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A solution technique is presented for the analysis of the stresses and dis
placements induced in a viscoelastic three-layered body subject to bound
ary loads with different time configurations. The technique used is com
posed of two parts: (a) the use of a modified correspondence principle in 
the form of hereditary integrals to convert the elastic solution (to a bound
ary value problem with time-boundary conditions of the Heaviside type) 
to the viscoelastic solution, and (b) the use of the principles of the re
sponse of linear systems to imposed excitations to obtain the viscoelastic 
solutions to boundary value problems with time-boundary conditions other 
than the Heaviside type. The underlying principles of this method are dis
cussed, and an example of the use of the method in the analysis of the 
stresses and displacements induced in a three-layer viscoelastic body 
subjected to uniformly distributed normal loads of the stationary, re
peated, and moving types is presented. 

•THIS PAPER presents a method of stress analysis for pavement structures by rep
resenting it as a three-layer mathematical model. The model is capable of predicting 
the response of the pavement to the following three sets of variables: (a) the mechanical 
properties of the materials in the layers, (b) the loading characteristics, and (c) the 
geometric parameters. Under heading (a) the quality of each layer and that of the com
bination of layers is considered. Under heading (b) the pertinent parameters used are 
the magnitude of the load, its duration (static, repeated, moving), and the frequency of 
the repetition. Under heading (c) the thickness of each layer, the offset distance of the 
load, and the location of the point of interest are considered. 

STATEMENT OF PROBLEM AND METHOD OF SOLUTION 

The geometrical model selected is a multilayered, semi-infinite half space consist
ing of three distinct layers as shown in Figure 1. It is assumed that the material prop
erties of each layer can be characterized as linear elastic or linear viscoelastic. The 
load is considered to be uniform, normal to the surface, and acting over a circular 
area. The following loading conditions are considered: 

1. A stationary load is applied and maintained at the surface (Fig. 1). 
2. A repeated load is applied with a specified frequency to the surface of the pave

ment (Fig. 2). 
3. A load travels at a constant velocity V along a straight path on the surface of the 

system (Fig. 3). 

The variables of interest are the components of the stress tensor and the displace
ment vector at any point in the system. 

The results for the normal deflection on the surface are presented in detail in this 
paper. [The other stress and deflection components can be determined in a similar 
manner (4).] 

Sponsored by Committee on Mechanics of Earth Masses and Layered Systems. 

45 



46 

1-<l-1 Q(tl 

111111111 
I 

I 
? tl .. •I 

f 
I. 

DURATION 01 
"'"'"'~ LOADING 

PERIOD OF 

I 
Till T(2) Tl3) T!4) 

Figure 1. Cross section of three-layer system. 
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Figure 2. Time-varying repeated load 

The correspondence principle is used configuration. 
to obtain the viscoelastic solution for the 
stationary load case. In addition, the 
principle of the response of initially re-
laxed linear systems to imposed excitations is used to obtain the solutions for the mov
ing and repeated load boundary conditions. This method of analysis has been selected 
largely because the viscoelastic behavior of the system materials is assumed to be 
represented by stress-strain relations of the linear and nonaging type, using hereditary 
integrals. 

The steps involved in this analysis consist of the following: 

1. Obtaining the elastic solution for the surface deflection of the system due to a 
stationary applied load (2). 

2. Applying the "corr espondence principle" to the above solution, in the form of 
hereditary integrals for the stress-strain relations, to obtain the viscoelastic solu
tions (2). 

3. O btaining the viscoelastic solution for the surface deflection due to the repeated 
and moving loads, through the use of Duhamel' s superposition integral for linear systems. 
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Figure 3. Moving load on viscoelastic half 
space. 

The Stationary Load 

The solution for the surface deflection of a 
three-layer linear elastic half space was first 
derived by Burmister (!) for an incremental 
boundary load -mJ0 (mR). The present analysis 
uses, for mathematical convenience, an incre
mental boundary load -J0 (mR) J 1(ma). The re
sulting expressions are then integrated from 
0 to = with respect to m, and multiplied by qa 
to yield the correct response of the system to 
the following boundary stress: 

where 

q = intensity of the applied load, and 
a = the radius of the loaded area. 

J 0 () and J 
1
() are Bessel functions of the first 

kind zero and first order respectively. 

