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In recent years, the techniques for planning improvements to transportation 
systems as well as for analyzing innovative new systems have been given 
increased attention in the professional literature. Travel forecasting is an 
important aspect of the planning process because it is necessary to forecast 
the pattern and magnitudes of traffic flows in the proposed system so that 
one can analyze the benefits and costs that will accrue to the users and 
operators of the system. If it is assumed that the number of trips to be 
made within a region is dependent on the level of service delivered by the 
transportation system, the problem of determining equilibrium between 
supply and demand for a given region and transportation system is funda
mental to travel forecasting. In this paper, 2 new algorithms are presented 
for the precise determination of equilibrium in the travel-forecasting 
problem. A functional of the demand and service variables associated with 
a transportation system is introduced, and it is shown that the maximum of 
this functional occurs at equilibrium. Both a constrained gradient and a 
modified Newton-Raphson algorithm are then used to determine the net
work flows that maximize this functional, i.e., the equilibrium flows. Two 
simple examples are considered to demonstrate the use of the algorithms. 
The advantage of the algorithms presented over present techniques is that 
equilibrium is obtained precisely rather than approximately and computa
tion of minimum paths is not required in the iterative process. 

•IN RECENT YEARS, the techniques for planning improvements to transportation 
systems as well as for analyzing innovative new systems have been given increased 
attention in the professional literature (1, i, J, i, _g_, §, 7). Existing techniques have 
been criticized and new ones proposed (1, _g, J, !, 7). Travel forecasting is an im
portant aspect of the planning process. To analyze the benefits and costs that will 
accrue to the users and operators of a proposed transportation system or to the 
government and society as a whole requires that a forecast be made of the pattern 
and magnitudes of traffic flows in the proposed system. The traffic flows in a trans
portation network result from the interaction between the demand for transportation 
services in a region and the service characteristics of the transportation system. It 
has been pointed out by Kraft and Wohl (1), and earlier by Beckman, McGuire, and 
Winsten (!i), that the number of trips that will be made within a region is not independent 
of the level of service delivered by the transportation system. Thus, the problem of 
determining the equilibrium between supply and demand for a given region and trans
portation system is fundamental to the transportation planning process. 

For clarity, it is important to briefly review the concepts of equilibrium between 
supply and demand as applied to transportation networks. The discussion follows 
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Beckman, McGuire, and Winsten (8.). Consider first an isolated transportation link 
along which the demand for travel as a function of the travel time on the link is as 
shown in Figure la, and the travel time along the link is as shown in Figure lb. In 
this case, the equilibrium flow rate and travel time on the link are obtained, by using 
fundamental microeconomic theory (ft), as the intersection of the supply and demand 
curves as shown in Figure le. At this point, the number of trips made, v., leads to a 
travel time on the link t., which would in turn imply the number of trips to be made 
would be v •. 

Generalization of this fundamental idea of equilibrium for an isolated link to a 
transportation network requires some care. The fundamental assumption on which 
network equilibrium concepts are based is that all travelers choose to travel along 
their personal minimum-cost paths through the network from their origins to their 
destinations. This is Wardrop's first principle (10). It follows that, at equilibrium, if 
more than 1 path is used by travelers from a given origin to a given destination, the 
costs along the alternative paths must be the same. Furthermore, the number of trips 
generated per unit time between all origins and destinations corresponds to the equil
ibrium network service conditions between the origins and destinations. 

One must be careful when trying to mathematically define equilibrium. Beckman, 
McGuire, and Winsten (8) have precisely defined equilibrium in terms of the demand 
and service functions associated with a region and its transportation system. However, 
their proposed technique for determining the network equilibrium essentially ignores 
their mathematical definition and is approximate. Other approximate techniques for 
determining network equilibrium are the standard Federal Highway Administration 
(FHW A) assignment package (11) and the transportation network analysis software 
package, OODOTRANS, developed at M.I.T. (12). Beckman, McGuire, and Winsten <8.), 
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noted the difficulty in getting their iterative 
approach to converge to an approximate 
equilibrium, and one can only guess how close 
to the true equilibrium the approximation 
would be. Similar convergence problems 
exist with the FHW A approach. On the other 
hand, OODOTRANS will always reach an 
approximation to equilibrium, but again, one 
can validly ask whether the approximation 
achieved is even close to true equilibrium. 

