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Elastic Properties of Pavement Components 
by Surf ace Wave Method 
K. P. GEORGE, Department of Civil Engineering, University of Mississippi 

The present study explores the feasibility of using vibration methods in 
determining the Rayleigh wave velocity and thereby the elastic properties 
of a three-layer pavement. When the intermediate layer in a three­
layer composite pavement is stiffer than the surface layer, the existing 
procedure to determine the Rayleigh wave velocity of the former cannot 
be applied. A correction procedure is proposed in this study; the Ray­
leigh wave velocity and the thickness, determined accordingly, are both 
within 9 percent of the actual values. 

•A KNOWLEDGE of the elastic properties and thickness of the pavement layers that 
make up the pavement is required for design, maintenance, and repair of highway pave­
ments. In recent years, nondestructive methods have become of increasing interest in 
highway engineering practice(_!_, ~- A teclmique based on the measurements of surface 
waves was proposed by Jones (_g_, 1) where the elastic properties of two- or three­
layered pavements were determined by using the theory of layered systems. Jones (~ 
dealt with the case of an intermediate layer that has a modulus of elasticity slightly 
less than that of the surface layer but considerably greater than that of the underlying 
medium. The present study, however, treats a three-layer system in which the sur­
face layer has a modulus of elasticity less than that of the intermediate layer; a typical 
example is an asphalt-cement layer overlying the soil-cement base. 

ELASTIC WAVES IN LAYERED SYSTEM 

Road construction is regarded as being composed of layers of homogeneous, elastic 
materials and of infinite horizontal extent. In Figure 1, layer H1 represents the asphalt 
surfacing, layer H2 is the soil-cement base, and the uniform semi-infinite medium is 
the soil under the pavement. 

Miller and Pursey (.!) have shown that a vibrator on a circular base operating normal 
to the surface of a semi-infinite elastic solid radiates 67.4 percent of the power as a 
surface wave. The surface wave here is the Rayleigh wave, which has its maximum 
particle displacement normal to the surface. When vibrations of the Rayleigh wave type 
are propagated in a layered medium their velocity depends on the frequency of the vi­
brations and the thickness, density, and elastic properties of strata. Accordingly, the 
approach taken in this investigation has been to carry out the proper dynamical mea­
surements on the layered system and to exploit the properties of surface waves to de­
termine certain unknowns either pertaining to material constants or of geometrical 
origin. 

Single-Layer Overlying the Semi-Infinite Medium 

The derivation of the wave equation for the case of one surface layer over a semi­
infinite medium involves the computation of a sixth-order determinant, which can yield 
more than one velocity at each frequency (fil. The solution giving the lowest velocity 
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refers to the principal mode of propagation 
of the Rayleigh wave, and this particular 
mode can be shown to correspond to the· 
fundamental flexural branch of a free plate. 
The evaluation of phase velocity from the 
sixth-order determinant can be simplified; 
for instance, when thewavelength is small 
compared with the thickness of the layer 
(i. e., L/H ..... O), the phase velocity of sur­
face waves tends to correspond to the Ray­
leigh wave velocity appropriate to the top 
medium. 

"Free Plate" Approximation 

A single-layer pavement over a con­
ventional subgrade can be approximately 
treated as an elastic plate, the surface of 
which is free of stresses (1). The solu­
tions obtained by Lamb (.§) for the propa­
gation of the longitudinal and flexural waves 
in a free plate are represented by P = 0 
and Q = 0 respectively, where 
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Figure 1. Section of a three-layer pavement: as­
phalt surface (layer 1 ), soil-cement slab (layer 2), 

and subgrade (semi-infinite medium). 
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phase velocity, k = 2{, L = wavelength; 

thickness of the layer; and 
= compressional, shear, and Rayleigh wave velocity in the layer. 

(2) 

Therefore, if experimental measurements have been made at wavelengths short enough 
to define y of the layer, its thickness can be determined by a nonlinear curve-fitting 
procedure (to satisfy Q = O). 

Two Surface Layers of Comparable Moduli of Elasticity 

The propagation of Rayleigh waves in a system composed of two surface layers over 
a semi-infinite medium requires the solution of a tentb-order determinant (1, .§), and 
the computational work becomes almost prohibitive. However, the evaluation of phase 
velocity from the dispersion equation can again be simplified for the case of very small 
wavelength (L/H ..... 0). 

In a plate-subgrade system, when the plate is much stiffer than the underlying sub­
grade the propagation of the vibration becomes sensibly independent of the properties 
o.f the subgrade. Accordingly, i1) the present problem, when the phase velocity exceeds 
Or: 3 the propagation will depend almost entirely on the properlies and thickness of the 
materials in the two layers, and the two surface layers may be regarded as a composite 
layer. 

In practice the vibrations are excited and measured at the surface of the upper layer 
so that Eq. 2-the Lamb solution of flexural vibrations-with the appropriate parameters 
o.f the top layer is tl1 e solution that will apply. As the wavelength of the surface vibra­
tion exceeds 2H i, however, the experimental dispersion relation is seen to deviate 
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from the Lamb solution. A simple explanation of the observed deviation is that the 
surface waves are influenced by the second layer as well . Maxwell and Fry (ID strongly 
support this viewpoint when they assume that the surface waves are normally conditioned 
by the material from the surface to a depth equal to one-half of the length of the surface 
waves. Founded upon this hypothesis, the following empirical relationship is proposed 
to resolve the phase velocity of the composite plate into two component velocities ap­
propriate to the individual layers: 

where 

and 

c phase velocity (surface wave) of the composite plate at wavelength L; 
c 1 flexural wave velocity appropriate to the first layer at wavelength L; and 
c2 flexural wave velocity appropriate to the second layer at wavelength L. 

