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Contemporary freeway operations require large signs over traffic lanes. 
These signs are usually attached to trusses mounted on vertical supports. 
The supports are essentially restrained cantilever beams. The 1968 
AASHO Specifications (1) require, among other things, that the critical 
buckling stress be limited by a formula based on theoretical and experi­
mental investigations of a simple beam subj ected to loads which produce 
pure bending (8, 9, 10). The purpose of this study is to examine this 
formula to determ1ne1ts applicability to highway sign supports, and to 
develop a suitable alternate requirement. Rigorous adherence to the pres­
ent AASHO requirement results in uneconomical open sections for overhead 
sign bridge supports which are fixed at the base, restrained from lateral 
movement at the top, and are subjected to wind and dead loads which pro­
duce lateral, transverse, axial, and moment forces. The same conditions 
exist on roadside signs with two or more supports, but the critical buck­
ling stress requirement does not greatly affect the selection of economical 
flanged shapes for such supports. A formula is developed for critical 
buckling stress, and it is shown that this formula is in agreement with 
available test results. Comparisons of other theoretical buckling formu­
las with test data are also presented. 

•THIS paper examines the critical buckling stress requirements for the design of sup­
ports for overhead sign bridges. The discussion which follows is intended to show that 
current AASHO Specification (1) requirement Section 6(a)(3) for critical buckling stress 
is uneconomical, because its application leads to heavier sections than are needed. It 
will be shown that compliance with the critical buckling stress requirement is not nec­
essary, because it is based on theoretical and experimental investigations of a beam 
subjected to pure bending, whereas an overhead sign bridge support is a cantilever 
beam column in which the axial forces are small compared to other design loads. Eco­
nomical design is always desirable, but, in addition, safety of the traveling public is 
also a prime consideration of contemporary design; and to meet the latter considera­
tion, it becomes imperative to use the lightest supports required to meet stress re­
quirements, maintain structural stability, and meet the other criteria of sound design 
procedure. Symbols and nomenclature used in this paper are shown in the appendix. 

The AASHO Specifications for the Design and Construction of Structural Supports for 
Highway Signs (1), cites Formula 20 of the Design Manual for High Strength Steels (2) 
as its criterion for buckling stresses. This formula is: -
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Figure 1. Support conditions and loadings for theoretical buckling cases. 

This formula was derived and investigated experimentally by Winter (8, 10); deVries 
(~) showed that when Ix is several times Iy, this relation reduces to: -

18.83 x 106 

fer= Ld (2) 

bf 

which is presented as Formula 21 in the U.S. S. Design Manual (2). Fol·mulas 20 and 
21 apply to lateral buckling of beams in pure bending (Fig. la). Timoshenko (5) gives a 
formula similar to Formula 20, and also presents an equation for lateral buckling of a 
cantilever beam under transverse end load (Fig. lb), which will be discussed later, as 
Eq. 5. 

The theoretical buckling stress for a perfectly straight slender member under axial 
compression (Fig. le) is given by the well known Euler equation 
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2c. OVERHEAD SIGN BRIDGE SUPPORT CONDITIONS 

Figure 2. Support conditions and loadings. 
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Another expression for determining critical axial stress on columns with a small amount 
of eccentricity (Fig. ld) is the Secant Formula 

(4) 

All of these expressions for critical buckling stress relate the geometrical proper­
ties of a member and its modulus of elasticity. The elastic modulus for steel is con­
stant for all grades, but the yield strengths vary widely. Lighter members fabricated 
from higher strength steels are more susceptible to buckling than members fabricated 
from lower strength steels. Thus, the critical buckling stress governs more often as 
the strength of the steel increases. An overhead sign bridge support is subjected to a 
combination of loads (Fig. 2c). However, no formulas for calculating critical stress 
exist for general loading <.§_). 

CANTILEVER BEAM COLUMNS WITH END RESTRAINT 

Timoshenko (5) gives the following formula for critical buckling load of a cantilever 
beam under transverse end load (Fig. lb). 

(5) 

The term ( 1 - ~ J!:i.)is a correction factor to account for the load being applied at 

points other than the centroid. If the load is applied to the upper flange, a is ~- The 
maximum bending stress would occur at the fixed e::::!: 

(6) 

If the effective lengths are taken into account, the formula becomes: 

r= ly 
'V EG · 
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Fer = 4.013 2L ~ ( · 2) 

1 - :cJ~ ~ .. '7. 

