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The objective of this paper is to present a method for predicting the load 
deflection characteristic and maximum stresses in elastomeric seals. The 
basic problem is reduced to the structural analysis of V-shaped web mem
bers for large flexural deformations. The analysis is presented in terms 
of dimensionless quantities, with sample results in tabular and graphical 
form. The dimensionless results are used to construct the predicted load 
deflection curve for an actual sample and to compare it with the experi
mental load deflection curve for the same sample. The values of elastic 
moduli necessary for constructing the curve were obtained by laboratory 
experiments. Results indicate that a successful prediction of load deflec
tion behavior and maximum stresses can be made theoretically. The pre
diction gives a good estimate of load deflection behavior up to 60 percent 
deformation; beyond this value the sample ceases to respond as a structure 
and becomes more like a mass of neoprene. The predicted maximum 
stresses for a particular example are given in graphical form. The results 
show that maximum shear stress is very low, so that shear deformations 
may be neglected; the tensile and compressive stresses, however, do have 
significant values. 

•THE ELASTOMER polychloroprene, more commonly known as neoprene synthetic 
rubber, is a product suited to a variety of uses. Various types of neoprene, with dif
ferent compositions and properties, are commercially available. Neoprene is an im
portant chemical component of most of the elastomeric pavement seals available today. 

The problem of effectively sealing concrete pavement joints is perhaps as old as the 
concrete pavement itself. To the designer it presents a complex problem because of 
the many variables that must be taken into account. Tons (1) and Cook (2, 3) have 
dealt with some important aspects of the joint design problem. Neoprene seals com
bine fiexibiiity with resiiience, 2 prime factors necessary for satisfactory performance 
of any pavement joint seal. This fact perhaps explains the encouraging findings of Hiss 
et al. (4) as well as the gain in popularity of elastomeric seals in recent years. 

Neoprene seals for pavement joints are available in long coils of tubelike structures 
with varying section geometry. The interior of the tube is strengthened by means of a 
gridwork of thin flexible members. Figure 1 shows one such seal section in detail. 
The manufacturers of elastomeric seals have been constantly experimenting with the 
chemical composition and also with the section geometry in order to improve the pro
duct. The performance of these seals is currently being studied by a group of research 
and academic institutions. This paper contains a portion of such an investigation in 
progress under the direction of the author at the University of Utah. 

An important criterion in assessing the performance of a neoprene seal is its load 
deflection characteristic. The load deflection curve of a given sample can be obtained 
experimentally. However, it is desirable to develop the analytical technique for pre
dicting this characteristic before the product is manufactured. The main objective of 
this paper is to present such a technique. In order to make the results more useful, 
the analysis is carried out in general terms; dimensionless forces and dimensionless 
displacements are used. Sample results of the theoretical study are presented in tab-
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ular and graphical form. From the di
mensionless results the theoretical load 
deflection curve for the section shown in 
Figure 1 is plotted by using the actual 
values of the elastic moduli and the geo
metric parameters a., t, and t. The re
sults of experiments on the same sample 
are also plotted for the purpose of com
parison. An advantage of the analytical Three Dimensional View 
technique is that it enables the designer 
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Enlarged View 
of the Seal Section 

to evaluate the maximum stresses. 
The physics and chemistry of rubber 

and rubberlike materials are adequately 

Figure 1. A neoprene pavement seal. 

describedin standard works (5, 6, 7). Our 
experimental work indicates, - as would be 
expected, that neoprene is a viscoelastic solid. The stress-strain behavior of the ma
terial can most probably be simulated by a Kelvin chain (8). The simplest possible 
model of this type would, of course, be the 3-parameter solid. The viscoelastic char
acter of the material complicates the task of the analysis. However, the experiments 
also indicate that, for short durations of time, the stress-strain behavior of the ma
terial can be treated as time-independent. 

In order to make it as simple as possible, this presentation of the initial attempt is 
restricted to the short time load deflection characteristic. It is assumed that, in the 
range of deformations of interest, the strain is small enough so that the stress-strain 
curves for the material in tension and compression can be treated as reasonably linear. 
The corresponding values of the elastic moduli of the material in tension and in com -
pression have to be obtained from laboratory experiments. Such experiments were con
ducted by the Utah State Department of Highways to determine these moduli for the ma
terial of some samples. These experiments were performed at room temperature, 
with adequate repetitions to ensure reliability, on flat strips cut out from actual sam
ples. The results of these efforts are given in Table 1. The material properties vary 
considerably, which is not surprising in view of the empirical efforts to improve the 
product and the fact that the material properties are also affected by the process of ex
trusion and subsequent curing. 

