
')' I c) 

A MULTIPATH TRAFFIC ASSIGNMENT MODEL 
Robert B. Dial, Alan M. Voorhees and Associates, Inc., McLean, Virginia 

This paper describes the mechanics of a novel traffic assignment model 
that is able to assign coterminous trips to alternative routes without re­
sorting to reiteration or path enumeration. Under a particular definition 
of "reasonable path," the model satisfies certain common-sense require­
ments. The model is a 2-pass Markov model. It calculates node and link 
transition probabilities in 1 examination of the network and assigns trips 
in a second examination, when it diverts trips entering a node to all rea­
sonable links ending at the node. The model never explicitly examines a 
path, and it is not in any sense an "optimization model." It assigns trips to 
all reasonable paths simultaneously in such a way that the resulting effect 
is identical to what would have been obtained had each path been assigned 
trips separately under certain choice probability assumptions. Thus, com­
pared to other multipath assignment techniques, the model is theoretically 
attractive and computationally very efficient. Presented also are 2 algo­
rithms that differ in their definition of a reasonable path and in the number 
of times each is executed to assign all trips from a given origin node. 

•IN MOST widely used traffic assignment models, all trips between a fixed origin and 
destination are assigned to the links constituting a single shortest connecting path. (In 
this article, link "time" and "length" are used interchangeably to mean neither's literal 
definition. Here they are names for the link disutility measure representing travel 
cost or impedance. We assume a link's disutility is always a positive number. A 
path's length is the sum of the disutility of the links that constitute it. The shortest 
path is one whose links sum to the smallest total disutility-whatever it may be.) This 
latter technique has been designated the "all-or-nothing" assignment. Because of the 
effects of trip volumes on travel time and the trip-maker's nondeterministic choice 
function on route selection, all-or-nothing assignment is known to contradict actual trip 
behavior; and the link-volume output of these traffic assignment models is sometimes 
inaccurate to the point of compromising the transportation planner's design decisions. 

Many transportation planners feel that a traffic assignment model would be much 
more useful if it could efficiently reflect, to some degree, the nonoptimal behavior of 
trip-makers. The quality of the planner's decisions could be improved, and the cost of 
arriving at them could be decreased. A highway system, particularly when operating 
at near-capacity volumes, provides many alternate paths that vary slightly with respect 
to length between the same origin and destination. A realistic model would be a "multi­
path" assignment model, which would apportion trips to all of these paths in a proba­
bilistic manner reflecting each path's relative likelihood of use. 

An easy 3-step solution to this problem would be a model that would (a) relate path 
choice to path characteristics; (b) find all paths between a given origin and destination; 
and (c) using relationships found in step a, apportion trips to the paths on the basis of 
their characteristics. Taken literally, the preceding method has little utility. Even 
though such a model is fairly easy to design and implement, the large size (4,000 to 
15,000 nodes) of the networks precludes this obvious solution. There are too many 
paths. Computers are not yet fast enough to perform the implied computation in a 
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reasonable amount of time and, thus, render such a model uneconomical to use. The 
economics of model utilization demand that the differential value of a sophisticated 
multipath traffic assignment model be greater than the differential value of the output 
minus the differential cost of obtaining it. The cost of the output includes data prepara­
tion and computation cost. As yet, no "pure" multipath assignment model has managed 
to achieve a positive differential value. The computation time required to search out 
and evaluate alternative paths costs more than the information is worth. The proof of 
the statement is implied by the technique's nonuse. 

The probablistic assignment model presented in the following is an attempt to cir ­
cumvent the path enumeration problem. It assigns trips to all "reasonable" paths 
simultaneously in such a way that the resulting effect is identical to what would have 
been obtained had each path been assigned trips separately under certain choice proba­
bility assumptions. Compared to other multipath techniques, the model is theoretically 
attractive and computationally very efficient. On the theoretical side it displays some 
highly desirable characteristics seldom present in other techniques. 