K 

(7) 

where Kx, Ky, and Kz were each 2.0 in the original derivation for a cantilever beam. 
This expression clearly shows that this type of buckling is a combination of weak axis 

bending and torsion. The effective length factor, Kz, refers to the effective length of 
the compression flange during buckling and is therefore the same as Ky, and thus, Kz 
will be replaced by Ky- Equation 7 can be written as 
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The effective length, ~L, can be obtained from Figure C l.8.3 of the AISC Manual of 
Steel Construction ~)using a GA (flexibility coefficient) for the partially restrained 
end obtained i n the following manner (Fig. 3). 

The point "A" denotes the point of lateral support. 

PL3 

llp =-- -· -·-

3E (1r) 
(9) 

(10) 

where lip is the lateral displacement of the compression flange due to a fictitious lateral 
load, P, and OT is the lateral displacement resulting in a resisting torque, T. 

~ _ 0T _ 3 Ely (ct )2 
(1 e)2 

GA - Op - 2 GK L 2 + d (11) 

The deviation between test results and theoretical calculations increase as the mem­
bers become lighter. It seems logical, therefore, to incorporate the term Ix/Iy into 
the factor of safety to be applied to the theoretical stress. Assume a factor of safety 
in the form, 

F.S. = 2 [1 + (rio ~;Y] (12) 

This factor of safety when applied to the theoretical stress is always greater than 2.0 
and, when applied to the test results, the real margin of safety ranges from 1. 67 for low 
ratios of Ix/Iy to 2.0 for very high values of Ix/ Iy. The factor of safety is approximately 
2.0 for most sections which are used for sign supports. 

Figure 3. Model support conditions. 
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TAPERED BEAM COLUMNS 

When the load on a cantilever beam is limited by yielding at the fixed end, it is ap­
parent that some saving in material (and thus a saving in weight) can be made by taper­
ing the web depth and flange width. A series of load tests were conducted by Krefeld 
(4) on cantilever beams with partial end restraint, subjected to end-point loads. A 
literal end brace was attached to the tension flange which allowed rotation of the end, 
but did not permit the tension flange to move laterally (Fig. 2b), and the lateral brace 
restricted the motion of the compression flange also. These test conditions more 
closely approximate the loading and end conditions for an overhead sign bridge than 
those in any of the theoretical derivations; and, as shown in Figures 4 and 5, the ex­
perimental failure stresses are much larger than predicted by the formulas listed in 
Table 1. 

Krefeld's test results led to the following empirical equations for untapered beams 
with end load and end brace: 

and 

f 
- 80, 000, 000 . 

er - Ld psi 

bf 

f = 110,000,000 - 7 000 . 
er Ld ' psi 

bf 

Ld for 5, 000 > bf > 2, 500 (13) 

Ld for 5, 000 > bf > 1, 000 (14) 

where fer is the nominal stress at the support when elastic buckling occurs. Equation 
13, although simpler, becomes increasingly conservative for high-yield-point materials 
below the limits of Ld/ bt specified. 
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Figure 4. Comparison of critical stresses versus Ld/bt from various theoretical 
formulas and test results . 



16 

100 
\ 

\ 
\ 

"iii 
\ 

...: 75 

Cf) 
Cf) 
w 
a:: 
t-
Cf) 50 

...J 
<t 
u 
E a:: 
u 25 

0 
0 250 

' .... 

500 750 

L%1 
1000 

@ Cose No 
(see table I) 

1250 1500 1750 

Figure 5. Comparison of critical stresses versus Ld/bt from various theoretical 
formulas with safety factors and test results . 

Krefeld (4) noted 

... that the flange stress at points within the span increases with increasing taper and that for ex­
treme tapers the flange stress may be greater at points near the end of the cantilever than at the 
support. 

He introduced a stress-reduction factor for tapered beams, R, which is defined as 

.. . the ratio of the nominal stress at the support of a wedge beam to that of an untapered beam 
having the same section at the support when elastic buckling occurred. 