An advantage of the analytical approach in general terms is that one need not worry 
about these variations in material properties at the outset. The values of elastic moduli 
are needed only when one wants to predict the behavior of a given sample. For research 
purposes these values can be obtained from laboratory experiments; for design purpose 
it would be desirable to have these values furnished by the manufacturers as a matter of 
course. 

ANALYSIS 

Any analysis, to be of value to the practical engineer, has to be as simple as possi
ble. An effort has been made in this paper to concentrate on the essentials of the prob
lem and to focus the attention on important patterns. An inevitable consequence of such 

an effort is the simplifying assumptions nee -
essary in the process. Two simplifying as
sumptions have already been stated in the in-

TABLE 1 

SAMPLE VALUES OF MODULI OF ELASTICITY 
AT ROOM TEMPERATURE 

Material 

A 
B 
C 

808 
603 
717 

531 
780 
903 

Note: Ee= modulus of elasticity in compression; and 

ET = modulus of elasticity in tension. 

1. 522 
0. 773 
0. 794 

troductory remarks: (a) only short-time load 
deflection response is considered, and (b) the 
strains are small enough to justify a linear 
stress-strain relationship. It must be noted, 
however, that small strain does not imply 
small deformations; indeed, the problem be
ing investigated involves large deformations. 

In addition to these assumptions, the pres
ent analysis is confined to seal sections that 
have a specific geometric pattern. The sec-
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tion shown in Figure 1 gives 
one of the typical patterns in 
its simplest form. Basically 
the pattern may be described 
as a symmetrical system of 2 
vertical side walls and an in -
ternal vertical diaphragm. In 
addition, there are a series of 
V -shaped members, called 
web members, joining the 
side walls and intersecting 
the diaphragm. All the web 
members are assumed to be 
identical and of constant thick
ness. During load deflection 
experiments, the vertical side 
walls are forced to move to-
ward each other while remain-

b b 

a 

Figure 2. V-shaped web member. 

ing mutually parallel. The side walls are at all times vertical and straight. The resis
tance to displacement, then, is derived from the web members. Two of the following 
assumptions are based on the preceding discussion: 

1. The seal section is perfectly symmetrical about the central diaphragm; 
2. The resistance to deformation is proved entirely by the web members, and all the 

web members are assumed to be identical and of constant thickness; and 
3. In addition, it is assumed that the deformations are produced by bending only (the 

effects of axial compression and shear are treated as negligible in the present analysis). 

With these assumptions, the task of analysis reduces to the study of flexural deforma
tions of the typical configuration shown in Figure 2. When subjected to a load P, the 
system deforms into the configuration A' B' c' shown in this figure. Corresponding to a 
given end load P, a correct end moment M0 must be applied as shown to provide com
plete restraint against end rotation. The object of the analysis is to find the deflections 
Aa and Ab, the end moment M0 , and the maximum stresses for a given load P. 

Because of symmetry, it is sufficient to restrict our attention only to the left mem
ber AB. Also because of symmetry, the point of zero curvature is located at a point D 
midway along the length AB. The entire problem, then, may be solved by confining the 

analysis to the length AD (Fig. 3 ). 
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Figure 3. Kinematics of deformation. 
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The moment curvature rela -
tionship for large flexural defor
mations of this member is given 
by 

M(s) = -EIK(s) (1) 

where 

M(s) = bending moment at s; 
E = reference elastic con

stant (either Ee or ET); 
I = geometric constant 

(modified moment of 
inertia corresponding 
to the chosen elastic 
constant E ); and 

K(s) = curvature at s. 