Under a particular definition of "reasonable path," theoretical appeal comes from 
the model satisfying the 3 following functional specifications: 

1. The model gives all reasonable paths between a given origin and destination a 
nonzero probability of use whereas all unreasonable paths have a probability of zero; 

2. All reasonable paths of equal length have an equal probability of use; and 
3. When there are 2 or more reasonable paths of unequal length, the shorter has 

the higher probability of use. 

Computational efficiency and flexibility result from the model satisfying 2 additional 
functional specifications: 

4. The model does not explicitly enumerate the paths it loads, but all reasonable 
paths between a given origin and destination are loaded simultaneously; and 

5. The user is able to control the path diversion probability by assigning a value to 
a parameter e that affects the slope of the "diversion curve." 

Computationally, the model can be called a 2-pass Markov model. It calculates 
node and link transition probabilities during 1 look at the network and assigns trips 
during a second look when it diverts trips entering a node to all reasonable (efficient) 
links ending at the node. In this way, it assigns trips simultaneously to an entire set 
of reasonable paths. The model never explicitly examines a path, and it is not in any 
sense an "optimization model." 

In the next 2 chapters, the mechanics of 2 models are presented. Both of them 
satisfy the 5 preceding specifications. Both are Markov models that probabilistically 
divert trips from nodes to competing converging links. The 2 models differ in their 
definition of an efficient path and in the number of times their implementing algorithm 
is executed to assign all trips from a given origin node. This article is quite informal. 
For a lengthier and more rigorous discussion, the reader is referred to another paper 
by Dial (70), which presents algorithms in more detail, describes their computer im­
plementation, and provides complete formal justification for some of the unsupported 
claims made in the following sections. 

MODEL 1-PROBABILISTIC MULTIPATH ASSIGNMENT 

This first model requires that a reasonable path between nodes o and d be an effi­
cient path, composed only of links possessing the 2 following properties: 

1. The initial node of the link is closer to the origin node o than is its final node, 
and 

2. The final node of the link is closer to the destination node d than is its initial 
node. 

These dual constraints restrict the set of efficient paths to those relating symmetrically 
to the origin and destination nodes. This duality requires that the assignment algorithm 
be executed once for each pair of nodes o and d. Although this is an understandable 
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requirement, it is time consuming in execution. First, the shortest path length from 
each node to d must be known, and, second, there are many o-d pairs. The algorithm 
is described in the following section. 

Algorithm 1 

Preliminaries-To assign y trips between origin node o and a destination node d 
requires that the 4 following items be known for each node i: p(i) = the shortest path 
distance from o to i; q(i) = the shortest path distance from i to ct; I1 = the set of all 
links whose initial node is node i; and Fi = the set of all links whose final node is node 
i. Letting link e = (i, j) have length t (i, j ), we can calculate for each link e its likelihood: 

{

exp e [p ( j ) - p ( i) - t ( i, j ) ] 

a (e) = 

0 

if p(i) < p(j) and q(j) < q(i) 

if otherwise 

Having thus defined a(e), we can describe the algorithm as a 2-pass process, which 
need concern itself only with those links whose a(e) is not zero. 

Forward Pass-By examining all nodes i in ascending sequence with respect to p(i), 
their distance from the origin, we can calculate for each link e in Ii its link weight: 

{

a(e) 

w(e) = 
a(e) L w(e') 

c• in Fr 

if i = o ( the origin node) 

if otherwise 

When the destination node d is reached, the next step is undertaken. 
Backward Pass-Starting with the destination node d, we can examine all nodes j in 

descending sequence with respect to p(j). A trip volume x(e) is assigned to each link e 
in Fi as follows : 

x( e) 
{ 

y · w(e/ I: w(e') 

• w(e) • . f ,::::•>j .. f ,, •(e') 

if = d (the destination node) 

if otherwise 

When the origin node o is reached, the assignment is complete. Notice that, in the 
algorithm, the funxtions x and w are defined recursively, and thus the order of their 
calculation must be as specified. 

