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Foreword 
Two aspects of pavement design theory are presented to researchers 
and designers in this RECORD. New mechanical models are used to de
scribe states of stress, strain, or deflection under imposed load in the 
traditional approach to design theory in seven papers. In two papers , 
systems models are used to show how decision theory can be applied to 
solution of general design problems. 

Experimentally determined deflection factors were compared to cal
culated factors by Ali, Krizek, and Osterberg for a two-layer elastic 
system . Calculated factors were determined using Odemark' s equivalent 
thickness theory and Westergaard's theory with dense liquid and with 
elastic solid lower layers . Deflection factors wer e determined exper i 
mentally from model s ludies. Conclusions reached were that variations 
in Poisson's ratio significantly affect the deflection factors and that of 
the three procedures studied the Odemark theory gave results closest to 
the laboratory model results. 

Rosner and Harr developed a mechanistic model to duplicate behavior 
of a prototype pavement used for accelerated traffic testing of aircraft 
landing mat systems. Numerical values for model parameters were 
obtained from simulation of prototype deflection patterns. 

Barksdale offers an incremental nonlinear finite element-theory for 
predicting elastic and cumulative stresses, strains, and deflections in 
highway pavement systems . He obtained reasonable correspondence be
tween calculated deflections and deflections observed on a laboratory 
model. He concluded that an important need exists for detailed study of 
the influence of state of stress on material properties and for develop
ing realistic effective stress-strain laws for the materials used in 
pavement construction. 

strain and deflection responses of a large-scale flexible pavement 
model were studied under dynamic and creep load conditions by Drennon 
and Kenis. Measured values were compared to values calculated using 
a computer program for moving loads on a viscoelastic layered system. 
Reasonably good correspondence was found. Of particular significance 
was the conclusion that response of the system to loads was time
dependent. 

A theory was developed by Levey and Barenberg to evaluate the sta
tistical nature of stresses, strains, and deflections in pavements having 
materials-with variable physical characteristics. The method is based 
on a mathematical discrete element model for a layered pavement sys
tem. Results from solutions for typical systems indicate that this type 
of analysis is needed to establish realistic criteria for quality control 
during construction. 

George investigated the feasibility of using vibration methods in de
termining elastic properties of pavement layers. The study concluded 
among other things that the Rayleigh wave velocity and the assumed or 
experimentally determined value of Poisson's ratio enable one to make 
a complete analysis of the elastic properties. 



An approximate method is presented by Huang for determining stresses 
in rectangul:i.r concrete slabs due to wheel lo;irls. A r.omparison of con
tours of principal stresses determined theoretically with loads obtained 
experimentally in the AASHO Road Test indicates that the pattern of 
stress distl"ibution is quite similar. A theoretical analysis shows that 
the most critical stress in pavements with dowelled joints occurs when 
the load is near the edge at a distance of about 6 ft from the joint. 

A framework for the systematic analysis of the decision process in
volved in many aspects of highway design is presented by Lerner and 
Moavenzadeh. Their system is designed to maximize performance, de
scribed in terms of serviceability, reliability, and maintainability. An 
attempt is made to show how the model may be used in practice to yield 
engi11eei·ed highway facilities hn.ving good performance characteristics. 

Optimal design in terms of minimum costs is the subject of Hejal, 
Yoder. and Oppenlander. The total cost of the pavement system is 
quantitatively described in their design model by an Objective function 
and a minimum cost solution for each combination of material costs and 
design conditions. Substantial cost savings using the optimal design 
procedure are claimed. 

-James F. Shook 
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Influence of Poisson's Ratio on the 
Surface Deflection of Layered Systems 
GALAL A. ALI, Department of Civil Engineering, Purdue University; and 
RAYMOND J. KRIZEK and JORJ 0. OSTERBERG, 

The Technological Institute, Northwestern University 

Three different theories are used to evaluate the influence of variations in 
Poisson's ratio on the surface deflection function for two-layered elastic 
systems. These theories are shown to be qualitatively inconsistent in ac
counting for this effect, which may amount to 25 percent or more forcer
tain combinations of values, and they often yield deflection factors that 
differ from one another by over 100 percent for similar conditions. The 
practical applicability of the theories is appraised by comparing theoret
ical results with those obtained from a limited experimental study; this 
comparison is most favorable for the equivalent thickness theory. 

•EXTENSIVE STUDIES have been undertaken by many investigators to determine the 
stresses and deflections in ideal elastic layered systems, and different results have 
been obtained to conform with the various assumptions employed. One of the most 
controversial assumptions deals with the nature of Poisson's ratio. Three of the most 
important questions regarding this parameter are the following: first, does the value 
of Poisson's ratio for a given material remain constant as a load history is imposed; 
second, what are appropriate values to assume; and third, how do variations in Pois
son's ratio affect the displacement field? This work is directed toward answering the 
last question; the first is arbitrarily answered in the affirmative, and the second is 
averted by the nature of the approach. The influence of Poisson's ratio on the deflec
tion function is studied, and results from different theories are compared with one 
another and with laboratory test results. 

BACKGROUND 

Various Theories 

One of the earliest investigations of stresses and displacements in a half-space was 
reported by Boussinesq (1); this solution is for a one-layer system and includes the 
assumption that the medium is a two-constant, linearly elastic, homogeneous, iso
tropic, weightless half-space. The two elastic constants are the modulus of elasticity 
and Poisson's ratio. Using the Boussinesq solution in conjunction with the principle 
of superposition, many researchers have produced a variety of graphs and tables for 
stresses and displacements resulting from specific loading conditions. Many of these 
efforts include the assumption that the value of Poisson's ratio is 0.5, that is, the ma
terial is incompressible. 

Over forty years ago, Westergaard (2) suggested a method for computing the stresses 
and displacements in concrete pavements; his basic assumptions are that (a) the con
crete slab is a homogeneous, isotropic , linearly elastic, uniformly thick solid resting 
on a dense liquid subgrade of constant modulus ; (b) Poisson's ratio for the concrete is 
0.15; and (c) the subgrade reactions are vertical and proportional to the slab deflections. 
Hogg (1_) and Holl (i) independently solved a similar problem with the assumption of an 
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elastic solid subgrade, and both of the above assumptions for the subgrade were con
sidered in the work of Pickett, Raville, Jones, and McCormick (5). 

Assuming an incompressible pavement with no flexural rigidity, Palmer and Bar
ber (§_) computed the vertical displacement under a circularly loaded area. The de
formation of the pavement was neglected, and a displacement equation similar to that 
of Boussinesq (!) was derived. By considering displacements at any point along the 
vertical axis under the center of the loaded area, they concluded that, although the ef
fect of Poisson's ratio is negligible for depths greater than the radius, it is signifi
cant near the surface. In a subsequent discussion, Barber (7) improved the above 
method by considering the rigidity of the pavement; later he further improved this ap
proach by taking the pavement deformation into account. 

Using the mathematical theory of elasticity, Burmister (8) presented a complete 
and exact solution for the displacements in a two-layer elastic system; his solution 
was based on the following assumptions: (a) both top and bottom layers are homoge
neous and isotropic; (b) the top layer is of infinite horizontal extent but of finite verti
cal thickness; (c) the bottom layel' is of infinite horizontal and vertical extent- (d) the 
two layers are in continuous contact; and (e} Poisson's ratio for both layers is 0. 5. 
Values of the deflection factor are plotted graphically to show U1e influence of the thick
ness of the top layer and the ratio of the layer moduli. In another paper, Burmister (9) 
derived an expression for the total deflection at the surface of a three-layer system. -

In extensions to Burmister's worlc, Fox (10) computed sh·esses at any point in a 
two-layer elastic system due to a circularly loaded area, Acum and Fox (11) and Jones 
(12} determiL1ed the stresses in a three -layer elastic system, and Pickett and Ai (13) 
calculated the stresses in the subgrade under a rigid pavement. In the first three -
works (10, 11, 12), Poisson's ratio was taken as 0. 5 throughout, while in the last 
study (13) the values of Poisson's ratio for the two materials were varied over a 
limitedrange. Schiffman (14) solved the three-layer system for stresses and dis
placements; he assumed Poisson's ratio to be 0.4 for the first and third layers and 
0.2 for the intermediate layer. Complete patterns for the stresses and deformations 
in two-, three-, four-, a~d five-layer systems were reported by Mehta and Veletsos 
(15), and they concluded that the influence of Poisson's ratio on deflection response is 
not negligible for many cases. 

Odemark (16) used the theory of equivalent thickness and solved for the stresses 
and displacements ma two-layer system iur wi1i1;i1 Pui:s:suu';::, ict.ciu i;:, G.5 f0,- t0tz. l..,y 
ers. This approach consists essentially of replacing the top stiffer layer with an 
equivalent thickness of the bottom layer material. 

Poisson's Ratio 

Poisson's ratio is a very difficult mechanical property to determine for most ma
terials; for this reason, and because of the resulting mathematical simplicity, it is 
often assumed to be 0. 5, which is the value for an incompressible material. The as
sumption of incompressibility has been questioned many times, and there are many 
documented cases where Poisson's ratio is other than 0.5. The manifest significance 
of Poisson's ratio on the deflection of layered systems as presented herein lends con
siderable support to the arguments that (a) the effect of Poisson's ratio may have an 
appropriate place in pavement design procedures, and (b) improved laboratory methods 
for determining Poisson's ratio need to be developed. 

THEORETICAL .ANALYSIS 

In order to investigate the effect of variations in Poisson's ratio on the deflection 
function, expressions will be developed to include as variables the values of Poisson's 
ratio for the top and bottom layers. Three cases will be considered: (a) the Odemark 
equivalent thickness theory, (b) the Westergaard theory with a dense liquid bottom 
layer, and (c) the latter theory for the case where the lower layer is assumed to be an 
elastic solid. Only the vertical deflection, w, immediately under the center of a uni
formly loaded, p, circular area of radius a resting on a two-layer elastic system will 
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Figure 1. Geometry and notation . 

be considered. Both layers are assumed to be homogeneous, isotropic, and of infinite 
horizontal extent; the top layer is of finite thickness, h, and the bottom layer is in
finitely deep. The two layers have moduli of elasticity, E 1 and E2 , and Poisson's ratios, 
11 1 and 112 , respectively; assumed values for the parameters considered will range from 
5 to 1,000 for the modular ratio, E = E/E 2 ; 0.5 to 3.0 for the thickness ratio, A = 
a/h; and Oto 0.5 for each of the Poisson's ratios. 

Equivalent Thickness Theory 

In the equivalent thickness theory, illustrated in Figure 1, the upper layer of thick
ness h is replaced by an equivalent thickness, he, of the lower layer material accord
ing to the relationship 

[ 
1 2 ]1/3 

he = h' E ~ = Nh' 
1 - lit 

(1) 

where h' equals nh and n is a coefficient that will be discussed later; stresses and dis
placements at the interface are assumed to be the same for the two sys terns. The to
tal surface deflection, w, under the center of the loaded area for the equivalent layer 
case illustrated in Figure le is 

(2) 

where wa is the surface deflection under the center of the loaded area for the single 
layer case illustrated in Figure la, wb is the deflection at a depth h' for the same case, 
and w c is the deflection at a depth he for the equivalent layer case shown in Figure le. 
The specific equations for these deflections follow the Boussinesq solution and may be 
written as 

= 2 pa ( 1 - v: ) (3a) Wa E 
1 

wb 
pa 

(1 + !11) [ cos a. + (1 - 211) tan (45° i) ] (3b) 
El 

and 

We 
pa 

(1 + 112 ) [ cos f3 + (1 - 2112 ) tan (45° - i )] (3c) 
E2 
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I,..___ " ______.J 
I - I 

45°- ~ 

z= h8 = Nh' = Nnh, 

when 0= /3 
z =)l' = nh, when 0= a 

7 
z 

J 

Substituting Eqs. 1 and 3 into Eq. 2, and using E = 
E 1/E2 , A = a/h, and the geometrical relationships 
shown in Figure 2 for cos °', cos {J, tan (45° - 0!/2), 
and tan (45° - /J/2), we may write 

w E2 2 (1 - 11f) 
FT= pa E 

_ 1 + 111 [ A + (1 - 2111 ) A ] (4) 

E "t/A2 + n3 n + VA2 + n2 

where FT is a deflection factor that is a function of 
E, A, 111 , and 11

2 
• For 111 and 112 equal to O. 5, N be-

comes (Et/s and Eq. 4 reduces to the Odemark de
flection equation. Although there is some experi
mental justification that the value for n is unity, 
Odemark employed it as a corrective factor and as
signed it a value of 0.9 in order to make his results 
agree with those of Burmister; accordingly, a val

Figure 2· Schematic diagram for deter- ue of 0.9 for n is used in the following calculations. 
mination of trigonometric relationships. 

The influence of 11
1 

and 11a on FT is shown in Fig-
ures 3, 4, and 5 by means of a series of grid plots. 
Figure 3 shows the functional dependence of FT on 

E for a given value of A, whereas Figure 4 indicates the variation of FT with A for a 
given E. The type of behavior ma.tlifested in Figure 4b, wherein FT reaches a maxi
mum for a value of 111 between O and 0.5 and decreases as 111 is either increased or de
creased, is found in cases where low values for E and high values for A are combined; 
this pattern is observed only for results calculated by the equivalent thickness theory 
and not by the subsequent two theories. Figure 5 shows a series of FT-11

1 
-11

2 
plots for 

arbitrarilv selected values of E and A. It is significant to note that. exceut for cases 
such as depicted in Figure 4b, FT increases monotonically as either 111 decreases or 
u.i increases; this is in contrast to results calculated by the other two theories. 

Westergaard Theory 

For an interior concentrated load, P, on a pavement, the Westergaard deflection 
equation for the vertical surface deflection, w, under the load is given by 

p 
w = 8 k2 t 2 (5) 

where k2 is the reaction modulus of the bottom layer and ,t, is the radius of relative 
stiffness; for the calculations performed herein, P is replaced by p1ra2

• When apply
ing this theory, it is usually assumed that the bottom layer material is either a dense 
liquid or an elastic solid. The principal difference in the results produced by the two 
assumptions lies in the expressions fort. For the case of a dense liquid bottom layer, 

l is given by . [ Eih3 ]1/4 {a) 

,t, = 12 (1 - 11;) k2 

whereas for the case of an elastic solid ,t, becomes 

[ 

a ]¼ E (1 - 1,14 ) 
l = h 

6 (1 - 111) 
(7) 
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Dense Liquid Bottom Layer-From a form of Eq. 3a and the definition for k2, it 
follows that 

p Ea 
ls = w = 2a (1 - if) 

Substituting Eqs. 6 and 8 into Eq. 5 and rearranging, we obtain 

= [ 3.7 ~
3 

(1 - v:) (1 - v2
2

) rl:i 

5 

(8) 

(9) 

Typical plots of the deflection factor, FL, as a function of v1 and v2 for various values 
of A and E are shown in Figure 6. 

Elastic Solid Bottom Layer-Substituting Eqs. 7 and 8 into Eq. 5 and rearranging, 
we obtain 

[ 
(1 - ii) ]

2

/
3 

= 2.6A2 (1 - v!) l 
2 E (1 - V2) 

1.100 ~---------------------

I-
LJ.. 

0,900 

0.800 
0.500 

0.450 

I-
LJ.. 

0.400 

0.350 
0.325 

0.300 

I-
LJ.. 

0.275 

0.250 
0.205 

0.180 

I-
LJ.. 

0.155 

0.130 ~-~-~-~--~-..___.....__~-~--~____, 

Figure 3. Typical plots of Frv
1
-v

2 
relationship for constant thickness 

ratio. 

(10) 



0
.2

7
5

 

0
.2

5
0

 

.... LJ
.. 

0
.2

2
5

 

0
.2

0
0

 
0

5
0

0
 

0
.4

5
0

 

.... LJ
.. 

0
.4

0
0

 

0
.3

5
0

 
0

.8
5

0
 

... 
LJ

.. 