From geometry, kinematics of 
deformation, and equilibrium 
respectively, we have 



dx = ds cos e, and dy = ds sin 0 

K(s) = d0/ds 

M(s) = Py - M0 

Substitution from Eq. 3 and 4 into 1 and then differentiation with respect to s yields 

where 

k2 
= P/EI 

Finally integrating Eq. 5 with respect to s and imposing the condition that as s = 0, 
9 = °'• and d9/ds = -(M0 /EI), we obtain 

d0/ds = V (M0 /EI)2 - 2k2 cos a!+ 2k2 cos 9; 0 s: s s: t/2 

From Eq. 7, the angle y at inflection point is obtained as 

cos y = cos a! - (M0 /EI)2 (1/2k2
) 

Also from Eq. 7, we obtain 

Next, the following dimensionless quantities are introduced: 

u = kt = .../P7EI t 

v = Mot/EI 

l:i. = l:i.b/b 

l:i.' = l:i.a/a 
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(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

In Eqs. 10 through 13, u and v are dimensionless force and dimensionless end mo
ment respectively; and l:i. and c1 are dimensionless horizontal and vertical deformations 
respectively. The discussion that follows will be in terms of these dimensionless 
quantities. Next, let 

p = sin y/2 

and 

p sin </> = sin 0/2 

then, integrating Eq. 9 and using Eqs. 8 through 13, we obtain 

(14) 

(15) 

(16) 



76 

where 

¢ 0 = sin- 1 [(sin o:/2)/(sin y/2)] (17) 

In terms of the dimensionless quantities, the angle y is expressed by 

(18) 

The displacements of any point of the member ABC can be obtained by integrating 
Eq. 2 and using symmetry principle. The quantities of interest here are the deforma
tions /J,. and 6.

1
• Of thes e, /J,. can be obtained by integrating the first of Eq. 2, and 1:i,.' can 

be obtained from the requirement of zero bending moment at the point of inflexion. The 
final expressions for /J,. and l:i,.' are as follows: 

J
'IT/2 

/J,. = [1 + (1 / cos a)] - (4/ u cos a) ✓ 1 - p2 sin2 <I> d<I> (19) 
</Jo 

1:i,.'= [2v/(u2 sino:)J -1 (20) 

Equations (1 through 20 present briefly the essential points of the analysis. It is 
basically a variation of the well-known problem of elastica, first investigated by Euler . 
Euler's elastica, which refers to the large flexural deformations of a thin straight elas
tic rod, is described in sufficient detail in standard sources (9, 10). The present prob
lem differs from Euler's elastica in that it deals with the large flexural deformations 
of a V-shaped rod. Hence, trigonometric functions of the characteristic configuration 
angle a appear in the preceding expressions. The load deformation curves are much 
influenced by this angle. 

The integrals in Eqs. 16 and 19 are incomplete elliptic integrals of the first and 
second kind (11). Hence, it is necessary to use numerical integration procedures to 
evaluate the required quantities. From Eqs. 17 through 20, it can be seen that for a 
given u we can evaluate all the quantities, provided we know the value of either the end 
moment v or the angle y at the inflection point. It is sufficient to know only one of these 
2 quantities. Therefore, the problem can be looked on as statically or kinematically 
indeterminate to the first degree, depending on whether v or 'Y is treated as the unknown 
quantity , It can be seen that the integral in Eq. 16 will he equal to the given value of u 
only for the correct choice of v or y. The correct values of either of these quantities 

TABLE 2 

SAMPLE COMPUTATIONS FOR A CONFIGURATION 
ANGLE c, = 8.5 DEG 

have to be obtained by the process of nu
merical interpolation. This discussion, 
of course, applies only to the case where 
one wants to solve the problem for a spe
cific value of u. The task of constructing 
the theoretical load deflection curve is 

u2 
V l::J. t:,.' 

(d:g) (= PL'/EI) (= MoL/EI) (percent) (percent) numerically much easier. This is done by 

9.5 
11. 5 
15. 5 
19. 5 
22. 5 
27.5 
32.5 
37. 5 
42. 5 
47.5 
52.5 
57. 5 
67. 5 
77. 5 
87. 5 
97.5 

107.5 
110.5 

0.8611 
2.1981 
3. 965 
5. 0975 
5. 7221 
6. 5161 
7.1256 
7. 6292 
8. 0708 
8.4776 
8. 867• 
9. 25~, 

10.04 
10. 93 
11. 95 
13.17 
14. 68 
15. 20 

0.0686 
0.1999 
0.4487 
0. 6876 
0.8634 
1.1530 
I. 4406 
1.7279 
2. 0158 
2.305 
2.5969 
2.8913 
3.491 
4.1097 
4. 753 
5.431 
6.154 
6.328 

0.1813 
o. 5888 
I. 5834 
2.8156 
3.8940 
5. 9805 
8.4200 

11.2015 
14.31 
17. 73 
21.46 
25.47 
34.26 
43. 95 
54.37 
65.35 
76. 71 
80.17 

0,0775 
o. 2306 
0. 5311 
0.8252 
1.0416 
1.3942 
I. 7356 
2. 0645 
2.379 
2,679 
2. 962 
3.228 
3. 700 
4.087 
4.381 
4.578 
4.671 
4.678 

using the kinematic method, which relies 
on finding u for progressively increasing 
values of y. 