In a pr evious paper' (13), numedcal 
techniques of functional maximization were 
used to find the equilibrium flows and levels 
of service for a transportation system under 
the assumption that all interzonal trips are 
assigned along the unloaded minimum time 
paths through the network. Because of this 
assumption, the equilibrium found by that 
technique differs from the equilibrium defined 

(bl srnv1cE cHARACTER1sT1c FOR AN 1soLATED LINK by Beckman, McGuire, and Winsten (!!_). In 
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Figure 1. Equilibrium for an isolated link. 

this paper, numerical techniques of functional 
maximization are used to develop new 
algorithms for finding equilibrium as defined 
elsewhere (8.). 

In the next sections, a mathematical 
definition of equilibrium is presented based on 
Beckman's work. A function of the demand and 
service variables associated with a transpor
tation system is introduced such that the maxi
mum of this function occurs at equilibrium. 
Algorithms are then developed to maximize 
this function by iterative adjustment of the 
network flows. Both a gradient (steepest 
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descent) method and a Newton-Raphson algorithm are considered, and various examples 
are presented to exhibit the characteristics of the algorithms. 

MATHEMATICAL STATEMENT OF EQUILIBRIUM 

The usual means of representing travel in a region is assumed. Namely, the region 
is partitioned into a set of disjoint zones. The trips from (or to) any zone are assumed 
to originate (or terminate) at the zone centroid. The transportation network by which 
interzonal trips are made is represented by a series of links connecting the zones as 
shown in Figure 2. In general, the links in a network are characterized by a vector 
of service parameters that may depend on the volume on the link. In the following 
discussions, the only service variable used to characterize the links is travel time. 

Let link ij denote a one-way link directly connecting nodes i and j, and on which 
persons may travel from node i to node j. (Note that zones and nodes will be used 
interchangeably through the rest of the paper. There is often a distinction made 
between a zone being a representation of an area where trips originate or terminate in 
a region and a node as being a junction of two or more links in a network. This distinc
tion is not made here.) Let vi,i denote the volume flow rate on link ij, and let v;,i de
note the portion, , if any, of the trips vi, i having node k as ultimate destination. Summing 
the trips on a link over all possible destinations yields the relation 

v . . = L vk . 
l. J k l I J 

(1) 

By definition, all V r j and Vi' j are non-negative. 
Let V r represent the number of trips per unit time originating at node i and having 

destination k. Then the dependence of the number of trips v t on the level of service in 
the transportation network is expressed by the demand function 

(2) 

where t k is the travel time through the network from zone i to zone k. The demand 
function 

1 

d 7 is assumed to be a monotone nonincreasing function for t ~ _:_,_ 0. In all 
subsequent developments, it is also assumed that the inverse of the demand function 
in Eq. 2 exists; i.e., a function gr exists such that 

(3) 

The case when g~ does not exist is discussed in an example. 

I 
I , , 

For each node i, let {a) denote the 
set of all nodes directly connected to i 
by a link carrying traffic away from i, 
and let { b;} denote the set of all nodes 
directly connected to i by a link carrying 
traffic toward i. Thus, in Figure 3, 
{a 1 } = {3,5} {b 1 } = {2,3,4} {b 3 } = {1,2,4}, 
and so forth. Then, the number of trips 
from node i to node k, v7, obviously equals 
the flow with destination k away from 
origin node i minus the flow with destina

..xli---- - ----l:r--'- - - - tion k toward i. That is, 

, 
I 

Figure 2. Network representation of a transportation 
system. 

(4) 

If { a) = { 3 ,4, 7 } , then define 

L Vk 

{ "i } ' ' "i 



242 

To relate the level of service in the 
network to the trips using links, requires 
that supply functions be introduced. Let 
ti, i denote the time required to travel 2 
from node i to node j along the link ij. The 
relationship between the volume of traffic 
on the link ij and travel time on the link ij 
is expressed by the supply function 

(5) 

where hi, i is a monotone nondecreasing 
function. Figure 3. An illustrative network. 

As previously explained, the trips from 
1 zone to another at equilibrium use a 
minimum time path between those zones. 

5 

Hence, v _k • is greater than zero at equilibrium if and only if link ij is part of a minimum 
time path 

0

from node i to node k. (Note that there is not necessarily a unique minimum 
time path between zones at equilibrium.) Therefore, the equilibrium travel time from 
zone i to zone k can be expressed in terms of the travel time on any link ij for which 
v k . > 0 and the equilibrium travel time from j to k is 

'•l 

This statement is equivalent to the well-known principle of optimality stated by 
Bellman (14). 