0
.7

5
0

 

~~~~
 1 
~
 l 

I 
1

7
 

1.
05

0 
~
 l
✓?
K
=
:
I
~
-
-
~
~
 

... 
LJ

.. 

1.
00

0 
I 

· 
I 

I 
I 

:::.
,,1

., <
 

T
 

I 
L 

__
 

I 
o,

;; 
I 

A
•3

 
0

.9
5

0
 

Fi
gu

re
 4

. 
T

yp
ic

al
 

pl
ot

s 
of

 F
rv

1
-v

2 
re

la
ti

on
sh

ip
 f

or
 c

on
st

an
t 

m
od

ul
ar

 
ra

ti
o.

 

o.
eo

 L
L

J;
!<:

I s
l;J

;:J
~

 I 
I 

I 
0

.7
0

 

.... 
LJ

.. 

0
.6

0
 

0
.5

0
 

0
5

0
 

.... IL
 

0
.4

0
 

0
.3

5
 

0
6

0
 

0
5

5
 

.... LJ
.. 

0
.5

0
 

0
.4

5
 

0.
55

 

0
.5

0
 

.. 
LJ

.. 

0
.4

5
 

0
.4

0
 
'
-
-
-
-
'
-
-
-
'
-
-
-
-
'
-
-
-
'-

-
-
'-

-
-
-
'-

-
-
-
'-

-
-
-
-
'-
-
-

..
..

I.
..

--
--

' 

Fi
gu

re
 5

. 
T

yp
ic

al
 p

lo
ts

 o
f 

F
rV

1 
-11

2 
re

la
ti

on
sh

ip
 f

or
 v

ar
io

us
 v

al
ue

s 
of

 A
 

an
d 

E.
 

C
J)

 



"~'I
 

0.
3

0
0

 
I 

I 
I 

I~
! J

 I
 I 

I 
.J

 
LL

 
0

2
5

0
 

0
.2

0
0

 
0

.3
0

0
 

0
.2

5
0

 

.J
 

LL
 

0
.2

0
0

 

0
.1

5
0

 
0

.4
0

0
 

0
.3

5
0

 

.J
 

LL
 

0
.3

0
0

 

0
2

5
0

 
0

.3
5

0
 

0
3

0
0

 

.J
 

LL
 

0
.2

5
0

 

0
.2

0
0

 

F
ig

ur
e 

6.
 

T
yp

ic
al

 p
lo

ts
 o

f 
F

 L-
11

1 
-t1

2 
re

la
tio

ns
hi

p 
fo

r 
va

rio
us

 v
al

ue
s 

o
f 

A
 

an
d 

E
. 

I 

-.
 0

.2
3

5
 

0
.2

1
0

 

LL
'" 

0.
18

5 

0.
16

0 
0

.2
0

5
 

0
.1

80
 

LL
'" 

0
.1

55
 

0
.1

3
0

 
0

.3
5

0
 

0
.3

0
0

 

.. 
LL

 

0
.2

5
0

 

0
.2

0
0

 
0

2
4

0
 

0.
21

5 

.. 
LL

 

0.
19

0 

0.
16

5 
'
-
-
-
-
'
-
-
-
-
-
'
-
-
~

-
-
'
-
-
-
-
-
'
-
-
~

-
~

-
~

-
-
-
-
-

F
ig

ur
e 

7
. 

T
yp

ic
al

 p
lo

ts
 o

f 
F

5-1
1 1

-1
1 2 

re
la

tio
ns

hi
p 

fo
r 

va
rio

us
 v

al
ue

s 
o

f 
A

 
an

d 
E

. 

·~
 

J 

-1
 



8 

Typical plots of the deflection factor, Fs, as a function of v1 and 11z for various values 
oi A and E are shown in Figure 7. 

Comparison of Theories 

Comparison of deflection factors obtained by each of the three approaches described 
is shown in Figure 8 for several arbitrarily chosen cases. Since the results of the 
equivalent layer theory are essentially in agreement with those of Burmister, the lat
ter results are indirectly included in the comparison. 

EXPERIMENTAL RESULTS 

Description of Test Procedure 

Model plate load tests were conducted on a two-layer system consisting of a lucite 
top layer and a polyester resin bottom layer. The top layer was 15 in. square and had 
thicknesses of 0.50, 0.75, and 1.00 in.; the bottom layer was 24 in. square and 6 in. 
thick. The system was loaded by means of rigid circular plates with radii of 0.50, 
1.00, and 1.50 in.; in addition, a plate with a 0.25-in. radius was used for the system 
that had the 0.50-in. top layer. Loads were applied in increments of 100 lb up to a 
maximum of 600 lb by a Southwark hydraulic testing machine, and magnitudes were 
read to the nearest 0.5 lb. Six dial gages placed diagonally at a center-to-center spac
ing of 2.5 in. were used to measure the vertical deflection. 
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Test Results 

The elastic properties of each mate
rial were determined by use of conven
tional testing procedures and found to 
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be E 1 = 600,000 psi and v1 = 0 .35 for the lucite top layer and E
2 

= 3,500 psi and v2 

0.50 for the polyester resin bottom layer; hence, the modular ratio, E, is 170. 
Experimental deflection factors were calculated from the measured data by use 
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of the equation FT = w E/pa, where p is approximated by P /rra2
; Figure 9 shows 

a plot of these experimental deflection factors together with the theoretical ones cal
culated by the procedures described. Although the experimental deflection factors are 
higher than those predicted by any of the theories, they are most closely approximated 
by the equivalent thickness theory, which, in turn, is in close agreement with the Bur
mister theory. The assumption of 0.5 instead of 0.35 for Poisson's ratio of the top 
layer would increase the deviation between theoretical and experimental results. The 
apparent dependence of the experimental deflection factor values on h is not accounted 
for by any of the theories. It should be noted, however, that the discrepancy between 
theory and experiment may be caused by other differences between the idealized and 
practical experimental test conditions, and it would be unwise to draw more than a 
qualitative conclusion from the limited data presented. In addition, for many mate
rials there is the distinct probability that Poisson's ratio, as well as other material 
properties, may vary during the load history. 

CONCLUSIONS 

Based on the limited theoretical and experimental study presented herein for a two
layer elastic system, the following conclusions can be drawn: 

1. Variations in Poisson's ratio significantly affect deflection factors for many 
practical situations. 

2. Values of the deflection factor calculated from the equivalent thickness theory 
generally decreased with increases in Poisson's ratio for the top layer, but they in
creased with increases in Poisson's ratio for the bottom layer. 

3. For the Westergaard theory with either a dense liquid or elastic solid bottom 
layer, values for the deflection factor decreased with increases in Poisson's ratio for 
either the top or bottom layer. 

4. The influence of variations in Poisson's ratio on the deflection function depends 
on the modular ratio and the thickness ratio; for high values of the latter, the influence 
is not as great as for lower values. 

5. Discrepancies exist between deflection factors obtained from laboratory tests 
and those calculated from the various theories ; however, the laboratory results com
pare most favorably with those determined from the equivalent thickness theory. Al
though a quantitative evaluation of these discrepancies is not possible herein, it is en
tirely conceivable that they may result from the over-idealized assumptions on which 
the theories are based, since these assumptions are' seldom satisfied in practical 
situations. 
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Identification of Suhgrade Characteristics 
From Prototype Testing of Landing Mats 
JOHN C. ROSNER, Department of Civil Engineering, Arizona State University; and 
MJLTON E. HARR, Department of Civil Engineering, Purdue University 

•SURFACE MATERIALS distribute wheel loads to the subgrade in a complicated man
ner, and the exact mechanism through which distribution is accomplished has not been 
defined. The consensus is, however, that the surface materials distribute loads in a 
manner similar to that of a beam or flat plate (1, 6, 10). Regardless of the load trans
fer mechanism chosen or the sophistication attache d thereto, characterization of the 
subgrade is made presently from indicators (properties) obtained from selected sam
ples imposed to artificial stress conditions. These indicators are then employed with 
design charts and/or formulas, which have been judiciously tempered by experience, 
to estimate the life of a pavement system. 

Present design procedures have merit as long as the proposed traffic loading and 
subgrade conditions can be related adequately to past experience. However, applica
tion of these pavement design procedures to future traffic demands may prove unsatis
factory, and hence other design approaches should be sought to accommodate future 
needs. The hypothesis is forwarded in this paper that such developments are conse
quent upon the mechanistic modeling of pavements to reflect their behavior as demon
strated in prototype tests. 

Mechanistic simulation of prototype tests provides a means whereby the system 
parameters can be determined from the pavement behavior under actual stress condi
tions. In addition, such an approach permits investigation of the pavement system at 
times other than failure. 

DESCRIPTION OF PROTOTYPE TESTS 

In 1966, accelerated traffic tests simulating aircraft taxiing operations were con
ducted by the Corps of Engineers (4) on test sections surfaced with landing mats. Nu
merous combinations of wheel configurations, loads, tire pressures, and subgrade 
strength were investigated. The wheel configuration varied from that of a single wheel 
up to a combination of 12 wheels; loadings varied from 35,000 to 273,000 lb; and tire 
pressures ranged from 50 to 250 psi. Two soils were used as subgrade materials. One 
soil was a "fat clay (CH)" with a liquid limit of 58 and a plasticity index of 31, while 
the other soil was a "fat clay (CH)" with a liquid limit of 61 and a plasticity index of 37. 
The in-place, initial strength of these subgrades as indicated by CBR values ranged 
from 1.1 to 9.0. 

The tests were made on the modified T 11 mat (designated herein as Item 1), which 
is a lightweight, extruded aluminum panel with an abrasive surface, and on the M8 mat 
(Item 2), which is a heavy deep-ribbed steel mat. The moment of inertia per foot of 
width of these two mats is 1.368 in. and 0.618 in: respectively. Both mats were placed 
on the subgrade in a masonry type of arrangement, as shown in Figure 1. 

The behavioral characteristics and performance of the mat surfaces, whether loaded 
or unloaded, are well documented in the Corps of Engineers' publication (4) for each 
test at the various coverage levels. The data, single-wheel and dual-wheel, from this 
series constitute the basis of the investigation reported herein. 

Paper sponsored by Committee on Theory of Pavement Design. 
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MECHANISTIC ANALYSIS 

Model Development 

A mechanistic model was 
sought whose deflection be
havior reflected the action of 
observed landing mats. Initial 
consideration was given to the 
selection of a representative 
structural load transfer ele
ment. Following earlie r find
ings of the Corps of Eng ·neers 
(2), a membrane and thin plate 
were quickly eliminated as 
possibilities. 

Di rection of Traffic 
(Longitudinal Direction) 

Element C 

Element A 

Element D 

End Joint 

Transverse Joints 

Element B 

Figure 1. Arrangement of mat elements within the traffic lane. 

A beam of infinite length was selected as the mechanistic equivalent of the mat. This 
selection was predicated on several prevailing conditions. First, actual field operations 
and test procedures employed by the Corps of Engineers (4) demonstrated that the mat 
elements extend laterally for an appreciable distance outside the normal traffic lane. 
Second, the transverse joints in the mat surface (necessitated by the construction pro
cedure) provided virtually no moment transfer from one row of mats to the next (Fig. 1). 
Also, tests (2) on the M8 mat indicated that the transverse rigidity was approximately 
150 times lar ger than the longitudinal rigidity. 

A second approximation was necessary to "idealize" the soil media. Because proto
type tests (4) indicated that the "average deflection" increased with the number of cov
erages, a conventional elastic solid model was not thought to be directly applicable. The 
observed behavioral characteristic was accommodated by employing a "quasi-elastic" 
model wherein parameters are permitted to be coverage-dependent. 

The width of the infinite beam was taken as the length of a rectangle whose area was 
equivalent to the tire print area and whose width was equal to the maximum width of the 
tire print. 

In addition, the following assumptions were made: 

1. The end joint connections provide total shear and moment transfer between mat 
elements; 

2, The wheel loads can be representen by uniformly nistrihutP.d loads; 
3. The beam obeys Eulerian conditions regardless of the stress level; 
4. The beam and the soil always remain in contact; and 
5. Horizontal displacements within the soil media are negligible. 

The validity of the assumption of complete moment transfer was investigated by Rosner 
(8). Results indicated that the effectiveness of the end joint connections was approxi
mately only 10 to 15 percent less than that of the mat elements. 

Mat-soil parameters were established by analytical simulation of the prototype test 
data. This was achieved through a modification of the general variational method of 
analysis developed by Vlasov and Leont'ev (9). 

Imposing the foregoing assumptions, the response of the mat-soil model was ex
pressed as 

d 4 V(?J) - ---

where 

2 _ tL 
2 

_ 1 - µ0 / H ,T,2d r - - - -- -.,y 
El 2L O 

(1) 

(2) 



and 

and where 

E is the modulus of elasticity of the beam (mat), 
E0 is the modulus of elasticity of the soil, 
H is the thickness of the soil layer, 
I is the moment of inertia of the beam, 
k is a foundation modulus that determines the compressive strains in the 

foundation, 
L is an elastic characteristic of the model, 

p(x) is a uniform loading function, 
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(3) 

(4) 

t is a foundation modulus that determines the shearing strains in the foundation, 
V(TI) is the generalized deflection, 

6 is the width of the beam, 
µ,0 is Poisson's ratio of the soil, and 

w(y) is a function representing the distribution of displacement with depth (y ). 

It should be noted that Eq. 1 differs significantly from the governing relationship for 
an infinite beam on a Winkler foundation. The third term on the left-hand side of Eq. 1 
arises from consideration of the normal strains within the soil; the coefficient on this 
term is analogous to the Winkler spring constant. The second term of Eq. 1 accounts 
for the presence of shearing strains within the soil; this term does not appear in the 
Winkler model. The coefficients for these two terms can be related to the distribution 
of displacement with depth as shown in Eqs. 2 and 3. 

Tests conducted by the Corps of Engineers (2) indicated an asymptotic attenuation of 
displacements with depth. Functional represent ation of this type of displacements may 
take many forms. One convenient form, suggested by Vlasov and Leont'ev (9), assumes 
a ratio of hyperbolic functions as -

sinb y (!!....:...1.) 
llr(y) : L 

sinh '>'.f; 
(5) 

where y is the distance from the subgrade surface and 'Y is a dimensionless parameter 
that reflects the rate of attenuation of displacement with depth. 

With the distribution of displacements described by Eq. 5, the stresses can be ex
pressed as 

a = ~ V (x) d'1t(y) 
y 1 - µ,~ dy 

and 

(6) 

(7) 

A representation of the distribution of the above stresses on a vertical section through 
the soil mass is given in Figure 2. 
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With the form of '11(y) taken 
as m Eq. 5, any variation in 
the rate of attenuation of the 
displacement can be incorpo
rated by judicious selection of 
the parameter y (Fig. 3). The 
value of y could not be estab
lished directly from any pre
vious studies. Hence, a sim
ulation procedure was evolved 
that could yield reasonable 
measures of this parameter 
from the "average deflection" 
patterns. 

For simplicity it was as
sumed that the soil media ex-

0 

0 

Shear Stress 0 Norma 1 Stress 

TT 
y 

H 

0 

Figure 2. Distribution of stresses with depth. 

tended to infinite depth. Under this assumption, the model characteristics k and t in 
Eqs. 2 and 3 become 

(8) 

E
0
6 L 

t - -=-r,--""T -- 8(1 + JJ.o) 'Y 
(9) 

Parameter Indentification 

The model characteristics k and t (Eqs. Band 9are functions of 'Yin addition to the 
conventional elastic constants, E0 and µ.0 • Previous studies of beams on elastic founda
tions indicated that variation of µ,0 generally has a negligible effect on resulting deflec
tion patterns. In this study ~ is assigned a value of 0.4 as had previously been sug
gested by Pickett (6, 7). Any error introduced by this assumption can be compensated 
tor by tne remam1ng parameters ~o anti y as i.i1ey are iueui.ii:ieu iu ~i,., ;;imu~.:,.;,.,J j:,1u
cedure. 

Loads were imposed on the developed mat-soil model similar to those of the proto
type tests. The "steep descent" method (5) was empluyetl. for the identification of the 
model parameters. The criterion imposed was to minimize an error functional (the 
sum of the square of the differences between the actual deflection and the model deflec
tion of at least 9 discrete points). 

0 

y 

H 

Figure 3. 

I ,j, (0)=1 
• I I 

s1nh~ 
ij,(y) = - -...C,r,--

s1 nh f 

Distribution of displacement with 
depth. 

The foregoing procedure was applied ini
tially to data gathered from the Corps of En
gineers' test designated as section 1, lane 2, 
item 1, for zero coverages. The initial val
ues assumed for E0 and 'Y were 100 psi and 
1.55 respectively. A minimum of the error 
functional of 0 .060 was achieved when E0 = 7 50 
psi and y = 1.598; this is indicated as trial 1 
in Figure 4. To determine whether the mini
mum obtained was global rather than local, 
another trial was performed. Trial 2 (Fig. 4), 
which was initiated with E 0 = 200 psi and 
y = 6.00, produced a minimum of 0.079 when 
E 0 = 280 psi and y = 6.006. From these re
sults it was apparent that the surface of the 
error functional was definitely not bowl-like 
in form. Additional trials were made as in
dicated in Figure 4. As can be seen from the 
figure, the error functional possessed a curved 
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valley of minimal values that for all practical purposes could be considered iden
tical. 

It was apparent that unique values of E0 and y could not be obtained with the selected 
form of the error functional. Fortunately, as can be seen in Table 1, the values of the 
parameter k varied only slightly along the valley of the error functional. This behavior 
was found to be general (8), and hence representative values of the characteristic k 
were generated. -

Since the line of steepest descent for all trials (Fig. 4) was essentially parallel to 
the E0 axis, a modification was incorporated into the identification procedure. Values 
of 1.0, 2.5, 4.0, 5.5, 7 .0, and 8.5 were assigned to the parameter y and for each of 
these values E0 was incremented until the error functional was minimized. This pro
cedure was subsequently employed for the determination of the parameter k for all 
relevant test sections and at all coverage levels. 

Because of the insensitivity of the error functional to large change in Y, it was con
cluded that the developed procedure was not satisfactory. Preliminary studies (Fig. 5) 
indicated that the magnitude of the computed deflections was not sensitive to changes in 
y. However, as y increased, deflections in the near vicinity of the loads did become 
larger and attenuated more rapidly with lateral distance than the observed pattern. This 

TABLE 1 

seemed to indicate that the value of y was 
related to the rigidity of the mat; that is, 
the more flexible the mat, the larger the 
deflection under the load and the more 
rapid the return to the undeflected position. VALUES OF k ALONG THE VALLEY OF 

THE ERROR FUNCTIONAL The parameter y was established by a 
zero coverage trial-and-error procedure using generated Section l Lane 2 

}' 

Item l 
Error k computer model deflections. The value of 

------
1

_-
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_
8 
_ __ 

0
-_

0
_
6
_
0
_______ k (previously and independently determined) 

7 50 psi 52. 5 pci 
530 psi 2.620 o.095 52 .4 p ci was held constant for each coverage level 
400 psi 3. 608 0.100 51. o pci while different values were assigned to y. 
280 

psi 
6

·
006 0

·
079 52

·
8 

pci The "correct" value of 'Y was established 
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Section 1 
Lane 2 
Item 1 
Coverages 0 
Center of Panel 

l of panel 

2.0 1------------1------1-----1-----+-

k = 52.5#/cubic inch 
actual deflection 
y = 1.0 error= 0.054 
y = 6.0 error= 0.079 

Figure 5. Influence of the parameter 'Yon the deflection pattern . 

by comparing the computed model deflection configuration to the prototype deflection 
pattern. After the parameter 'Y had been established, slight modifications were made 
in the initial value of the parameter k to improve the correspondence between deflection 
patterns. This procedure was followed in all subsequent cases to obtain measures of 
both 'Y and k values. 

RESULTS 

'l .. r~!~C8 8f th~ ~~~::,~~te!'.S ;1, ~
0

, !-:, ~~- t~-e ':!'"!'0!'" fnnrtinn~l fnr twn t.y!1ic::i1 tP.Rt Rec
tions are given in Table 2. Displaying the magnitude of k against the number of cover
ages (Fig. 6) it can be observed that, in general, the magnitude of the parameter k de
creases \vith coverage. Similar behavior was also observed for the dual-wheel tests 
(8). 

It was found that the magnitude of k at any coverage level could be established as a 
function of the initial value. This relationship was established empirically as 

(10) 

where k1NT is the k value at zero coverage and kN is the k value after N number of 
coverages . The value of kINT was found to correlate with several standard soil prop
erties: water content, dry density, and CBR (obtained at the test site). It was found 
for the prototype tests that kJNT could be established from the relationship 

kINT = 164.0 + 3.0 CBR - 5.4w 'Yd (11) 

where CBR is the average CBR for the upper 18 in. of subgrade and w Yd is in pounds 
per cubic foot. 

Observations of the "average deflection" patterns of the prototype tests indicate that 
the curvature, in general, increased with increasing number of coverages. The identi
fication procedure demonstrated that the value of y also increased with coverages and 
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TABLE 2 

COMPARISON OF THE VARIABILITY OF THE CHARACTERISTIC k 

y E0 ,psi k,pci Error E0 ,psi k,pci Error 

Section 2 Lane 3 Item 1 

Coverage zero Coverage 600 

1.0 800 36 0.139 680 29 0.040 
2.5 420 38 0.108 350 30 0.043 
4.0 290 37 0. 105 250 30 0.043 
5.5 230 37 0, 103 200 31 0.044 
7.0 190 37 0. 104 170 32 0.050 
8.5 170 38 0.102 150 32 0.061 

Section 9 Lane 21 Item 2 

Coverage zero Coverage 20 

1.0 540 25 0.080 510 24 0.064 
2. 5 280 26 0.058 270 25 0.045 
4.0 200 27 0.055 190 25 0.043 
5. 5 160 27 0.054 160 28 0.051 
7.0 140 29 0.058 130 27 0.041 
8.5 120 29 0.053 110 26 0.052 

Section 9 Lane 21 Item 2 

Coverage 200 Coverage 3 00 

1.0 480 22 0.626 460 21 0.166 
2.5 250 23 0.528 240 22 0.128 
4.0 180 24 0.510 170 22 0.126 
5.5 160 28 0.597 160 28 0. 365 
7.0 120 24 0.509 120 24 0.127 
8.5 110 26 0. 500 110 26 0.182 

100 
80 
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40 

20 

- .,.,/\ ·--.6- j '\ - D--·- 'x"--:=. ,. 
- 'I(;:;-- " " 0 -a D - 0 - ·u ·u .4 · a--~ 
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Figure 6. Variation of parameter k with coverage for single-wheel tests. 
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Section 

I 
l 
2 
2 
2 
2 
3 
3 
3 
3 
6 
6 
0 

Distance 
(in.) 

TABLE 3 

COMPARISON OF DEFLECTION PATTERNS 

Actual Estimated 
Deflection Deflection 

(in.) (in.) 

Distance 
(in.) 

Section 2 Lane 3 Item 1 

klNT = 35.5 pci 'YJNT = 1.00 

Actual 
Deflection 

(in.) 

Estimated 
Deflection 

(in.) 

Zero Coverages - Error= 0.139 600 Coverages - Error = 0.164 

!f9 0.10 0.20 90 0.00 0.09 
102 0.15 0.26 102 0.42 0.38 
105 0.19 0.33 112 0. 71 0.76 
112 0.41 0.54 120 1.00 1.11 
117 0.59 0. 71 132 1.19 1.41 
122 0.88 0.87 142 0.96 1.19 
129 1.20 1.03 146 0.88 1.03 
132 1.17 1.04 152 0.71 0, 77 
142 0.82 0.87 162 0.38 0.38 
152 0.61 0.54 174 0.00 0.09 
162 0.27 0.26 
170 0.00 0.11 

Section 9 Lane 21 Item 2 

klNT = 25. 5 pci 'YINT = 1. 75 

Zero Coverages - Error = 0. 063 300 Coverages - Error = 0.149 

108 0.00 0.12 108 0.00 0.18 
114 0,20 0.24 114 0,28 0.36 
124 0.55 0.56 120 0.57 0.58 
134 0.90 0.93 124 0.59 0. 75 
144 1.15 1.11 132 1.00 1.12 
154 1.00 o. 93 134 1.15 1.20 
164 o. 70 0.56 144 1.32 1.41 
174 0,20 0.24 154 1.27 1.20 
179 0.00 0.14 160 1.00 0.94 

164 0.80 0. 76 
174 0.32 0.36 
179 0.00 0.21 

TABLE 4 

COMPARISON OF SIMULATED TO CALCULATED VALUES OF klNT 

Test 
k,pci 

Test k, pci 

La ne Item Section 
Lane Item 

Simulated Calculated Caleufa lcd Cd oulatcd 

1 I. 48.5 59.3 6 12 2 36.0 36. 7 
2 J 50.5 66. l 9 21 1 14.0 11. 9 
3 I 35.5 18. 5 9 21 2 25. 5 20,2 
3 2 41.0 35.1 9 22 1 10.0 11.2 
4 1 19.0 15.9 9 22 2 16.0 13. 5 
4 2 31.5 38.3 10 23A 1 37.5 27.1 
5 J 16,0 17.0 10 23A 2 27.5 31. 7 
5 2 21.0 32. 7 10 23B 1 32.5 27.1 
6 I 12. 5 20.4 13 28 1 11.0 11.6 
6 2 18.0 29.2 13 28 2 25,0 25.3 

11 I 34.0 20.6 13 29 1 18.0 11. 7 
11 2 50.5 41.8 13 29 2 28.0 24.2 
12 22,0 29,4 
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became slightly larger with decreasing mat rigidity. The relationship for YN was es
tablished as 

4 (EI )T 11 - (EI)MAT 
YN = yN° + ( ) (N .: 1) 

EI MAT 
(12) 

where N is the specific number of coverages, (EI)T 11 is the rigidity per foot of width 
of th e T 11 aluminum mat, and (EI)MAT is the rigidity per foot of width of the mat being 
investigated. 

With the paramet ers kINT and YN defined, the system characteristic t may be found 
from Eqs. Band 9. Some typical computed deflection patterns obtained using Eqs. 10 
and 12 are given in Table 3. Some observed deflection patterns are also given. 

In Table 4 are given values of k1NT obtained from the identification procedure 
and from Eq. 11. It is noted that the largest discrepancies occur for those sections 
where the simulated values were high. From Figure 7, it can be observed that small 
variations in the subgrade strength, as reflected by the subgrade modulus, have appre
ciable influence on the deflection characteristics of the load transfer element. 

SUMMARY AND DISCUSSION 

The model characteristics k and t (Eqs. 8 and 9 ), are functions of yin addition to 
the conventional E0 and µ.

0 
parameters. The "steep descent" method used for identifi

cation failed to produce unique values of the parameters E0 and y (Fig. 4). However, 
the error functional was found to possess a valley of minimums along which the value 
of the characteristic k was found to be essentially constant. 
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The simulation of the "average deflection" patterns (Table 2) indicated that the value 
of the model parameter k increased slightly with increases in y. For a specific value 
of y (as shown in Table .!j the magnitude of k was found to decrease with the number ot 
coverages. Computations indicated that the magnitude of k was more sensitive to the 
number of coverages than to the value of the parameter y. The validity of the developed 
expression for kN (Eq. 10) is demonstrated in Table 2 and Figure 6. 

As noted in Figure 5, variations in the parameter y were reflected primarily as al
terations of the deflection pattern curvature. The representative value of y was es
tablished from the similarity of model deflection curvature for various values of y with 
prototype deflection curvature. From this comparison it was noted that the curvature, 
and thus Y, increased with coverages and decreased with increasing mat rigidity. This 
behavior is expressed by Eq. 12. 

The simulated values of the characteristic k at zero coverages were in all cases less 
than 53 pci. In this range, the model deflections were found to be quite sensitive to the 
magnitude of kINT (Fig. 7). 

CONCLUSIONS 

On the basis of assumptions made herein, the following conclusions appear warranted: 

1. A mechanistic model can be developed that is capable of duplicating the behavior 
of prototype landing mat systems under static loads. 

2. Numerical values for parameters entering the model can be obtained from simu
lation of prototype deflection patterns. 

3. Model parameters can be correlated with established soil properties. 
4. Contrary to prevailing opinion, the subgrade modulus (k) decreased as trafficking 

progressed and the associated model behavior is extremely sensitive to the magnitude 
of the subgrade modulus. 
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A Nonlinear Theory for Predicting the 
Performance of Flexible Highway Pavements 
RICHARD D. BARKSDALE, School of Civil Engineering, Georgia Institute of Technology 

A nonlinear theory is proposed for the structural analysis of flexible high-
way pavements. The proposed theory uses a nonlinear incremental ap-
proach based on finite element theory. The nonlinear problem is solved by 
applying each load repetition to the solid continuum in small increments. 
This procedure, in effect, reduces the nonlinear problem to that of suc
cessively solving a large number of elastic problems. A plastic load con-
cept using cumulative plastic strain is developed that makes possible plac-
ing all of the nonlinear effects in the load vector. Using this approach, the 
system stiffness matrix needs to be decomposed only once. As the exter-
nal load is incrementally increased or decreased and the modulus changes, 
essentially all that has to be done to calculate the new displacements of the 
system is to solve an upper triangular matrix by back-substitution. The 