The kinematic method can be briefly 
described as follows: As the load u is in
creased from zero, the system deforms 
progressively, and the angle y at the in
flection point increases as u increases. 
Hence, it is only necessary to select pro
gressively increasing values of y (> a) in 
suitable increments and to evaluate the 
corresponding values of u, v, l:i,., and t:,.'. 
The numerical work is easily done with the 
digital computer, and the process is ter-
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Figure 5. Dimensionless end moment v for some 
values of the configuration angle a. 

minated when the deflection exceeds a certain predetermined value, say 80 percent. 
Some sample values of computer work for a configuration angle Cir!= 8.5 deg are given 
in Table 2. The numerical integration leading to these tabulated values was performed 
with Simpson's rule (12) by dividing the interval from ¢0 to 1r/2 into 1,000 equal steps. 
The error of numerical integration in these values is of the order of ±1 in the fourth 
significant digit. The dimensionless results for this and some other values of angle a 
are shown in Figures 4 and 5. Such plots are quite adequate for practical purposes, as 
the values of~ and v for given u, or the values of u and v for given~. can be easily 
read off from these characteristic curves. 

PREDICTION AND DISCUSSION 

The results presented in the preceding section can be used to predict the actual load 
deflection curve for a sample that conforms with the structural assumptions made in 
the analysis. The sample shown in Figure 1 agrees very closely in geometry with one 
of the samples received for our experiments. The average values of the parameters t, 
t, and 01 are 0.064 in., 0.372 in., and 8.5 deg respectively. The elastic moduli of the 
material of this sample are given as properties of material A in Table 1. In the anal
ysis, the choice of the reference modulus of elasticity was left open. If we choose the 
modulus of elasticity in tension, ET, as the reference elastic constant, the correspond
ing modified moment of inertia, I, per inch in the length of a web member is given by 

(21) 

where 

(22) 

Hence, from Eq. 10 the load per inch in the length of the web member is given by 

(23) 
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For the numerical values of ET, t, t, and so on, referred to earlier in this section, 
Eq. 23 reduces to the form 

P = 0.1023u2 lb/in. (24) 

The dimensionless load deflection curve for o: = 8.5 deg, shown in Figure 4, gives 
the value of u2 for any chosen percentage deformation. When this value of u2 is used in 
Eq. 24, the value of P obtained represents the end load, in pounds per inch in the length 
of the web member, required to produce the same value of percentage deformation. Be
cause the sample consists of 3 web members, the load required to produce the same 
deformation in the sample is 3 times the value given by Eq. 24. Then, the predicted 
load deflection curve at room temperature is easily constructed as follows: From the 
curve shown in Figure 4, for angle o: = 8.5 deg, read off the value of u2 for a selected 
percentage deformation, and then multiply this value by 0.307 to obtain the value of load 
per inch in the length of the sample for the same deformation. The predicted load de
flection curve shown in Figure 6 was constructed in this manner. 

The research currently in progress involves a substantial amount of experimental 
work. The experiments of interest in the present context are those dealing with load 
deflection curves, particularly those for the sample for which the theoretical prediction 
is shown in Figure 6. The average of two most reliable experiments out of three per
formed at room temperature is shown in the same figure for the purpose of comparison. 

In comparing the theoretical prediction and the experimental results shown in Figure 
6, it is important to take several factors into account. The theoretical prediction is 
made by using the average dimensions. The approximate variations in the quantities t, 
t, and o: are ±10 percent, ±5 percent and ±0. 5 deg respectively. When these factors are 
taken into account, the theoretical prediction gives a satisfactory estimate of the actual 
load deflection curve, as can be seen from the closeness of the 2 curves. It was pointed 
out earlier that the samples are supplied in the form of coils of tubelike structure. Con
sequently, the side walls of the samples tested, instead of being perfect planes, are 
slightly curved. This fact is perhaps responsible for the sharper rise in the experi
mental curves in the early stages of deformation. At about 60 percent deformation, the 
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Figure 6. Predicted and experimental load 
deflection curves. 

sample becomes more like a solid mass of 
neoprene and does not behave like a structure. 
This is seen in the sharp increases in load 
with small increases in the deformation. The 
theoretical prediction, of course, does not 
apply to this latter situation. 