(6) 

On the other hand, if v t i = 0, link ij is not part of a minimum time path from i to k. 
It follows that the equilibrium travel time from j to k plus the equilibrium travel time 
on link ij must be greater than (or possibly equal to) the time to travel from i to k at 
equilibrium along a path that does not include link ij; that is, 

t k + t. . > t k if V k = 0 
J 1,J - .l 1,J 

(7) 

Equations 6 and 7 give a precise mathematical statement of equilibrium. 
Substitution of the inverse demand functions from Eq. 3 and the service functions 

from Eq. 5 into Eqs. 6 and 7 yields the following alternate statement of equilibrium in 
terms of the network flows : 

V k . 
••l 

> 0 (8) 

(9) 

Thus, the problem of finding equilibrium in a travel-forecasting problem is equivalent 
to determining the values of the non-negative flows v ;_ i that satisfy Eqs. 1, 4, 8 and 9. 
However, determining the solution of these simultaneous nonlinear equations, without 
knowing what the minimum time paths between zones are at equilibrium, is a difficult 
task and has led to the use of approximate iterative techniques to determine equilibrium. 

In the next section, the statement of equilibrium as the maximum of a functional of 
the network flows is developed, following Beckmann, McGuire, and Winsten (8.). 

EQUILIBRIUM AS A MAXIMIZATION PROBLEM 

For convenience, define a vector~ that has all vt i as its components; i.e., y 
transpose is given by 

[vi.] , ... v;,i' ... ] (10) 
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Consider the functional 

(11) 

where each summation is over all node numbers. It is shown in the Appendix that the 
gradient components of H(v ), o H/ ov _k ., are given by 

- 1,J 

(12) 

Now, Eq. 8 and Eq. 12 together imply that, at equilibrium, 

: 0 if Vk . > 0 
,, J 

(13) 

whereas Eq. 9 and Eq. 12 imply that at equilibrium 

< 0 if = 0 (14) 

Equations 13 and 14 are by definition the necessary conditions for the functional H to 
have a maximum at a pointy under the constraint that all v;, i be non-negative. The 
fact that Eqs. 13 and 14 are satisfied at equilibrium implies that finding equilibrium is 
equivalent to the problem of maximizing H subject to the constraint that v k . > 0 for all 
i, j, k. It is shown in the work by Beckman, McGuire, and Winsten (.8.) that 'the solution 
to the problem of maximizing H is unique (in the sense that the equilibrium flows vi, i 
on all roads are unique) whenever the inverse demand functions gt are strictly de
creasing functions of vt and the supply functions hi, i are strictly increasing functions 
of v i ,i' 

The question is, Does the statement of equilibrium as a functional maximization 
make the problem of finding equilibrium easier to solve? It is the authors' opinion 
that the answer to this qu~stion is yes, because numerical techniques of functional 
maximization can readily be used to determine the equilibrium network flows that 
maximize H(y). Such numerical techniques are used effectively in parameter optimi
zation problems associated with control system design (15), and it is shown in the 
following sections that these techniques can be used in the solution of the problem being 
considered. 

ALGORITHMS FOR DETERMINING EQUILIBRIUM 

Two algorithms that use iterative numerical techniques to find the values v L, V
i, j, k, which maximize H (i.e., to find equilibrium), are presented in this section. 
Both algorithms utilize the vector ,7v H, the gradient of H with respect to y. By 
definition 

(15) 

and thus the components of 'v ~ H are obtained by using Eq. 12. 
The algorithms presented are a constrained gradient algorithm and a modified 

Newton-Raphson procedure. The rationale for these algorithms is not discussed here 
but can be found in any standard reference for optimization techniques (16). 
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In the constrained gradient algorithm, the change in each volume at the end of the 
r th iteration is given by 

6 v k \ = v k I - v k I i .J r i, j r+l i.j r 
= 0 . f k I -1 v . . -

1 , l r 
oH I 0 and --

3 v .k . 
1 ,J t" 

< 0 (16) 

a 
ovt,j f 

if otherwi se 

In Eq. 16, a is a positive scalar constant that is chosen to guarantee that none of the 
flows is adjusted to be negative or to locally maximize the functional H in the direction 
defined by the gradient. A flow chart for the algorithm is given in Figure 4. 