plastic load approach using the concept of cumulative plastic strains is per-
fectly general, and the theory is applied to problems involving the applica-
tion of large numbers of wheel load repetitions and viscoelastic creep 
loadings. 

•IN THE DESIGN of flexible highway pavement systems, apparently the most important 
structural considerations are rutting of the surfacing due to the accumulation of perma
nent shear deformations and fatigue cracking of the surfacing which can also lead to 
rutting (1, 2). At the present time, the structural components of flexible pavement 
systems are usually designed by either empirical or semi-rational methods based on 
ultimate strength or elastic theory (3). The presently used design methods cannot ra
tionally account for either important variations of elastic and plastic material properties 
with increasing numbers of load repetitions or the occurrence of cumulative deforma
tions (rutting) in the pavement system. 

Several linear elastic (4-8) and nonlinear elastic (9) theories have been proposed 
and, at least to some extent-; verified for predicting fiie elastic response of pavement 
systems subjected to a single wheel load. Very few theories, however, have been pro
posed and verified for predicting the response of pavement systems under time-dependent 
creep or repeated wheel loads. Although not directly related to pavement systems, in
teresting theories and related model studies that deserve mentioning have been presented 
by Majerus and Tamekuni (10) and by Gallagher, Padlog, and Bijlaard (11). 

Moni smith and Secor (12Jperformed a comprehensive investigation toverify a linear 
viscoelastic theory that used the correspondence principle and characterized the ma
terial properties by a 4-element spring and dashpot model. They attempted to verify 
the theory using an idealized model pavement system consisting of a thin asphaltic con
crete slab resting on a bed of closely spaced springs. Even after modifying the linear 
theory to account for differences in tensile and compressive material properties, the 
calculated center deflections of the model were found to be considerably less than the 
measured deflections shortly after the application of a creep loading. 

Barksdale and Leonards (2) developed a method using material properties obtained 
from repeated load triaxial tests for predicting both elastic and permanent deflections 
and stresses in 3- and 4-layer pavement systems subjected to repeated wheel loads. 
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The linear theory used consisted of applying the correspondence principle to elastic 
layered theory and inverting the solution using the collocation inversion technique. A 
comparison of both the elastic and permanent surface deflections measured at the 
AASHO Road Test with those calculated showed reasonable agreement considering the 
many uncertainties involved in making a comparison of this nature. The disadvantages 
of this theory are, however, that the elastic modulus cannot be varied with number of 
wheel load applications, elastic and plastic properties cannot be varied within each 
layer with changes in stress state, and the plastic material properties must be eval
uated by a trial-and-error process. 

A general nonlinear theory that can be used to calculate both the elastic and plastic 
response of layered pavement systems is proposed in this paper. This theory is suit
able for use as the basis for a rational, flexible pavement design procedure. A cumu
lative strain concept is combined with the finite element approach to give a very power
ful and general method for the structural analysis of flexible pavement systems. This 
theory is extended to include repeated loadings and nonlinear viscoelastic creep prob
lems. The problem of a simplified model pavement subjected to a single step function 
loading is used to show the validity of the proposed nonlinear, viscoelastic theory. 

THEORETICAL DEVELOPMENT 

The elastic finite element method was originally developed in the aircraft industry 
as a generalization of matrix structural methods of analysis. A detailed description 
of the finite element method applied to linear problems has been presented by 
Zienkiewicz and Cheung (13). Complicated nonlinear elasticity problems can often 
be reduced by iterative techniques to the problem of successively solving a large num
ber of related linear elastic problems (11, 13, 14, 15, 16, 17). Iterative methods that 
have been used include direct iteration,in which the total loading is applied in one in
crement, or incremental methods, where the load is applied in small increments and 
a constant or variable modulus is used for each iteration (13). When iterative methods 
are used to solve nonlinear problems, careful attention must be given to whether or not 
the iterative solution has converged to within an engineering degree of tolerance of the 
mathematically correct answer. 

Linear Elastic Finite Element Theory 

As a first approximation, the layered pavement system problem can be idealized 
as one of axial symmetry. An elastic axisymmetric solid continuum maybe represented 
as an assemblage of a finite number of discrete ring-shaped elements. Each adjacent 
element in the solid that comes together at a common point is interconnected by fric
tionless pins called nodes. By requiring that equilibrium of forces and compatibility 
of element displacements at all the nodes in the system are satisfied under the appli
cation of external loads, the continuum problem is reduced to that of solving a large 
system of simultaneous linear equations. Fortunately, the system of equations usually 
has a large number of zero terms, which greatly reduces the number of calculations 
required to solve the system. 

A finite element computer program for solving elastic axisymmetric problems was 
developed and later modified for nonlinear material properties. Rectangular, ring
shaped elements were used in the program to approximate the continuum, and the 
displacement components were assumed to vary linearly over each element. The cor
responding stiffness of each element was numerically evaluated using 3-point Gaussian 
quadrature in both directions. After assembling the system stiffness matrix and load 
vector, the resulting system of simultaneous linear equations was solved using Choloski 
decomposition, taking into consideration the bandwidth of the system stiffness matrix. 
In formulating the load vector, distributed surface loadings were lumped at the nodes 
using consistant energy concepts. Inertia forces were neglected throughout this investi
gation. A comparison was made for the elastic half-space problem between deflections 
and stresses calculated using the proposed finite element theory, those obtained using 
a finite element program written by Wilson (~), and those calculated using elastic half-
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space theory. Good agreement was shown to exist between the stresses and deflections 
calculated using the different methods. 

Incremental Nonlinear Elasticity Theory 

The incremental approach can be used to solve nonlinear problems by dividing the 
total load on the structure into small, equally spaced increments. By following this 
approach the task of solving nonlinear problems can be reduced to one of solving a rel
atively large number of linearly elastic ones. Essentially what is done using the pro
posed procedure is to obtain for each load level, using an iterative procedure, a modulus 
for each element that is compatible with the corresponding stress state or effective 
stress. Effective stress-strain laws and a detailed explanation of the method are given 
elsewhere ( 19). 

The effective stress path followed in this investigation using an iterative procedure 
subsequently described is shown in Figure 1. An initially guessed elastic modulus Ee 
is used to calculate the stress state for the first load increment which results in a 
movement along the stress path from o to a in Figure 1. A new modulus is then deter
mined using the initially calculated stress state based on Ee. A new stress state is 
then calculated using the total modulus E just calculated. Repeating this iterative pro
cedure would cause a gradual movement from point a to a point near b provided a suf
ficient number of similar iterations are carried out for the first load increment. The 
next load increment is then added to the previous increment. The modulus defined by 
line o-b is used to calculate the first approximate stress state for the second load in
crement resulting in a movement from b to c on the effective stress path. The correct 
plastlc load increment, °E"P, for the new load level can be determined using the final 
plastic load for the first load increment and similar triangles oab and ozc, when the 
indicated stress path is followed. The same iterative procedure described for the first 
load increment is repeated again for the second load increment resulting in a movement 
from c to the vicinity of d. The same procedure is carried out with the addition of each 
successive load increment until the total desired load is applied to the solid. 

The plastic strain, zP, associated with any deviation from the elastic strain, °E"e, 
calculated using the initial elastic modulus can be treated exactly like an initially 
known strain state applied to the solid, such as that due to temperature effects or erec
t.ion errur~. A .li\;Liliuui:> lua.U 1.11a.triA ca.:;:1 t1"1~u. 'be ~u.lcu.lu.tcd ........ !';.:!.~~ pl~~~::: :1ll tl!~ ~!~!;ti~ 
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Figure 1. Effective stress path followed using proposed iterative procedure. 
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effects in the loading. Handling the plastic effects in this way makes possible the solu
tion of nonlinear problems without ever changing the system stiffness matrix from the 
one initially calculated for the first load increment. The stiffness matrix therefore 
needs to be decomposed or inverted only one time and successively solved for each 
iteration and load increment using a different total load vector. 

If Poisson's ratio remains constant, it is not necessary when calculating the fictitious 
load matrix to evaluate the associated volume integral during the entire iterative pro
cedure (19). The contribution to the load matrix due to the plastic strains in each ele
ment can be evaluated for each successive iteration by simply multiplying the previously 
calculated elastic stiffness matrix of each element times the appropriate node displace
ment vector and a ratio of the total modulus to the plastic modulus. Both elastic and 
plastic deviations from an initially assumed elastic modulus can be placed in the load 
vector. Therefore, the elastic stiffness matrix, which involves a complicated volume 
integral, needs to be evaluated only one time during the solution of a nonlinear problem. 

The nonlinear theory just presented was incorporated into the elastic finite element 
computer program described in the previous section. The nonlinear theory and com
puter program were initially verified for the problem of a long, hollow cylinder sub
jected to a uniform internal pressure (20). The stresses obtained using the nonlinear 
program were found for all degrees of nonlinearity studied to be within less than 5 per
cent of the values obtained by Nadai (20). The number of load increments required to 
give good convergence was found to depend upon the degree of material nonlinearity. 

Repeated Wheel Load Applications 

The proposed nonlinear finite element theory can be readily extended for highway 
pavements to include large numbers of repeated wheel loadings. Assume that the mov
ing wheel loads can be replaced by a series of stationary, repeated loadings. This 
idealization, in effect, neglects the influence of inertia forces . Furthermore , assume 
that only a relatively few wheel loadings are applied very near the edge of the pavement 
so that an axisymmetric loading can be used to represent the loading and pavement 
structure. Finally assume a normal surface loading and small deflection theory. A 
discussion of these assumptions and their implications is given elsewhere (19). 

The material properties for the nonlinear analysis of highway pavementssubjected 
to large numbers of wheel applications can be obtained from repeated load triaxial 
tests. Repeated load tests would be performed on the surface, base, and subgrade 
materials using an appropriate range of deviator stresses and confining pressures. 
The stress state and deflections at the end of the first load cycle can be calculated by 
applying and then removing the wheel load to the pavement system in small increments. 
During_unloading the permanent cumulative strain in each element can be treated in the 
same way the fictitious plastic strain was handled in the earlier theory. Previous lab
oratory studies (21, 22) have shown that the average loading modulus and the accumu
lation of permanent strain during each load repetition changes relatively slowly with 
increasing number of load applications. From an engineering standpoint, the material 
properties can therefore be assumed either to remain constant for a certain number of 
load repetitions or else to vary in some predetermined manner. The number of load 
repetitions during which the modulus and cumulative strain would be assumed constant 
would be determined from the results of the repeated load triaxial tests. Fortunately, 
this interval would, in general, tend to increase logarithmically with the increase in 
the number of load repetitions. Using the plastic strain concept, this approach would 
require, at most, reevaluating the system stiffness matrix and decomposing it each 
time the material properties are changed. This approach not only permits the use of 
nonlinear material properties but also makes it possible to vary both the elastic and 
plastic material properties with the number of load repetitions. This approach, there
fore, greatly generalized the previous work done by Barksdale and Leonards (~_). 

Nonlinear Viscoelastic Creep Problems 

The problem now is to illustrate how the nonlinear finite element theory can be read
ily used to predict the response of nonlinear pavement systems subjected to stationary 
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creep loadings. Time-dependent problems may be solved by using finite element tech
niques either by marching forward in small increments of time (11, 23, 24, 25) or else 
by directly applying the correspondence principle (2, 10). Applying the correspondence 
principle to problems involving step loadings and inverting the transformed solution 
often results in considerably less numerical calculations than solving the same problem 
using a step-by-step method. The correspondence principle, however, could not, in 
general, be used to solve nonlinear problems involving arbitrary variations of loading 
with time. Use of the correspondence principle in solving linear viscoelastic pavement 
problems has already been described (2). This same approach can also be used in 
solving nonlinear viscoelastic creep problems with only the minor modifications de
scribed in this section. 

Appropriate tension and compression creep tests would be performed at stress 
levels selected so as to cover the range of anticipated stress states to which the ma
terial would be subjected under actual loading. For each type of test, a linear n-element 
Kelvin model could then be readily fitted to the experimental data obtained for each 
stress level by using the collocation method proJ)osed by Schape.1·y (26) . Using the 
Kelvin model, the operational creep compliance Dc(p), as a .functionof transformed 
time p, could be calculated for all stress levels for a particular type of test. This 
operation, in effect, would generate a family of curves in the transformed Dc(p)-p 
plane relating operational creep compliance, stress level, and time. Each curve would 
correspond to a stress level at which a test was performed. At each desired instant 
of transformed time, a relationship could be obtained between the stress state and the 
operational creep compliance by cross-plotting these results. This procedure would 
give the relationship between stress state and operational compliance at a certain in
stant of operational time which is analogous to the information obtained from a time
independent, nonlinear stress-strain curve. A relationship having this form between 
stress state and operational creep compliance for given values of operational time p 
can be readily used in the proposed method of nonlinear stress analysis. This non
linear viscoelastic approach is equivalent to assuming that the material behaves linearly 
for small incremental changes in stress state and is similar in overall concept to the 
proposed time-independent, nonlinear incremental theory. 

The transformed time-dependent response i;(p) to a creep loading could be readily 
caicuiateci ai. a iinii..e uu1uUe1· ui i..rd .. 11~iu.1u1t::U ~liiit::6 ty ci.!lplyi11g t!-i~ cu:i.-i-copundi3ttC6 

principle and using the material properties evaluated as described above. The trans
formed solutions could then be inverted back to the real time plane by applying a col
iocation inversion rneU10d (27). 

NONLINEAR VISCOELASTIC MATERIAL CHARACTERIZATION 

This section describes the evaluation and characterization of the nonlinear visco
elastic material properties of a sand asphalt. Specimens of sand asphalt were subjected 
to both uniaxial tensile and triaxial compression creep states of stress to evaluate the 
effects of stress state and time on the material properties. All tests were performed 
in constant-temperature chambers at a temperature of 77 ±0 .5 F. The material prop
erties were then characterized in a form suitable for use in the proposed nonlinear 
viscoelastic theory. All samples tested had 6 ½ percent by total weight of a 120-150 
standard penetration grade asphalt cement. The aggregate used was a fine, well-graded 
crushed granite having a maximum grain size of % in. 

Uniaxial Tensile Creep Tests 

The tensile creep properties of the sand asphalt specimens were determined by 
means of a uniaxial creep test. The 1 x 1 x 5-in. specimens used in this series of 
tests were cut from 1 x 6 x 6-in. samples prepared by static compaction. Axial ten
sile step loadings of 2.0, 3.9, 5.6, and 7.5 psi were applied to specimens in order to 
cover the approximate range of stress levels estimated before the development of the 
theoretical analysis. The average density of the tensile specimens was 141.7 pcf 
(±1.4 percent). 
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Figure 2. Experimental tensile creep compliance curve for sand asphalt at 77 F and an axial stress of 2.0 psi . 

The tensile specimens were orientated with their long a.xis vertical in an aluminum 
loading frame. Each specimen was subjected to a creep loading by placing circular 
lead weights on a load hanger. 

Typical test data and the corresponding average creep compliance curve as a func
tion of time for the tests performed at a stress level of 2 .0 psi are shown on a log-
log plot in Figure 2. The creep compliance is just the reciprocal of the creep modulus 
and is equal to the time-dependent strain divided by the constant stress. The creep 
compliance as a function of time was found for a given stress level to be linear over 
almost 2 log cycles of time. All test data were corrected for the small deformations 
that occurred in the wood end tabs and loading system. The approximate influence of 
stress level on creep compliance is shown in Figure 3. Some of these curves have 
been slightly shifted so as to give consistent results for each successive stress level. 
These results, although based on a limited number of tensile creep tests, indicate that, 
at times greater than about O .5 min, the creep compliance increases as the stress level 
goes from 2.0 to 7 .6 psi. On the other hand, for times less than about 0.5 min, the 
creep compliance becomes smaller as the stress level is increased. 

The viscoelastic material characterization theory described earlier was used to 
develop a mathematical set of models from the experimentally measured creep material 
properties suitable for use with the proposed nonlinear viscoelastic theory. A 16-
element Kelvin model was fitted to each of the 4 tensile creep response curves shown 
in Figure 3. A mathematical model was thus obtained for the operational creep com
pliance as a function of transformed time for each of the 4 stress levels at which tensile 
creep tests were performed. The relationship between axial stress level and opera
tional creep compliance at 11 values of p spaced approximately evenly between 0.01 
and 100 was then obtained by cros s - plotting the results from the operational creep com
pliance curves for each stress level. Typical results of this operation, which give the 
relationship between axial stress level and operational creep compliance at a given 
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Figure 3. Influence of axial stress on tensile creep compliance. 

instant of operational time p, are shown in Figure 4 for p = 0.1. This operational time 
corresponds to a real time of roughly 5 min. These relationships between axial stress 
level and operational creep compliance are in a form suitable for use in the proposed 
nonlinear viscoelastic theory. These curves would be, for example, the nonlinear 
viscoelastic equivalent to a plot of the modulus of elasticity as a function of axial stress 
obtained from a uniaxial tension test performed at a constant strain rate. 

,:," 

l!I z .. 
:::; 
!a 
1l 
~ 
w 
w 
"' " z 
Q 

~ 
" 

12 

SAND ASPHALT, 77°F 

0 

AXIAL STRESS, o1, IN PSI 

Figure 4. Variation of operational tensile creep compliance with axial stress for 
p = 0.1. 
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Figure 5. Compressive creep test apparatus. 
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For all stress levels, lateral deforma
tions at the mid-height of the specimen 
were measured in one plane by using either 
two Collins L VDT displacement trans
ducers wired in series or else two 
1/ 10,000-in. Federal dial indicators. 
Values of Poisson's ratio were calculated 
from the lateral deflection measurements 
made at the center of the specimens from 
the relationship 

v = .!_ [1 - _l_ .1. V] 
2 ca V 

(1) 

where v = Poisson's ratio, .1. V = volume 
change, V = initial volume, and ca= axial 

strain. This approximate relationship was derived from the theory of linear elasticity, 
assuming the radial and tangential strains were equal. The change in volume that oc
curred during the creep tests was estimated by assuming that the end cross-sectional 
areas did not change and the deformed shape of the specimen could be approximated 
by plane surfaces. At a given instant of time the calculated values of Poisson's ratio 
were found to vary quite widely from one test to the next. However, .when average 
values were plotted against the logarithm of time, Poisson's ratio was found to decrease 
almost linearly from a value of 0.32 at 0.5 min to approximately 0.11 at the end 
of 10 min. 

Compression Creep Tests 

( The compressive creep properties of statically compacted cylindrical sand asphalt 
specimens approximately 2. 9 in. in diameter and 6 .0 in. in height were evaluated for 
confining pressures of 0, 15.0, and 35.0 psi and 3 deviator stresses in order to deter
mine the effect of stress state on the material properties. The average density of the 
compressive specimens was 144.2 pcf (± 0 .9 percent). The compressive creep tests 
were performed between 20 and 50 days after compaction of the specimen. All tests 
were performed using a triaxial test cell that was placed inside a constant-temperature 
chamber as shown in Figure 5. A step function loading was applied to the specimen by 
means of a pneumatically operated Bellofram connected in series with a load cell and 
a small aluminum loading head. The Bellofram was activated by electrically opening 
a quick-release valve. 

Lateral displacements at the mid-height of the specimen were measured throughout 
the tests by means of a lateral deflectometer. Also, final deflection profiles for a 
number of the specimens were measured using vernier calipers at the end of the creep 
tests. These data were used in estimating the end deformations and the deflected shape 
of the sample at selected times during the test. Poisson's ratio was calculated using 
the volume change relationship given in Eq. 1. The deflected sample profile was as
sumed to be a parabola with lateral deformations occurring at the top but no deforma
tions at the bottom. These approximate calculations indicated that Poisson's ratio 
gradually increased with time . Apparently, however, this change is not very large. 
The average value calculated from 12 tests that included all confining pressures indi
cated a value of 0.50 for Poisson's ratio, assuming it is time-independent. The calcu
lated variation from the average value, however, was found to be relatively large in 
both directions. 

A typical measured compressive creep compliance response for the test performed 
at a confining pressure of 15 psi and a deviator stress of 19.0 psi is shown in Figure 
6, together with the data from each individual test. All curves were corrected for the 
deformations occurring in the plexiglass end caps and the base of the triaxial cell. The 
creep compliance, as a function of the logarithm of time, was found at very small times 
to gradually increase at an increasing rate with time. By an elapsed time of 
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Figure 6. Experimental compressive creep compliance curves for sand asphalt at 77 F and a confining 
pressure of 15 psi. 

appro:ir...imately 0.1 min, the increase in creep compliance had become almost directly 
proportional to the logarithmic increase of ti.me. The creep compliance, after remain
ing almost proportional to the logarithm of time for 2 to 3 log cycles, then started either 
to asymptotically approach an equilibrium value or else to get larger at a rapidly in
creasing rate, indicating approaching failure . Since failure of the specimen under a 
constant creep loading was not being investigated, the tests were discontinued after 
approximately 100 min if failure had not occurred before this time. Failure or indi
cations of impending failure were observed during the 100-min testinng period only in 
specimens subjected to deviator stresses greater than 45 psi. 

An 11-element Kelvin model was fitted to the experimental compressive creep com
pliance curves following the same procedure used in reducing the tensile test data. Us
ing the Kelvin model representations, the operational creep compliance was calculated 
and plotted as a function of operational time for each creep test. The relationship be
tween operational creep compliance, confining pressure, and deviator stress was ob
tained by cross-plotting the operational creep compliance cur ves at each desired in
stant of operational time . Typical results obtained for operational times p s 6 (whi ch 
correspond r oughly to real times 2 0. 1 min) are shown in Figure 7 for p = 0.04. For 
this time range the operational creep compliance was found to apparently decrease as 
the confining pressure and deviator stress were increased, although a more detailed 
investigation is needed. The test results indicate that, at constant confining pressures, 
as the deviator stress is increased the rate of decrease in the operational creep com
pliance becomes smaller. For operational times p > 6 the operational creep modulus 
was found to increase as the confining pressure was increased and decrease as the 
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deviator stress increased. The same values of operational time p were used in reduc
ing both the tensile test data and compression test data so that the material character
ization could later be used in the nonlinear viscoelastic analysis. 

Discussion of Tests 

In performing a creep test, a certain finite rise time is required for the total applied 
load to become fully supported by the specimen. During this rise time the stress on the 
sample is increasing, and the sample is influenced to an unknown degree by impact ef
fects. For these reasons the results of the creep tests should be considered valid only 
for times greater than about 10 times the rise time (28). The average measured rise 
time for the tensile creep tests was found to be 0.10 sec and for the compressive creep 
tests, 0.16 sec. Therefore, in characterizing the tensile and compressive creep prop
erties for use together in a theoretical analysis, these properties should be considered 
valid only for times greater than about 1.6 sec after the specimens began to carry load. 