(1) 

Using this approach, the stationary load solu -
tion for the surface deflection of a pavement 



system with elastic layers is given by the following equation: 

where 

H m = J 0 (mR) J i(ma) product of Bessel functions, 
l[J (m, -H) =a rational function of elastic constants and their products, 

m = a dummy variable of integration, 
R = the offset distance at which a solution is desired, and 

-Hi =the value of the Z coordinate at the surface of the layered system. 
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(2) 

To obtain the viscoelastic solution, the stress - strain relations of the viscoelastic 
layers are assumed to be of the following form: 

f t 0 
- cri (R, Z, T) -;--- DcRP· (t - T )dT 

Q u7" 1 

where 

DcRP· (t) =creep function of each layer (i = 1, 2, 3), 
1 

Ei(R, Z, t) =strain at location (R, Z) at time t, and 

a(R, Z, t) = stress at location (R, Z) at time t. 

(3) 

The equivalent creep compliance for each layer in the viscoelastic domain will then 
be given in an integral operator form as 

f t 0 
DcRP· (t) = DcRP· (0) () - () ~ DcRP· (t - r)dT 

l 1 O u7" 1 
(4) 

When the correspondence principle (3) is applied to the elastic solution through the 
use of the creep integral operator in Eq-: 4 for each layer, the viscoelastic solution for 
the surface deflection under a stationary load is obtained as 

Ws(R, -Hi, t) = qa f = H m i/J(t, m, -H) dm 
0 m 

(5) 

The surface deflection is time-dependent and the variable responsible for this time
dependence is i/J(t, m, -Hi), which is the viscoelastic counterpart of i/J(m, -Hi) in Eq. 2. 
If the mechanical properties of the system are changed, l/J(t, m, -Hi) also changes. 

The surface deflectionWs(R, -H1 ,t)dueto a step load of intensity q applied to the 
surface of the system is a step response function of the system. It can be used when 
convolved with a time-varying load other than the step type applied to the boundary of 
the system to obtain the surface deflection for the new time-varying loading condition. 

The Repeated Load Solution 

Given Ws(R, -Hi, t) as the response of the linear viscoelastic system to a step load
ing, the response due to a repeated load Q(t) can be determined from the following su
perposition integral: 

f t aQ(t) 
WR(R, -H" t) = aT Wg(R, -H" t - r)dT 

0 
(6) 
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[The lower limit of the integral accounts for the discontinuities that may initially exist 
in Q(t) or W(R, -H 1, t).] 

Figure 2 shows the repeated loading pattern used in this study where 

sin W'T' for [ (N - 1) period] ,; 7' ,; [ (N - 1) period + duration] 
Q('T') = 

0 for [ (N - 1) period + duration] ,; 7' ,; [ (N) period] 

for any number of repetitions N of the applied load (N = 1, 2, 3 ... ). A repetition of load 
is completed at the end of every period of application. 

In this study, Ws(R, -H» t) has been represented by a finite series of exponential 
n 

terms of the form L Ai exp -(t - 'T') Bi. The method of determining the coefficients 
i=l 

of Ai and the exponents Bi of such a series has been described in detail elsewhere (!, 
Appendix II). 

The Moving Load Solution 

When the load moves with a constant velocity V along a straight path on the surface 
(Fig. 3), the argument R in function J 0 (mR) of Eqs. 2 and 5 is R-Vt, where R is the 
offset distance of the load at zero time. The incremental load exciting the system will 
have the form -J

0
[m(R - VT)JJ /ma)H(t - 7') for loading and +J 0[m(R - V'T' )]J 1 (ma)H(t - 7'1 ) 

for unloading (>7' 1 >7' ), where Hlt) is the Heaviside step function. 
This form of loading thus corresponds to the summation of all such incremental 

terms over time. By integrating them over m and multiplying by qa the total boundary 
load is obtained in the following form: 

azl z = -H = -qa f r:o J 
1
(ma) {~~l J 0[m(R - V'T'i)] [H(t - 'T'i) -H(t - 'T'i+l)] 

1 0 i=l 

+ J 0 [m(R - V'T'N)] H(t - 'T'N)}dm (7) 

Then for appropriate values of l:J.7' = 'T'i+ 1 - 'T'ii the discrete load application given above 
corresponds to the continuous application of a moving load. The response for this case 
in terms of the surface deflection at location (R, -Hi) due to a moving load is given by 

WM(R, -Hv t) = qa 1 L J 0 [m(R - V'T'i)J [ljJ(m, Hi, t - 'T'i) ! = {J (ma) N-1 

0 m i=l 

-1/>(m, Hp t - 'T'i+l)] + J 0 [m(R - V'T'N)] ijJ(m, Hp t - 'T'N)}dm (8) 

from which the solution at any time tN can be obtained. 
In this arrangement again the l/J(m, H

1
, t - 7' 1) terms have been represented by finite 

m 
exponential series of the form L Gj exp -taj where Gj and aj are determined using 

j=l 
techniques previously described (i, Appendix II). 