The iteration procedure continues until at some step Eqs. 13 and 14 are satisfied to 
within the des ired degree of accuracy. Typically, this means that iteration continues 
until 

(17) 

for all vi~ i I, > O, where E is a small scalar constant (e.g., 10- 3). Results using this 
algorithm to determine equilibrium are given in the examples. 

A second approach to finding the non-negative v t ;'s that maximize H is to use a 
modified Newton- Raphson algorithm. If the v t. /s were not constrained to be non
negative, then the change in the volumes at the end of the r th iteration, 6 v I,, using the 
Newton-Raphson procedure would be given by 

(18) 

(Thus, the second partial derivatives of H with respect to all v ;k, /s must be computed 
and the matrix of these terms inverted in the Newton-Raphson procedure.) However, 
because of the constraint that all of the components of y must be non-negative, a modi
fied Newton-Raphson algorithm must be used in the problem being considered. 

Basically, the idea of the algorithm is to eliminate from consideration, at step r of 
the iteration procedure, all components of y that satisfy Eq. 14 at step r. Therefore, 
at step r, determine the number c of components of y I, that do not satisfy Eq. 14. De
fine Y{' as a vector of dimension c and denote its value at step r as Y{' I,. (The dimen
sion of Y{' may be different at each step.) Every component of y I, that does not satisfy 
Eq. 14 is included sequentially as a component of Y{' I, . 

Then, similar to the iteration procedure given in Eq. 18, a vector L'.Y{' I, is calcu
lated by 

(19) 

Then, the components of the c-dimensional vector Y!'.'l,. 1 are computed by the relations 

wf.\ = max {we\ +6wf.[, o}, e = 1, .. . , c 
r + 1 r r 

(20) 

Finally, the components of y I , + i are obtained in the following way: The components 
of y that at step r are not members of Y{' are set to zero in ~I , + 1• The remaining 
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components of y I ,+ 1 are obtained sequentially from~' I ,+ 1 • The iteration procedure 
continues until Eq. 17 is satisfied. Figure 5 shows a flow chart for the modified 
Newton-Raphson algorithm. 

The algorithm just presented requires the calculation of -a v w' H /-a ~', the matrix of 
s econd partial derivatives of H with respect to the v~ . 's that are com_ponents of~ '. 
Instead of an expression for this matr ix being obtained separately for each iterat ion 
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step, it is easier to obtain an expression for c1v'Y H /c1 y, the matrix of second partial 
derivatives of H with respect to all of the v;, 1 's, and then to r ecognize that clv' , H/c11Yr 
consists of some of the rows and columns of o'il VH/cl y. In addition, it can be shown 
that -

= - h . . cv .. ) o,.m oJ." + 
1,J l 1 J 

gk (vl.k) [81'm r: 8 
J {a;} n,aj 

- 8. 
1n 

(21) 

In Eq. 21, the dot above a function implies differentiation of that function with respect 

1 if n is a member of to its argument, 8. . = 1 if i = j and O if i /. j; and I: 8 
1 J {ai} n ,ai 

{a ) and O if otherwise. 

Thus, all the elements of c1v'vH/c1 y are available from Eq. 21. Furthermore, if all the 
inver se demand ap.d supply functions g t and hi. i respectively are linear functions of 
their arguments, then each component of c1 v' YH /c1 y is a constant. 

EXAMPLES 

Two relatively simple examples are considered in this section to illustrate the 
application of the preceding results to equilibrium problems in travel forecasting. The 
network used in the examples is shown in Figure 6. For simplicity, the demand and 
service functions in the examples are assumed to be linear. However, this restriction 
is certainly not necessary, and any nonlinear (or piece-wise linear) functions can 
readily be used in the preceding algorithms. 

Example 1 

The interzonal demand and link service functions used in this example are as 
follows: 

and 

ti, 2 = 

tl,4 = 

tS,I = 

V{ = 21,375 

v; = 16.875 

t 2 
1 

t 4 
1 

t 3 
4 

h1, 2 (VI, 2) = 5 t 0, l v 1 , 2 

10 + 0.1 v 1 , 4 

1 

VJ 
I 

VJ 
2 

VJ 
5 

= 28.25 - t J 
I 

= 21. 625 - t 3 
2 

28 - t 3 
5 

t2,3 10 + 0.1 v 2 ,J 

t4,J 5.5 + 0.1 v 4 , J 

tS,J 18 

Two points to note are that the inverse of every demand functions exists and two of the 
service functions are independent of the volume flow rate of trips using the link. The 
relationships between the various volume components can be clarified by considering 
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2 