In all of the creep tests performed, the axial specimen deformation was determined 
by averaging the axial deformation occurring on each side of the sample at equal dis
tances from the center. This averaging procedure compensates for the effects of any 
bending due to eccentricity of load and gives more reproducible results than if only one 
value of deflection is measured at some distance out from the center. The re corder
transducer systems were calibrated periodically as close to the test setup position as 
possible by applying a known set of deformations to the transducers and measuring the 
corresponding movement of the recorder pen. This method of calibration eliminates 
any variations in transducer and recorder calibration factors, the effects of wire re
sistances, and ground loop errors that may occur in the electrical system. For both 
the tensile and compressive creep tests, the measured axial deformations were cor
rected for deformations occurring in the end caps and support system. 

No matter how carefully a series of tests is performed, some experimental errors 
are always introduced. Assuming that all measurements were made correctly, most 
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of the possible errors, such as eccentricity of loading, strain concentrations, piston 
fricliun, au<l <leiur111alions in lhe ::;y::,leni lhal we1~e not corrected for, would tend to give 
an apparent modulus somewhat lower than the actual modulus and shorter apparent times 
to failure. Piston friction was found to be apparently small, and approximate correc
tions were applied to account for at least part of the deformations occurring in the load
ing system. Although care was taken in performing the tests, eccentricity of loading 
was probably one of the more important experimental errors, particularly for the ten
sile creep tests. 

Both the tensile and compressive creep test results show a relatively large scatter 
in calculated values of Poisson's ratio. Probably one important cause of this scatter 
is that the change in shape of the sample did not occur symmetrically about its mid
height, as is assumed in the reduction of the data. Furthermore, some scatter is 
probably partly due to the small deformations involved and the approximate equation 
used to reduce the data. The tensile test results may also have been influenced by 
anisotropy in a cross-sectional plane normal to the long axis of the specimen due to 
compaction. Large cracks parallel to the axis of the sample were observed in the 
compression specimens that failed. Cracks may also open up at lower stress levels, 
causing the calculated Poisson's ratio to be greater than 0.50. No matter what the 
cause, Poisson's ratio is apparently sensitive to the details of the test and deserves 
further study. 

MODEL PAVEMENT STUDY 

The only manner by which at least a partial evaluation of a theory can be made is 
to compare the predicted response of either a model or prototype pavement with ex
perimentally measured response values. For this investigation, a small-scale idealized 
pavement model was chosen for verifying the proposed theory. The model selected 
consisted of a circular sand asphalt slab 1 in. thick and 18½ in. in diameter resting 
on a bed of linearly elastic springs. The slab was subjected to an approximately uni
form step loading applied at its center over a radius of 1 in. The surface deflections 
predicted using the proposed nonlinear viscoelastic theory were then compared with 
the experimentally measured values. 

Mocte1 Tests 

The circular asphalt slab was prepared using the same aggregate gradation and 6 ½ 
percent asphalt cement content as was used in preparation of the samples from which 
the material properties in creep were evaluated. The asphalt slab was statically com

pacted to the desired thickness by a 2-
stage compaction procedure using, in each 
stage, the full capacity of a 450,000-lb 

Figure 8. Model pavement represented by an 18%-in. 
diameter sand asphalt slab resting on a spring base. 

constant strain rate testing machine and 
a specially designed mold and loading 
assembly. 

The sand asphalt slab used in the model 
study was supported on 113 springs placed 
in 5 concentric rings. The stiffness of 
each spring was determined by calibration 
to be linear with their stiffnesses varying 
between 15 .0 and 17 .0 lb/in. In order to 
minimized the effect of variation in spring 
stiffness, the springs were grouped to
gether so that the maximum variation of 
spring stiffness from the average within 
any one concentric ring of springs was 
less than +0.5 lb/in. 

A total of 4 model tests were performed 
at a temperature of 77 F (±1 F) in a large 
constant-temperature room. The pavement 
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model is shown in Figure 8. A 2-in . diameter step load of 33.5 lb was applied at the 
center of the model through a %-in. thick r ubber cushion that was glued on the bottom 
of an aluminum loading head. The rubber cushion was used to reduce impact effects 
and to obtain as uniform a contact pressure as possible over the loaded surface. The 
step load was applied using the pneumatic apparatus previously described. The average 
load rise time for the 4 model tests was determined to be 0.15 sec. The deflection 
creep response to the step loading was measured across a single diameter of each slab 
by using 5 Collins self-excited LVDT transducers and 2 dial indicators. All transducers 
and dial indicators were zeroed just before the step load was applied to the specimen. 
Therefore, the reference datum for all measurements was the slab profile just before 
application of the step loading. 

The average measured deflected surface profiles along a diameter for all 4 tests at 
times of 5 sec, 1 min, and 10 min after the application of the step load are shown in Figures 
9 through 11. All points on the surface of the slab moved downward at the instant of 
load application, and the deflected surface profile had a bowl-shaped appearance at each 
successive instant of time. The central portion of the slab moved downward quite 
rapidly at first with a decreasing rate of movement with increasing time throughout the 
test. The outside edge of the slab, however, after an initial downward movement last
ing less than 1 min, tended thereafter to move slightly upward but not enough to result 
in a net deflection above the reference datum. 

Theoretical Prediction of Slab Response 

The time-dependent response of the slab was calculated using the previously de
scribed nonlinear viscoelastic theory and the experimentally evaluated material prop
erties. The transformed p-multiplied deflections p((p) were calculated for the same 
11 approximately equally spaced values of p between 0.01 and 100 used in characteriz
ing the tensile and compressive operational creep compliance data. In the nonlinear 
viscoelastic finite element analysis, the 18½-in. diameter slab was represented as an 
assemblage of 225 rectangular, ring-shaped finite elements, as shovm in Figure 12. 

Since there was no bond between the sand asphalt slab and the spring base, tensile 
forces could not physically be transmitted from the slab to the base-. Therefore, the 
asphalt slab was assumed to rest on 3 to 5 concentric circles of linear springs depend
ing on whether or not the slab was theoretically in contact with the particular ring of 
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Figure 12. Finite element idealization of the model pavement system. 

springs at each instant of operational time. The presence of the 5 concentric groups 
of linear springs was handled in the theoretical analysis by treating the force on each 
node connected to the springs like any other external node force. In this way the spring 
effect for each concentric ring of springs can be handled by simply adding the total 
spring stiffness for each ring into the correct position in the system stiffness matrix. 

If under the imposed loading the volume of an infinitesimal element located at the 
center of each finite element increased, the entire element was assumed to be in a state 
of tension. For a tensile stress state, the effective stress law proposed by Nadai (20) 
was used in selecting the appropriate tensile creep compliance, using the uniaxial ten
sile creep test data. If in applying the volume change criteria a compressive state of 
stress was found to exist in an element, the two larger principal stresses (tension is 
defined as positive) were averaged to obtain an approximate confining pressure. For 
the desired instant of operational time, the operational creep compliance was selected 
from the corresponding set of material properties, such as those shown in Figure 7, 
for instance, using the compressive deviator stress and average confining pressure. 
For computational purposes, all material property data used in the nonlinear computer 
analysis were approximated by as many straight line segments as necessary to ensure 
a good fit. Using the procedure outlined above, for each load level and iteration the~ 
stress state at the center of each element was calculated and used to obtain the appro
priate operational creep compliance. 

In a preliminary study to determine the required number of load increments and 
iterations per load increment to use in order to ensure convergence, the nonlinear finite 
element analysis for the asphalt slab was performed at the operational time p = 0.04, 
using 9 load increments and a total of 3 iterations for each increment of load. The 
same problem was then solved using 18 load increments and 3 iterations per increment. 
This study indicated that the theoretically calculated slab deflections changed less than 
1 percent, whereas the stresses in the slab changed by as much as 15 percent. Further
more, this and the rest of the study indicated that performing several iterations within 
a load increment apparently had little effect on the results except in a few elements 
that were on the borderline between the tensile and compressive zones in the slab. 
Based on this limited study, 14 load increments with either 2 or 3 iterations for each 
increment were chosen for use in the remaining theoretical calculations. For other 
material properties, problem geometrics, and load configurations, the requirements 
for convergence would, in general, be different. After the p-multiplied values of 
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response were calculated for each value of operational time, the results were inverted 
ha~k to the real time plane using a 5- to 7-term Dirichlet series (2). 

To determine if the creep properties evaluated from the compacted specimens were 
actually representative of those of the 18½-in. diameter slab, 1 x 1 x 2-in. specimens 
were cut from near the center after testing the slab. A limited number of tensile and 
compressive creep tests were performed on these small specimens. The compressive 
creep properties were found to be almost identical to those measured using the cylindri
cal specimens, and the tensile creep properties of the slab were found to agree reason
ably well with those measured from the 6-in. tensile specimens. 

A very good agreement between the theoretical profiles and the measured ones exists 
up to an elapsed time of about 4 min. By the end of 10 min, the calculated and measured 
profiles still compare favorably. The theoretical profiles did indicate that the edges of 
the Rlah Rhoulcl lift up off the spring base at a time slightly less than 1 min, whereas 
the measured deflections indicated that the outside edges of the slab did not lift up at 
all. This discrepancy is probably at least partly due to the fact that the measurements 
on the model were taken using the deflected profile of the slab just before the loads 
were applied as the zero reference. During several of the model tests, the outer two 
rows of springs were observed not to be in contact with the slab. 

GENERAL DISCUSSION 

The fact that the calculated center deflections for times greater than approximately 
1 min became increasingly larger than the measured deflections can be explained if the 
measured stiffness of the sand asphalt is assumed to be less than the actual stiffness. 
Almost all experimental errors, such as eccentricity of load, system and end cap de
formation, and strain concentrations, would tend to give an experimentally measured 
stiffness of the sand asphalt less than the actual stiffness. The tensile test specimens 
failed at times between approximately 8 and 100 min, with the time to failure decreas
ing as the stress level increased. The time required to cause tensile failure at the 
same stress level was found to be greatly influenced by seemingly minor details of either 
the test or the method of specimen preparation or possibly both. All the tensile speci
mens failed at times of less than 2 hours. However, when subjected to the applied 
loading for as long as 10 hours, the model pavement did not visibly fail. One possible 
explanation for this behavior is that at relatively large times the actual stiffness of the 
slab is indeed greater than the experimentally measured apparent stiffness of the tensile 
specimens. 

The theoretical study shows that, for the model pavement studied using 14 load in
crements and 3 iterations for each increment, in general the modulus of each element 
changes only a very small amount from the first to the final iteration. An exception to 
this occurs when an element is apparently just on the verge of going from a tensile state 
to a compressive state of stress. In this case, which apparently occurs in only a very 
few elements, the modulus tends to oscillate between the appropriate tensile and con
pressive value. Considering all factors for the numerical solution of the problem 
solved in this investigation, it is concluded that apparently a total of 2 iterations for 
each load level is sufficient. Based on the work of others and on the very limited num
ber of problems solved during this investigation, it is intuitively felt that as many load 
increments as possible should be used with only a total of one or two iterations made 
within each load increment. For moderately nonlinear material properties, 10 to 20 
load increments may often be found to give good results. For strongly nonlinear ma
terial properties, however, as many as 20 to 40 or more iterations may be required. 
It should be emphasized that in either instance convergence of the numerical calcula
tions should be studied for each specific problem. 

In applying the theory to the idealized model pavement it is assumed that as the ex
ternal load is incrementally increased the stress state acting on each element either 
remains the same or always changes in the same direction. This assumption means 
that unloading of a given element during the incremental application of the external 
load is assumed to never occur. For most pavement problems, application of the load 
should not result in a condition of unloading in most of the elements. A few elements 
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may, however, undergo some unloading and introduce an unknown but probably small 
error into the analysis. The theory developed is perfectly general and a condition of 
unloading can be readily included using the plastic strain concept. 

Tremendous progress has been made in the last few years toward developing 
numerical step-by-step and iterative methods of stress analysis suitable for solution 
using high-speed digital computers. These numerical approaches can be used to solve 
time-dependent problems whose materials exhibit both nonlinear and anisotropic prop
erties. This rapid advancement of theory has resulted in a very definite need for re
evaluating presently used methods of material testing and characterization. In parti
cular, a great need now exists for more research on the effect of stress state on 
material properties and the development of realistic effective stress-strain laws for 
the materials used in pavement construction, which often undergo high volume changes 
and exhibit quite different properties in tension and compression . 

SUMMARY AND CONCLUSIONS 

The problem of developing a rational theory that can be used in predicting the per
formance of flexible highway pavement systems is very complicated because of the 
large number of wheel load repetitions, complex material properties and pavement 
geometry, and cyclic environmental changes that occur during the life of the pavement. 
The proposed incremental nonlinear finite element theory offers a quite general ap
proach to the problem of predicting both elastic and cumulative stresses, strains, and 
deflections in highway pavement systems. The proposed plastic strain concept in
corporated in the finite element theory results in a practical method for handling the 
variation of both elastic and plastic material properties with increasing numbers of 
wheel load applications. The material properties for use with this theory would be 
evaluated from either repeated-load triaxial tests or other suitable dynamic tests. 
Variations of the material properties with tensile and compressive stress states, con
fining pressures, deviator stresses, environmental changes, and changes with age or 
number of load applications can all be readily considered using the proposed nonlinear 
theory. The most important assumptions made in this theory are that (a) inertia forces 
in highway pavements as a first approximation can be neglected, (b) the surface loading 
is normal to the pavement, and (c) axisymmetry of the load and pavement structure is 
maintained. 

This study and other investigations indicate that the rate of convergence using the 
incremental nonlinear approach is dependent on the type of loading, the geometry of the 
solid, the manner in which the load is applied, and the degree of material nonlinearity . 
For these reasons, the convergence of the iterative numerical calculations for non
linear problems should always be carefully studied for each specific problem 
investigated. 

The nonlinear theory developed in this investigation and also other numerical methods 
are presently available for the comprehensive analysis of complex structural mechanics 
problems. These relatively new theories which can handle complicated nonlinear ma
terial properties have resulted in a very definite need for reevaluating presently used 
methods of material characterization. An important need now exists for a detailed 
study of the influence of stress state on material properties, and for developing a real
istic effective stress-strain law for the class of materials used in pavement construction. 

A nonlinear engineering theory suitable for predicting the structural response of 
flexible pavement systems subjected to repeated loads was presented and verified for 
the case of a hollow cylinder and an idealized model pavement system subjected to a 
creep loading. The next step is to verify the proposed theory for either a full-scale 
pavement test section subjected to repeated wheel loads or else a full-scale laboratory 
test pavement subjected to either stationary or moving repeated loads. 
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Response of a Flexible Pavement 
to Repetitive and Static Loads 
CLARENCE B. DRENNON and WILLIAM J. KENIS, 

Federal Highway Administration, U.S. Department of Transportation 

The paper describes the strains and deflections observed upon loading 
a full-scale, asphaltic concrete pavement model with a water-filled bag. 
The specimen, 10 by 10 ft by 8 ft deep, was carefully prepared to en
sure uniform materials whose properties could be reproduced. Tests 
were condu.cted at constru1t temper ature with thr ee modes of loading: 
(a) 0.1-sec load and 0 .9-sec unload, (b) 0.5-sec load and 0.5-sec unload , 
and (c) constant load creep. Cyclic tests we r e 1,000 cycles long, c1·eep 
tests 900 sec. Load intensities of 10, 20, 40, and 80 psi were applied. 
The total deflections observed were viscoelastic in nature and increased 
linearly with load. The dynamic component of strain and of deflection 
was also linear. Total deflections and strains were affected only slightly 
by conditioning of the pavement with increased cycles and intensity of 
load. The accumulated deflection increased linearly with load, but 
during a test the deflection at a distance of 12 to 20 in. from the center 
of load would eventually decrease with increase in repetitions. This 
rise in the pavement is believed due to a differentiation of viscoelastic 
properties with depth at locations determined by the geometry of the 
pavement and of the loaded area. strains show a similar phenomenon 
in similar locations on the surface from the beginning of loading, being 
tensile upon load and accumulating compressive strain. The strains 
were small, under 30 microin. per in. in the areas affected by direc
tlunal reversal. The laqi,esL :oL!'aiu mea:oul'eu wa::; 470 microin. per in. 
Further research is needed to explain the "12-in. rise" and the opposite 
accumulation of strain. 

•THE RESEARCH reported herein is part of the Federal Highway Administration's 
National Program Task, "Rational Design of Flexible Pavements". It is primarily con
cerned with defining certain primary responses of a full-scale flexible pavement sub
jected to static and repetitive loads under controlled laboratory conditions. Little 
emphasis is placed, at this time, on defining limiting responses such as fatigue or 
permanent deformation. However, a basic premise of this research is that the use of 
mathematical models which are insensitive to prediction of primary responses may be 
of little value for use in a concept that attempts to predict pavement distress and per
formance. 

The ability of a model to predict the response of a prototype pavement under field 
or laboratory conditions is a measure of the adequacy of the model (_!). In a very com
plex system such as a flexible pavement, more than one mathematical model may be 
necessary to trace the paths of interrelated failure mechanisms as they propagate from 
a primary response to pavement distress. Indeed, it may be proper to establish a 
framework of various models, properly interfaced, to tie together the primary and 
limiting responses in order to predict the behavior of the pavement at any time under 
any conditions. 

Paper sponsored by Committee on Theory of Pavement Design and presented at the 49th Annual Meeting. 
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The mathematical model most popularly used to describe the primary response of 
a pavement system to environment and loading is that which combines the geometry and 
material properties into a system of equations that can be solved satisfying specific 
boundary conditions. Then-layer elastic theory is an example of such a representation 
that has received wide use to date(~, 1_, i). Work at the Road Research Laboratory (fil 
on asphalt concrete is attempting to explore the interactions between rate of loading, 
rest period, and configuration of the load wave form. 

In this report typical responses obtained from the experimental testing of the flexible 
pavement under various load stimuli are presented and evaluated. Boltzmann's super
position integral is utilized to predict responses due to sinusoidal repeated loading from 
the response due to static loading. These predictions are compared with the measured 
results, and· system linearity and effects due to load duration and repetitions are ana
lyzed. Work conducted at Purdue University (.fil utilizes a similar concept to charac
terize asphaltic concrete whereby the responses from sinusoidal loading in the form of 
transfer functions can be used to predict responses due to static loading. 

Future work in connection with this study will involve testing of a flexible pavement 
identical to the one described in this study except for a thinner surface course. Com
parisons will be made between the actual measured responses and theoretically pre
dicted responses obtained through the use of various mathematical models and charac
terizations of the pavement component materials. 

PREDICTION THEORY 

A necessary condition for a system to be linear is that the principle of superposition 
applies. Boltzmann's superposition principle as applied to elastic and viscoelastic sys
tems is utilized as an indicator of the time-dependency and linearity of the system. 
Boltzmann's superposition principle states that when an excitation function e1(t) produces 
a response function w 1(t), a second excitation function e2 (t) produces a second response 
function w 2(t), and any other en(t) produces wn(t), then 

e 1(t) + e2(t) + ... + en(t) -, w 1(t) + w2 (t) + ... + Wn(t) (1) 

or 
n n 

[ ek(t) -• L Wk(t) (2) 

k=l k=l 

which must hold for a linear system (1). When n identical excitations are applied to 
the same part of a linear system the following expressions must also hold: 

n n 
[ ek(t) = ne 1(t) _, [ wk(t) = nw 1(t) (3) 
k=l k=l 

Now if the time-varying excitation function e(t) is approximated by a series of step 
functions .6. e( T) successively displaced in time t by an amount tu, then by the principle 
of superposition the following is obtained (1): 

t 
w(t) = e(0) wu(t) + f 

0 

de(r) il'T Wu(t-T)dT (4) 

The integral in Eq. 4 is known as the "superposition integral" or Duhamel's integral. 
The "system function" wu(t) is the response of an initially relaxed linear system to a 
unit step input, and w(t) is the response of the system to load e(t). When wu(t) is re
placed by the response to a step load function of any magnitude, it is labeled a response 
function R(t), which is comparable to the creep responses obtained by experimentation. 
The response function R(t) is approximated by an exponential Dirichlet series, 

n 
R(t) = [ Gi exp - (t-T) 6i (5) 

i=l 
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where Gj_ and Oi are the coefficients selected using the least-squares curve fit method 
(fil. When the excitation function is a sine-squared function such that 

I sin2

0 

wt 
e(t) = 

0 < t < duration of e(t) 

Duration of e(t) < t < period of e(t) 

then Eq. 4 becomes 

w(t) ft d sin2 wt [n Gi exp - (t- r) 1ii 
clT 

0 i =l 

(6) 

(7) 

The solution to .Eq. 7 was obtained by a computer program written under contract by 
the Massachusetts Institute of Technology (fil. The program output is a time- varying 
function that represents total and accumulative displacement (defined later) for a sine
squared time configuration of the excitation load function for any specified period and 
duration. 

MATERIALS 

A 3-layer flexible pavement system consisting of a clay subgrade, crushed stone 
base, and asphalt concrete surface was constructed in a 10 x 10 ft x 8 ft deep concrete 
test pit. The density of the compacted lifts of the clay subgrade averaged 106. 7 lb per 
cu ft, which was 97 percent of AASHO T-99. The average moisture content at the be
ginning of testing was 17. 7 percent, which was slightly higher than the 16.3 percent op
timum moisture from T-99. 

The crushed stone base course was placed in two lifts and had an average compacted 
thickness of 8.16 in. and density of 147.3 lb per cu ft at 5 percent moisture by the sand 
cone method. Laboratory density by AASHO T-180 was 157.5 lb per cu ft with optimum 
moisture of 6.2 percent. 

The asphaltic concrete was a commercially available %-in. nominal maximum size 
asphaltic concrete designated S-5 in the specifications of the Virginia Department of 
Highways. The density of the compacted asphaltic concrete was determined by nuclear 
gage measurements that were correlated with 5 cores drilled in nonload areas of the 
pit. The compacted thickness was 6.62 in. and the average density was 151.0 lb per cu 
ft. Figure 1 shows the rolling of the asphalt concrete. 

INSTRUMENTATION AND ENVIRONMENT 

An enclosure built over the entire test pit area allowed the temperature to be main
tained to within ± 1 F of the desired temperature, 72 F, during the tests. Temperature 
of the asphaltic concrete pavement was 
measured by thermocouples at ½, 2½, 4½, 
and 61/2-in. depths at two locations. Tem-
perature and moisture content in the sub-
grade were measured by Soiltest MC-3 lOA 
Soil Moisture Cells. 

Vertical pressure in the soil subgrade 
was measured by two types of soil pres
sure cells. All cells were first calibrated 
in an airtight triaxial chamber and then 
one cell of each type was calibrated in a 
5 x 5 x 5 ft pit of compacted clay and at 
depths similar to those used in the proto
type and under essentially uniform stress 
distribution with depth. 

Pressure cell, strain gage, and LVDT 
locations are shown in Figure 2, and a 
schedule of the strain gage and LVDT lo
cations is given in Tables 1 and 2 re
spectively. Figure 1. Preparing the asphalt concrete surface. 