Example-In the simple grid network shown in Figure 1, we assume that all link 
times are 2, except on the links forming the bisecting horizontal path between node 11 
and node 15, where the link times are all unity. We assign 700 cars making the trip 
from node 1 to node 25 as follows: 

1. All pertinent preliminary data are shown in Figure 1: Above and to the left of 
each node is p(i), the distance the node is from node 1; below and to the right of each 
node is q(i), the distance the node is from node 25; the exiting link sets Ii; and the 
entering link sets Fi. Assume that the parameter e is unity in the definition of a(e ). 
Then the nature of the network allows only 2 values for the exponent of a(e): 0 or -1. 
Therefore, a(e) is either 0, 1, or 0.3679. The appropriate value for a(e) is posted 
above those links for which it is nonzero. Where a(e) is zero, no arrows or values 
appear on the links. Arrowless links will receive no trips because a(e) and, therefore, 
w(e) are zero. 
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NOTES: 

1 All ARC TIMES ARE 2, EXCEPT FOR HORIZONTAL ARCS BETWEEN 

NODES 11 AND 15, WHICH ARE UNITY. 

... ,J, ,,:;, l 
}-----'---.-{ / 

t1fi) 

3 ale) ONLY POSTED WHEN NONZERO 

4 PARAMETER~ = 1 

5 a!i,j) .. { ' ;" (Pfil•p(iH(i,j)] if pfi) < pljl and qlj) < qlil 

otherwise 

Figure 1. Preliminary data for Algorithm 1. 

NOTE : 

Figure 2. Results of forward pass. 

NOTE 

,·(ij} 

St'(/ fi.jJ 

Figure 3. Results of backward pass. 

2. Forward pass results are shown in 
Figure 2. a(e) has been replaced with w(e). 
The integer below each link indicates the 
sequence in which the links were processed. 
,:;,n,y, ""'..,._..."'1 0 linlr (?n ')i:;,\ U7".'.IC i-h o. '>A+h 
.L\J..&. '-'~"-.1..1..1..t,1.L'-', .&..1..1..1..1.\, \&,,,rV,lf.lU/ ....... ._. ._.,..,.._, 1.1.&...,,LJ, 

link processed, and w(20, 25) = a(20, 25) 
[w(15,20) +w(19,20)] = 1(1.736 + 0.6386) 
? 2.374. 

3. Backward pass results are shown in 
Figure 3. w(e) has been replaced with x(e), 
the link volume, and the sequenced num­
bers have been changed to correspond to 
the links' computational sequence in the 
backward pass. For example, link (7, 12) 
was the 10th link processed and x(7, 12) = 
w(7,12) · x(l2,13)/[w(7,12) +w(ll,12)] 
0. 7358 · 700 / (0. 7358 + 1) ~ 296. 

Figure 3 shows the symmetry of the 
assignment around the dominating freeway 
axis, which reflects the symmetry of the 
network. There are 9 efficient paths be ­
tween nodes 1 and 25. A unique shortest 
path has a length of 12 units. Four paths 
are 13 units long. Four have a length of 
14. All 9 paths have been simultaneously 
assigned trips in a single execution of the 
algorithm. 



Figure 4 shows the volume 
effectively assigned to each of 
these 9 paths. Each subfigure 
depicts an efficient path com­
posed of the links indicated by 
heavyarrows. Posted beneath its 
graph are the length of the path 
and the number of trips effec -
tively assigned to it. For exam­
ple, one finds the shortest path 
between nodes 1 and 25. Its length 
is 12 and the number of trips the 
algorithm effectively assigned to 
it is equal to 232. Figure 4 shows 
one of 4 efficient paths between 
nodes 1 and 25 whose length is 
13. The inferred trip volume on 
this path is 85. Figure 4 shows a 
14-unit long path that accommo­
dates 32 trips. 