Although the analysis in this case gives a 
reasonably good estimate of the load deflec
tion behavior, it can be further improved by 
taking into account the nonlinearity of the 
stress-strain relationship and the viscoelas
tic effects. The lack of sufficient information 
in these respects, especially for the material 
of an actual sample, suggests the need for 
more detailed experimental research in basic 
material properties. 

The theoretical study, once the required 
values of the numerical constants have been 
ascertained, enables us to predict the maxi
mum stresses. These occur in the web mem
bers and are evaluated from the following ex-
pressions: 

crc(max) = [(>..,82ET)/(l + ,8)] 

(v+ ((>..cosau2)/[3(1+,8)J}) (25) 
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aT(max) = [>..,BE'}'/(1 + ,8)] (v - [(>..,B cos m/)/[3(1 + ,8)]}) (26) 

or 
(28) 

where 

>.. = t/t (29) 

ET in these equations refers to the modulus of elasticity in tension; 8 has been de
fined in Eq. 22. Equations 25 and 26 refer respectively to the maximum compressive 
and tensile stresses. These maximum stresses occur in the web member at sections 
A, B, and C (Fig. 2). If the end moment v exceeds 3(1 + ,B)/(>.._B), the maximum tensile stress 
will occur at cross sections different f:,;om those mentioned. In practical situations, v 
is unlikely to exceed this value within the range for which the theoretical prediction is 
valid. The maximum shear stress occurs at the inflectionpoint and is given by Eq. 27, 
provided the angle at inflection point is less than or equal to 90 deg. If the angle at in
flection point is greater than 90 deg, the maximum shear stress given by Eq. 28 occurs 
at points where the neutral axis makes an angle of 90 deg with the horizontal axis. 

The plots of maximum tensile and compressive stresses are shown in Figure 7. The 
maximum shear stress is shown in Figure 8. The shear stresses, for the example 
considered, are quite low, justifying the assumption made at the outset that shear de
formations may be nelegected. An interesting feature is the closeness between the max
imum compressive and tensile stresses, as shown in Figure 7. The near.clost)ness of 
these curves is a peculiarity of this particular sample. The value of ET for this sample 
is substantially larger than that of Ee. This means that the tensile stress induced by 
bending alone is larger than the compressive stress. When a uniform direct compres
sive stress due to the axial force is added to these stresses, the resulting effect is a 
reduction in the tensile stress and an increase in the compressive stress. The net ef
fect is a near equalization of the 2 stresses. The situation would be much different if 
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Figure 7. Predicted maximum tensile and 
compressive stresses. 
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this sample were made from material B or material C (Table 1). Then the compres
sive stress would be significantly larger. 

CONCLUDING REMARKS 

The theoretical technique presented here, simple as it is, gives a good estimate of 
the actual short time load deflection characteristics of elastomeric seals. Further
more, it also enables prediction of maximum tensile, compressive, and shear stresses, 
which are of value to the designer. The dimensionless approach makes the results quite 
general in application and may be used to study other aspects of the performance of 
elastomeric seals. Specifically, one can study the effects of changes in material prop
erties and the changes in section geometry on the stresses and stiffness of the sample. 
The author is currently investigating this aspect of the problem. The study may lead 
to some of the criteria that may be useful in producing the best design. 

It is important to note that the analysis assumes linear stress-strain relationship 
and a typical geometry that consists of V-shaped web members. Sections with X-shaped 
web member s , another typical arrangement, can be studied by us ing the same t ech
nique, but additional conditions must be incorporated in the analysis. Further refine
ments of the technique can be made by using nonlinear stress-strain relationship and 
including the fact of viscoelastic behavior in the study. Such refinements will indeed 
complicate an already nonlinear problem. At present, it seems that more experimental 
work is necessary to assess the basic properties of actual seal materials. A knowledge 
of these properties would be useful in making theoretical predictions regarding the 
short-time and long-time performance of the elastomeric seals. 
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