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Radial and transverse strains on the surface and on the underside of the asphaltic 
concrete were measured by 0. 75-in. long Micro-Measurement encapsulated 120-ohm 
temperature-compensated strain gages. Installation of the strain gages beneath the 
asphaltic concrete was accomplished by laying down a very thin layer of sand asphalt, 
averaging ¾-in. thick, which covered a slightly greater area than the area to be gaged. 
Output of the strain gages was measured by including the mounted gage as the one active 
arm in a 4-arm Wheatstone bridge. Temperature compensation necessary for the sur
face gages was attained by using dummy gages identically mounted on the asphaltic con
crete surface of an adjacent identically prepared pavement. 

Gage 
No. 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

Deflection of the surface of the pave
ment was detected by Schaevitz linear 
variable differential transformers read-

TABLE 1 able to 0.0001 in. The LVDTs were sup-
STRAIN GAGE LOCATIONS ported by aluminum channel beams bolted 

Subsurface Surface 

Rn.dial Distance 
Gage 

Radial Distance 
From Center of Load From Ce nter of Load 

(in.) No. (in. ) TABLE 2 

L VDT LOCATIONS 
0.0 60 7.16 
6.00 61 6.82 

LVDT 
Radin! Distance Radial O1sta nce 

5. 57 62 12.31 Fram Ccnl~r of Load LVDT 
From C 111c-r of Load 

II. 13 63 12.16 No. 
(in . ) No. (in. ) 

11.32 64 17, 85 
17. 78 65 24.10 1 13, 5 6 7. 54 (30. 0 aft e r 
23.42 66 6,89 2 7, 63 test 80-1) 

5. 51 67 12.10 3 7, 75 7 13. 79 
11.43 68 24.12 4 0.0 8 20.50 
24, 58 5 11. 5 (Subgrade) 



44 

to the walls of the pit as shown in Figure 
3, which also shows the LVDT arrange
ment and a view of the adjustable holder 
for the LVDTs. LVDT 5, a subsurface de
vice, became inoperable and produced no 
usable data. 

Pavement loading was accomplished 
with MTS Systems Corporation's elec
tronic servo-type hydraulic equipment. 
The load was transmitted to the pavement 
through a water-filled doughnut-shaped 
rubber bag 12 in. in diameter with a 21/4-
in. diameter center hole, also shown in 
Figure 3. A doughnut-shaped rubber pad 
of 109.14sq in. was placed under thewater 
bag to reduce the radial strain on the sur
face caused by friction. 

TEST SEQUENCE 

Haversine load functions as shown in 
Figure 4 and a step function were selected 
as the excitation configurations. Duration 
of loading was varied in order to deter
mine this effect on the response of the 
pavement. Table 3 gives the period and du
ration for each type of test. A static (creep) 
test was run at each load level to obtain a 
characterization of the pavement system. 
Tests were conducted at four levels of load 

Figure 3. Arrangement of LVDTs and rubber bag . 

l
• OURATION ~ 
OF LOADING I 

GRAPH OF 10TAL DEFLECTION 

REPETITION 

Figure 4. Excitation and pavement response functions. 

• 
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intensity in the following sequence: 10, 
20, 40, 80, 40, 20, 10 psi. At each of the 
first four load levels, tests were conducted 
in the sequence A, B, C, A, B, C; at the 
last three load levels, only one A, B, C 
cycle was conducted. Tests are numbered 
in essentially the order performed at each 
level. Tests with (d) after their number 
were those performed in descending order 
after the last 80-psi test. 
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TA13LE 3 

PERIOD AND DURATION OF TESTS 

T ype o l Tesl 

Rcpcalccl 
Repealed 
Slcilic {Creep ) 

Desig -
11;1tio11 

A 
B 
C 

Loacl 
l)u1·:1 t1,,n 

(S<'C) 

0, l 
a. 5 

Pc-nod ol 
Lo;Hlini-:, 

1 St'C 

1 sec.: 
15 mill 

No .. or 
Applicaliuns 

ol Load 

1,000 
1. 000 

I 

A total of 42 tests were performed on the pavement. Of this number, 35 were anal
yzed; 28,000 repetitions of load and 210 minutes of static loading were applied to the 
pavement. 

EXPERIMENTAL RESULTS 

Average pressures recorded under the center of the load for type A and type B tests 
for each of the four load levels increase linearly with load, as shown in Figure 5. Ob
served values for other cells as well as the accumulated pressures on the center cell 
were erratic. 

Deflection is classified as accumulated, resilient, and total, as illustrated in Fig
ure 4. The accumulated deflection is that which remains in the pavement after removal 
of the load and immediately before the application of the next repetition. Resilient de
flection is that deflection which takes place during application of the load, and total 
deflection is the sum of the accumulated and resilient deflections at any repetition. 

Total center deflection vs. repetitions for LVDT 4 is shown in Figure 6, which indi
cates a linear relationship between deflection and load. This was observed for all types 
of tests and is also shown for LVDT 2 in Figure 7. The successive tests for each load 
level replicate each other extremely well. 

A pavement would normally be expected to condition, that is, to densify so that de
flections of later tests are in all cases less than that for earlier tests of the same load 
and type; however, the conditioning that does take place is insignificant under load within 
the range of measurement. Conditioning is observable in the rate and amount of 

,10 ~----------------------------~ 

8 

6 

4 -

2 

TYPE A TESTS --x 

TYPE 8 TESTS - - o 

10 20 40 60 
APPLIED LOAD-PSI 

Figure 5 . Center pressure cell, resilient stress vs. applied load . 
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Figure 6. Effect of load, type B tests, LVDT 4 (center) . 

recovery of the accumulated deflection during the rebound phase. In that situation, most 
of the irrecoverable deflection was essentially completed after the 40-psi series. 
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80 PSI TYPE C 

80 PSI TYPE B 
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Figure 8. Effect of load duration: total deflection, LVDT 4 (~enter), 80 psi . 

Figure 8 is a plot of total center deflection vs. time for the three types of tests at 80 
psi. The effect of load duration on displacement is quite obvious at this load level, e.g., 
the type C test producing the greatest and the type A test the least amount of deflection. 
At distances greater than 13 .8 in., the effect of the load duration on deflection becomes 
less significant. 

Figure 9 shows the accumulated and resilient components of the total deflection for 
a type A and a type B test at the 40-psi load level. The resilient deflection as well as 
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Figure 9. Effect of load duration: resilient and accumulated deflection, LVDT 4 (center), 
40 psi. 
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the accumulative deflection for all type B tests is consistently higher than that of the 
type A tests, reflecting the effect of longer load durations. A large part, usually 30 to 
40 percent of the total accumulated deflection at the center of the loaded area and 60 
to 80 percent at more remote locations, occurs in the first 5 repetitions of the load. 

A paradox that appeared in the tests is a lessening of accumulated deformation (an 
apparent rise in the unloaded pavement profile) at distances of 12 to 13 and sometimes 
up to 20 in. from the center of the load. The unloaded pavement profile seems to reach 
a maximum deflection at around 60 repetitions, with the most visible bulge at about 600 
repetitions. Figure 10 depicts the pavement cross section and shows this effect for a 
type C test. 

strains were also separated into resilient and accumulative components. The resil
ient strain remained fairly constant for each individual test for most gages and is basi
cally linear for both surface and subsurface gages, as shown in Figure 11 for the 12-in. 
radial surface and subsurface gages (62 and 45). 

Figure 12 is a plot of type B test total strain vs. repetitions for the 12-in. radial 
subsurface gage ( 45). This figure indicates a linear increase in total strain with load 
and is typical of all subsurface gages and of surface gages located within approximately 
8 in. from load center for type A and B tests. A nonlinear variation of total strain is, 
however, typical for all surface gages located over 11 in. from load center for type A 
and B tests. These gages register tension under load but show accumulation of strain 
in compression. This "opposite" effect is shown in Figure 13 for gage 62 along with the 
strain response for radial gage 60, which acts as would be expected, i.e., the accumu
lation of strain is in the same direction as the resilient strain. It is interesting to note 
that this "opposite" effect occurs in the same general area of the pavement surface as 
does the rise in the unloaded displacement profile. 
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Figure 10. Cross section 40-3-C. 

In type C tests the 7-in. surface 
and subsurface gages register 
strains that continuously increase 
under sustained load. All other 
gages, including the center sub
surface gage ( 41), exhibit a re
versal of the direction of straining. 
A plot of creep strain for gage 41 
is shown in Figure 14. 

Figures 15 and 16 are repre
sentative cross sections of surface 
and subsurface radial and trans
verse strains observed at repeti
tion 60. Notice that the subsurface 
resilient strains are in general 
larger than the surface resilient 
strains. A point of inflection is 
indicated in both the surface and 
subsurface radial gages. No in
flection point is indicated in the 
transverse strain profile. 

ANALYSIS 

Total and accumulated displace
ments for type A and B tests were 
predicted for center and 7. 75-in. 
radial locations using the Boltz
mann superposition principle. 
Comparisons with measured values 
are shown in Figures 17 through 
20. The predicted values were ob
tained by fitting a Dirichlet series 
to the creep curves obtained at a 
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specified LVDT location. The coefficients Gi and Oi were obtained from the fitted curve 
and used as input to the computer solution of the superposition integral, Eq. 7. The re
sulting predicted displacements for an 80-psi type A and B test at load center are shown 
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Figure 20. Predicted displacements at 7.75 in., type B, 80 psi. 

in Figures 17 and 18 respectively. Similar trends were obtained for the 80-psi type A 
and B test at 7. 75-in. from load center, as shown in Figures 19 and 20 respectively. 

A measure of the degree of linearity and time-dependency of the system may be ob
tained by comparing measured and predicted values. It is interesting to note the excel
lent agreement between measured and predicted resilient displacements for type B tests , 
as shown in Figures 18 and 20. Predicted and measured resilient displacements for 
type A tests also agree rather well, although to a lesser extent. 

The time-dependent nature of the system is revealed from comparisons of both pre
dicted and measured resilient displacements with the limiting (values beyond 400 sec) dis
placement measured in static (creep) tests. Ratios of measured limiting static displace
ment to measured resilient displacement range from 2 .0 to 2. 7, whereas ratios of pre
dicted resilient displacement to measured resilient displacement range from 0. 75 to 1.04. 

Also shown in the figures are values of accumulated and total displacements. The 
most significant accumulated displacement curve is shown in Figure 18 for type B 80-
psi tests. The discrepancy observed between measured and predicted accumulative 
displacement could be attributed to the conditioning experienced by the pavement during 
the first 5 to 10 repetitions of load. However, a cursory investigation of the creep re
covery curves suggests that better approximations of accumulated values may be obtained 
by using both the creep curve and the creep recovery curve as input to the superposition 
integral. Only the creep curve was used in this analysis. 

Negligible amounts of accumulated displacement are predicted for the type A tests 
and consequently resilient values approach total values. This is reflected in the mea
sured resilient displacements, which are almost identical to the total displacements. 

CONCLUSIONS 

1. Observations of the total, accumulative, and resilient deflections as well as of 
the strains that occur during repetitive and creep tests all point toward the time
dependent nature of the system. 

2. Observed deflections are basically linear with load for each specific type of 
test. Observed resilient strains also tend to be linear with load for each type test. 
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Gages that exhibit an "opposite" or reversal effect produce total strains that are basi
cally nonlinear with load. 

3 . A rise in the unload displacement profile of the pavement is noted in the same 
general area (11 to 20 in. from load center) as the "opposite" effect exhibited by strain 
gages. 

4. The use of superposition integral to predict resilient and accumulative displace
ments from a system creep test reflects the linear time-dependent nature of the flex
ible pavement for the load levels and time configurations used. 
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A Procedure for Evaluating Pavements With 
Non uniform Paving Materials 
JAMES R. LEVEY, Illinois Division of Highways; and 
ERNEST J. BARENBERG, Department of Civil Engineering, University of Illinois 

A procedure was developed to evaluate layered systems with nonuniform 
material properties. The procedure consists of defining the layered sys
tem by a physical model consisting of mass points tied together by springs 
and bars. The variability of the material is simulated by assigning dif
ferent characteristics of the material properties to springs connecting the 
mass points. Assignment of values representing the material properties 
is done on a random basis. The random values are generated in a manner 
that produces a model with mean characteristics corresponding to the 
mean properties of the materials in the various layers of the pavement, 
and with a coefficient of variation compatible with the coefficient of vari
ation of the corresponding paving material. 

Results from the study show that the response of the layered system is 
influenced by the statistical characteristics of the materials. The statis
tical nature of the response is influenced by both the variability of the ma
terial and the nature of the variability. A large area with slightly less 
than average stiffness has a greater influence on the response of the sys
tem than a large difference in stiffness over a small area. Thus, detailed 
analyses are necessary to obtain a comprehensive understanding of the 
behavior of the system. Much work still needs to be done to obtain a 
complete picture of the statistical nature of pavement response. Pre
liminary results strongly indicate a need for the type of analysis presented 
in the paper as a guide for establishing realistic quality control criteria 
for paving materials. With results from such a procedure it is possible 
to establish a cost benefit from higher quality control criteria. 

•PAVING MATERIALS, because of their heterogeneous nature, have natural or inherent 
variations in their physical properties. This natural variability is compounded by non
uniformity in the material due to construction processes and techniques. Taken to
gether, these variations may have a profound effect on the behavior and performance 
of pavement systems. 

Little is known about the manner and extent of influence that material variability has 
on the behavior of pavements. It is known that pavements do exhibit significant varia
tions in response to loads (1, 2, 3, 4), and this variability can often be attributed to 
nonuniformity in the paving-materiais. What is not clear is what role the variability 
in the various layers of the pavement plays in the nonuniform behavior of the overall 
pavement. 

To evaluate the effects of nonuniform paving materials on the behavior of pavements 
it is necessary to (a) know the effect of the magnitude of material variability on the be
havior of the pavement system, (b) know the effects of the size of the defect on the be
havior of the pavement system, and (c) know the magnitude of variability of in-place 
paving materials. In this paper, a procedure is developed that can deal directly with 
items a and b. Item c can be evaluated indirectly by correlating the observed behavior 
of actual pavements with the results obtained from the procedure outlined here. 

Paper sponsored by Committee on Theory of Pavement Design and presented at the 49th Annual Meeting , 
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It is important to know the relationships between material variability and pavement 
behavior due to the increased use of statistical quality control techniques. The present 
statistical quality control plans are based on the present level of control being deliv
ered. The procedure developed herein can be used to evaluate various levels of ma
terial variability so that the optimum level of control can be determined. 

Knowledge of the effect of defect size and severity on pavement performance is im
portant for aiding inspectors in applying non-statistical sampling techniques. If the 
material is only slightly substandard or if U1e quantity of defective material is small, 
the decision between acceptance and rejection becomes unclear. The procedure pre
sented here can be used to determine whether the substandard or defective material 
is critical, i.e., whether it would cause a noticeable decrease in pavement perfor
mance. The relationship between the size of the critical defect and its deviation from 
the standard would define the characteristics of the critical defect. 

The specific objective of this paper is to describe the procedures developed to eval
uate the statistical nature of load-induced stresses, strains, and deflections in pave
ments having materials with variable physical characteristics. While the procedure 
can be applied to a three-dimensional problem, the example solutions and applications 
given in this paper are limited to the two-dimensional plane strain case because of 
limited capacity of available computer systems. 

DEVELOPMENT OF THE SOLUTION PROCEDURE 

The method for determining the response of the pavement system due to variable 
material properties is based on a mathematical discrete element model. By using this 
type of model to represent the pavement system, the material properties can be varied 
from point to point, and in this way the variability of the material properties can be in
corporated into the solution. The nature of the variability of the response can be de
termined by randomly selecting for every point in the model values for the material 
properties from their respective statistical populations and repeatedly solving the lay-

mass point 

1-1,j • l 

1,j I 

l+I . j-1 

Figure 1. A typical section of the interior of the 
discrete element model. 

ered structural system using sets of ma
terial properties selected on a random 
basis. A sufficient number of solutions 
must be developed to evaluate the statis
tical nature of the pavement response. 

Discrete Element Model 

The discrete element mathematical 
model used in this work was developed 
by Ang and Harper (5, 6). The physical 
analog of the mathematical model consists 
of a two-dimensional rectangular grid of 
mass points connected on the diagonals 
by stress-strain elements. The mass 
points form the basis for deflection anal
ysis while stresses, strains, and their 
relationships are defined at the intersec
tions of the stress-strain elements, i.e., 
at the stress points. A typical section 
of the physical model is shown in Fig
ure 1. 

In mathematical terms, the model 
used is the central finite difference ap
proximation of the basic differential equa
tions from the theory of elasticity as
suming plane strain. From the theory 
of elasticity the differential equations for 
relating deflection and strain are 



57 

au av au ov 
{x = ax' E:y = oy' and Yxy = oy + ax 

where x and y are the two coordinate axes (Fig. 1), u and v are the deformations in the 
x and y dil·ections respectively, Ex and Ey are the axial strains in the x and y direc
tions respectively, and Yxy is the shear strain (1_). The corresponding central finite 
difference equations relating strain and deflection at stress point I, J (Fig. 1) are 

and 

Ui+l,j - ui,j -1 
"-

Y _ Ui+l,j-1 - ui,j + Vi+l,j - vi,j-1 
'Yxyl J = I, J - )._ 11. , 

where )._ is the diagonal spacing of the mass points. 
Again from elastic theory the equations relating stress and strain are 

and 

where 

C 
E(l - µ) 

(1 + µ ) (1 - 2µ ) 

B == (1 + µrr1 _ 2+£ ) 
E 

G -= 2(1 + µ ) 

ax CEx + BEy 

cry Cf.y + Bt:x 

T xy Gyxy 

ax and cry are the normal stresses in the x and y directions respectively, T is the shear 
stress, E is Young's modulus of elasticity, andµ is Poisson's ratio (7). Since no 
differentials are involved in these equations, the central finite difference forms for 
these equations are identical with those for the elastic theory. 

This problem is being solved in terms of deflections, and therefore the only other 
equations needed are the equilibrium equations. Assuming that body forces and ac
celerations are zero (4), the differential equation for equilibrium in the x direction 
is (J_) -

The corresponding central finite difference approximation for this equation at mass 
point i, j (Fig. 1) is 

(axI,J+i) ½ + (Tr,J) ½ - (crxI-1,J) - (Tr-l,J+1)½ = 0 

Dividing by the volume represented by each mass point (11. 2 /2) and rearranging gives 

a - a 
xr, J+l XI-1, J + 

"-
TI,J - TI-1, J+l 

)._ 
0 
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The corresponding differential and finite difference equations for equilibrium in the 
y direction are 

clTxy 
+ 

aay 
0 

clX ay 

and 
T -rl- 1 J 

a - a 
IIJ+l Y1 J YI-1

2 
J+l 

- 0 I + z 
A A 

By substitution, the equilibrium equations for point i, j can be expressed in terms of 
the deflections of point i, j and the eight surrounding points. These equations are pre
sented in the form of computational molecules as shown in Figure 2. A portion of the 
equilibrium equation in the x direction would be 

l::Fx = ( C1-l,J) Ui-1,j-l + ( BJ-1,J + GJ-1,J+l) Vi-1,j + · · · 

+ ( C1 J+l) ui+l 1·+1 = O 
' ' 

Boundary Conditions 

To apply the model to typical pavement structures it is necessary to define con
sistent boundary conditions for the model (5). Three types of boundary conditions 
must be evaluated: (a) the boundary conditions at the pavement surface, including a 
means for applying external forces; (b) boundary conditions for the remainder of the 
perimeter; and (c) the boundary conditions for the interfaces between layers. 

Mass Poi "t< ~,,__J ·_l.;...) -~-"(J'i-l_ ....,...._(,_+_I,__,) 
Referred To--z:fi-1) f C•u B•v G•v C·u 

Stress Points 
Referred To 

EF = 
X 

(i+I) 

( i -I) 

EF = 
y 

(i+I) 

1- 1 .J 

I ,J 

G • u 

G• v 

1- \ .J 

-G .u 

-B · u 

I ,J 

1-I ,J+ I 

I ,J+I 

G-v B • v C, u 

G • u B, u C • V 

1- 1,J+I 

- G• v -C • V -B • u = O 
-C • v -G' V -G, u 

I ,J+ I 

6-u c., 

Figure 2. Computational molecules representing 
the equilibrium equations for an interior mass point 

in terms of deflections. 

The equations defining the surface 
boundary condition can be determined by 
defining the equilibrium of the surface 
mass points. The equilibrium equations 
can be developed in terms of the deflection 
of the mass points at the surface. A typ
ical surface mass point with the stresses 
acting on the point is shown in Figure 3. 

The computa tional molecules for the 
equilibrium equations of the surface mass 
points are shown in Figure 4. Note that 
the computational molecule is the same as 
the lower half of its corresponding mole
cule describing the equilibrium of an in
ternal mass point but that the top half has 
been replaced by the function of applied 
stresses and >.. shown on the right side of 
the equation. 

The boundaries around the remainder 
of the perimeter are assumed to be im
moveable, and values for u and v for mass 
points along the perimeter are set at zero. 

The boundary condition between layers 
is assumed to be perfectly rough; that is, 
there can be no relative movement between 
any point on the bottom of the upper layer 
and the corresponding point on the top of 
the lower layer. This condition is satis
fied for the numerical model by defining 
the boundary through a row of mass points 
and defining the material properties for 
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Figure 3. A typical section of the surface of the model. 
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Figure 4. Computational molecules representing the 
equilibrium equations for a surface mass point in terms 

of deflections. 
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the stress points above the boundary to correspond with the material in the upper layer 
and the properties below the boundary to correspond to the material below the boundary. 

Solving the Equilibrium Equations for Unknown Deflections, 
Strains, and Stresses 

The equilibrium equations must be solved for the deflections at each mass point in 
the model. A modification of the Gauss elimination procedure was used to solve the 
equations for this study. The form of the unmodified coefficient matrix is shown in 
Figure 5. 

The modification of the Gauss elimination procedure consists of operating on only 
the non-zero coefficients in the matrix. Two large groups of zero coefficients are lo
cated above and below the band of non-zero coefficients shown in Figure 6. Other 
groups are located in the cross--hatched areas also shown in Figure 6. The modified 
form of the coefficient matrix is shown in Figure 7. 

The solutions to the equilibrium equations are obtained by operating on the modified 
matrix using a bookkeeping system that relates the location of the coefficients in the 
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modified matrix to the corresponding 
coefficients in the unmodified matrix. 
The storage requirement for the modi
fied matrix and constant vector is 
4M2N + 6MN for a model with M x N 
mass points and where N ;e M. 

Generation and Assignment of 
Random Variables 

A random number generator was 
used to assign the material properties 
to stress points in the model. The 
method used is based on the central 
limit theorem of statistics. To obtain 
a standard normal, pseudo-random 
variable this procedure, a series of 12 
uniformly distributed pseudo-random 
numbers were generated, normalized, 
and summed. Since the mean of the 
sum was 6, with a standard deviation 
of 1.0, subtracting 6 from the sum re
sulted in a standard normal random 
variable; that is, a variable with a 
mean of 0 and standard deviation of 
1.0. A frequency distribution of 100,000 
pseudo-normal, random numbers was 
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Figure 5. Form of the coefficient matrix for the equili
brium equations for a problem 10 points deep and 5 

points wide. 

generated in this manner to test the validity of the procedure. This frequency distri
bution is shown in Figure 8. 

After the random material properties have been generated, they must be assigned 
to the stress points. The most straightforward method of assigning the values of a 

,I 3 

J+ I 3 

J-1 

D = B + G 
f=2(C+G) 
r a - I /2 F 

J+I 

s 

Figure 6. A section of the coefficient matrix of the equilibrium equations of a problem 5 points 
deep before the elim ination of unneeded zeros. 



random material property to the model 
is to generate a series of normal ran
dom values with the appropriate mean 
value and standard deviation and to as
sign each in turn to the stress points 
of the layer being considered. Typical 
assignments thus developed are shown 
in Figure 9. 

When the material for a given pave
ment layer is produced by a batch type 
of process, a random step function 
must be used to represent the batch
to-batch variability. The level of each 
step in the step function is determined 
by generating normal random numbers 
using the mean value for the layer and 
the batch-to-batch standard deviation 
as parameters. The width of each 
step, except the first, is related to the 
area covered for a given batch size. 
In order toprevent a possible bias, the 
size of the first step is determined so 
that it will be a uniformly distributed 
random value that will be less than the 
size of the other steps in the layer. 
The within-batch variability of the ma
terial is superimposed on the random 
step function representing the batch 
means. By applying this procedure, 
material properties characterized by a 
batch-wise variability can be assigned 
to the stress points of any layer in the 
pavement. Figure 10 shows an ex
ample of two typical assignments. 