Justification of Algorithm 1 

As mentioned previously, de-
tailed justification of the assign­
ment algorithm exists elsewhere. 
Here only a sketchy proof is given 
that the algorithm does in fact 
satisfy the 5 functional specifica­
tions given at the beginning of 
this paper. 
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LENGTH 12 TRIPS 232 LENGTH 13 TRIPS 85 LENGTH - 13 TRIPS= 85 

,1 Ill 

LENGTH 13 TRIPS 85 LENGTH 14 TRIPS 32 LENGTH = 14 TRIPS= 32 ,, 

LENGTH 13 TRIPS 85 LENGTH 14 TRIPS 32 LENGTH= 14 TRIPS= 32 

NOTE: 

TRIPS HAVE BEEN ROUNDED TO INTEGER VALUES 

Figure 4. Efficient paths and volumes. 

In the preliminaries of the algorithm, we define the likelihood of a link e = (i, j) as 

{

exp e [p(j) - p(i) - t(i, j)] 

a ( e) = 

0 

if p ( i) < p ( j) and q (i ) < q ( i) 

(1) 

if otherwise 

Notice that the exponent is directly proportional to p(j) - [p(i) + t(i,j)J, which is the 
nonpositive difference between the shortest distance to node j and the length of the 
shortest path to node j that uses link (i, j). Roughly speaking, a(e) is a kind of "shadow 
cost" of using link e. 

It is assumed that the probability of using a particular (simple) path P is directly 
proportional to the product of the likelihood of the links in the path; that is, 

prob (P) = k lT a ( e) (2) 
e in P 

Thus, prob(P) is nonzero if and only if the path P is efficient. This verifies specifica­
tion 1. 

By substituting Eq. 1 into Eq. 2, the probability of an efficient path can be written 
as 

prob (P) = k 7T exp 8 [p ( j ) - p ( i) - t ( i, j )] 
e = (i, j) in P 

prob(P) = k exp e I: [p(j) - p(i) - t(i, j)] 
(i, j) in P 

(3) 

(4) 
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prob(P) = k exp 0 [p(d) - L t (i, j )] 
( i,j ) in P 

(5) 

The transition from Eq. 4 to Eq. 5 follows from the fact that consecutive links in a path 
share a node; and, for any given node i /. o, don the path P, p(i) will appear in the sum­
mation in Eq. 4 exactly twice and with opposite sign. 

Because p(d) is the shortest path distance from o to d, and 0 is a positive constant, 
Eq. 5 shows that the model satisfied specifications 2 and 3. The value of the summation 
in Eq. 5 is just the length of path P. Hence, the exponent in Eq. 5 is nonpositive and be­
comes more negative as the length of P increases. That is to say, prob(P) decreases 
with increasing path length. 

To show that specification 5 is satisfied, we only have to show that the calculated 
link volumes are obtained in a manner consistent with Eq. 2, because the algorithm 
obviously does not enumerate paths. This is shown by proving that the algorithm diverts 
trips from each node according to appropriate conditional link probabilities. A condi­
tional link probability is the probability that a trip between o and d will use a particular 
line e = (i, j), given that it goes through the link's final node. This probability can be 
formally stated as 

prob[(i,i)lil 

prob [ ( i , j ) I j J 

prob [(i,j )I j] 

prob[(i,j), j] /prob(j) 

prob [(i, j )] /prob ( j) 

prob [( i , j )] / f prob [(i , j )] 

A~though it is obvious that the probability of using a link (i,j) is just 

proo((i,j)] = L prob(P) 
{P:(i,j)inP} 

(6) 

(7) 

(8) 

(9) 

It is useful to write Eq. 9 in a more elaborate form, to facilitate cancellation of com­
mon factors in the numerator and denominator of Eq. 8. To this end, notice that an 
efficient path through link (i,j) can be partitioned into 3 sets of links: (a) Pi = {all 
1;..,..1,-eo +nr\nln,-,,;rtl"llln "n~Ol"tOMinrT li-nlr f; ;\\• fh\ ff; ;\\• ':ln~ {,-.\ D - /~11 linlrC! tnnnlnn-i,-.-:,lhr 
.a.L,1..u.~~ "V}'V4VE, .. '-'14.&..&.J .t-' ... '-'...,'-''-4.1-.a..a.b ............ , .. ,J/ J J ,,...,, ~ \ .. JJ/JJ ...., .. .__ ,...,, .£.j l...., ................. ,..., .. ...,.t'._....._...,b._...,_ ..... J 

following link (i,j)}. Now if lPi is the family of all P; representing partition 1 of any 
efficient path from o to d, and IP; is the family of partition 3 of all efficient paths be­
tween o and d, then 