TABLE 1 

CRITICAL STRESS CASES 

Case 

l 

2 

3 

4 

6 

8 

9 

Description 

Lateral buckling of simple beam 
in pure bending 

USS Formula 20 with a 1.8 safety 
factor 

Allowable stress formula based 
on lateral buckling 

Allowable stress formula based 
on lateral buckling modified to 
include effects of end moments 

Lateral buckling of cantilever 
beams illlder transverse end 
load 

Lateral buckling of restrained 
cantilever-includes effects of 
end conditions 

Lateral buckling of restrained 
cantilever-modified Equation 18 

Proposed critical stress formula 
with 2.0 safety factor 

Test data 

Sou rr.P. 

USS Design Manual (2) 
Formula 20 (see also 
References 8, 9, and 
1Q) - -

AASHO Specifications W 

AISC steel Manual (1), 
Sixth Edition, 1964 

AISC steel Manual (11), 
Seventh Edition, 1970 

Timoshenko (fil, p. 258 

Proposed stress For­
mula, Equation 18 

Equation 20 

Equation 18 

Krefeld et al. (!) 
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The reduction factor is a function of the section moduli and flange dimensions at each 
end of the beam 

(15) 

The critical stress producing buckling of a tapered beam with a given span was found 
to vary with the parameter 

(16) 

and this equation agrees with test results. The reduction factor can be expressed in 
terms of aas follows; for end load, with end brace: 

R 
7 + ()( 
5 + 3a 

(17) 

From this formula, it is possible to determine maximum tapers such that no reduction 
is necessary. Note that when R = 1.0, a= 1.0. Therefore, no reduction is necessary 
when a is 1.0. If there is an axial load in addition to the lateral load, then the taper 
must be less than that calculated by the above formula. A reasonable upper limit ap­
pears to be z/z1 = 4.0. 

PROPOSED CRITICAL STRESS FORMULA 

The critical stress formula (Eq. 8) can now be rewritten to include the effects of 
taper on the column. The effects of eccentricities of loading, residual stresses, and 
imperfections are considered to be adequately compensated for in the factor of safety. 

The proposed critical stress formula to be used for overhead sign bridge supports is 

Fer = -F-~ S-. t ( ~) (~xy )2 -.--j_E~IY~fJG_K_---.-
d Ely 

l - 2L GK 

(18) 

The terms in this equation are defined as: 

F.S. 
d/L 
Kx 
Ky 

E,G 
K 
R 

factor of safety (Eq. 12); 
depth / length; 

= effective length factor based on end conditions for bending about the x-axis; 
effective length factor based on end conditions for bending of the compression 
flange about the y-axis. This involves a special flexibility coefficent, GA• to 
account for possible twisting of top of column (Eq. 11). After the G values 
are lmown, the K values are obtained from Figure Cl.8.3 of the AISC Manual 
of Steel Construction (3 ); 

= modulus of elasticity, shearing modulus; 
= torsional rigidity of section, for I and wide flange sections (Eq. 19); and 
= a parameter to account for taper (Eq. 17 ). 

If the web of the member contributes very little to Ix, ly, and K, the following ap­
proximate expressions can be used (10). 
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y=12, 

Substitution of these terms into Eq. 18 yields: 

F · 4R ( ~)
2 

er = 3(F. s.) Ky 
Y EG 

(~0 

K .:. 2 btf3 -3 

1 

(19) 

(20) 

This equation yields allowable stress values which are usually a few percent higher than 
Eq. 18. This is comparable to Formula 5 of the AISC Code (3) derived by de Vries (9 ). 
It incorporates a factor to corr ect for the position of the load-s ince the load is usually 
applied to the flanges (Eq. 5). The last term in t he denominator could be set equal to 
unity since Ld/bt is usually quite large. If typical va lues of the material constants for 
steel are substituted into the above equation (E == 30 x 106 psi, G = 11. 5 x 106 psi), 

Fer ,; 
24,800,000 

(~~) 
(

KKxy)2 R 
F . S. 

1 

[

1 _ 0.4 (~ YJ 
(

Ld\ 
bf/ 

(21) 

A conservative approximation for the critical stress for the case of a restrained 
cantilever, as shown in Figure 2b, can be obtained by using the following values: 

~ 2.0 

Ky - 1.0 (22) 

R 1.0 

Equation 21 now reduces to 

Fer 
.:: 99, 000, 000 i 

Ld ps 
bf (F . S.) 