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~ X X 0 0 0 -F 0 0 0 C -D G 
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2 3 G ·0 C 0 0 0 •F 0 0 0 C ·D G 

C ·0 G 0 0 D -F D 0 0 C ·D C 

4 G -0 C 0 0 0 -F D 0 0 C -0 G 

C -1) 0 0 0 D ·F 0 0 0 C -o 0 

5 G -D 0 0 0 0 -F 0 0 0 C ·0 0 

0 -G G 0 0 0 r D 0 0 0 ·B C 
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2 
G ·D C 0 0 0 -F D 0 0 C ·0 G 

C -0 G 0 0 0 -F 0 0 0 G ·D C 

l l G -D C 0 0 0 ·F D 0 0 C -D G 
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X = Locations not existing in the actua l coefficient matrix 

Figure 7. A section of the coefficient matrix and con
stant vector for a problem 5 points deep after the elimi

nation of unneeded zeros. 
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Figure 8. Frequency distribution of 100,000 normally distributed pseudo-random numbers. 
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Figure 9. Assignments of normal random numbers (mean = 5 x 10
4 

psi, coefficient of variation = 20) 
assuming that each value is independent of all other values. 
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Figure 10. Assignments of normal random numbers (mean= 1 x 105 psi, external coefficient of variation= 
10 percent, internal coefficient of variation = 1 percent) to represent a batch process . 
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Figure 11. Assignments of normal random numbers (mean = 5 x 104 psi, external coefficient of variation= 
10 percent, internal coefficient of variation= 0 percent) to represent a continuous process. 
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When the material for a given layer is produced by a continuous type of process, a 
continuous random function can be used to represent the external variability. This 
function is generated by passing an interpolation polynomial through equally spaced 
normal random variables, using the layer mean value and the external standard devia
tion as parameters. The spacing of the points is the minimum distance needed so that 
the values representing the material property are independent random variables from 
point to point. Again, the function can be translated a random distance horizontally so 
that bias due to maximum and minimum values occurring in the same place for succes
sive solutions can be eliminated. The within-batch variability can then be superim
posed upon this random function to provide values for all of the stress points in the 
layer. Examples are shown in Figure 11. 

LIMITATIONS 

Three possible sources of error that might decrease the value of the model for 
evaluating pavement systems are (a) the constraints due to the fixed boundaries of the 
model, (b) the spacing of the mass points, and {c) roundoff error. Sources a and b 
can be minimized if the computer system is large enough to handle very large prob
lems with many mass points. Unfortunately, most computer systems available for 
general use do not have the storage capacity for handling large problems. Thus, the 
size of the model must be carefully chosen to give the maximum accuracy within the 
limits of the computer capability. The effect of each of the sources of error is ex
amined in the following. 

Boundary Constraints 

The magnitude of the error involved by imposing finite boundaries on the layered 
half plane was determined by varying the size of the model while keeping the loading 
and mass point spacing constant. Values calculated from the model were compared 
with the corresponding values calculated from an analytical solution of the layered 
semi-infinite half plane developed by Iyengar and Alwar (8). 

A study of the results reveals the following trends. The vertical stresses calcu
lated in the model are in good agreement with those obtained by the theoretical solution 
for widths exceeding 60 in. The horizontal stresses and vertical deflections obtained 
using the model, however, are not in good agreement with those from the theoretical 
solution for practical model sizes. The disagreements are most likely caused by the 
zero deflection boundary conditions on the sides and bottom of the model. An increase 
of the modular ratio increases the error in the vertical stress. The rigid side bound
aries are probably responsible for this increase. 

One side boundary condition that was not evaluated but that would seem to eliminate 
most of the boundary condition errors is one using the boundary deflections obtained 
from the theoretical solution for homogeneous, two-dimensional layers rather than the 
zero deformations discussed above. This approach would eliminate much of the bridg
ing of the fully restrained boundary and would provide for the deformation of the lower 
boundary. Also, since all theoretical deflection values used at the boundaries would 
appear in the constant term of each equation, use of this method would not increase the 
computer storage requirement. 

Grid Spacing Errors 

The grid spacing error results from the approximation of the differential equations 
in the theory of elasticity with finite difference equations. To estimate the magnitude 
of this error, a model of constant size representing a single layer of homogeneous ma
terial supported on a rigid base was used. To reduce the effect of the boundary condi
tion error, the theoretical solution used for comparison consisted of two layers, the 
upper layer having an E and thickness the same as in the model, and the lower layer 
having a very high E value to represent the lower rigid boundary used in the model. 
The number of points in the model was varied to relate the grid spacing to the gird 
spacing error. 
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The magnitude of the grid spacing error in the vertical stress under the loaded 
area was on the order of 1 percent of the applied pressure for a grid spacing of 2 in. 
This error increased to about 10 percent of the applied pressure for a grid spacing of 
8 in. Thus the grid spacing errors can be significant and should be considered when 
using this type of a model. 

Roundoff Errors 

The magnitude of error caused by roundoff during the solution of the equations is 
estimated by utilizing the fact that, for a layered half plane composed of homogeneous 
layers and loaded symmetrically, the deflection in the horizontal direction must be 
zero. 

The results indicate that as the number of equations is doubled, the grid spacing 
error is increased by a factor of 6.5. The magnitude of the roundoff error in the hori
zontal deflection is fairly small, on the order of 0.6 x 10- 5 for the largest problems 
that have been solved, but these errors propagate to the strain and then to the stresses. 
Roundoff errors in the stress and strain terms can be estimated by their deviation 
from symmetry. An estimate of this type revealed that the roundoff error in the 
stresses for the problem involving 1,400 equations was on the order of 0.01 psi, which 
is of little consequence. 

A more complete discussion of all errors is presented by Levey ~). 

TYPICAL SOLUTIONS AND RESULTS 

The solution procedure described above was applied to the layered system shown in 
Figure 12 in order to demonstrate the ability of the procedure to determine the statis
tical nature of the response of such a system. For this analysis, the material is as
sumed to be elastic, and only the 
moduli of elasticity of the materials 
was assumed to vary. Coefficients 
of variation and the types of vari-
ability considered for the analysis 
are shown on the appropriate figures 
with the results. 

The mean values and standard 
deviations for the vertical deflec
tion, vertical stresses, horizontal 
stresses, and shear stresses re
spectively are shown in Figures 13 
through 16. In these figures, the 
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Figure 12. A diagram of the model used for 
obtaining the example solutions. 

. 10 

~ 

m . U 
~ 

C 
0 

• o .Ol 

0 

--...... -....... 

\ 
' \ 

\ 

Note: 

Mean 

J o5 psi 

Io" psi 

Coefficient of 
Variation 

20% 

qQ% 

\P, ... I Standard Deviation 

Hean Value of 20 Solutions With 
\ ~ Variab1l1ty 
':\_,.., 

' \ .. - HOMOtJeneou-s Solution 

,,. ___ ___..__ __ ___..__ __ ___..__ __ _,_. __ 
0 I 0 20 30 

Depth Be low the Surface, in, 

Figure 13. Effect of variability on vertical deflections. 



r 

( 

• -100 

~ 
0. 

~ 

L 

~ -80 

3 

~ ... 
0 

µ -60 ... 
~ 

~ 

~ 
~ 

~ -40 µ 
V, 

"' u 
µ 
L 

i 
-20 

. 
,. ,, ,, , . ,, 

\\ 
\ 

Note: 

Mean 

E
1 

lOS ps i 

E2 I0 4 psi 

Coefficient of 
Vari at Ion 

20% 

40% 

20 Solutions With 

Solution 

0 ,_ ____ .....__ ____ _.. ____ _. _____ ~--

0 10 20 30 40 

Depth Below the Surface, in. 

Figure 14. Effect of variability on vertical stresses. 

i 

I 
-l 50 , \ 

' 
\ 
i __ ~100 \ 

l 
-l 

~ 
'I\ 
\1 

Note: 

Mean 

El l o5 psi 

£ 2 10 4 psi 

± l Standard Deviation 

Coeffi cl ent of 
v.-.ri at ion 

20% 

40% 

01--',11':--t+--------;::,-,J"-"'-:,,...:-- ------

.. 
µ 

" 0 
· N 

L 

~ 100 

\ 
I 

,\ 
'' '' ' . 
~ t ' . 
' ' ' ' \ 
\ . 

10 20 30 

Value of 20 Solutions 
Variability 

Solution 

40 

Depth Below the Surface , in. 

Figure 15. Effect of variability on horizontal stresses. 

65 



50
 

~
 

C
. ~ C

 ~
 

C
 '3 ~ 4
- 0 µ 4
- 3 - ~ § 

20
 

µ V
, C
 rn
 . .;; 

10
 0 
0 

N
o

te
: 

M
ea

n 
C

o
e
ff

ic
ie

n
t 

o
f 

V
a.
ii

 a
t 

Io
n 

El
 

110
: p

s;
 

E2
 

20
%

 

10
 

p
si

 
40

%
 

1.ll
.....

__.
. 

L
 

: 
1 

S
ta

n
d

a
rd

 
D

ev
i a

t 
io

n
 

10
 

M
ea

n 
V

a
lu

e
 

o
f 

20
 

S
o

lu
ti

o
n

s
 

W
it

h
 

V.:
:i r

i 
a

b
il

it
y

 

_
.
-
-
-
-

H
om

og
en

eo
us

 
S

o
lu

ti
o

n
 

__
 / 

-~
-:

:-
.,..,

-.,-
..c.

;;=
=- ---

· 
20

 
30

 
40

 

D
ep

th
 

B
el

o
w

 
th

e
 

S
u

rf
a

c
e

, 
in

. 

F
ig

ur
e 

16
. 

E
ff

ec
t 

o
f 

va
ri

ab
il

it
y 

on
 s

he
ar

 s
tr

es
se

s.
 

~
 

C
. 

.,,. 
I.

I 
0 

i
~
~
 

•
-
N

 
u •
-

C
 µ. ~

 
>-

rn
 

rn
 

;;
;.

..
J 

I .
o 

4-
-

:.
:.

 
0 

~
 

""
'c.

 
~
~
 

.,, 
-

~- c:
 
~ 

0
.9

 
rn

 
>-

• 
rn

 
>

:.
..

J 

50
 

"
'4

0
 

C
 0 rn
 

C
 rn
 

: 
30

 
0 µ C

 . u 4
- ~
 2

0 
3 

L
ay

er
 

1 
L

ay
er

 
2 

~
-1

 
' I 

L
a

y
e

r 
l 

L
a

y
e

r 
2 

d
~

•<
ir

e
d

 
V

al
u

e 
-

. 

/: 

~
' 

·~
 

10
 
~

-
-
-
~

~
-
-
-
~

-
-
-
-
-
-
'
"
-
-
-
-
~

 

0 
10

 
20

 

D
ep

th
, 

in
. 

30
 

40
 

F
ig

ur
e 

17
. 

M
ea

n 
va

lu
es

 a
nd

 c
oe

ff
ic

ie
nt

s 
o

f 
va

ri
at

io
n 

of
 

th
e 

m
od

ul
us

 o
f 

el
as

ti
ci

ty
 a

t 
th

e 
gi

ve
n 

d
ep

th
 a

nd
 1

 i
n.

 
fr

om
 t

h
e 

ce
nt

er
li

ne
. 

0
:,

 
0

:,
 



r ' 

... 0 ,.. u C
 ~ O
" e L

L
 ,.. 

0 ... 0 ,.. g ~ O
" e L

L
 X

 
0 ... 0 ,.. g t ~ L
L

 >
 

<
l 

10
0 0 

10
0 0 

10
0 D

 

..
. 

10
0 

0 ,.. g ~ O
" 

-

! 
06 

-
-
•
-
~

-
-
-
-
-
-
•-

••
••

•~
 

e
w

e
 

I 
-4

 
-2

 
N

o
rm

a 
Ii

 z
e

d
 

R
an

do
m

 
V

a 
1 u

e
 

F
ig

ur
e 

18
. 

F
re

qu
en

cy
 d

is
tr

ib
ut

io
ns

 o
f 

th
e 

st
re

ss
es

 a
nd

 
ve

rt
ic

al
 d

ef
le

ct
io

n 
fo

r 
th

e 
up

pe
r 

la
ye

r.
 

... 
I 0

0 
I 

N
or

m
a 

1 
0 ,.. u C

 t e L
L

 
0 

,.. 
0 

10
0 

... 0 ,.. u C
 ~ O
" e L

L
 

0 

X
 

0 ... 
10

0 
0 ,.. u C

 ~ O
" e L

L
 

D
 

>
 

<
l ... 0 

10
0 

,.. u C
 ~ O
" e L

L
 

-2
 

0 
N

o
rm

a
li

z
e

d
 

R
an

do
m

 
V

a
lu

e
 

F
ig

ur
e 

19
. 

F
re

qu
en

cy
 d

is
tr

ib
ut

io
ns

 o
f 

th
e 

st
re

ss
es

 a
nd

 
ve

rt
ic

al
 d

ef
le

ct
io

n 
fo

r 
th

e 
to

p
 8

 i
n.

 o
f 

th
e 

lo
w

er
 l

ay
er

. 

0
)
 

-.:
:i 

) 



68 

smooth curves represent the values of stresses and vertical deflections in the model 
when homogeneous materials are used, i.e., the coefficient of variation is zero. The 
broken curves connecting the x's represent the mean values of the stresses and ver
tical deflections in the model when variable materials are used. The dashed curves 
connect points that are one standard deviation above and below the corresponding means. 
Figure 17 shows the mean values and overall coefficients of variation of the moduli of 
elasticity that were generated and used in the 20 solutions. These values correspond 
to the same stress points as the vertical and horizontal stresses shown in Figures 14 
and 15. 

In all cases, the values of stress and deflections that were determined with homo
geneous materials are within one standard deviation of the corresponding mean values 
determined with variable materials. However, the hypothesis that the mean values for 
heterogeneous materials approach the corresponding values for homogeneous materials, 
which implies that the value obtained with the homogeneous material is within the limit 
of accuracy of the mean, cannot always be accepted at the 5 percent level (ex = 0.05). 
The deviation between the means for the heterogeneous materials and their correspond
ing values for homogeneous materials may be due to a difference between the mean 
modulus of elasticity that was actually generated at each point and the true mean. 

The presentation of the data generated by the model in the format of the frequency 
distribution is not as straightforward as it might appear. If a frequency distribution 
were obtained for each stress, strain, and deflection at every mass point in the dem
onstration problem, 5,600 frequency' distributions would be produced, and each one 
would consist of only 20 values. To get a better indication of the frequency distribu
tions of the variables, the frequency distributions of the variables for points in the 
same region of the model can be lumped together. To do this, each value used in the 
composite frequency distribution must be normalized by subtracting its mean value and 
dividing by its standard deviation. A composite frequency distribution can then be 
compiled from all of the normalized values of the property within the desired region of 
the model. 

Composite frequency distributions for the vertical deflection and the stresses are 
shown in Figures 18 and 19. The distributions in Figure 18 are for the area that ex
tends 12 in. on either side of the centerline and the full depth of the upper layer. The 
distributions in Figure 19 are for the area of the model that extends 12 in. on either 
side of the centerline and includes the top 8 in. of the lower layer; 960 values are rep
resented in each frequency distribution. 

Most of the frequency diagrams shown in Figures 18 and 19 appear to resemble the 
normal distribution, although in some cases-the vertical deflection in particular-the 
tails of the distributions tend to extend farther than would be expected for a normal 
distribution. The only distribution that departs radically from a normal distribution 
is the distribution of the horizontal stress in the lower layer. Here a skewed distribu
tion is produced by a random value that is physically restricted. In this case the hori
zontal stresses in Lilt: lop of the lower layer mus t always be positive. Since the mean 
values of the horizontal stresses are near zero, the variability above the mean (zero 
on the composite frequency diagram) can be much greater than it can be below the mean ; 
hence the skewed distribution. 

CONCLUDING REMARKS 

A procedure was developed that can analyze layered systems with nonuniform ma
terials. High amounts of variability in the stresses and strains calculated in the typ
ical problem shown indicate a need for establishing design criteria that consider this 
variability and also construction control criteria for controlling the material variability 
within economically acceptable limits. 

Very limited work on defect size and degree indicated that the procedure can be 
used to determine the characteristics of critical defects. This information can be used 
in establishing statistical sampling plans or in establishing realistic rejection criteria 
for non-statistical sampling techniques. 
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It must be emphasized that this research did not produce an analysis of the statis
tical response of pavements to random material properties or of the defect problem 
mentioned above. Research using this or similar techniques will be needed to obtain 
these analyses. The technique mentioned can be used to study the effects of the elastic 
modulus and Poisson's ratio for most pavement structures if the changes in boundary 
conditions recommended are made. The model can be modified to analyze materials 
stressed above their yield points also, and the effects of yield point variability can be 
studied. When larger computing systems are variable and more efficient models and 
methods of formulating and solving the equations are developed, three-dimensional 
problems can be studied. This procedure can be extremely flexible and should be a 
valuable tool in the repertory of all serious pavement analysis. 
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Stress Distribution in Rectangular 
Concrete Slabs Under Wheel Loads 
Y. H. HUANG, Department of Civil Engineering, University of Kentucky 

•ENGINEERS have long used the theory of elasticity for determining the stresses in 
concrete pavements due to wheel loads. One of the best-known and most frequently 
used methods is Westergaard's analysis (1) for determining the maximum stress in an 
infinite large slab loaded at a corner, near an edge, or at the interior of a slab far from 
any edge. In order to check the validity of the theory, experimental pavements were 
constructed (2) and the maximum stress under a given wheel load was determ~ned and 
compared with the theoretical solution. These comparisons based on the maximum 
stress generally could not give a definite indication on the applicability of the theory 
because the theoretical stress depends strongly on the modulus of elasticity and the 
Poisson's ratio of the concrete as well as the modulus of subgrade reaction, the exact 
values of which are quite difficult to ascertain. It is believed that a comparison be
tween theoretical solutions and experimental measurements should be made on the dis
tribution of stresses rather than just on the maximum stress. Although the distribution 
of stresses in concrete pavements was measured in the AASHO Road Test and contours 
of major and minor principal stresses were presented (3), because of the mathematical 
difficulty involved no effort has been made to compare these contours with those ob
tained by the elastic theory. 

The purposes herein are twofold: (a) to introduce an approximate method for de
termining the stress distribution in rectangular concrete slabs, based on the theory of 
thin plates on elastic foundations; and (b) to determine theoretically the contours of 
principal stresses and compare them with those obtained experimentally from the 
AASHO Road Test. 

The theoretical method employed in this study was first developed by Vint and 
Elgood (4) as early as 1935 for determining the deflections in a rectangular plate. In 
1937 Murphy (5) applied the method to obtain stresses and deflections in a rectangular 
plate with four-free edges. He showed that the method could easily be extended to the 
case where part of the plate is not in contact with the subgrade. Because the method 
is quite cumbersome and requires the solution of a large number of simultaneous equa
tions, it has not received the attention it merits. However, this difficulty has been 
completely overcome with the advent of high-speed computers. The inclusion of partial 
contact between pavement and subgrade is an outstanding feature not considered in 
Westergaard' s analysis. 

In this method, the deflection function is represented by a double series in the form 
of two orthogonal functions. Under a given wheel load, the coefficients of the series 
can be determined by minimizing the total energy. Because of the particular deflection 
function selected, it is necessary to neglect the effect of Poisson's ratio when deter
mining the moment and shear from the deflection so that the boundary condition that no 
moment exists at the free edge can be satisfied. This surely will lead to error, and 
the method may be considered as only approximate. However, the error is believed 
to be small, especially when the point at which the stresses are to be sought is not too 
far from the edge. Details of the method can be found elsewhere (4, 5). 

Another difficulty in comparing theoretical solutions with the experimental data from 
the AASHO Road Test is that the former are based on free edges while dowel and tie 
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bars were used in the latter. Although the effect of dowel and tie bars on stress dis
tribution is very significant when the load is close to the joints, their effect becomes 
smaller as the load moves farther away from the joints. For this reason, only the 
case when the load is at a distance of 6 ft from the transverse joint (Fig. 1) was used 
for comparison. 

Figure 1 shows the contours of major and minor principal stresses in a 5-in. pave
ment over a 36-sq ft region bounded by the pavement edge and a transverse joint. A 
total load of 6 kips was applied to the pavement through 2 wooden pads, each having 11 x 
14-in. area and spaced on 6-ft centers. The stress is considered positive when 
the top of slab is in tension and negative when in compression. Figure la shows the 
experimental stresses determined in the AASHO Road Test (3 ). The stresses were 
measured at the 15 points indicated by the black dots. Figure lb shows the theoretical 
stresses based on the assumption that the slab and subgrade are in full contact. Fig
ure le shows the theoretical stresses when a 0. 6-ft strip adjacent to the outside edge 
is not in contact. In the theoretical calculations, the following data employed or deter
mined in the Road Test were used: length of slab= 180 in., width of slab = 144 in., 
thickness -of slab= 5 in., modulus of elasticity of concrete= 6.25 x 106 psi, Poisson's 
ratio of concrete = 0. 28, and modulus of subgrade reaction = 80 pci. The deflection 
function was approximated by 144 terms. The stresses were determined at 7 x 7 
or 49 points, each 6 in. apart, and the contours of equal stresses were then interpolated. 
The method was programmed for the IBM 360 high-speed computer available at the 
University of Kentucky. 

A comparison between the experimental stresses and the theoretical stresses based 
on full contact indicates that the general pattern of stress distribution is quite similar, 
although the magnitudes of the computed stresses are somewhat smaller than those of 
the measured stresses. This result is reasonable because the stresses were measured 
when the corners and edges of the slab were curled upward, whereas the theoretical 

::: 
:0 

MAJOR PRINCIPAL STRESS, psi 

( b) THEORETICAL( FULL CONTACT) (c) THEORE TICAl( PARTIAL CONTACT) 

MINOR PRINCIPAL STRESS, psi 

·207-

FREE JOINT FREE JOINT 

( b) THEORETICAL ( FULL CONTACT) (c) 11-IEORETICAU PARTIAL CONTACT '. 

Figure 1. Contours of major and minor principal stresses, experimental vs. th eoretical. 
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analysis is based on full subgrade contact. As can be seen from the figure, the as
sumption of partial contact gives stresses that check more closely with actual measure
ments than the assumption of full contact. 

A note should .be made on the case of partial contact. To compute the stresses based 
on partial contact, it is necessary to know the area over which the slab and subgrade 
are in contact. This area can be estimated by a method of successive approximations 
if the curling of the slab at various points is known. Because reliable information on 
the curling of the slab is not available, it is arbitrarily assumed that a 0.6-ft strip, or 
5 percent of the slab width, adjacent to the outside edge is not in contact. The inside 
edge is at the longitudinal joint and is assumed in full contact. Although the area ad
jacent to the transverse joints may also be curled, its effect on stress distribution for 
the given loading position is comparatively small and can therefore be neglected. 

The agreement between the theoretical and the experimental stress distribution for 
the 9. 5-in. and 12. 5-in. slabs is quite similar to that for the 5-in. slab. Because of 
space limitations, they are not presented here. 

The close agreement between the theoretical solutions and the experimental measure
ments indicates that this approximate method, based on the theory of thin plates on 
elastic foundations, can be used to determine the stress distribution in concrete pave
ments when the load is far from the joints. Fortunately, this is also the most critical 
position as revealed by the AASHO Road Test. 
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Elastic Properties of Pavement Components 
by Surf ace Wave Method 
K. P. GEORGE, Department of Civil Engineering, University of Mississippi 

The present study explores the feasibility of using vibration methods in 
determining the Rayleigh wave velocity and thereby the elastic properties 
of a three-layer pavement. When the intermediate layer in a three
layer composite pavement is stiffer than the surface layer, the existing 
procedure to determine the Rayleigh wave velocity of the former cannot 
be applied. A correction procedure is proposed in this study; the Ray
leigh wave velocity and the thickness, determined accordingly, are both 
within 9 percent of the actual values. 

•A KNOWLEDGE of the elastic properties and thickness of the pavement layers that 
make up the pavement is required for design, maintenance, and repair of highway pave
ments. In recent years, nondestructive methods have become of increasing interest in 
highway engineering practice(_!_, ~- A teclmique based on the measurements of surface 
waves was proposed by Jones (_g_, 1) where the elastic properties of two- or three
layered pavements were determined by using the theory of layered systems. Jones (~ 
dealt with the case of an intermediate layer that has a modulus of elasticity slightly 
less than that of the surface layer but considerably greater than that of the underlying 
medium. The present study, however, treats a three-layer system in which the sur
face layer has a modulus of elasticity less than that of the intermediate layer; a typical 
example is an asphalt-cement layer overlying the soil-cement base. 

ELASTIC WAVES IN LAYERED SYSTEM 

Road construction is regarded as being composed of layers of homogeneous, elastic 
materials and of infinite horizontal extent. In Figure 1, layer H1 represents the asphalt 
surfacing, layer H2 is the soil-cement base, and the uniform semi-infinite medium is 
the soil under the pavement. 

Miller and Pursey (.!) have shown that a vibrator on a circular base operating normal 
to the surface of a semi-infinite elastic solid radiates 67.4 percent of the power as a 
surface wave. The surface wave here is the Rayleigh wave, which has its maximum 
particle displacement normal to the surface. When vibrations of the Rayleigh wave type 
are propagated in a layered medium their velocity depends on the frequency of the vi
brations and the thickness, density, and elastic properties of strata. Accordingly, the 
approach taken in this investigation has been to carry out the proper dynamical mea
surements on the layered system and to exploit the properties of surface waves to de
termine certain unknowns either pertaining to material constants or of geometrical 
origin. 

Single-Layer Overlying the Semi-Infinite Medium 

The derivation of the wave equation for the case of one surface layer over a semi
infinite medium involves the computation of a sixth-order determinant, which can yield 
more than one velocity at each frequency (fil. The solution giving the lowest velocity 
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refers to the principal mode of propagation 
of the Rayleigh wave, and this particular 
mode can be shown to correspond to the· 
fundamental flexural branch of a free plate. 
The evaluation of phase velocity from the 
sixth-order determinant can be simplified; 
for instance, when thewavelength is small 
compared with the thickness of the layer 
(i. e., L/H ..... O), the phase velocity of sur
face waves tends to correspond to the Ray
leigh wave velocity appropriate to the top 
medium. 

"Free Plate" Approximation 

A single-layer pavement over a con
ventional subgrade can be approximately 
treated as an elastic plate, the surface of 
which is free of stresses (1). The solu
tions obtained by Lamb (.§) for the propa
gation of the longitudinal and flexural waves 
in a free plate are represented by P = 0 
and Q = 0 respectively, where 

@ 

@ 

Q 

Cl l, {J 1, "1, I H, 

Clz, /Jz, Yz, I Hz 

Cl3, /J3, i'3, I 
Semi -Infinite 

Medium 

Figure 1. Section of a three-layer pavement: as
phalt surface (layer 1 ), soil-cement slab (layer 2), 