RESULTS 

The following presentation is divided into two sections. A discussion is first pre
sented on the dimensionless system parameters that describe the pavement system. 
Then the capabilities of the model are discussed with the aid of several typical pave
ment structures. 



Dimensionless Pavement Parameters 

The pavement in this analysis is definedas a 
three-layer structure with a given set of dimen
sionless variables (Fig. 4). Each layer is in
compressible, and the material in each layer is 
represented by a dimensionless creep compli
ance function. For ease of computation and 
use, the normalizing factor for the creep com
pliance of each layer is the value of the creep 
function of the third layer at infinity, DJn). 

All the components of the stress tensor at 
any point in the structure are expressed in 
terms of the intensity of the load. For the 
components of the displacement vector, the nor
malizing factor is the product of the intensity of 
the load q, the creep function of the third layer 
at infinity D

3
(oo), and the height of the first 

layer Hl' 
The following geometric variables are con

sidered: the offset distance of the load R, the 
heights of layers one and two, H1 and H2 re-
spectively, the depth of interest Z, the radius 

VISCOELASTIC 
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v: 0.5 
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• q 

-2 -I 0 I 
LOG DIMENSIONLESS TIME, t/r 

49 

R/H1 

Figure 4. Dimensionless pavement system 2. 

of the loaded area A-all of which are presented in dimensionless forms in terms of the 
height of the first layer. In addition, all times are dimensionless and in terms of an 
arbitrary time factor, T. 

The Model Response 

The response of the model is discussed in three sections. First, the influence of 
the mechanical properties of the layers on the response of various pavement systems 
is discussed. Next, the influences of the loading variables on the response of two pave
ment systems are considered. Third, the influences of the geometric variables are 
discussed. 

The Mechanical Properties of the Layer Materials-Four different pavement systems 
were selected to investigate the effect of the mechanical properties of the materials 
used in each layer on the response behavior (Fig. 5). 

The material in each layer is assumed to be incompressible, linear, homogeneous, 
and isotropic. Due to the lack of availability of meaningful real data, the four systems 
used for the discussion are selected to demonstrate qualitatively the influence that the 
material properties may have on the pavement response. For this reason, no absolute 
values are given for the magnitude of the creep function of any layer in any of the sys
tems used. 

System 1 is composed of completely elastic materials. System 2 is completely 
viscoelastic. Layer one in system 3 is viscoelastic, and the second and third layers 
are considered elastic. System 4 is assumed to be partially viscoelastic by consider
ing that only the third layer is viscoelastic. 

System 2 (Fig. 4) is used as the basis for comparison. In this system each layer is 
viscoelastic and the creep compliance function of each layer has the same value at in
finity. This provision serves as a check on the results of the static loading condition. 
At very large times, the creep functions of the three layers have the same value; the 
system acts as a homogeneous elastic half space and Boussinesq' s elastic solution 
should thus be obtained. 

In dimensionless form, systems 2 and 4 have the same initial values for the dimen
sionless creep functions [D(t)/D 3 €::o)J in their respective layers; systems 1 and 3 also 
have the same initial values for the dimensionless creep functions in their respective 
layers. 

Vertical Deflection- Figure 6 represents the vertical deflection under the center of 
the loaded area on the first interface for systems 1 through 4. It was mentioned before 
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that the zero time value of the creep func
tions for systems 1 and 3 are the same; 
therefore at zero time (not shown because 
of the logarithm scale) the two systems 
undergo the same magnitude of deflection. 
However, as the load is maintained, sys
tem 3 continues to deflect more because 
of the viscoelastic characteristics of its 
top layer. This shows the effect of the 
stiffness of the first layer on the deflec
tion. The stiffer the surface material, 
the lesser is the deflection of the pave
ment. 

