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There are a number of considerations that influence the factor of safety to 
be used in the engineering design of a foundation resting on a cohesive 
soil. Broadly speaking, these may be divided into uncertainty considera
tions and cost considerations. The former pertain to the evaluation of ap
plied loads, soil properties, and analytical procedures, whereas the latter 
are concerned with the cost of changing the foundation size and the total 
cost of failure, if it should occur. In this work, probability functions are 
used to represent these uncertainties, and a rational procedure is advanced 
to determine safety factors associated with the bearing capacity of cohesive 
soils. 

•THE uncertainties associated with loading, soil properties, and analytical procedures 
render very difficult the estimation of a safety factor for the bearing capacity of a co
hesive soil. To be sure, the experienced engineer with an appreciation of all three 
factors intuitively accounts for each when he applies the traditional formulas of soils 
engineering. However, to make a selection that is economically optimum and at the 
same time consistent with the various uncertainties involved, a certain number of fail
ures would necessarily have to be experienced. In some engineering situations, failures 
are sufficiently common that it may be possible over a period of time to develop intui
tive guidelines that would enable the selection of an appropriate value for safety factor. 
Such failures are usually associated with temporary construction procedures, wherein 
the relationship between cost of failure and savings obtainable by modification of de
sign is concomitant with a somewhat higher than normal permissible frequency of fail
ure. Other cases conducive to a higher frequency of failure occur where failure is not 
of a catastrophic nature; in such situations the cost of failure is usually relatively low 
and/or the failure itself is progressive in nature. 

On the other hand, because catastrophic failures of permanent structures normally 
involve extensive loss of property, human life, and professional reputation, as well as 
the cost of replacement of the structure, a high degree of conservatism is necessarily 
used. As a result, the frequency of failure is extremely low and, although the experi
enced designer may be capable of selecting a safety factor that will provide for a safe 
structure, he may have difficulty in refuting any contention that this safety factor and 
its related costs are excessive. One example of this situation is the bearing capacity 
problem for structures on stiff clays. Although it is recognized that settlement may 
sometimes provide the design criterion in such cases, this work is concerned with the 
case in which bearing capacity is the critical mode of failure. Because bearing capac -
ity failures under these conditions are extremely rare, it may be argued that safety 
factors in current use are perhaps too large, and money is being wasted. Of even 
greater significance, it is desirable for the designer to have some means of determining 
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quantitatively how the factor of safety varies with cost of foundation, cost of ultimate 
failure, degree of knowledge about the subsurface soil, uncertainty of the loading, and 
analytical procedures used. The individual evaluation of each of these factors poses a 
difficult problem; in some cases, a reasonably accurate determination is possible, 
whereas for other cases, only a subjective estimate may be made. However, even 
within these limitations, if values can be determined and properly analyzed as a group, 
the resulting procedure for determining a safety factor should be superior to the intui
tive approach so commonly employed at present. Accordingly, this work will suggest 
one possible procedure for determining in a rational manner the bearing capacity of a 
cohesive soil. 

BEARING CAPACITY FORMULATION IN PROBABILISTIC TERMS 

The bearing capacity, qd, of a shallow footing in or on a cohesive soil has been given 
by Skempton (~) as 

qd = nc ( 1 + 0.2~f)(1 + 0.2 ~) (1) 

For a 10-ft square footing embedded 5 ft, Eq. 1 would simplify to 

qd = 6.6c (2) 

or 

A = _ L_ = _L_n_,,.+--.,,.-L_L_ 
6 .6c 6.6c 

(3) 

where Lis the total maximum load on the footing and A ii:; Lhe fouling area. Tradiliuu
ally, the footing a r ea would be deter mined from the right-hand side of Eq. 3 by dividing 
the total load, which is composed of a dead load, Ln, and a live load, LL, by a soil 
strength, c, which is determined by selecting a conservative value from the results of 
laboratory tests; then, the result so obtained is multiplied by a safety factor. 