and subgrade (semi-infinite medium). 

2 / • / 4r 1S 1 P = b1 cosh 1 2 r 1H1 smh 1 2 s 1H1 -~ sinh 1/2 r 1H1 cosh 1/2 s 1H1 (1) 

in which 

k
2 

(1 - i;); Si = k
2 

(1 - ;;); bi = 1 + :~; 

phase velocity, k = 2{, L = wavelength; 

thickness of the layer; and 
= compressional, shear, and Rayleigh wave velocity in the layer. 

(2) 

Therefore, if experimental measurements have been made at wavelengths short enough 
to define y of the layer, its thickness can be determined by a nonlinear curve-fitting 
procedure (to satisfy Q = O). 

Two Surface Layers of Comparable Moduli of Elasticity 

The propagation of Rayleigh waves in a system composed of two surface layers over 
a semi-infinite medium requires the solution of a tentb-order determinant (1, .§), and 
the computational work becomes almost prohibitive. However, the evaluation of phase 
velocity from the dispersion equation can again be simplified for the case of very small 
wavelength (L/H ..... 0). 

In a plate-subgrade system, when the plate is much stiffer than the underlying sub
grade the propagation of the vibration becomes sensibly independent of the properties 
o.f the subgrade. Accordingly, i1) the present problem, when the phase velocity exceeds 
Or: 3 the propagation will depend almost entirely on the properlies and thickness of the 
materials in the two layers, and the two surface layers may be regarded as a composite 
layer. 

In practice the vibrations are excited and measured at the surface of the upper layer 
so that Eq. 2-the Lamb solution of flexural vibrations-with the appropriate parameters 
o.f the top layer is tl1 e solution that will apply. As the wavelength of the surface vibra
tion exceeds 2H i, however, the experimental dispersion relation is seen to deviate 
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from the Lamb solution. A simple explanation of the observed deviation is that the 
surface waves are influenced by the second layer as well . Maxwell and Fry (ID strongly 
support this viewpoint when they assume that the surface waves are normally conditioned 
by the material from the surface to a depth equal to one-half of the length of the surface 
waves. Founded upon this hypothesis, the following empirical relationship is proposed 
to resolve the phase velocity of the composite plate into two component velocities ap
propriate to the individual layers: 

where 

and 

c phase velocity (surface wave) of the composite plate at wavelength L; 
c 1 flexural wave velocity appropriate to the first layer at wavelength L; and 
c2 flexural wave velocity appropriate to the second layer at wavelength L. 

(3) 

When a number of points relating the wavelength and the phase velocity in the second 
layer have been obtained, extrapolation to zero wavelength can be accomplished by use 
of the Lamb flexural wave curve that offers the best fit to the data. 

EXPERIMENTAL PROCEDURE 

A two-layer composite pavement was constructed on a semi-infinite subgrade where 
the test slab consisted of a 0.32-ft thick soil-cement slab (8 ft by 6 ft, cement 10 per
cent by weight) overlaid by 0.27-ft thick dense-graded hot plant mix. To justify the as
sumption of an infinite slab in the horizontal direction, the edges of the slab were 
tapered. 

Beam specimens, 3 by 3 by 11 ¼ in., were molded from both soil-cement and asphalt 
mixtures. Elastic constants of both materials were determined from the fundamental 
transverse vibration and torsional resonant frequency test (ASTM Designation C 215-58T). 

Compressional Wave Velocity 

Seismic tests (1) were made to determine compressional wave velocities in the soil
cement and the asphalt pavement. 

Surface Wave Velocity 

Vibration tests were conducted to determine the wavelength and thereby the phase 
velocity of the surface wave. The details of the equipment (the electromagnetic vibra
tor, cartridge pick-up, and preamplifier) and the technique used to detect the wavelength 
using a dual channel oscilloscope can be seen elsewhere (1). 

RESULTS AND DISCUSSION 

Single Surface Layer of Higher Elastic Moduli 
Than the Underlying Subgrade 

Attention herein is confined to a stiff slab (soil-cement base) over a relatively soft 
subgrade for which flexural wave dispersion curves conform adequately to the free plate 
approximation. When the measurements are made to a sufficiently high frequency, to 
define Y2 for the slab material, the dispersion relation can be inverted to give the thick
ness of the slab (curve 1 in Fig . 2). The Rayleigh wave velocity for the soil-cement has 
been determined as 4,650 ft/sec, which compares favorably with the value computed 
from the resonant frequency tests (4,600 ft/sec). The thickness of the soil-cement slab 
is found to be 0.31 ft, which compares favorably with the actual thickness, 0.32 ft. 

The Rayleigh wave velocity determined in conjunction with the compressional wave 
velocity by seismic method and the charts of Knopoff (1, p. 34) make possible the 
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Figure 2. Phase velocity of flexural vibrations in a composite layer: theoretical solution 
from solving O = 0. 

determination of Poisson's ratio (0.23). The fact that the Poisson's ratio computed by 
an independent method-namely from transverse vibration and torsional resonant fre
quency-is in excellent agreement (0.22 vs. 0.23) validates the applicability of the sur
face wave technique. 

Two Surface Layers of Comparable :rv1oduli of Elasticity 

Experimental results of phase velocity and wavelength at the surface of the three
layer construction are given by the open points in Figure 2. The results obtained at 
short wavelengths (L ,;; 2H J permit the relation to be extrapolated to zero wavelength 
to provide a value of Y 1 in the asphaltic layer of 3,300 ft/sec. With this Yi, the thick
ness, according to the Lamb solution, that best fits the experimental points is 0.28 ft, 
which is in excellent agreement with the actual thickness of 0.27 ft (curve 2 in Fig. 2). 

As expected, when the wavelength exceeds 2H1 , the experimental points lie to the 
right of the theoretical curve pertaining to the surface layer alone. The phase velocity 
for the soil-cement layer is calculated by the correction equation (Eq. 3) and given by 
solid points in Figure 2. The relation obtained by these data points may be extrapolated 
to get an approximate value of Y2 • Now that the Rayleigh wave velocity and thickness 
(thickness is normally known in new or old pavements) are approximately known, a 
theoretical curve that matches the computed data can be found by a judicious trial pro
cedure (curve 3 in Fig. 2). The agreement between this curve and the Lamb curve, 
which fits the experimental data resulting from direct measurements, is remarkable. 
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Rayleigh wave velocity and the thickness of the soil-cement layer obtained by the 
procedure using the empirical correction equation are 4,200 ft/sec and 0.30 ft respec
tively, which compare well with the actual values (4,600 ft/sec and 0.32 ft). 

It may be noted here that, by performing the vibration experiment alone, it is dif
ficult to determine the relative stiffness of the first layer. The microseismic proce
dure described by Phelps and Cantor (_1) is proposed for positive identification. Ac
cordingly, if the slope of the travel-time graph is not changed, the top layer is stiffer 
than the bottom layer and the equation proposed by Jones (~ should be used for final 
correction. If the slope of the travel-time graph tends to change, however, the second 
layer is taken to be stiffer than its top counterpart and Eq. 7 is proposed in the final 
analysis. 

CONCLUSIONS 

The theory of wave propagation in layered media presented and the experimental 
technique developed provide an effective means of determining the Rayleigh wave ve
locity appropriate to the top slab in a two-layer pavement or to the top slab of a three
layer pavement. In the three-layer pavement, when the intermediate layer is stiffer 
than the top layer, the correction method proposed in the present study is satisfactory 
to determine the Rayleigh wave velocity and the thickness of the intermediate layer. 
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The Analysis of Highway Pavement Systems 
A. C. LEMER and FRED MOA VEN ZADEH, Department of Civil Engineering, 

Massachusetts Institute of Technology 

This paper presents a model for describing the performance of an engi
neered facility from the user's point of view. It is suggested that per
formance may be described in terms of serviceability, reliability, and 
maintainability. Serviceability is the quality of providing satisfactory 
service to the user and is evaluated through applications of utility theory. 
Reliability is the probability that adequate serviceability will be maintained 
throughout the facility's design life; it may be predicted by use of a semi -
Markov process approach. Maintainability is a measure of the effort 
required during a facility's service life to maintain adequate service
ability. Methods for analysis are suggested and applied to existing data 
to show how the model may be used in practice to yield engineered facilities 
having good performance characteristics. The model and its use are 
viewed in a perspective of the goals of the larger system of which the 
engineered facility is a part. 

•IN PROVIDING a pavement-a riding surface-the engineer is attempting to give a 
service to the user of a transportation facility. In effect, the real problem the engi
neer must face is not the design and construction of a physical, structural unit, but 
rather the satisfaction of the user. 

The pavement-in fact, the whole highway system -may be evaluated in terms of 
three principal parameters: serviceability, reliability, and maintainability. Service
ability is the quality of providing satisfactory service to the user (1). Serviceability 
is not just a matter of transportation but of transportation in such a fashion as to fulfill 
the user's needs. Reliability is the probability that serviceability will be maintained 
at adequate levels, from a user's point of view, throughout the design life of the facility 
(2). This concept is suggested in recognition of the uncertainty inherent in the sys
tems with which the engineer deals. Maintainability is a measure of the effort required 
to maintain adequate serviceability throughout the design life. Two types of mainte
nance effort must be considered: normal maintenance is that regular, day-to-day ac
tion planned to keep operation smooth; repair maintenance is an action required to cor
rect a potential or actual loss of serviceability. 

This paper attempts to show how these parameters may be evaluated and used by 
the engineer to provide a facility that will exhibit qualities of satisfactory performance 
throughout its design life. The framework suggested here is intended to assist the 
engineer to provide such facilities in a most economical fashion. 

SERVICEABILITY 

The application of the serviceability concept may be based on utility theory as it is 
being developed and used in economics and psychophysics. Utility is a general term 
for the intrinsic value that a person attaches to some stimulus. In the present con
text, a user would experience the ride over one pavement section as more or less com -
fortable than that over another section. The relative comfort felt may then be scaled 
as utility against some objective measure of pavement roughness-for example, a 
roughometer reading. 
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By direct or indirect questioning, one attempts to build up a picture of what the 
user's utility function is with respect to a stimulus (3 ). For example, the question 
might be posed, "How much money would you have to-receive in order to make you 
twice as happy as receiving $10? How much would make you half as happy?" And so 
on. The utility scale is thus built up on a relative basis. 

Figure 1 shows a typical utility function (4). Over a sufficiently broad range of 
stimulus, this typical s-shaped curve exhibits areas of relative indifference at either 
end of the stimulus scale and a central portion of maximum sensitivity. For example, 
consider the changes in user's utility derived from highway lane width. Narrow lanes 
have a value to the user approaching zero as the lane becomes too narrow for vehicle 
passage. In the range of typical lane widths, there is a rapid rise in utility up to, say, 
the size of current Interstate standards. Additional utility derived is small as lanes 
become oversized-there is more room than the user can appreciate. It is of interest 
to note that a decrease in overall serviceability may occur as lanes become so wide 
that safety is affected because weaving by drivers is encouraged. 

For the typical engineering facility there will be several scales of utility that will 
be pertinent to the satisfaction of the user. For example, in the AASH0 Road Test it 
was acknowledged that features such as grade, alignment, slipperiness, and glare enter 
into the consideration of how satisfactory a pavement is. But it is found that it is dif
ficult, if not impossible, for the user to judge several dissimilar qualities at once (5), 
so it is necessary to deal with these qualities separately. In the case of the AASHO 
Road Test, all aspects of the pavement not directly related to the riding quality of the 
surface were excluded from consideration. In the case of a systematic analysis of the 
highway, serviceability is evaluated as a multi-dimensional quantity, a composite of 
several scales of utility. 

A serviceability function of this sort-that is, a vectoral quantity-is difficult to use 
for comparisons of alternative actions. There are no satisfactory multi-dimensional 
optimization techniques, and it is somewhat out of the engineer's field of responsibility 
to make trade-off decisions among the various qualities the user might prefer. The 
establishment of the aspiration level (6) as a minimum acceptable level of performance, 
however, may provide the engineer with a measure with which to work. The aspiration 
level is described as that level of achievement (or performance, in this case) which the 
user expects, and which he considers reasonable. This level will be based on the user's 
perception of what is technologically possible and appropriate. 

It has been suggested that the idea of an aspiration level may be used to set engi
neering requirements (4). As shown in Figure 2, part of the region of rapidly rising 
utility is eliminated from the curve. ,~pecifically, the straight - line portion of the curve 
having maximum slope is cut, based on psychological considerations "involved (6). This 
action associates a larger loss of serviceability with a small drop in performance at 
the aspiration level. Thus an effective failure criterion is established at the aspira
tion level, while optimization above this failure level is still practical. 
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RELIABILITY 

In order to say whether afacility 
is satisfactory or not it is neces
sary to predict the behavior of the 
facility, in terms of levels of ser
viceability, for the duration of its 
design life. But this prediction can 
be made only in uncertain terms; 
reliability is a measure of the de
gree of this uncertainty. It is sug
gested that the lifetime behavior of 
a facility may be approximated by a 
Markov process. Such an approxi -
mation allows the engineer to pre-
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Probability 
of 

Occurrence 

Figure 3. Coin tossing as a Markov process. 
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dict serviceability with a particular degree of reliability throughout the design life. 
The behavior of a facility may be represented as a set of states and interstate transi

tion probabilities. The states-in the present context, levels of serviceability-are de
scriptions of possible conditions of the system being modeled. For example, in flipping 
a coin, the two states would be "heads" and "tails." The transition probabilities tell 
the chances that the system, given that it is in a known state now, will occupy a certain 
state at the next observation. This basic assumption of the Markov process is that the 
probability that the system will be in any state after a trial is dependent only on the 
state that is occupied immediately preceding that trial. Figure 3 shows a pictorial 
representation of such a process for the tossing of a coin. 

A variation of the Markov process allows one to describe time spent in a given state at 
any trial-that is, the time before an interstate transition is made-as a probabilistic 
variable. With this semi-Markov process, one can approximate the aging behavior of 
a facility. If the states are thought of as the levels of serviceability that the facility 
may occupy, this process will allow prediction of the service life history in a proba
bilistic manner. One then has the reliability of the facility, with respect to some ser
viceability level, as a function of time. This is the time-dependent probability that the 
facility will be in a certain state. 

MAINTAINABILITY 

In describing a facility's behavior as a semi-Markov process, some of the inter
state transitions may represent maintenance and repair operations. Normal mainte
nance will have an influence on the distribution of time before a decrease in service
ability occurs. Repair maintenance is the way in which transitions from one state to 
another of higher serviceability may occur. The expected time during which the fa
cility will occupy a state that represents failure, relative to the total design life, is a 
measure of maintainability. 

Figure 4 shows two possible expected life histories for two similar facilities. It is 
expected that one will experience a greater number of failures than the other, but a 

failure in the second case will take 
much longer to repair than the mul

1 
Design Life 

\_.,< failure age) 

I 

I 

Time 

Figure 4 . Possible life histories. 

tiple failures of the first. The 
second facility would have a lower 
maintainability. That this time 
lost-and hence the maintainability
is directly related to user cost and 
comfort may be realized by con
sidering the case of a bridge that 
must carry heavy traffic. The ex
ecution of a difficult maintenance 
action may require the closure of 
a lane, resulting at least in the slow
ing of traffic flow and losses of time 
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to the commuter or, quite likely, the disruption of traffic patterns within a sizable 
radius of the bridge. 
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It should be noted that in both cases it is possible for the facility to give adequate 
service throughout its design life, with no failures. Life history is probabilistically 
predicted. This point admits the possibility that one may learn by experience, chang
ing planned normal maintenance and operating policies to suit the exhibited perform -
ance of the facility. The most efficient selection and adjustment of such policies is 
essentially a problem in statistical decision theory and is beyond the scope of this paper. 

AN EXAMPLE OF APPLICATION 

The foregoing discussion has been directed toward describing what is basically a 
systems analytic approach to engineered facilities. A brief example should help to 
illuminate the way in which these ideas fit together. What follows is rough, intended 
only to present in outline of how the engineer might proceed to use this approach. 

It has been suggested that a satisfactory highway pavement will be one which is 
rideable, safe, and possesses structural integrity (2). This goal statement gives three 
components of serviceability for the highway pavement; the first step is to develop the 
functions for evaluating these components. 

Rideability is the most apparent quality for the immediate user of the road, and the 
most complex. A variety of evaluation schemes have been suggested, ranging from 
purely subjective (8) to very objective (9). For this example the AASHO Road Test is 
a useful source of information. The AASHO definition of serviceability is essentially 
what is meant here by rideability (10). Figure 5a shows a plot of the percentage of 
people finding a pavement to be acceptable vs. a subjective scale of rideability. This 
function may be interpreted as a mean value utility function for rideability. It would 
be more correct to show the variations among individuals and to say that there is a 
certain probability that a given percentage of people will find a pavement of given ride
ability satisfactory. Figure 5b shows how this function may be transformed (4) for use 
in an engineering context. The aspiration level is defined and the curve adjusted. The 
serviceability scale is derived by a geometric (and in this case quite direct) transfor
mation of the utility scale. 

In trying to predict pavement safety, one faces a wide assortment of studies and 
conclusions as to what is important and how pavement affects accidents and vehicle 
driver characteristics. It is beyond the scope of this example to try to formulate a 
coherent definition of when and why a pavement is safe. For purposes of illustration 
it will be assumed that skid resistance, as affected by pavement roughness, is of pri
mary importance because of its influence on accidents. 

It has been suggested that characteristics of the microscopic roughness of the pave
ment surface may be related to the coefficient of friction (11), which in turn may be 
related to the occurrence of accidents (!.~). With this rationale, approximations may 
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be made to give Figure 6. Relative safety is meant to relate to skidding resistance at 
a given speed and to accident frequency; the roughness scale is related to asperity 
height. Figure 6b gives the converted serviceability function. 

Structural integrity is the classical problem of the engineer. Does the structure 
resist the loads to which it is subjected? The safety factor with respect to loads is 
an adequate prediction of this component of serviceability. Figure 7 shows this func
tion. When the ratio of applied load to structural capacity rises above unity-a factor 
of safety with respect to load of less than unity-a structural failure may be expected. 
Such a failure will represent a complete loss of structural integrity and a decline of 
serviceability effectively to zero. As long as the system can resist the loads applied, 
full serviceability with respect to structural integrity would be retained. In cases 
where a partial loss of serviceability is possible-for example, some plastic yielding 
without complete structural collapse-this serviceability function would not be such a 
severe single step. 

The specification of the multi-dimensional serviceability function in such a way as 
to allow comparisons of alternative actions is another difficult problem that cannot be 
adequately treated here. For the purposes of this example, the product of the three 
scales can represent gross serviceability. Failure occurs when this gross service
ability falls to an unacceptably low level. 

Having set up serviceability measures, one next uses these measures as a basis for 
describing the service behavior of a facility. In a detailed study, the various physical 
conditions and processes leading to losses of serviceability might be represented in 
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the Markov process. For this example, 
however, the representation has been simpli
fied to include only discrete steps in ride-
ability, without regard to cause. Figure 8 
shows a state transition diagram for pave
ment aging. Dashed lines indicate mainte
nance actions. Numbers for the states are 
taken from Figures 5, 6, and 7. 

Some additional simplification concern
ing transition probabilities will be used 
here to ease computation. It was stated 
earlier that interstate transitions are in 
general stated as time-dependent-probability 
functions. Work is currently under way to 
develop such functions from theoretical and 
statistical analysis of data such as labora
tory tests and those gathered in the AASHO 
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Road Test. It is expected that these techniques will be described in future papers. 
For current purposes, it will be assumed that these functions are given. Further, this 
example deals only with the overall probabilities that a particular transition will oc
cur, given that a transition does occur. That is, it may be assumed that pertinent con
volution integrals have been computed for the transition functions, yielding the nu
merical probabilities shown in Figure 8. Parentheses indicate that a decision regarding 
maintenance activity has been made for the case shown. The aspiration level is de
fined and the curve adjusted. Also shown in Figure 8 is the transition matrix for this 
pr ocess. Each entry Pij in this matrix is the probability that the system will be in 
s tate j after the next transition, given that it is in s tate i now. The picture (a flow 
graph representation) and matrix are equivalent. Implicit in all of the numbers are 
decisions regarding operating policies, expected traffic, economic design life, etc. 
What remains after these assumptions is a simple Markov process. 

Computations may be made using flow-graph or matrix methods in the transform 
domain (~). It may be shown that the probability matrix Pij (n), where Pij is the prob
ability that the system will be in state j after n transitions, given that it starts in state 
i, is given by the inverse transform of 

pg (z) = [I-Pzr1 

where P is the transition matrix. This expression applies to the current example and 
uses geometric transforms. Analogous results are obtained using Laplace transforms 
for the continuous time case. 

In this example, probabilities refer to continuous time processes reduced to the 
facility's design life, as described above. The overall lifetime behavior to be expected 
of the system is given as the steady-state limit of this process. Expected service
ability, reliability, and a coefficient of maintainability ( equal to one over the relative 
time used in maintenance) may thus be computed. Table 1 summarizes the results of 
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TAB L E 1 

SUMMARY OF CASES 

Case Transition Matrix Evaluation Parameters 

Normal ll 0, 95 0 0 0,05 

"] 
Expected Serviceability= 0. 49 

0 0,90 0 0. 05 
0,40 0 0, 45 0, 10 0.05 Reliability = 0. 72 

0 0, 65 0 0,25 0 
. 25 0, 75 0 0 0 0 Coefficient of Maintainabi lity = 3. 58 

_ o 0,50 0, 50 0 0 0 

Normal 

~" 

0, 95 0 0 0.05 ,;J Expected Serviceability = 0. 50 
Maintenance- 0 0 0,9 0 0,05 

Intensive 0 0,6 0 0. 25 0.1 0.05 Reliability = 0. 81 
, l 0 0,8 0 0, 1 0 

.~5 0, 75 0 0 0 0 Coefficient of Maintainability = 5. 25 
0, 5 0, 5 0 0 Q 

Innovation 

l" 
0,95 0 0 0,05 ,g] Expected Serviceability= 0,34 

0 0 0,9 0 0.05 
0 0,5 0 0,3 0,05 0. 15 Reliability = 0.45 

.1 0 0.65 0 0,25 0 

-~5 0, 75 0 0 0 0 Coellic ient of Maintainability = 1.82 
0,5 0. 5 0 0 0 

several design options for the process described. In the maintenance-intensive case, 
normal maintenance-type transition probabilities are set higher. The "normal" case 
is as shown in Figure 8. The "innovation" case involves a supposition that some new 
material of higher initial cost is used that gives this pavement a very low probability 
of going from a rideability of 3. 2-2. 8 to the failure state-i. e., improved durability, at 
the expense of maintenance funds, after initial deterioration, something like work 
hardening. 

It is now up to the engineer to consider the costs involved in the various alternative 
actions and the benefits derived from varying levels of serviceability-all in terms of 
the specific goals for the pavement under consideraction-and to arrive at a decision. 
The decision problem is made very complex by the multitude of non-engineering fac
tors that must be considered. A benefit-cost type of analysis must be undertaken with 
care (_!!). 

CONCLUSIONS 

This paper has attempted to present a framework for the systematic analysis of 
constructed facilities such as highway pavements. It is expected that this approach 
will benefit not only the engineer, by helping him to order problems and solutions, but 
also the user of the engineer's services. With the increasingly wide recognition of a 
need for a systems approach to engineering problems, it is hoped that the approach 
described here will be of some modest use in filling an apparent lack of operationally 
useful suggestions. 
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Optimal Design of Flexible Pavement Sections 
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~~ 

Although several methods are available for the design of flexible pave-