5 

Figure 6. Network for the examples. 

the calculation of the gradient component <lH/;,v! 
2

• From Eq. 12, 

Inverting the appropriate demand functions given in the preceding yields 

28.25 - vf 

21.625 - vf 

(24) 

(25) 

However, vf and vf must be related to the component flows on the various links. Thus, 
using Eq. 4, we obtain 

{26) 

Vi = v],3 vf,2 

If we substitute Eqs. 25 and 26 and the appropriate service function in Eq. 24, it follows 
that 

<lH 
= 1.625 - 2.1 vf, 2 - vi3, 4 - 0.1 vl, 2 + vt 3 + v:, 1 (27) 

Similar expressions are obtained for all the gradient components ;, H /;, v:, i for use in 
both the gradient and modified N~wton-Raphson algorithm. 

Obviously, some initial estimates of the component flows on the various links must 
be made to use the algorithms discussed earlier. There are various approaches that 
can be taken in making initial estimates; for example, completely random volumes 
could be chosen, all zero volumes could be chosen, or volumes corresponding to the 
unloaded minimum time path could be chosen. The latter 2 cases were tried here. The 
results for both the gradient and modified Newton-Raphson methods are shown in 
Table 1. Two sets of stopping criteria, i.e., E = 10-2 and 10- 3

, were used for the gradient 
method. The stopping criterion for the modified Newton-Raphson method was " = 10- 1

• 

It is seen that both techniques converged to the correct equilibrium. The modified 
Newton-Raphson method converged in 1 iteration with the zero initial estimates and in 
3 iterations with the other estimates. In the latter case, the number of variables con
sidered at each iteration was different. Thus, the modifications in the Newton-Raphson 
method required by the constraints were indeed exercised. It is interesting to note that 



TABLE 1 

RESULTS FOR EXAMPLE 1 

Gradient 

Function 

vi2_ 2 

V f. 2 

vl_ 4 

v:_ 4 

Vi_ 3 
v2, 3 

Vt_ l 
vf, 3 

Initial 
Guess 

E = 10- 2 

(196 
iterations) 

11,625 9,989 

25.25 6.354 

0,0 3.646 

11,375 10,010 

36,875 16.353 

11,375 13.646 

12,0 0.0 

0.0 9.999 

E = 10-3 

(312 
iterations) 

9.999 

6.261 

3,739 

10,001 

16.260 

13.739 

0.0 

9.999 

Initial 
Guess 

0,0 

0.0 

0.0 

o.o 
o.o 
0.0 

0.0 

o.o 

Gradient 
Modified 

E = 10-2 E = 10-3 Newton-

(135 (164 Raphson 
·t t· ) ·t t· ) (1 iteration) 1 era ions 1 era ions 

9.998 

6.251 

3,76 

9.998 

16.259 

13.768 

0,0 

9,999 

10,000 

6.247 

3,753 

9,999 

16.248 

13.753 

0.0 

9,000 

10.00 

6.25 

3,75 

10.00 

16.25 

13.75 

0.0 

10.0 

both the gradient and modified Newton-Raphson algorithms converged more quickly 

249 

with the zero initial conditions. It is also interesting to note that the unloaded minimum 
time path from zone 5 to zone 3 is from 5 • 1 • 2 • 3, whereas the minimum time path 
from 5 to 3 at equilibrium is along the link directly connecting zones 5 and 3. Thus, 
the first set of initial estimates assigns all the volume from zones 5 to 3 along the 
wrong path, but the techniques still converge. Perhaps, however, this explains the 
need for fewer iterations with zero initial estimates for all link volumes. These re
sults are indeed quite good, especially those using the modified Newton-Raphson 
algorithm. 

Example 2 

In this example, the case where the inverses of all demand functions do not exist is 
considered. This corresponds to a fixed demand between zones. This case is of in
terest because some of the nodes used in representing transportation networks may be 
"throughpass" nodes where no trips originate or terminate but where alternate routes 
intersect. 

The technique used here is to define a pseudo-demand function for which an inverse 
function does exist but which is a good approximation to the fixed, zero demand function. 
The algorithms presented in this paper can then be applied; the question is simply, Will 
the algorithms converge? 