However, instead of evaluating Eq. 3 in the conventional deterministic manner just 
described, the load and strength parameters may be treated in a probabilistic manner, 
and f(A), a probability distribution function for A, may be determined; the input func
tions would indicate the probability that strengths or loads may deviate from specified 
mean values, and the output function, f(A), would indicate the probability that any given 
area represents the one that is critical from a stability point of view. Provided the 
input distribution functions are representative of the uncertainties associated with load
ing and soil strength and provided the theoretical formulation describes precisely t he 
physical phenomenon being investigated, the area distribution function, f(A), will be 
realistic. Although the uncertainties associated with loading can be represented di
rectly, those associated with the ultimate soil strength on the failure plane combine 
various distributions, one of which may be obtained from laboratory tests, while the 
others are determined on a subjective basis. For example, if c represents the un
drained shear strength measured in a laboratory test, it is a relatively simple matter 
to obtain an associated distribution function; however, there are a number of additional 
factors that must be considered when the ultimate shear strength on the failure plane in 
the field is desired. These include (a) sample disturbance, (b) the tendency for pro
gressive failure, (c) the drainage conditions in the field and in the laboratory test, (d) 
the rates of loading in the field and in the laboratory test, and (e) the extent to which 
the specimens tested represent the actual soil on the failure plane. 

Sample disturbance will normally decrease the soil strength, and a multiplying fac
tor, D, is introduced to account for this effect; because of the uncertainty involved with 
determining the value of D, an associated probability function will be used. Similarly, 
progressive failure will normally lead to a reduction in ultimate strength, and a factor, 
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P, having an associated probability function, is introduced. This treatment applies 
specifically to the ¢ = 0 design approach, and it presumes that strength values are ob
tained from undrained laboratory tests conducted at conventional rates of strain (on the 
order of 1 percent per minute). Although these conditions may represent reasonably 
well the case where a load is applied rapidly to a poorly draining soil, the slower rates 
of loading usually associated with building construction will make this approach some
what conservative, owing to consolidation and the related increase in effective stress. 
Even though the undrained strength is generally less at lower rates of strain, this ef
fect is usually overshadowed by the consequences of consolidation, and no account is 
taken of these effects in this study. As a consequence of the foregoing factors, it is ex
tremely difficult, if not impossible, to evaluate the correctness of the bearing capacity 
formulation given by Eq. 1; therefore, it is necessary to provide for some uncertainty 
in this formulation, and a factor, T, having an associated probability function is in
cluded. Subject to the above modifications, Eq. 3 now becomes 

Ln+ LL 
A = 6.6c x D x P X T (4) 

EVALUATION OF AREA DISTRIBUTION FUNCTION 

Although other distribution forms have been proposed, Wu and Kraft (2) have sug
gested that live loading may be represented by a normal distribution function; dead 
load may be considered as deterministic or, alternatively, also as normally distributed. 
Such assumptions permit the combination of loads to form a single load function on the 
basis of a total load, L, because normal distribution functions, when summed, produce 
a normal distribution having a mean value equal to the sum of the individual means and 
a variance equal to the sum of the individual variances. The relatively small signifi
cance of load distribution in the final result indicates that some inaccuracy in the as
sumptions of normal distributions for loading is not important. 

The number of specimens tested and the degree to which these specimens represent 
the soil on the failure plane require careful consideration. Any evidence of geological 
factors that may provide a lower strength in the vicinity of the failure plane may dictate 
that the strength distribution be based on these specimens alone. In general, test speci
mens should be distributed throughout the entire region that encloses the theoretical 
failure zone. If the number of specimens is larger (30 or more), thedistributionmaybe 
represented as normal with a mean, x, equal to the sample mean and a standard de
viation, S, given by 

= JE(X-x)2 

S 1 n - 1 (5) 

where x is the test value and n is the number of specimens. When there is a smaller 
number of specimens, an approximate approach may be taken if the coefficient of varia
tion, V (ratio of standard deviation to the mean), is estimated for the region. If we con
sider a normal distribution with a mean, x, equal to the sample mean, the standard de
viation, S, may be expressed as 

S=xV 
Ill 

(6) 

Hooper and Butler (3) have reported consistent values of V for the strength of soil spec
imens taken from various sites, even though the mean strengths were different. Ac
cordingly, a conservative value of V, based on previous work, may very well provide a 
more realistic estimate of the mean than the t distribution, another alternative for 
smaller sample numbers. The details of this approach, based on the coefficients of 
variation V, have been discussed by Kay and Krizek (4). 

For the functions representing sample disturbance~ progressive failure, and theory 
uncertainty, a purely subjective judgment of functional relationships must be made at 
this time. Accordingly, normal distribution functions, characterized as given in Table 1 
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TABLE 1 and discussed subsequently, have been as
signed to each phenomenon, and the respec
tive assigned fixed functions have been used 
throughout this work. 