Equation 10 follows from the fact that all efficient paths can be constructed by inde­
pendently choosing a member from each of lPi and IP; and putting link (i, j) in between 
and that all such combinations constitute efficient paths. Substituting Eq. 10 into Eq. 8, 
we see that 

prob [(i,i)lil = (11) 



prob [( i, j) I j J = 

k a(i,j) [ _I: lf a(e)] [ L lf a(e)] 
P m !Pi e in P P m IPj e in P 

k L 
Pin IPj 

prob [(i,i)lil = 

elfm· Pa(e) {L, [a(i,j) L 
Pin !Pi 

a(i,j) £ lf a(e) 
Pin IP1 e in P 

lf a(e)]IL 
e in P f 
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(12) 

(13) 

Arguing by induction that the forward pass of algorithm 1 calculates link weights, we 
can show that w(e) in the algorithm is equal to the numerator of Eq. 13 when e = (i,j). 
Hence, 

prob [e lj] = w(e)/ •. fF; w(e') (14) 

is just a rewriting of Eq. 13. The right side of Eq. 14 is precisely the quantity the 
algorithm uses to divert trips from node j to link e. Using Eq. 14 and again arguing 
inductively, but this time in the order to the backward pass of algorithm 1, we can show 
that, at the time that trips of node j are diverted, the quantity 

y(j) = L x(e) (15) 
e in I; 

does comprise all trips from o to d that are expected to go through node j. This com­
pletes the proof that the diversion volumes are indeed those implied by the path proba­
bility defined in Eq. 2. 

The termination of the algorithm is obvious. Each link is processed twice, at most, 
and there are a finite number of links in the network. 

The Parameter e 

To affect diversion probabilities and thus satisfy specification 5, the user sets the 
value of the parameter 0 appearing in the exponent of the link likelihood a(e). As shown 
earlier, as 0 varies from zero to infinity , the pr obability of using a particular path, 
which is t. t longer than the shortest path, is directly proportional to exp (- 8 · t. t). 
Thus, as 8 increases, the probability that a trip will use a shortest path also increases. 
When e is zero, all efficient paths are considered equally likely; the topological signifi­
cance of a link in an efficient path is its sole criterion for attracting trips. At the 
other extreme, when 0 is large, i.e., 10 or larger, the effect is a multiple shortest-path 
assignment, which assigns trips to all and only shortest paths. This allows the network 
designer to perform the equivalent of an all-or-nothing assignment that appropriately 
considers parallel routes. 

Between these 2 (useful) extremes, presumably, there is a value for 8 that does the 
best job in duplicating the results of human behavior. This writer does not know what 
this value is, or even whether a unique value would suffice for all o-d pairs, trip pur­
poses, or geographic locations. This is a good subject for future experimentation. 
Given route selection data, we could estimate 8 directly by using numerical curve fitting 
techniques. Alternatively, screenline interviews, in which trip-makers crossing par­
ticular links are asked the origin, destination and purpose of their trips, could provide 
a target toward which an iterative calibration procedure would aim. Or finally, 8 would 
be tinkered with as the network analyst now tinkers with link times until the assigned 
volumes satisfactorily duplicated the observed ground counts. 
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Figure 5 shows inferred link volumes 
by using various values of 0 in the pre­
ceding example, where we assigned 700 
trips between nodes 1 and 25. The 4 num­
bers posted on each link are, from top to 
bottom, the link volumes obtained with the 
parameter 0 equal to 0, 1, 2, and 10. No­
tice how, as 0 increases, trips are drawn 
to the links on the shortest path. 