(23) 

This compares very closely with Krefeld's empirical critical stress formula for this 
case given in Eq. 14. This is similar in form to the critical stress formulas for simple 
beams subjected to end moments derived by deVries (9) and Winter (10) (i.e., the pres-
ent AASHO formula). - -

This critical stress determined by Eq. 18 or 20 would be compared with the allow­
able bending "stress, Fb. Equation 23 could be used for the specific case of the over­
head sign bridge support. The lesser of the two values would be used for Fb in the 
AASHO interaction formula. 

(Ffvv)2 ~ 1.0 (24) 
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The effects of lateral loading would be taken into account by using 

(25) 

COMPARISON OF CRITICAL STRESS FORMULAS 

The graphs (Figs. 4 and 5) show various critical stress formulas, as described in 
Table 1. In each case, it is assumed that the stresses are below the yield point. The 
Krefeld test results (_!) are for relatively light sections with high ratios of Ix/Iy . The 
tests were performed on tapered and untapered cantilever beams with lateral restraint 
of the tension flange at the point of application of the transverse load (Fig. 2b). This 
closely approximates the conditions existing on an overhead sign bridge support. More 
detailed graphs are given in a Texas Transportation Institute Technical Memorandum (11 ). 

The proposed critical buckling stress formula, Eq. 18, closely predicts the buckling 
stresses determined by the tests because it has the ability to account for different end 
conditions through the effective-length factors Kx and Ky. 

The 1970 AISC Specifications (12) modify the 1964 AISC allowable bending stress 
equations (3) to account for end moments and, in general, are less conservative (by a 
factor of 1 to 2.3). For the case of a restrained cantilever beam with no moment at the 
free end, the curve in Case 3 is shifted upward by a factor of 1. 75 (Case 4). 

Figure 4 has no safety factors applied to the U.S. S. Manual (2) formulas or the pres­
ent formula. The AISC (3) formula has a built in factor of 1.67 or greater. Figure 5 
applies safety factors to the curves in Figure 4. The AASHO Specifications (1) require 
a safety factor of 1.8 applied to the U.S. S. formula and closely matches the AISC (3) 
formula. A safety factor of 2.0 is applied to the proposed critical stress formula -
(Eq. 18). 

With the factors of safety applied, the buckling stress predicted by the proposed 
formula is approximately 4. 8 times the stress determined by the current AASHO Speci­
fications. If a safety factor of 3.0 is applied to the proposed critical stress formula, 
the predicted stress would be 3.2 times the AASHO Specifications. If buckling stress 
is the limiting factor in the design, the use of the proposed formula could result in sig­
nificant savings in material. 

The proposed formula appears to be sufficiently conservative for overhead sign bridge 
supports and the AASHO requirement seems to be too conservative. This is of signif­
icant importance in the design of breakaway supports in which the mass of the support 
must be kept to a minimum in order to limit damage to vehicles and to prevent injury 
to passengers. 

DISCUSSION 

The AASHO Specifications specify two wind-load combinations: (a) full normal load 
(Fy) plus a 0.2 lateral component (Fx); and (b) a 0.6 normal load plus a 0.3 lateral com­
ponent. The lateral component causes a lateral displacement of the top of the support 
and, of course, results in a lateral bending stress. Since this bending is taking place 
about the weak axis, this can have a significant contribution to the interaction formula. 

There has been some discussion as to the effect of this lateral load on the critical 
stress formula. It definitely will have some effect. However, inclusion of this lateral 
force results in a nonlinear, large deflection problem, not an eigen-value buckling prob­
lem, and it thus cannot be incorporated into the critical stress formula. The critical 
stress formula was based on support conditions and loadings, as shown in Figure 2b. 
An actual sign bridge support is connected to the truss or to the sign at more than one 
point. Thus, it has more than one lateral support point. The support conditions at the 
upper end are as follows: 

1. Unrestrained against normal translation (y-direction). 
2. Unrestrained against rotation about the major axis (x-axis). 
3. Elastically restrained against rotation about the minor axis (may be considered 

rigidly restrained in most cases due to the stiffness of the truss). 
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4. Elastically restrained against lateral translation. 
5. Elastically restrained against torsional rotation (may be considered rigidly 

restrained if firmly fastened to truss). 

The only exception to these conditions is a roadside sign with a single support, in which 
case there is no lateral or rotational support and both Kx and Ky are 2.0 (J_). 