ments, no existing technique explicitly considers the optimal combination 
of flexible pavement components to minimize the total in-place cost of the 
pavement system. The purpose of this systems analysis was to develop a 
rational method for the optimal selection of the arrangement of the various 
pavement components. This cost minimization must be realized within the 
boundary conditions imposed by the practical limitations of the design pa
rameters. The design model consists of an objective function and various 
constraint equations. The total cost of the pavement system is quantita
tively described by this objective function, and a minimum-cost solution 
is obtained for each combination of material costs and design conditions. 
The various constraining equations quantify the boundary conditions to 
which the design of a flexible pavement is subject. These physical limi
tations complete the realism of the mathematical model in describing the 
real-world situation of flexible pavement design. The design model was 
solved by a modified linear programming technique. In developing prac
tical solutions to the design model, optimal flexible pavements are de
signed for cross sections without subbase, cross sections with subbase 
through shoulders, and cross sections with subbase and subdrains. The 
design requirements for the various components are predicted on the de
sign parameters of traffic conditions, soil support values, pavement ma
terial characteristics, environmental effects, and pavement performance 
requirements, and on unit costs of pavement components. Substantial 
cost savings result in the selection of flexible pavement sections by this 
design procedure. 

•THE PRIMARY OBJECTIVE of highway pavement design is to provide an acceptable 
roadway surface that can withstand the deteriorating effects of traffic and environment 
for the service life of the facility. In addition, the pavement structure must adequately 
serve the demands of the road users at an acceptable level of performance. A properly 
designed, constructed, and maintained pavement is a major factor in providing eco
nomical, efficient, safe, convenient, and comfortable highway travel. This goal is an 
integral part of the total highway transportation program. 

Although several design techniques are available for determining reasonable thick
nesses of flexible pavements to satisfy the specified design parameters, no present 
method explicitly considers an optimization of flexible pavement components to mini
mize the total cost of the pavement system. Of course, this cost minimization must 
be realized within the boundary constraints imposed by the selected values of the de
sign parameters. The purpose of this systems analysis was to develop a rational 
method for the optimal design of flexible pavement sections. 

The objective of flexible pavement design in this investigation is to select the vari
ous pavement components so that the total pavement cost is minimized within the limi
tations of the various design parameters. Minimum-cost designs are determined for 
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flexible pavements to satisfy the demands of traffic and environment on the system of 
pavement structure and soil support. Therefore, this technique affords a practical 
and economical solution to the problem of designing flexible pavements. This approach 
to design embodies the essence of sound engineering . 

CONCEPTUAL MODEL 

A flexible pavement distributes the traffic loads through a system of pavement com
ponents to the subgrade. These pavement layers are generally identified as surface, 
base, and subbase. Several different thickness combinations of the materials com
prising the various components may adequately satisfy the structural design of the 
highway pavement. However, all satisfactory thickness arrangements may not provide 
an economical solution to the engineering problem of pavement design. fu general, 
only one pavement structure is an optimal selection of the flexible pavement compo
nents for the designated design conditions. 

The concept for this flexible pavement design procedure is illustrated by the logic 
diagram in Figure 1. The total pavement system is described by the various design 
parameters representing traffic conditions, soil support values, pavement material 
characteristics, environmental effects, and pavement performance requirements. In 
addition, unit costs of pavement components and alternate cross section designs are 
considered in the selection of the optimum flexible pavement section. 

The structural requirements of flexible pavements are predicated on an estimated 
number of equivalent 18-kip single-axle load repetitions and on an appropriate measure 
of the soil support afforded by the subgrade. The elements of pavement performance 
and environment are also incorporated as initial and terminal serviceabilities and re
gional factor respectively. The combined effect of traffic loading, soil support, pave
ment performance, and environment is denoted as a structural number (SN) according 
to the interim design guide for flexible pavements of the American Association of State 
Highway Officials (1). Pavement component thicknesses are then selected to reproduce 
the specified structural number by a linear combination of layer thickness times its 
coefficient of relative strength. A minimum pavement thickness is equal to the sum
mation of the component thicknesses. 

Consideration of significant environmental factors, such as depth of frost penetra
tion, provides another control on the selection of a minimum pavement thickness. This 
design procedure specifies a minimum pavement thickness (Tmin) to account for vari
ous influencing environmental conditions. This minimum thickness is based on a de
sign procedure that requires a selected design wheel load and a specified soil support 
value. The greater minimum thickness value becomes the design requirement. 

To account for varying design practices, several types of pavement cross sections 
are available as possible alternatives in this procedure for designing flexible pave
ments. These arrangements include cross sections without subbase, cross sections 
with subbase through shoulders, and cross sections with subbase and subdrains. Fi
nally, the unit costs of the pavement components are specified to permit the design of 
an acceptable pavement structure for the least cost. This cost-effectiveness approach 
provides both an optimal and a practical solution to the problem of flexible pavement 
design. 

fu a real sense, the minimum thicknesses represent design constraints and not de
sign objectives. The design objective is to produce a flexible pavement system at the 
least total cost within the specified boundary conditions. The in-place unit costs of the 
component materials depend on the locale in which the flexible pavement is to be con
structed. In addition to the traffic loading, soil support, pavement performance, and 
environmental constraints, practical limitations on layer thicknesses are specified in 
concurrence with present highway construction practices. 

DESIGN MODEL 

The logic diagram for this optimal design of flexible pavements is shown in Figure 
1. A detailed description of this design technique is presented in the following sections, 
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which provide the various computational procedures and design features for determin
ing the optimal selection of flexible pavement sections. 

Design Parameters 

Design parameters represent the various measures of traffic conditions, soil sup
port, pavement material properties, environmental effects, and pavement performance 
requirements. The results of these evaluations provide the summary quantities that 
are necessary for the optimal design of flexible pavements. 

The initial measure of the stability of the subgrade soil is determined by the stan
dard California bearing ratio (CBR) test. This soil strength is then translated into the 
soil support value (SSV) as defined by AASHO (1). In this study the following equation 
was developed to relate soil support values to CBR measures: 

SSV = 4.90 log 10 (CBR) 

where SSV is the soil support value and CBR is the California bearing ratio. 
The traffic conditions are expressed as the number of 18-kip single-axle load rep

etitions for the service life of the pavement. These load applications are estimated 
from an evaluation of the formula 

W = 365 (TF) (DP) 

where 

W total number of equivalent 18-kip single-axle load repetitions during the 
pavement design period, 

TF truck factor (18-kip single-axle load applications per day), and 
DP design period (years). 

To develop a measure of the truck factor, a correlation was derived between the num
ber of 18-kip single-axle load applications and the percentages of various truck types 
in the traffic stream. The following expression was obtained from loadometer data 
collected on highways in Indiana: 

where 

TF 
ADTl 

ADT 2 

TR 
CT 
LU 

[ 
(ADT 1) + {ADT2}] [ 11. 7(TR) (LU) + 0.83(TR) (LU) (CT) ] 

TF = 4 10,000 

= truck factor (18-kip single-axle load applications per day), 
average daily traffic volume at the start of the design period (vehicles per 
day in both directions), 
average daily traffic volume at the end of the design period (vehicles per 
day in both dfrections), 
percentage of all trucks, 
percentage of combination trucks, and 
truck lane use factor (1.0, 0.9, and 0.8 for two-, four-, and six-lane 
highways respectively). 

The various measures of traffic conditions, soil support, environmental effects, 
and pavement performance requirements are now combined into a single design pa
rameter defined as the structural number (SN). Two nomographs have been prepared 
by AASHO to quanlify this structural requirement (1). However, the following equation 
was developed from these nomographs to use in the-computer program for this design 
procedure: 
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where 

w = 

SN = 
co = 

p = 
ssv = 
RF = 

9.36 log10 [(SN) + 1] - 0.20 

[ (CO) - (P) J/1 1 094 I + logia (CO) 1 " 0.40 + s 19 
- • .> [ (SN) + 1 J . 

+ 0.37756 [(SSV) - 3.0] - 0.97 log10 (RF) 

total number of equivalent 18-kip single-axle load repetitions during the 
pavement design period, 
structural number, 
initial pavement serviceability index (4.2 for all highways), 
terminal pavement serviceability index, 
soil support value, and 
regional factor. 

The effects of the environment are numerically summarized in the regional factor (2), 
and the desired pavement performance is specified by selected values for the initial 
and terminal pavement serviceability indexes. An iterative procedure is used to solve 
this equation for the structural number of a particular design situation. 

Another consideration of environmental influences is determining a minimum thick
ness as a design against the detrimental effects of frost action and the loss of subgrade 
strength in the spring break-up period. Design charts developed by Hicks (3) provide 
correlations between bearing capacity and CBR and between pavement thickness and 
bearing capacity. Adverse subgrade conditions are represented by using a 4-day 
soaked value for the selected CBR. The following relationships were prepared from 
these design charts for 9-kip and 10-kip wheel loads respectively: 

where 

Tmin(9) 
Tmin(lO) 

Tmin(9) 

Tmin(lO) 

= 4. 723 + 51.o37 - 45.18 e-(CBR) 
(CBR) 1

•
05 

4.423 + 52.706 - 19.884 e-(CBR) 
(CBR)o.oo 

minimum pavement thickness for 9-kip design wheel load (inches), 
minimum pavement thickness for 10- kip design wheel load (inches), 
and 

CBR California bearing ratio for reduced strength conditions. 

The 10-kip wheel load is considered satisfactory for the design of primary highways, 
whereas the 9-kip wheel load is applicable for flexible pavement-B on secondary routes. 
In the computer input for this design model, the highway engineer specifies the design 
wheel load for either a primary or a secondary highway. This minimum-thickness 
determination accounts for environmental effects by highway classification and pro
vides another realistic constraint in selecting optimal flexible pavement sections. 

The characteristics of each pavement material are described by the in-place density 
and the coefficient of relative strength. These values depend on the local materials 
used in the construction of flexible pavements. The evaluation of the pavement mate
rial characteristics permit-B the application of the design model for the prevailing con
struction practices. 

The foregoing descriptions numerically define the various design components of the 
flexible pavement system. Although the selected equations provide reasonable evalua
tions of these parameters, other expressions can be used to satisfy local design 
conditions. 
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Figure 2. Typical cross section of a flexible pavement without subbase for a four-lane highway, one 
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Figure 3. Typical cross section of a flexible pavement with subbase through the shoulder for a two-lane 
highway. 
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Figure 4. Typical cross section of a flexible pavement with subbase through the shoulder for a four-lane 
highway, one direction. 
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Figure 5. Typical cross section of a flexible pavement with subbase and drain for a two-lane highway. 

Design Sections 

I 1".o" 

Bituminous Shoulder Surface 

Type "P" Compacted Aggregate 

Granular Subbose 

Subdrain 

-=-~------------------
Bituminous Shoulder Surface - --~ 

Type 'P" Compacted Aggregot, 

Granular Subbose 

Figure 6. Shoulder details. 

Because reasonable variations exist in the design of highway elements, three ac
ceptable cross sections were selected for two-lane and divided multilane highways to 
provide several alternative designs in the model. These arrangements include the fol
lowing distinct designs: 

1. Cross sections without subbase, S1 ; 
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2. Cross sections with subbase, S2 , extended through the shoulders for two-lane 
highways and extended through the right shoulder with subdrain under the left shoulder 
for divided multilane highways; and 

3. Cross sections with subbase and subdrains under both shoulders, S3 • 

Typical details of these cross-sectional designs are shown in Figures 2, 3, 4, and 5 
respectively. The shoulder designs are further detailed in Figure 6 for cross sections 
with subbases and with subdrains. 

Of course, additional cross-sectional arrangements may be incorporated into this 
design model. Because each section represents a different design, an objective func
tion is required for each cross section to permit the optimal selection of flexible pave
ment sections. The best design then is the cross section that minimizes the total 
pavement cost for the specified design parameters. 

Optimization Model 

The optimal design of flexible pavement sections is depicted by the following objec
tive functions for the three different design sections. 

1. Cross sections without subbase: 

Min. sl = 

2. Cross sections with subbase through shoulders: 

( 
c1 D1 L k I c~ A ) 

Min. 82 = 12 X 2,000 + 12 )( 27 

( 
~ D2L kj C,, A ) 

+ 12 x 2,000 + 12 x 27 da 

[ 
C.1 (L + A)] 

+ 12 x 27 

3. Cross sections with subbase and subdrains: 

( 
c3~1L kj c~ B 

+ 12 X 2,000 + 12 X 27 
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where 

total cost of pavement system (dollars per longitudinal foot); 
unit cost of material i (dollars per ton for materials 1, 2, 3, 5, and 8; 
dollars per cubic yard for materials 4 and 6; and dollars per foot for ma
terial 7); 
density of material i (pounds per cubic foot); 
pavement width (24 ft for two-lane and one-way section of divided four-lane 
highways and 36 ft for one-way section of divided six-lane highways); 
thickness of material i (inches); with i = 1 for bituminous surface, 2 for 
stabilized base, 3 for compacted aggregate base, 4 for granular subbase, 5 
for bituminous shoulder surface, 6 for subdrain granular fill, 7 for subdrain 
pipe, and 8 for wearing surface; 
adjustment factor for increase in width of pavement layers; with k 1 = 1.00 
for first layer, k2 = 1.04 for second layer, k3 = 1.08 for third layer, and 
k4 = 1.12 for fourth layer; 
cost of shoulder (dollars per longitudinal foot), where, for two-lane highways, 

( 
C5 D5 ) 

El = 20 X 3.0 12 X 2,000 ( 
C3 D3 ) 

+ 31 
X 

6•0 12 X 2,000 

and for divided multilane highways, 

E2 = 14 x 3.o ( 12 ~s~:ooo) + 19.75 x 6.o ( 12 ~s ~:ooo ) 

H,e, adjustment for the additional cost of the wearing surface, where, for two
and four - lane highways, 

D X (~) X 24 
1 110 

and for six-lane highways, 

(CB - CJ ( 90 ) 
H2 :: 12 X 2 000 D .l X 110 X 36 

' 
A,e, width of shoulder subbase for an embankment slope of 6: 1 (feet), where, for 

two-lane highways, 

Al = [ 22 + 2(d1 + f2 + d3) ] 

and for divided multilane highways, 

[ 
(d + d + d ) ] 

A2 = 14.375 + l 32 3 

B,i = adjusted width of shoulder subbase when subdrains are provided (feet), where, 
for two-lane highways, B

1 
= 5.0, and for divided multilane highways, B

2 
= 

5.875; 
M,e, = cost of subdrain when used under median shoulder only (dollars per longi

tudinal foot), where, for two-lane highways, M 1 = 0.0, and for divided multi
lane highways, M2 + 1.1 (0.075 C6 + C7 ); 

N cost of subdrains under both shoulders (dollars per longitudinal foot), where, 
for all highways, N = 2 x 1.1 (0.075 C6 + C 7); 

Y,e, adjustment for the amount of subbase material replaced by the shoulder sur
face and base (dollars per longitudinal foot), where, for two-lane highways, 
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258 X C
4 

y 1 = 12 X 27 

and for divided multilane highways, 

162 X C4 

y 2 = 12 X 27 
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Z,e, adjustment for the amount of subbase material added above the level of the 
pavement subbase under the shoulders, where, for two-lane highways, 

50 X C 4 
zl = 12 X 27 

and for divided multilane highways, 

60 X C 4 
z2 = 12 X 27 

Thus, the objective of this optimal selection of flexible pavement components is to min
imize the total cost of the pavement system. The various material and layer notations 
of the design model are graphically described in the figures illustrating the design 
sections. 

To quantify the boundary conditions to which the optimal design of the flexible pave
ment components is subject, the following constraint equations are necessary to com
plete the realism of this design model. 

1. The selection of layer thicknesses must satisfy the structural number re
quirement: 

where ai = coefficient of relative strength of material i, and SN = structural number 
for design. The coefficients of relative strength are given in Table 1 for the four pave
ment materials used in this design model. 

2. The total thickness of the flexible pavement must be at least equal to the mini
mum thickness required by an influencing environmental consideration: 

where T min = total minimum thickness of flexible pavement to satisfy environmental 
conditions. 

The remaining constraining equations are required to account for the physical limi
tations inherent in the construction of the various layers of a flexible pavement. The 
following seven relationships complete the mathematical representation of the concept 
for the optimal selection of flexible pavement components. 

3. The bituminous surface course of 
a primary highway is at least 3.0 in. in 
thickness; that is, d 1 ;cc 3.0. 

4. If a stabilized base is selected for 
the pavement system, the minimum thick
ness is 4.0 in.; that is, d2 = 0 or d2 ;cc 4.0. 

5. If a compacted aggregate base is 
included in the flexible pavement, a mini
mum thickness of 4.0 is necessary for 
construction purposes; that is, d3 = 0 or 
d3 ;cc 4.0. 

TABLE 1 

PAVEMENT MATERIAL SPECIFICATIONS 

Mate ria l 
Notat ion 

ct, 
ct, 
ct, 
ct, 

Coelflcl1111l of 
Material Description Rclnt ivo Sll'ength 

In ;) 

Bituminous surface 0.44 
Stabilized base 0.24 
Compacted aggregate base 0.14 
Granular subbase 0,08 
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6. If a granular subbase is specified from the optimal selection, at least a 4.0-in. 
layer is required; that is, d1 = 0 or d4 " 4.0. 

7. Because rutting and shoving of the pavement may result under high load repeti
tions for excessive thicknesses of bituminous mixtures, the maximum thickness of the 
bituminous surface is 10.0 in.; that is, d 1 s 10.0. 

8. The maximum thickness of the stabilized base is established at 10.0 in. because 
of large vertical deformations that may result in this base course if excessive thick
nesses of bituminous mixtures are used; that is, d2 s 10.0. 

9. An upper limit of 20.0 in. is set for the thickness of the granular subbase to 
conform with present construction practice in Indiana; that is, d4 s 20.0. 

In summary, the optimal design of flexible pavement components is predicated on 
determining that minimum-cost combination of layer thicknesses that satisfies the real 
and practical constraining conditions. The selection of actual in-place construction 
costs enhances the mathematical representation of the flexible pavement design pro
cess and provides further economies in the highway construction industry. 

SOLUTION 

The final step in determining the optimal design of flexible pavement sections is to 
obtain a solution to the design model. This solution optimizes the objective function 
and is subject to the set of constraining situations. The design model was programmed 
for solution on digital computers using FORTRAN IV language. 

The optimization process is performed in two stages. In the first phase, the follow
ing nine separate arrangements of flexible pavement components are optimized by a 
linear programming algorithm : 

1. Bituminous surface and stabilized base; 
2. Bituminous surface, stabilized base, and compacted aggregate base; 
3. Bituminous surface, stabilized base, and granular subbase with subbase through 

shoulders; 
4. Bituminous surface, stabilized base, and granular subbase with subdrains; 
5. Bituminous surface, stabilized base, compacted aggregate base, and granular 

subbase with subbase through shoulders; 
6. Bituminous surface, stabilized base, compacted aggregate base, and granular 

subbase with subdrains; 
7. Bituminous surface and compacted aggregate base; 
8. Bituminous surface, compacted aggregate base, and granular subbase with sub

base through shoulders; and 
9. Bituminous surface, compacted aggregate base, and granular subbase with 

subdrains. 

Six of these nine layered combinations of pavement components represent all possible 
flexible pavement systems for the cross sections with subbase, S2 , and for the cross 
sections with subbasc and subdrains under both shoulders, S3 • Only three arrange
ments of these components are possible for the cross sections without subbase, S1; 

they include combinations 1, 2, and 7. 
The other phase of the solution involves the selection of that pavement-component 

arrangement that minimizes the total cost of the pavement system for the selected unit 
costs of the pavement materials. This final solution exists for the specified pavement 
design and material cost parameters. Each flexible pavement section fulfills the de
sign objectives for the least total cost. 

DESIGN EXAMPLES 

To illustrate the application of this design model, two typical examples for the de
sign of flexible pavements are shown in Figure 7. In each case, the computer output 
provides a listing of the stipulated design data and the material specifications. After 
these design parameters are summarized, the optimal solution is tabulated in terms 
:>f the best design section and the required thicknesses of the pavement components. 



Cf", I C,'1 CArA 

NllMtH: M Lf- LANES•••••••••••••••• 
CUR ••••••••••••••••••••••••••• 

2 
'.co 

AV EttAGE DI\ILY TRAFFIC l'iH zqco. VEH. /OAY 

AVE llAGE Oi', IL Y TRAFFIC 1Qe6 
8011"1 CJRECT ICN S 

52l0. VEH,/DAY 
00TH DIRECTIONS 

DESICN PEHICD •••••••••••••••••• 
PERCENT TllUCKS •••••••••••••••• • 
!' EM. CE NT ~LLTIPLE UNITS ••••••••• 
DES ! GN ',,HEEL LOAC' • •• •• •• ••. •••. 
KE G IONAL Flt.CruR ••••••••••••••• 
PAVf,-.ENT TERMINAL SE1U11CA81lll'I' 

MAT C: RI/ILS SPECIFICATION S 

ZC,CO YEARS 
20.00 
25.00 
lCCCO. LB, 
l, CO 
2. 50 

COST OEt-.S I TY 

t.H f t...H IN, ',,[ARING SUHFliCE ,c. 00 
61 TUMINCUS SURFACE 8/i SE ~- co 
S TAB IL llEC BASE a.co 
COMP/iC TED AGGREGATE B~SE 1. 25 
GKANULA~ ~UABASE ....... l. l 5 
5.IIOUL DER SURFACE ······· 8 . 50 
AGGREGATE FOR SUBDkAlt-. 5 , 00 
PIP ES FCR St; • ORAIN ..... t .. 70 

SCLUTION 

NUMBER OF LANES • •• •• •• •• •••• ••• 
PERCENT MULTIPLE UNITS ...... , •• 
STRUCTURAL NUMBER ........... . . 

1 /TCN 
, /TCN 
l/TO, 
1/TCN 
I /YO) 
l /TQN 
I /VO) 
l/Fl 

2 
25.00 

3,q5 

1'1'5. 
lit'>. 
135. 
\ '10. 

l45. 

TOTAL THCKNESS • • .... ,. ...... . M,2 INCHES 
TRUCK FAC lOR • • • •. ••• •. •• •• • •••. 132. lBK/OAV 

OPY' ""-l SOL UT I CN 

LROSS-SECll • N WITHOUT SUBBASE 

BITUMINOUS SURFACE 
STABILIZED BASE 
COMPACTED AGGREGATE BASE 
GRANULAR SUBBASE 

COP 

THICKNESS 
4,2 I NC HES 
O, I NC HES 

15.0 INCHES 
O. INCHES 

19,32 • PER LCNG. FT. 

ALTERNATIVE SOL UT ION I SU80PT IH•LI 

CROSS-SEC I ICN WI IH SUBDRA IN 

BITU..-INCUS SURFACE 
STABILIZED BASE 
COMPACTED AGGREGATE BASE 
GRANULAR SUBBASE 

COST 

THICKNESS 
6.o rNcns 
0, INCHES ,.a INCHES 
9,2 INCHES 

11,45 I PER LCNG. FT. 

ALTERNATIVE SOLUTION I SUBOPTIHALI 

CROSS-SECTION WITH SUBBASE THROLGH SHOULDER 

BITUMINGUS SURFACE 
STABILIZED BASE 
COMPACTED AGGREGAJE BASE 
GRANULAR SUBBASE 

COST 

THICKNESS 
6.0 INCHES 
o. INCHES 
4.0 INCHES 
q.z INCHES 

22.63 $ PER ltNG. FT. 

L~/F13 
LB/F 13 
l8/FT3 
L0/F13 

LB/F lJ 

DESIGN C.6TA 

NUMBER CF LANES •••••••••• • ••••• 
CHR ••••••••••• • •••• , •••••••••• 
AVERAGE DA IL Y TRAFF IC l9t8 

AVERAGE DAILY TRAFFIC 1988 

DESIGN PER 10D ................. . 
PERCENT THUCKS •••• ••,. • ••• •• ••. 
PERCENT MLLflPLE UNITS ••••••••• 
DESIGN "HEEL l • AO ••• • •., •• , •••• 
REGIONAL FACTOR • ••• ••••••• •••• 
PAVEMENT TERMINAL SER~ICA0lll TY 

MATERIALS SPECIFICATIONS 

COST 

81 TU"4TN, .,EARING SURFACE 6, 85 
8lTUHlNOUS SUM.FACE BA SE 5.,cn 
STABILIZEC BASE 5.51 
COMPACTED AGGA.EGATE BASE 2. 87 
GRANULAR SU8BASE . ...... 3. 33 
SHOULDER SURFACE 1. qr, 
AGGREGATE FOR SUBDRA It-. 4i. 35 
PIPES FDR S~BO~A I N . .... C.72 

IOLUTION 

NUMBER GF LANES ••. •• •. •• •• .... , 
PERCENT fi'IULlIPLE UNITS ••••••••• 
STRUCTURAL NUMBER •• •• •• •• • •••, 

2. 30 
Q'1]8. 

17830, 

2c. co 
l 7. co 
5D,DO 
l CCOO. 
1.00 
2. 50 

1/TCN 
i/H:N 
l/TCN 
i/TCN 
l/YD3 
1,/TCN 
I/Y03 
l/F T 

• 
50, 00 

5.67 

YEH. /0,A \' 
0011-1 CI RECT IONS 
YEH./OJY 
HOTH DIRECTIONS 
YEARS 

LB, 

DE'S ITV 

145, L8/F T3 
145. L8/FlJ 
l 35, LB/FT3 
1,0, L 8/ FT 3 

145. L8/FT3 

TOTAL THICKNESS , ............. . 21, 3 I NCHFS 
TRUCK FACIOA ••••••••••••••••••• 5 H , IBK/OAY 

OPlll"Al SOLUTICN 

CKOSS-SECIIDN WITHOUT SUBBASE 

BITUMINOUS SURFACE 
STABILllEO BASE 
COMPACTED AGGREGATE BASE 
GRANULAH SUBBASE 

COST 

THICKNESS 
6,1 INCHES 
0, INCHES 

21.2 INCHES 
0, INCHES 

18,25 I PER LONG. FT. • 

ALTERNATIVE SOLUTION ISUBOPTIHALI 

CRD ss- SEC l!CN w r TH SUBDRA r N 

B !TUM !NOUS SURFACE 
STABILIZED BASE 
COMPACTED AGGREGATE BASE 
GRANULAR sueBASE 

COST 

TH I CKNE SS 
9,0 INCHES 
D, INCHES 
4.0 INCHES 

14,3 INCHES 

20. H I PER LONG. FT. 

AL TERNA Tl VE SOL UT ION I SUBOPTIHAL I 

CROSS-SECTION WITH SUBBASE THROUGH SHOULDER 

BITUMINOUS SURFACE 
STABILIZED USE 
COMPACTED AGGREGllE BASE 
GRANULAR SUBBASE 

COST 

THICKNESS 
9.0 INCHES 
O. INCHES 
4,0 INCHES 

14.3 INCHES 

23, 14 I PER LONG. Fl. 

Figure 7. Example 1, design of flexible pavement for primary highways. 
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To permit a cost-effectiveness evaluation, the next two best solutions are generated 
for the remaining design sections. These alternate suboptimal solutions provide an 
economic measure of the additional cost for designs other than the optimal cross 
section. 

The first situation involves a two-lane highway with a primary classification. The 
other example is a four-lane highway with pavement material costs that differ from 
those corresponding values in the first illustration. The rather significant increases 
in flexible pavement costs are evident when the alternate suboptimal solutions are com
pared to the optimal solutions in the two design examples. 

Real economies are achieved when engineering designs are formulated to permit the 
selection of the optimal answer. This design model affords the highway engineer a 
practical and realistic method for the optimal design of flexible pavement sections. 
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