MODEL 2-PARALLEL 
PROBABILISTIC ASSIGNMENT 

This second model redefines an effi­
cient path to exclude constraint 2 above. 
In this alternative model, a path is effi­
cient if all of its links satisfy constraint 
1. This eliminates the need to know the 
shortest path distance from each node to 
the destination node d, and all trips origi­
nating at the origin node o to all destina­
tions can be assigned simultaneously, in a 
single execution of algorithm 2. Thus, 
this second algorithm, a minor variation 
of the first , is effectively orders of mag­
nitude more efficient than the first, but it 
is less discriminating in its selection of 
probable paths. 

Efficient Path Redefined 

In this alternative model, we discard 
one of the conditions for path efficiency 
and let a path be efficient if and only if all 

NOTES: 

I ALL LINK T IMES A RE 2~ EXCEPT FOR HORIZONTAL LINKS BETWEEN 
NODES 11 AND 15 WH ICH ARE UNITY 

xfiJ }!I Q 

K(i.il • , 

K(IJ} I -Z 

1t(i1I 9 ,0 

Figure 5. Arc volumes using various values of 
parameter ll 

of its links have an initial node closer to the origin node than is its final node. Recall 
that this property was a necessary condition in the original definition of an efficient 
path. We now let it constitute a sufficiP.nt conc:lition . 'fh1.1s , all of the effir.ient paths 
under the original definition are contained in the set of efficient paths as presently 
redefined. We now have a larger number of efficient paths between a given origin and 
destination node pair than before. Thus, trips will generally be spread over more links 
than before. 

Although the new definition of an efficient path yields more efficient paths, it sur­
prisingly provides immense computational benefit. We assign to more paths, but the 
new definition permits us to do it a great deal faster. For example, in a network with 
1,000 origins and 1,000 destinations, the number of executions of algorithm 2 would be 
1,000 times fewer than the number of algorithm 1 with the old definition. Algorithm 2 
would execute 1,000 times; algorithm 1 would execute 1,000,000 times. With the new 
definition, all trips from a given origin zone are assigned in roughly the same amount 
of time as was previously required for a single, widely separated origin and destination 
node pair. This fact becomes apparent in the following algorithm description. 

The algorithm for the parallel assignment model is obtained by using the new defini­
tion of an efficient path and slightly modifying the multipath algorithm described earlier. 
The principal difference is that this parallel multipath assignment algorithm maintains 
node volumes. It is described in 3 major steps. 

Algorithm 2 

Preliminaries-To simultaneously assign all trips from origin node o to all destina­
tion nodes requires that the following 4 items be known for each node: y(i) = the number 
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of trips from node o terminating at node i; p(i) = the shortest path distance from node 
o to node i; I; = the set of all links starting at node i; and F; = the set of all links 
ending at node i. Again, letting link e = (i, j) have length t(i, j), we can calculate the 
link likelihood of each link e. 

[p ( j ) - p ( i) - t ( i' j )] if p(i) < p(j) 

{

exp e 

a(e) = 

0 if otherwise 

(Notice that the old constraint q(j) < q(i) has been dropped from the definition of a(e), 
thus we eliminate the need to know q(j ), the distance between j and d.) 

Forward Pass-By examining all nodes i in ascending sequence with respect to p(i), 
their distance from the origin, we can calculate for each link e in I; its link weight 

w(e) 
{ 

a(e) 

= a(e) L w(e') 
e • in F 1 

if i = o (the origin node) 

if othe rwise 

When the destination node most distant from the origin node o is reached, the next step 
is undertaken (notice that this step is identical to the first step in algorithm 1 ). 

Backward Pass-Starting with the most distant destination node, we can examine all 
nodes j in descending sequence with respect to p(j ). For each link e in Fi, the following 
2 steps are undertaken: 

1. A trip volume x(e) is assigned to each link e: 

x(e) = y (i) w(e) / •. f Fi w(e') 

2. The node volume at e's initial node i is increased by e's link volume: 

y(i) - y(i) + x (e) 

When the origin node o is reached, the assignment is complete. All trips originating 
at node o have been assigned. (At this time, the node volume of the origin, y(o), should 
equal the total trips originating at o. This constitutes a good error check in a computer 
implementation.) 