The critical stress formula is based on these support conditions at the upper end: 

1. Unrestrained against normal translation (y-direction). 
2. Unrestrained against rotation about the major axis (x-axis). 
3. Unrestrained against rotation about the minor axis. 
4. Restrained against lateral translation of tension flange only. 
5. Elastically restrained against torsional rotation due to the lateral brace. 

By comparing the end conditions for overhead sign bridge supports and the model on 
which the critical stress formula is based, it is apparent that the model restraints are 
much less rigid than that provided by field conditions. Therefore, it appears that the 
formula, when applied to actual cases, will have a factor of safety larger than 2.0 in 
spite uf the fact that the lateral load has some effect on decreasing the critical stress. 

The lateral displacement will have some effect on the actual critical stress. How­
ever, the lateral displacement is restrained by the framework between the supports. 
It is the authors' considered opinion that the effects of lateral displacement are ade­
quately accounted for in the interaction formula. 

The effect which the lateral load has on the critical stress can be determined from 
a nonlinear computer program; such a procedure is discussed b1·iefly in a Texas Trans­
portation Institute Technical Memorandum (11). Use of this nonlinear prog~ram in con­
junction with full-scale tests would form the basis for important theoretical work in this 
area. 

CONCLUSIONS AND RECOMMENDATIONS 

This report considers critical buckling stresses in open sections. The major con­
clusion is that the present AASHO critical buckling stress formula is overly conserva­
tive when applied to sign supports. A critical stress formula was developed for re­
strained cantilevers which closely approximates the boundary conditions existing on an 
overhead sign bridge. The buckling stress criterion may not govern for lower strength 
steels. However, it may be the limiting stress for higher strength steels which are 
being used increasingly to reduce the support mass. 

The critical stress formula proposed in this report is recommended for considera­
tion for adoption into future AASHO Specifications. Areas which might be explored in 
more detail include: (a) full-scale tests on large wide flange shapes to determine crit­
ical stresses under various loadings and end restraints [an extension of the Krefeld 
study (4)]; (b) development of a finite-element buckling program to include effects of 
lateral-=-torsional buckling; (c) correlation of proposed critical stress formula (Eq. 18) 
with (a) and (b) above; and (d) determination of the validity of the use of an interaction 
formula of the form of Eq. 25. 

It is apparent that application of the AASHO Specifications (1) results in a grossly 
overdesigned, double-tapered column a s tested by Krefeld (4), - and as shown in Figures 
4 and 5. -

The buckling problem is dependent on the conditions of end restraint. Thus, re­
quirements for critical stress should provide means for accounting for various end con­
ditions. The proposed formula has this flexibility. 
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Appendix 

A, Af, Aw 
a 
b 
c 
d 
e 
E 
Fa, Fb 

Fy 
F.S. 
f 
G 
GA, GB 

NOMENCLATURE 

Areas of the cross section, flange, and web. 
Distance from neutral axis to point of application of normal load. 
Width of flange. 
Distance from neutral axis to edge of beam (usually d/2). 
Depth of beam. 
Distance from neutral axis to lateral support point. 
Modulus of elasticity. 
Maximum allowable stresses in axial and bending respectively (AISC 
and AASHO) 
Yield point stress. 
Factor of safety. 
Calculated or actual stresses. 
Shearing modulus. 
End condition parameters used in determining effective lengths 
(Eq. 11). 
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Ix, ly 
K 

Kx, Ky, Kz 
KyL L Ld 

ry' ryf' hl 
L 
Mo 
p 
R 
rx, ry, rz 
ryf 
tr, tw 
x, y, z 
O! 

6 

Subscripts 

a 
b 
er 
f, w 
x, y, z 
o, 1 

Moments of inertia about the x and y axes. 
Torsional rigidity (not equal to the polar moment of inertia for open 
sections, see Eq. 19). 
Effective length factor for bending about the x, y, and z axes. 

Buckling parameters appearing in the critical stress formulas. 

Unsupported length. 
Applied end moment. 
Applied point load. 
Stress reduction factor for tapered beams. 
Radii of gyration about the x, y, and z axes. 
Ra11iu::; of gyration of one flange plus one-sixth the area of the web. 
Thickness of flange and web. 
Coordinate axes. 
Taper parameter . 
Displacement. 

Refers to axial stress . 
Refers to bending stress. 
Refers to critical stress. 
Denotes the flange and web. 
Refers to the x, y, and z axes. 
Denotes support point and end point on a tapered beam. 
Approximately equal to . 