Systems 2 and 4 have the same initial 
values of deflection. System 2, however, 
accumulates more deflection than system 
4. Because the third layers of both sys
tems possess the same mechanical prop
erties, the discrepancy in results must be 
due to the uppermost layers; this supports 
Burmister's conclusion that when better 
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Figure 6. Influence of material variables on vertical 
deflection factor-4 systems. 

quality materials are used in the base and surface course of the pavement, the pave
ment provides a blanket effect around the subgrade. 

All the systems shown in Figure 5 are elastic at long times with system 4 displaying 
the least deflection factor and system 2 the greatest. In terms of stiffness, at long 
times system 2 is the weakest of all the systems and, therefore, deflects the most. Be
cause systems 2 and 3 are later used to investigate the influence of the loading condi
tions and geometric variables on the mechanical response, it will be worthwhile to 
examine them more closely at the present time. 

For very small values of time, system 2 is stiffer than system 3. Therefore, at 
short loading times the deflection factor for system 2 is less than that for system 3 
when loads of the same magnitude are used. With the passage of time, however, system 
2 becomes less stiff when compared to system 3. From the shape of the deflection 
curves, this occurs at dimensionless time of approximately one. When this event oc
curs, the deflection factor on the first interface of system 2 exceeds that of system 3 
and continues to do so until it reaches a plateau. 

For the stress (Fig. 7), however, system 3 consistently displays higher values of 
developed stresses than system 2 except at very short times where the stresses of sys
tem 2 are greater than those for system 3 (not shown in the figure). The reason for 
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stress factor-4 systems. 

this behavior is that the two lower layers 
of system 3 are elastic and have stiffness 
values that do not change with time. The 
stresses developed on the first interface 
of system 3 increase considerably with 
time because of the rigidity of the bottom 
two layers. The lower layers of system 2 
offer no such resistance; therefore, the 
stresses developed are not as great as 
those for system 3. 

Vertical Stresses- Figure 7 shows the 
curves obtained for the vertical stress fac
tor on the first interface for systems 1, 2, 
3, and 4 (Fig. 5). The stress es similar 
to vertical deflection start with the same 
initial values for systems 2 and 4 and for 
systems 1 and 3. 

However, while the stress on the first 
interface of system 2 increases with time, 
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that on system 4 decreases. This may be 
because the stiffness of the upper two lay
ers of system 4 remains fixed while that 
of the lower layer decreases with time. 
The overall effect is to cause a decrease 
inthe stresses on the first interface. For 
elastic system 1, the stresses remain 
constant with time as expected. 

In Figure 7, the stresses developed on 
the first interface of system 3 exceed 
those of system 2. This increase is due 
to the differences between the two systems, 
which resulted in a difference in their 
vertical deflections shown in Figure 6. 

Shear Stress-Figure 8 shows the effect 
oi the mechanical propertie::> or the layer 
materials on the shear stress developed 
on the first interface directly under the 
edge of the loaded area. The effect is al-
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Figure 8. Influence of material variables on shear 
stress factor-4 systems. 

most similar to that for vertical stress except for system 4, where the shear stress 
slightly increases with time while the normal stress showed a slight decrease. This 
may be because the deflection on the interface under the axis of the load is increasing, 
causing an increase in the curvature of the interface. This would cause an increase in 
the shear stress because such stresses, as Burmister shows, are deflection depen
dent (6). 

The results indicate that the nature of the system response depends on the mechan
ical characteristics of the materials in the layers. The interaction between the mate
rial properties of each layer produces what may be called a system function that is not 
only a function of the location of the point of interest but also of the kind of the response 
function being investigated (i.e., a stress or a deformation output). 

Loading Conditions-The vertical stress, the vertical deflection, and occasionally 
the shear stress are presented to investigate the effect of the loading conditions and 
geometric variables. 

The Stationary Loading Condition-For the stationary loading condition, the magni
tude of the components of the stress and displacement factors generally increases with 
the increase in dimensionless time factor for all systems, as shown in Figures 6, 7, 
and 8 for vertical deflection, vertical stress, and shear stress respectively. 

It is interesting to note that for both systems 2 and 3 the magnitude of all the three 
responses tends toward an asymptotic value at a value of dimensionless time corre
sponding to that when the dimensionless creep compliance functions become asymptotic. 
The system response therefore depends on the response characteristics of the layer 
materials. The extensive variation in stress and deformation with time under the con
stant load for both systems is a marked contrast to the constant distribution (of these 
quantities) exhibited by a structure with elastic properties. This phenomenon may have 
an important influence in the design of such structures. The rational design of the 
structural components (especially those exhibiting viscoelastic response) should, there
fore, use the complete history of the stress and displacement distribution, rather than 
a single value of these components. 