Example-Figure 6 shows the results of a single execution of the multiterminal, 
multipath algorithm. The origin node is 1. The number of trips from node 1 destined 
for each node appears posted above the destination node. These numbers constitute 
one row of a travel demand matrix or "trip table." For example, the number of trips 
from node 1 to node 3 is 40; from node 1 to node 7, there are O trips; and at node 1 
there are 20 intranodal trips, which will not be assigned to any links, but are included 
to show that they are judiciously ignored. 

Posted below each line e is w(e), its link weight as calculated in the forward pass. 
Above each link e is x(e), its assigned link volume as calculated in the backward pass. 
Figure 6 shows the way all trips are spread from a given origin node through the net­
work. The reader may attempt to duplicate these results by playing algorithm 2. Or 
he may prefer to refer to Dial's paper (70) that discusses and exemplifies the algorithm 
in much finer detail. 
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In a single execution of the algorithm, 
all trips originating at node 1 have been 
assigned to a total of 151 different paths. 
Of these 151 paths, only 57 end at nodes 
whose terminal volume is nonzero. Thus, 
94 paths were "loaded" with zero trips. 
Of the 151 different paths originating at 
node 1, exactly 3 paths terminate at node 
13. We may, for example, approximate the 
effective path assignments for the 40 trips 
from node 1 to node 13, as follows : 

1. 23 trips were assigned to the 
shortest, 6-min path through nodes 1, 6, 
11, 12, and 13; 

2. 8.5 trips were assigned to the 7-min 
path through nodes 1, 6, 7, 12, and 13; and 

3. 8.5 trips were assigned to the 7-min 
path through nodes 1, 2, 7, 12, and 13. 

Table 1 gives the number of efficient paths 
to each destination node. General path­
counting algorithms are given elsewhere; 
however , in this case, the preceding path 
volumes can be readily verified by refer­
ring to Figure 6, where the link weights 
are posted. Notice that all efficient paths 
from 1 to 13 go through node 12. Further­
more , only one of these paths, the shortest 
path, uses link (11, 12). Therefore, the 
probability of using the shortest path is 

NOTES· 
L ALL LINK TIMES ARE 2, EXCEPT FOR HORI ZONTAL LINKS BETWEEN 

NODES 11 AND 15, WHICH AR E UNITY 

lttltiul 
i(i) 

x(i. j) 

11{i.j) 

Figure 6. Parallel multipath assignment. 

identical to the conditional probability of using link (11, 12), given that node 12 is used : 

prob [shortest path] prob [( 11, 12) 112] 

w(ll, 12) / _L- w( e) 
/ e .1.11 r 12 

w(ll, 12) /[w(ll, 12) + w( 7, 12)] 

1/ 1. 74 

Thus, the expected number of trips from 1 to 13 that will use the shortest path is 
40/1. 74 = 23. The remaining 17 trips must split equally among the 2 remaining equal 
length, and therefore equiprobable, efficient paths. In the general case, of course, this 
calculation is not so simple, and reference should be made to Eq. 5 to determine indi­
vidual path probabilities. 

Justification of Algorithm 2 

The effective difference between the faster, parallel assignment algorithm and its 
predecessor discussed in the preceding is in the parallel procedure's larger set of 
reasonable paths. For example, Figure 6 shows that, of the 10 trips from node 1 to 
node 25, 1 trip used paths that crossed link (23, 24). Under the prior, more restrictive 
definition of a reasonable path, this link received no trips at all; there were no reason­
able paths that used it. When we drop the explicit constraint that all nodes in a path 
must progress closer to the destination, we allow greater divergence of a path as it 
approaches its destination. Perhaps the tremendous computational advantage of the 
parallel multipath algorithm could be outweighed by an undesirable admission of too 
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TABLE 1 