The network shown in Figure 6 is used again. The volumes vJ and v: are assumed 
to be zero, and the demand and service functions are as follows: 

v2 
1 df ( t f) = 16. 25 - t f 

v/ = 16.5 - t/ 

The zero volume vJ is approximated by 

vJ = 10-3 - 10-s t] 

and 

vf = 19,0 

v3 
5 22.5 

t3 
1 

t 3 
5 
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tl,2 = hf ( v/ ) = 5 + 0.1 Vl, 2 

t2,3 = 10 + 0.1 V2,J tl,4 = 10 + 0.1 v 1 , 4 

t4,3 = 5. 5 + 0.1 v4 ,3 ts,1 1 + 0.1 VS,l 

ts,J = 17 + 0.1 Vs, J 

No pseudo-demand function was defined for V{ because it turns out that it does not enter 
into any of the gradient components and can thus be completely ignored. The gradient 
components are expressed in terms of all the component flows v t, i as discussed in the 
preceding example. One of the gradient components that involves a pseudo-demand 
function is cl H /o vf. 2 , and this is found to be 

cl H 
--- = -86 -1.lvf 2 -vf 4 + v/ 1 + 105 ( vl_ 3 -vf, 2 )-0.lvf_ 2 {28) 
ovf, 2 • • • 

One would suspect that numerical difficulties would occur when gradient components 
such as those in Eq. 28 are used. Indeed, the gradient algorithm did not converge for 
any set of initial estimates tried and for up to 6,000 iterations . However, the modified 
Newton-Raphson algor ithm converged to the equilibrium in two i.te1·at.ions ( E = 10-4

) . 

This is interesting because the matrix of second partial derivatives that must be in
verted contains terms that differ by 5 orders of magnitude. The equilibrium flows in 
this case are 

vi2, 2 = 10 

vJ, 3 = 2.5 

vf, 2 = 2.5 

vf,3 = 10 

V[_4 = 0 

v;_ 3 = 5 

SUMMARY AND CONCLUSIONS 

vf, I = 0 

The problem of precisely determining the equilibrium between supply and demand 
was considered in a travel-forecasting problem when travel demand is assumed to de
pend on the level of service delivered by a transportation system. Based on some re
sults of Beckman, McGuire, and Winsten (ll), 2 new algorithms for precisely determining 
equilibrium were developed by using numerical optimization techniques. The algorithms 
use a constrained gradient technique and a modified Newton-Raphson procedure to maxi
mize a functional of network flows, and Beckman, McGuire, and Winsten (ll) have shown 
that the flows thus determined are the equilibrium flows in the network. Very good 
results were obtained in the examples considered by using the algorithms given. 

The advantages of the algorithms presented in the paper over techniques like 
DODOTRANS (12) are that equilibrium is obtained precisely rather than approximately, 
and computation of minimum paths during the iterative process is not required. Cer
tainly more work remains to be done in applying the techniques to very large networks. 
However, one can be very optimistic about the application of these techniques to large 
networks because of known techniques in other fields. 
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APPENDIX 

The functional H is given in Eq. 11. If the chain rule for differentiation is used, it 
follows that 

<lH 

ovk 
>,J 

Then, using Leibnitz 's rule in Eq. 29 yields 

<lH 

av!< 
> , J 

] 

ov m, n 
h (x) dx --

m,n avr,J (29) 

m n 

d V m,n 

OV .k . 
,, J 

(30) 

Nowe if v; is expressed in the form of Eq. 4, it can be seen that the partial derivative 
of vm with res pect to v ;, i is zer o unless e = k. Similarly, if vm," is expressed in the 

ov 
form of Eq. 1, ~ is seen to be zero unless m 

ov.k . ,., 
i and 'n = j. Hence, Eq. 30 becomes 

(31) 
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Again making use of Eq. 4, we obtain 

(33) 

Equation 33 was obtained by recognizing that the partial derivatives involved in the first 
and second terms on the right of Eq. 32 are respectively equal to zero when m f n and 
m i j. The fact that v f, i exists as a variable implies that link ij exists to carry traffic 
from i to j. By definition, then, one of the members of { ai} is j, and one of the mem-

bers of { b. } is i. Hence, v .k . appears once in each of the summations, L vk and 
J l , J { a i} 1 1 81 

L v(; . ; and the partial derivative with respect to v _k . of each of these summations 
{bJ } J • J '• l 

thus equals 1. Equation 33 then becomes 

Using Eq. 1, we have 

clv .. 
1,J = 1 

so that substitution of Eq. 34 into Eq. 31 and use of Eq. 35 finally yields 

cl H 

cl v .k 
l,J 

(34) 

(35) 

(36) 