At values of dimensionless time greater than 1, 000, the magnitudes of the stress and 
displacement components are equal to those obtained when the system behavior is 
elastic; i.e., the mechanical properties of the materials in the layers are equivalent to 
those of the given creep functions at infinity. 

This capability serves as a check on the validity of the viscoelastic representations 
because the results thus obtained are comparable to those acquired by other authors for 
elastic systems having the appropriate properties. The model can therefore account 
for the manner of variation of all the pertinent stress and deflection factors at any point 
in three-layer pavement structure for this boundary condition. 
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Figure 10. Influence of duration on vertical stress 
factor. 

The Repeated Loading Condition-For this loading condition, the influence of the 
duration and period of the loading on the response of systems 2 and 3 was investigated 
using the vertical deflection on the surface directly under the center of the loaded area 
and the vertical stress on the first interface. 

A load repetition is considered to be completed at the end of the period of the load
ing (see Fig. 2), and the magnitude of the stress or deflection factor is measured at 
this time. The results that are presented for a dimensionless period of 0.05 and dura
tions of the loading equal to 0.005, 0.01, and 0.02 can be noted in Figures 9 and 10; the 
stress and deflection factors of the systems increase with increasing number of load 
repetitions. 

Figure 9 shows the results obtained for the vertical deflection on the surface. The 
magnitudes of the deflection factor for system 3 are consistently lower than those for 
system 2. This indicates that system 2 behaves more viscously, a result that is evi
dent from the dimensionless creep compliance functions for this system (Fig. 4). 

Figure 10 shows the curves obtained for the vertical stress factors on the first in
terface. The stresses developed in system 3 are again consistently higher than those 
for system 2. This is because, for the same load, the system that is stiffer will de
velop the greater stresses. An examination of the creep functions for systems 2 and 3 
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Figure 11. Moving load-vertical deflection factor, system 2. 

in Figure 5 shows system 3 to be 
stiffer than system 2. 

For each system, the greater the 
duration of the loading the greater 
is the developed stress or deflection 
factor. This indicates that the se
verity of the structural response is 
directly related to the duration of 
the loading. The longer the load re
mains on the system, the greater is 
the damaging effect. 

The Moving-Load Condition
Figures 11 through 13 show the man
ner in which systems 2 and 3 respond 
to the application of a moving load 
traveling with a constant velocity 
along a straight line on the surface 
(see Fig. 3). The curves in Figure 
11 are for the vertical deflection on 
the surface. The vertical stress 
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and the shear stress on the first interface are shown in Figures 12 and 13 respectively. 
The curves indicate that the system response in terms of stress and deflection fac

tors is not symmetrfoal with respect to time. The viscoelastic behavior of the systems 
is such .that there is a time lag between the observance of a response and the time of 
application of the agent causing it. Therefore, at the time when the load is directly 
over the point of interest, the magnitudes of the response in terms of stress and deflec
tion factors are not at the maximum. In addition, it must be noted that the maximum 
value of either stress or deflection factor is obtained after the load has passed over the 
point. 

The observed time lag in the viscoelastic responses is also velocity dependent. The 
greater the velocity of the moving load, the smaller is the time lag. This velocity de
pendence is discussed using the solutions obtained for the vertical deflection of systems 
2 and 3. Figure 11 shows the curves obtained for the vertical deflection of system 2. 
It is seen that the peak deflection of the system increases with decreasing velocity fac
tors, indicating that the longer the load remains within the regionofinfluencethegreater 
is the damaging effect that it has on a point of interest within the structure. It is also 
interesting to note that the lag in response time increases with decreasing velocity fac
tors, for these same reasons. The same behavior is displayed by system 3. 

The results obtained for the vertical stress and shear stress factors on the first in
terface of systems 2 and 3 also show a consistent behavior as indicated in Figures 12 
and 13 respectively. In the case of the shear stress factor, however, there are two 
peaks in the curve. This indicates that as the load approaches the point the shear stress 
builds up to some limiting value and starts to decrease. At the time when the load is 
directly over the point, the shear stress is zero. However, the superposition of effects 
from previous loads actually prevents the total shear stress from going to zero. The 
effect of the decrease is to cause a marked reduction in the shear stress. As this load 
moves away from the point, the shear stress builds up again to a maximum peak and 
decreases. 

