magnitude of the error involved by imposing finite boundaries on the layered 
half plane was determined by varying the size of the model while keeping the loading 
and mass point spacing constant. Values calculated from the model were compared 
with the corresponding values calculated from an analytical solution of the layered 
semi-infinite half plane developed by Iyengar and Alwar (8). 

A study of the results reveals the following trends. The vertical stresses calcu
lated in the model are in good agreement with those obtained by the theoretical solution 
for widths exceeding 60 in. The horizontal stresses and vertical deflections obtained 
using the model, however, are not in good agreement with those from the theoretical 
solution for practical model sizes. The disagreements are most likely caused by the 
zero deflection boundary conditions on the sides and bottom of the model. An increase 
of the modular ratio increases the error in the vertical stress. The rigid side bound
aries are probably responsible for this increase. 

One side boundary condition that was not evaluated but that would seem to eliminate 
most of the boundary condition errors is one using the boundary deflections obtained 
from the theoretical solution for homogeneous, two-dimensional layers rather than the 
zero deformations discussed above. This approach would eliminate much of the bridg
ing of the fully restrained boundary and would provide for the deformation of the lower 
boundary. Also, since all theoretical deflection values used at the boundaries would 
appear in the constant term of each equation, use of this method would not increase the 
computer storage requirement. 

Grid Spacing Errors 

The grid spacing error results from the approximation of the differential equations 
in the theory of elasticity with finite difference equations. To estimate the magnitude 
of this error, a model of constant size representing a single layer of homogeneous ma
terial supported on a rigid base was used. To reduce the effect of the boundary condi
tion error, the theoretical solution used for comparison consisted of two layers, the 
upper layer having an E and thickness the same as in the model, and the lower layer 
having a very high E value to represent the lower rigid boundary used in the model. 
The number of points in the model was varied to relate the grid spacing to the gird 
spacing error. 



64 

The magnitude of the grid spacing error in the vertical stress under the loaded 
area was on the order of 1 percent of the applied pressure for a grid spacing of 2 in. 
This error increased to about 10 percent of the applied pressure for a grid spacing of 
8 in. Thus the grid spacing errors can be significant and should be considered when 
using this type of a model. 

Roundoff Errors 

The magnitude of error caused by roundoff during the solution of the equations is 
estimated by utilizing the fact that, for a layered half plane composed of homogeneous 
layers and loaded symmetrically, the deflection in the horizontal direction must be 
zero. 

The results indicate that as the number of equations is doubled, the grid spacing 
error is increased by a factor of 6.5. The magnitude of the roundoff error in the hori
zontal deflection is fairly small, on the order of 0.6 x 10- 5 for the largest problems 
that have been solved, but these errors propagate to the strain and then to the stresses. 
Roundoff errors in the stress and strain terms can be estimated by their deviation 
from symmetry. An estimate of this type revealed that the roundoff error in the 
stresses for the problem involving 1,400 equations was on the order of 0.01 psi, which 
is of little consequence. 

A more complete discussion of all errors is presented by Levey ~). 

TYPICAL SOLUTIONS AND RESULTS 

The solution procedure described above was applied to the layered system shown in 
Figure 12 in order to demonstrate the ability of the procedure to determine the statis
tical nature of the response of such a system. For this analysis, the material is as
sumed to be elastic, and only the 
moduli of elasticity of the materials 
was assumed to vary. Coefficients 
of variation and the types of vari-
ability considered for the analysis 
are shown on the appropriate figures 
with the results. 

The mean values and standard 
deviations for the vertical deflec
tion, vertical stresses, horizontal 
stresses, and shear stresses re
spectively are shown in Figures 13 
through 16. In these figures, the 
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smooth curves represent the values of stresses and vertical deflections in the model 
when homogeneous materials are used, i.e., the coefficient of variation is zero. The 
broken curves connecting the x's represent the mean values of the stresses and ver
tical deflections in the model when variable materials are used. The dashed curves 
connect points that are one standard deviation above and below the corresponding means. 
Figure 17 shows the mean values and overall coefficients of variation of the moduli of 
elasticity that were generated and used in the 20 solutions. These values correspond 
to the same stress points as the vertical and horizontal stresses shown in Figures 14 
and 15. 

In all cases, the values of stress and deflections that were determined with homo
geneous materials are within one standard deviation of the corresponding mean values 
determined with variable materials. However, the hypothesis that the mean values for 
heterogeneous materials approach the corresponding values for homogeneous materials, 
which implies that the value obtained with the homogeneous material is within the limit 
of accuracy of the mean, cannot always be accepted at the 5 percent level (ex = 0.05). 
The deviation between the means for the heterogeneous materials and their correspond
ing values for homogeneous materials may be due to a difference between the mean 
modulus of elasticity that was actually generated at each point and the true mean. 

The presentation of the data generated by the model in the format of the frequency 
distribution is not as straightforward as it might appear. If a frequency distribution 
were obtained for each stress, strain, and deflection at every mass point in the dem
onstration problem, 5,600 frequency' distributions would be produced, and each one 
would consist of only 20 values. To get a better indication of the frequency distribu
tions of the variables, the frequency distributions of the variables for points in the 
same region of the model can be lumped together. To do this, each value used in the 
composite frequency distribution must be normalized by subtracting its mean value and 
dividing by its standard deviation. A composite frequency distribution can then be 
compiled from all of the normalized values of the property within the desired region of 
the model. 

Composite frequency distributions for the vertical deflection and the stresses are 
shown in Figures 18 and 19. The distributions in Figure 18 are for the area that ex
tends 12 in. on either side of the centerline and the full depth of the upper layer. The 
distributions in Figure 19 are for the area of the model that extends 12 in. on either 
side of the centerline and includes the top 8 in. of the lower layer; 960 values are rep
resented in each frequency distribution. 

Most of the frequency diagrams shown in Figures 18 and 19 appear to resemble the 
normal distribution, although in some cases-the vertical deflection in particular-the 
tails of the distributions tend to extend farther than would be expected for a normal 
distribution. The only distribution that departs radically from a normal distribution 
is the distribution of the horizontal stress in the lower layer. Here a skewed distribu
tion is produced by a random value that is physically restricted. In this case the hori
zontal stresses in Lilt: lop of the lower layer mus t always be positive. Since the mean 
values of the horizontal stresses are near zero, the variability above the mean (zero 
on the composite frequency diagram) can be much greater than it can be below the mean ; 
hence the skewed distribution. 

CONCLUDING REMARKS 

A procedure was developed that can analyze layered systems with nonuniform ma
terials. High amounts of variability in the stresses and strains calculated in the typ
ical problem shown indicate a need for establishing design criteria that consider this 
variability and also construction control criteria for controlling the material variability 
within economically acceptable limits. 

Very limited work on defect size and degree indicated that the procedure can be 
used to determine the characteristics of critical defects. This information can be used 
in establishing statistical sampling plans or in establishing realistic rejection criteria 
for non-statistical sampling techniques. 
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It must be emphasized that this research did not produce an analysis of the statis
tical response of pavements to random material properties or of the defect problem 
mentioned above. Research using this or similar techniques will be needed to obtain 
these analyses. The technique mentioned can be used to study the effects of the elastic 
modulus and Poisson's ratio for most pavement structures if the changes in boundary 
conditions recommended are made. The model can be modified to analyze materials 
stressed above their yield points also, and the effects of yield point variability can be 
studied. When larger computing systems are variable and more efficient models and 
methods of formulating and solving the equations are developed, three-dimensional 
problems can be studied. This procedure can be extremely flexible and should be a 
valuable tool in the repertory of all serious pavement analysis. 
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