FIXED FUNCTIONS ASSIGNED 

Function 

In the case of sample disturbance, the data sample disturbance 

in Table 1 imply, for example, that there is Progressive failu re 

Mean 
Valu e 

1.33 
0.67 
1.00 

standard 
Deviation 

0 .15 
0 .07 
0 .10 a 50 percent chance that the measured strength Theory precision 

~~~~~~~~~~~~~~~~ 

should be increased by 33 percent to account 
for this phenomenon, a 16 percent chance that 
the strength should be increased by 18 percent, and a 5 percent chance that the strength 
should be increased by only 8 percent. The 33 percent value of mean probable strength 
increase is a somewhat subjective evaluation, but it is equivalent to the effects of sam
ple disturbance found by Terzaghi (5) on the Chicago subway by use of careful sampling 
procedures. The spread of the distribution is purely subjective, but it seems rea
sonable. 

For progressive failure, the tabulated values imply a 50 percent chance that progres
sive failure will reduce the soil strength by a factor of 0.67, a 10 percent chance that it 
will be reduced by 0.58, and a 5 percent chance that it will be r educed by 0.55. Again, 
these figures appear to indicate a reasonable choice of distribution form. 

There is no real basis for knowing the accuracy with which the Prandtl solution pre
dicts the bearing capacity of cohesive soils because it is difficult to evaluate the effects 
of progressive failure and measurement of soil properties. The selected distribution 
indicates a 16 percent chance that the required foundation area should be 10 percent 
larger than indicated by Prandtl, a 10 percent chance that it should be 15 percent larger, 
and a 5 percent chance that it should hP. 20 pP.rcent larger . 

The selection of normal distributions for these cases is also purely subjective, and 
it is difficult to defend these selections except to point out that an analysis of the impli
cations of such distributions has been made and the results have been judged subjec
tively to be reasonable. 

The equation from which the area distribution function, f(A), may be determinerl i8 
now of the form 

L 
A = 6.6c x D x P x T (7) 

and each of the probability distribution functions associated with the variables, L and c, 
may have either its mean or its standard deviation varied . For a particular set of val 
ues, the Monte Carlo technique (6) may be used to obtain f(A). A digita l computer may 
be used to generate sets of random numbers sufficient in number (perhap s 50,000) to 
obtain a reliable functional form in the significant part of the function (Fig. 1). This 
function indicates the probability that any given area will be required, based on the 
probability distributions of the input parameters. 

OPTIMIZATION OF FOUNDATION AREA 

To determine the optimum design area for the foundation, two cost values are re
quired; one is the estimated cost of a catastrophic failure of the foundation, and the 
other is the unit cost of variation in the footing size. In atltliliuu, the concept of includ
ing in the total cost an appropriate portion of the cost of failure of the foundation is re
qui red; this may be consider ed analogous to, or may in fact be, the appropriate insur
ance premium. The total cost of the structure, T, may be written in the form 

T = UcF · A+ CF· p(F) + B (8) 

where Uc F is the unit cost of the foundation, A is the foundation area, CF is the total 
cost of failure of the foundation, p(F) is t he probability of failure for a given area A (ob
tained from the area distribution function), and B is the total remaining cost of the 
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Figure 1. Area distribution diagram. 
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structure (which, for present purposes, may be considered constant). The total cost 
may be minimized by equating to zero the partial derivative of Eq. 8 with respect to 
area, 

and solving for R, 

oT op(F) 
- =UcF+ CF. --= 0 a A oA 

CF 
R=---

A. UcF 
1 

op(f) . A 
oA 

(9) 

(10) 

where R is the ratio of the unit cost of the foundation failure to the unit cost of the 
foundation. Equation 10 is written specifically to show that the costs can be studied in 
the form of the dimensionless parameter R. Because the area distribution function 
formulation is not known, the optimum value for the area is obtained on the basis of 
Eq. 8; the computer is used to test progressively each discretized area value until the 
minimum total cost value is found. 
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Figure 2. Safety factor nomograph for bearing capacity of cohesive soils. 

Although the unit cost of the foundation, UcF, is considered independent of the foun
dation area, A, in the preceding treatment, this may not be the case in many instances. 
However, the dependency will usually be slight, and a single !'epetition uf lhe design 
process, using a unit cost compatible with the initially computed area, should be suf
ficient to account for such variations. 

SAFETY FACTORS 

With an optimum value for the foundation area thus obtained, we may now ask what 
value of safety factor would have been required in the conventional design procedure to 
produce the same design area. This value may easily be determined by dividing the 
area so obtained by the area obtained by substituting the mean values for load and soil 
strength into Eq. 3. Thus, a safety factor is determined in terms of one dimensionless 
parameter, the cost ratio R, and four other dimensioned parameters, the means and 