The Geometric Variables-The height factor, depth factor, radius factor, and offset 
distance factor are discussed in the following paragraphs. 

The Height Factor of the Second Layer-The influence of the height factor on the sys
tem response is investigated using the vertical deflection factor on the surface of sys
tems 2 and 3 when they are subjected to repeated loading. 

Figure 14 shows that for both systems the deflection increases with the number of 
r epetitions for a fixed value of the height factor. The deflection factors for a given 
number of repetitions, however , dec r ease with increasing H2/H 11 indicating that the 
thicker the system, the lower are the deflections. An alternative method of lowering 
surface deflection is to have stiffer materials in the layers, as was discussed earlier. 



The dependence of the surface 
vertical deflection factor on the 
height factor of the second layer is 
more marked for system 3 than for 
system 2. For system 3, this 
marked dependence is displayed at 
every load repetition. At lower 
numbers of load repetition the de
pendence is pronounced. At higher 
levels it is absent. This is not sur
prising when the mechanical prop
erties of system 2 are taken into 
account (Fig. 5). Because all the 
creep functions of system 2 tend to -
ward the same value at long times, 
one would expect the system to be
come homogeneous eventually. When 
this occurs, the deflection at the 
surface is independent of H/H 1 be-
cause the system is a semi-infinite 
homogeneous mass. 
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Figure 14. Influence of height factor on vertical deflection 
factor. 

The Depth Factor-The influence of the depth factor is investigated using the verti
cal deflection under the center of the loaded area. The curves so obtained for both sys
tems 2 and 3 are shown in Figure 15. There is a marked reduction in vertical deflec
tion through the layers as shown in this figure. The reduction is greater as the number 
of load repetitions increases. For points within the third layer, an increase in the 
number of repetitions does not cause significant increase in the deflection. However, 
this effect is more severe for points that are nearer to the point of load application. 

The Radius Factor-The effect of the radius factor was investigated using the verti
cal deflection factor on the first interface directly underneath the load (Fig. 16). The 
curve generally indicates that, as the radius of the loaded area is increased, the de
flection is accordingly increased. Again system 2 deflects more than system 3 for 
reasons previously discussed. 

The damaging effect on the first interface increases considerably with the increase 
in the size of the loaded area confirming the rather obvious result that for a given 
period and duration of loading heavier loads do more damage than lighter ones. 
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The Offset Distance Factor- Figure 
17 shows that the surface deflection 
factor decreases with increasing offset 
distanceforbothsystems2and 3. This 
result is what is expected: the effect 
of the applied load is more severe near 
the point of interest. 

SUMMARY AND CONCLUSIONS 

The preceding discussion has served 
to emphasize the fact that the physical 
characteristics of the pavement system 
depend, among other things, on geo
metric measurements such as thick
ness, arrangement of the component 
layers, and the basic properties that 
characterize material behavior. The 
system response consequently involves 
the behavior of the physical structure 
when it is subjected to load and climatic 
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Figure 17. Influence of offset distance factor on 
vertical deflection factor. 

inputs. When these act on the system, a condition that describes the mechanical state 
results. Measurable quantities such as the deformation and stress are then acquired. 
These quantities are calculated in this study based on the assumption that the material 
in each layer is linear viscoelastic. 

The model presented accounts for the response behavior of a three-layer linear 
viscoelastic system. It is capable of predicting the response of pavement structures 
in terms of the developed stresses and displacements at any location. 

In the development of the model, however, several assumptions were made. For 
instance, the effects of inertia and the fact that the real structure has finite geometrical 
boundaries are neglected. The materials in layers are assumed to be linear, homo
geneous, and isotropic. The validity of such assumptions must therefore be further 
investigated. 

In addition, the determination of realistic inputs other than material properties inlo 
a suitable model for the stress and deformation analysis should be investigated. A 
proper and adequate identification of the characteristics of the applied load and the de
termination of appropriate failure criteria for existing pavement structures would aid 
in this area. 

The present viscoelastic analysis is believed to be a step in the right direction pri
marily because, unlike the linear elastic analysis, the rate and accumulation effects, 
the influence of parameters such as the duration of loading, the system geometry, the 
system properties, and the load configuration on the mechanical response of the sys
tem can all be accounted for. 
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