(3) 

When a number of points relating the wavelength and the phase velocity in the second 
layer have been obtained, extrapolation to zero wavelength can be accomplished by use 
of the Lamb flexural wave curve that offers the best fit to the data. 

EXPERIMENTAL PROCEDURE 

A two-layer composite pavement was constructed on a semi-infinite subgrade where 
the test slab consisted of a 0.32-ft thick soil-cement slab (8 ft by 6 ft, cement 10 per­
cent by weight) overlaid by 0.27-ft thick dense-graded hot plant mix. To justify the as­
sumption of an infinite slab in the horizontal direction, the edges of the slab were 
tapered. 

Beam specimens, 3 by 3 by 11 ¼ in., were molded from both soil-cement and asphalt 
mixtures. Elastic constants of both materials were determined from the fundamental 
transverse vibration and torsional resonant frequency test (ASTM Designation C 215-58T). 

Compressional Wave Velocity 

Seismic tests (1) were made to determine compressional wave velocities in the soil­
cement and the asphalt pavement. 

Surface Wave Velocity 

Vibration tests were conducted to determine the wavelength and thereby the phase 
velocity of the surface wave. The details of the equipment (the electromagnetic vibra­
tor, cartridge pick-up, and preamplifier) and the technique used to detect the wavelength 
using a dual channel oscilloscope can be seen elsewhere (1). 

RESULTS AND DISCUSSION 

Single Surface Layer of Higher Elastic Moduli 
Than the Underlying Subgrade 

Attention herein is confined to a stiff slab (soil-cement base) over a relatively soft 
subgrade for which flexural wave dispersion curves conform adequately to the free plate 
approximation. When the measurements are made to a sufficiently high frequency, to 
define Y2 for the slab material, the dispersion relation can be inverted to give the thick­
ness of the slab (curve 1 in Fig . 2). The Rayleigh wave velocity for the soil-cement has 
been determined as 4,650 ft/sec, which compares favorably with the value computed 
from the resonant frequency tests (4,600 ft/sec). The thickness of the soil-cement slab 
is found to be 0.31 ft, which compares favorably with the actual thickness, 0.32 ft. 

The Rayleigh wave velocity determined in conjunction with the compressional wave 
velocity by seismic method and the charts of Knopoff (1, p. 34) make possible the 
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Figure 2. Phase velocity of flexural vibrations in a composite layer: theoretical solution 
from solving O = 0. 

determination of Poisson's ratio (0.23). The fact that the Poisson's ratio computed by 
an independent method-namely from transverse vibration and torsional resonant fre­
quency-is in excellent agreement (0.22 vs. 0.23) validates the applicability of the sur­
face wave technique. 

Two Surface Layers of Comparable :rv1oduli of Elasticity 

Experimental results of phase velocity and wavelength at the surface of the three­
layer construction are given by the open points in Figure 2. The results obtained at 
short wavelengths (L ,;; 2H J permit the relation to be extrapolated to zero wavelength 
to provide a value of Y 1 in the asphaltic layer of 3,300 ft/sec. With this Yi, the thick­
ness, according to the Lamb solution, that best fits the experimental points is 0.28 ft, 
which is in excellent agreement with the actual thickness of 0.27 ft (curve 2 in Fig. 2). 

As expected, when the wavelength exceeds 2H1 , the experimental points lie to the 
right of the theoretical curve pertaining to the surface layer alone. The phase velocity 
for the soil-cement layer is calculated by the correction equation (Eq. 3) and given by 
solid points in Figure 2. The relation obtained by these data points may be extrapolated 
to get an approximate value of Y2 • Now that the Rayleigh wave velocity and thickness 
(thickness is normally known in new or old pavements) are approximately known, a 
theoretical curve that matches the computed data can be found by a judicious trial pro­
cedure (curve 3 in Fig. 2). The agreement between this curve and the Lamb curve, 
which fits the experimental data resulting from direct measurements, is remarkable. 
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Rayleigh wave velocity and the thickness of the soil-cement layer obtained by the 
procedure using the empirical correction equation are 4,200 ft/sec and 0.30 ft respec­
tively, which compare well with the actual values (4,600 ft/sec and 0.32 ft). 

It may be noted here that, by performing the vibration experiment alone, it is dif­
ficult to determine the relative stiffness of the first layer. The microseismic proce­
dure described by Phelps and Cantor (_1) is proposed for positive identification. Ac­
cordingly, if the slope of the travel-time graph is not changed, the top layer is stiffer 
than the bottom layer and the equation proposed by Jones (~ should be used for final 
correction. If the slope of the travel-time graph tends to change, however, the second 
layer is taken to be stiffer than its top counterpart and Eq. 7 is proposed in the final 
analysis. 

CONCLUSIONS 

The theory of wave propagation in layered media presented and the experimental 
technique developed provide an effective means of determining the Rayleigh wave ve­
locity appropriate to the top slab in a two-layer pavement or to the top slab of a three­
layer pavement. In the three-layer pavement, when the intermediate layer is stiffer 
than the top layer, the correction method proposed in the present study is satisfactory 
to determine the Rayleigh wave velocity and the thickness of the intermediate layer. 
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