TRAVEL DEMAND AND EFFICIENT PATHS ORIGINATING 
AT NODE 1 AND TERMINATING AT NODE i 

Destination Travel Efficient 
Node i Demand 2 Paths 

1 20 0 
2 0 1 
3 40 1 
4 0 1 
5 30 1 
6 0 1 
7 0 2 
8 0 3 
9 0 7 

10 0 11 
11 30 1 
12 0 3 
13 40 3 
14 0 3 
15 20 3 
16 0 1 
17 0 4 
18 0 7 
19 0 10 
20 0 13 
21 20 1 
22 0 5 
23 20 12 
24 0 22 
25 10 35 

Total 230 151 

alntranodal trips. 

many paths. On the other hand, the parameter 0 in the calculation of link likelihood 
may be used to effectively restrict path diversion. Judicious use of this parameter 
could render the multiterminal model useful and allow the economic benefit of its 
tremendous computational efficiency. 

The utility of this alternative model rests on the practicality of the revised definition 
of an efficient path and the user's valuation of computer time. Otherwise, its properties 
are identical to the probabilistic assignment described previously. The new definitions 
do not invalidate the statements proved previously. Inefficient paths still receive no 
trips. Among efficient paths, the shorter ones still get more trips than the longer ones. 
All the highly desirable properties discussed earlier still hold; only the meaning of 
efficient path has changed. Formal proof of these statements is contained in the justi­
fication of algorithm 1. The only needed addition to the proof is an inductive argument 
showing that the node volume y(i) is properly maintained and is complete before being 
distributed to the links in Fi' 

CONCLUSION AND RECOMMENDATION 

This paper has briefly described and justified the mechanics of 2 efficient multipath 
traffic assignment models. It is shown elsewhere that the algorithms have extended 
utility. They can be readily modified to perform all-or-nothing assignment or 
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all-shortest-path assignment. They also can yield path statistics, revealing, for 
example, the length distribution of all competing efficient paths. 

The models also appear promising in areas of "capacity-restraint" assignment and 
modal split. In capacity restraint, the model is an excellent tool to perform an incre­
mental assignment, where in each iteration a fraction of the total trips are assigned 
and the speeds of the links are decreased to reflect their increased volumes. In modal 
split, it is intriguing to imagine using the model to divert trips among modes. In such 
a model, the network would be multimodal, and the diversion rules would appropriately 
reflect fare and transfer "costs" as well as preclude illegal mode changes en route. 
These 2 extensions are both interesting topics for further research. 

As yet, the proposed model is an untested hypothesis. While laboratory experimen­
tation using artificial networks has been encouraging, the model has not been tested by 
using full-scale, real-life transportation planning input. Therefore, it is recommended 
that such a test be undertaken to ascertain the model's utility. 

While we prefer the aesthetics of the symmetric envelope of efficient paths of algo­
rithm 1, we feel that most computers are not yet fast enough for its blanket substitution 
for all-or-nothing assignment in large networks. (It would, however, be quite feasible 
to restrict its employment to selected key origins and destinations, where it is felt that 
its path discrimination would be significant.) On the other hand, algorithm 2 is more 
efficient than some all-or-nothing model computer implementations. It would be prac­
tical to use it on a full-scale transportation network of 4,000 to 8,000 nodes. To this 
end, Alan M. Voorhees and Associates, Inc., under the sponsorship of the U.S. Depart­
ment of Transportation, has completed a computer code for the par allel probabilistic 
assignment algorithm and the capacity restraint alluded to earlier. 

This computer program is completely compatible with the Federal Highway Admin­
istration transportation planning programs for the IBM 360 computer. Its output in­
clude all the detailed information, e.g., turn volumes, that the planner has come to 
expect from such a program. With the program's input and output compatibility, the 
model can be put to work in a manner imposing no compromises on its user. He will 
have all the analytical and comparative capabilities present in the rest of the programs 
and, thus, possess an ideal mechanism to observe the model's performance in the field. 
The actual application of the model in the planner's workaday environment is, therefore , 
a feasible subject for further experimentation. 
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