standard deviations for the load and soil strength respectively. One logical dimension
less parameter for these variables is the coefficient of variation, which is defined as 
the ratio of the standard deviation to the mean. In fact, several trials have indicated 
that the safety factor, computed as indicated earlier, does depend only on the respec
tive values of the coefficient of variation of these parameters and not on the means. 
Dividing by the deterministic value of area removes any dimensional dependence, as 
may be expected. Similarly, any dependence on the coefficient (6.6 in Eq. 3) is removed, 
and the computed safety factor is independent of foundation shape and embedment depth 
(with the possible reservation that some allowance should be made for the inability to 
determine accurately the soil unit weight associated with the latter). 

By evaluating the safety factor for a range of values (expected to include those found 
in practice) for each of the independent parameters (cost ratio, R, load coefficient of 
variation, L, and soil strength coefficient of variation, C), a large number of observa
tions may be obtained, and multiple regression techniques may be used to describe the 
observations by an empirical equation. For example, the following empirical relation
ship was obtained on the basis of 296 observations: 

S. F. = 2.03 + l.58L + 0.226e10C - 0.28e-0.01R - 0.147e10C-0.01R (11) 



Once determined, all of the original independent 
variables can be substituted into the equation to 
compare the observed and computed values of 
safety factor. Of the 296 observations, four de
viated by 0.2 to 0.23, 51 deviated by 0.1 to 0.2, 
and the remainder were within 0.1. For con
venience in using the results of this analysis, a 
nomograph based on an equation considered to be 
a good representation of the data has been con
structed and is shown in Figure 2. 

To illustrate the independent influence of L, C, 
and Ron safety factor, the typical curves shown 
in Figure 3 relate each of the variables in turn to 
safety factors while holding the other two con
stant. Both the load coefficient of variation, L, 
and the cost ratio, R, are shown to have only a 
small effect, the latter being more influential at 
lower values. However, the effect of the soil 
strength coefficient of variation, C, is consider
able, particularly for values above 0.1. 

DISCUSSION OF RESULTS 

Although very appealing from many points of 
view, the foregoing analysis has some shortcom
ings. Review of Figure 1 will indicate that the 
significant zone of the area distribution diagram 
is in the tail of the diagram. This tail is highly 
dependent on the assumed tails of the input dis-
tribution functions, and, provided these assump-
tions are correct, any desired accuracy of the 
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output function may be obtained, subject only to restrictions imposed by cost of com
puter time. Accordingly, the accuracy of the input functions is a major consideration. 
In this regard, Hooper and Butler (3) and Lumb (7) have shown that shear strength test 
values for cohesive soils closely approximate a normal distribution. Furthermore, 
provided that the number of samples is large enough, the distribution of the estimate of 
the mean strength of the population closely approximates a normal distribution, even if 
the distribution of the population departs from the normal to some extent, so long as it 
is approximately bell-shaped and not skewed (8). The assumption of normality for the 
estimate of mean shear strength, therefore, appears justified. In the case of the sub
jective assumptions of normal distributions for sample disturbance, progressive failure, 
and theory accuracy, no similar justification can be made. The selection of a normal 
distribution, as well as a standard deviation, is purely "engineering judgment." Fur
thermore, the shapes of the tails of these distributions have significance similar to that 
of strength. 

It is emphasized that full consideration must be given to the geological aspects of 
site investigation when selecting the shear strength parameters. The foregoing devel
opment is based on the assumption of a random distribution of soil strength in the tested 
zone and a similar random distribution on the failure plane. Such an idealization will 
be frequently violated, and the proposed method in no way precludes the necessity for 
careful localized investigations where possible weak zones are suspected. A judicious 
increase in the soil strength coefficient of variation used to select safety factor may be 
advisable under certain conditions. 

CONCLUSIONS 

A probabilistic approach for determining in a rational manner the bearing capacity 
of a cohesive soil has been presented and illustrated. Despite the shortcomings that 
are inherent in the procedure at this stage of development, it is considered that this 
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method for the selection of a safety factor offers a number of advantages. Primarily, 
the design engineer, who is charged with the responsibility of selecting a safety factor, 
will be forced to consider the relevant parameters on which safety factor depends in
stead of exercising a gross intuitive judgment. In addition, some guidance is provided 
for determining the economic relevance of the various aspects of the bearing capacity 
problem. 
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