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Twelve models were formulated by segmenting the total travel time and to­
tal travel cost by rapid transit and by automobile in different ways or by 
leaving them out completely and including only socioeconomic variables in 
the model. These models were then estimated by using logit, probit, and 
discriminant analyses. The results were evaluated in 2 respects: Are 
there differences in performance among the methods of estimation? and 
Are there differences in performance among the 12 model specifications? 
The results indicate that there are no statistically significant differences 
either among the methods of estimation or among the model specifications 
themselves. A model that uses only 2 user characteristics, income and 
the number of working household members, and 1 system-related variable, 
a dummy variable for walk access to the transit station, performs no worse 
than a model that uses a whole set of system characteristics in addition to 
those 3 variables. Values of time significantly lower than those previously 
reported were found; the "best" estimate in this study is only 12 percent of 
the wage rate. 

'THERE ARE 3 objectives in this research: (a) to investigate the relative merits of 
the 3 methods most widely used in probabilistic modal-choice modeling or in value of 
time studies, logit, probit, and discriminant analyses (1, 2, 3, 4); (b) to investigate 
the need for trip segmentation, that is, Is there a need fo clifferentiate among access, 
egress, and line-haul times and costs? and if so, How should this trip segmentation 
be done?; and (c) to obtain further evidence on the value of time. 

Answers to the first objective are provided by estimating several different models by 
all 3 methods and then by assessing and comparing the forecasting accuracy of each 
method. For the second objective, these different models were designed by segmenting 
the travel costs and travel times in different ways. The forecasting accuracy of each 
model specification was then assessed and compared with the forecasting accuracy of 
the other model specifications. The third objective was accomplished as a by-product 
from several different models estimated by objectives 1 and 2. 

BASIC MODEL AND METHODS OF ESTIMATION 

A general probabilistic travel demand model can be expressed as 

Pr (ij, M) =Pr (ij) •Pr (Mlij) 

where 

(1) 

Pr (ij, M) =probability that the event (ij, M) occurs, that is, an individual makes a 
trip between points i and j by using mode M; 

Pr (ij) =probability that an individual makes a trip between points i and j; and 
Pr (M\ij) =probability that an individual uses mode M, given that he makes a trip 

between points i and j. 

Clearly, in modal choice, models are estimated for Pr(M\ij). In this research only 
binary choice, automobile versus rapid transit, is considered. 
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It is assumed that there is an index y that determines to which group (automobile or 
transit) an individual is likely to belong. This index y is constructed as follows: 

where 

y = a + b (L~t - L~~) + c (SE) 

a =constant term; 
b = (1 x k) vector, where k is the number of system characteristics; 
c = (1 x t) vector, where tis the number of user characteristics; 

L~J = (k x 1) vector of system characteristics describing the level of service 
between points i and j by mode M; 

SE = (t x 1) vector of user characteristics; and 
a, b, c = coefficients to be estimated. 

Verbally expressed, it is hypothesized that modal differences in the level of service 
(i.e., differences in travel times) combined with the user characteristics are the de­
terminants of choice of mode. [Also the ratios of system characteristics can be used 
(1, 5, for example).] 
- Iii the logit model, the probability that choice of mode M, the dependent variable, 

will equal 1 (automobile choice is denoted by 1, and transit choice is denoted by 0) is 

Pr(M = l\ij) = e1/(1 + e1
) (4) 

and similarly 

Pr(M = 0\ij) = 1 - Pr(M = l lij) = 1/(1 +er) 

No assumptions are needed about the distributions of the variables or of y. 
The probit model uses the same linear function y. If, for any given individual, 

y;? Ycr1t, then M = 1; and if y < Ycr 11 , then M = 0. The assumption is made that Ycr1t 
is normally distributed over the population. The probability that M will equal 1 is 

and similarly 

Pr(M = 1\ij) = Pr(y0 r1t;;, Ylij) = 1/V2fi fy e-(
12

)/
2 dt 

- 00 

Pr(M = O\ij) = 1 - Pr(M = 1\ij) = 1/V2fi Joo e-(t
2

)/
2 dt 

y 

(5) 

The method of maximum likelihood is used to obtain estimates for a, b, and c in both 
logit and probit analysis. (A computer program originally written by John Gragg, De­
partment of Economics, University of British Columbia, and modified by Peter Stopher 
for CDC 6400 was used in estimating the models.) 

In discriminant analysis, no dependent variable exists. The objective is to find such 
linear combination of the explanatory variables that their joint distribution, the distri­
bution of y, for the 2 groups would possess very little overlap. This discrimination 
rule classifies an observation at y as coming from population 1 if f1(y)/f2(y) > k, and 
otherwise from population 0. If we assume that y is normally distributed, as is con­
ventionally done, then, after some serious manipulation, 

Pr(lV! - 1 \ij) - ey+ln(p/q) /[1 -: cr+ln(plq)J 

and 

Pr(M = O\ij) = 1/[1 + eY+1"(P/q)] 

'''-' \V/ 

where p and q are the a priori probabilities of group membership 1 and 0 respectively. 
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DATA 

Data Source 

The data used were originally prepared by Lisco (2) and are well documented in his 
thesis; only a couple of comments are in order here .-

The data consist of 159 work trips made during the morning rush hour from Skokie 
to the Chicago Loop. Only a binary choice (automobile or rapid transit) was available 
to the trip-makers. The corresponding travel times and costs were compiled for each 
segment of an individual trip; these disaggregate figures formed the basis for the trip 
segmentation. 

Trip Segmentation 

The system shown in Figure 1 will help explain the trip segmentation procedures. 
(The actual system was more complicated because of train transfers needed by some 
of the travelers. This does not change the principles, however.) Links 1 through 7 
describe the transit network, and links 8 through 10 describe the automobile network. 
Times and costs associated with each link were obtained for each element in the sam­
ple. These transportation system attributes are given in Table 1. 

Three user attributes-income, number of workers in household, and automobile 
ownership-and 1 indirect system attribute-walk access to rapid transit station-were 
also included in the data. These socioeconomic attributes are given in Table 2. 

Twelve models were estimated by combining the travel time and travel cost differ­
ences in different ways. Of the socioeconomic attributes, dummy 1 and dummy 2 are 
included in every model; but if income was used, then automobile ownership was not, 
and vice versa. 

A description of the models is given in Table 3. Next to the description column, a 
relationship is given to indicate how the time and cost differences were combined. Ac­
cess refers to the trip from home to station, egress refers to the trip from station to 
work, and total access means access and egress taken together. Excess refers to the 
time spent outside the vehicle, for either walking, waiting, or transferring. Travel 
time differences are transit minus automobile, and travel cost differences are automo­
bile minus transit. Except for the socioeconomic variables, given in Table 2, model 7is 
the same as the one used by Quarmby (3), model 8 is the one used by Lisco (2), and 
model 9 was used by TRC (6, the TRC model used ratios instead of difference of re­
spective travel times and costs). The system variables in these models were excess 
time (not in Lisco's model), total time, and total cost or out-of-pocket cost (TRC model). 

RESULTS 

Two kinds of evaluations were made on the basis of the results : (a) What is the best 
method? and (b) What is the best model? Ideally, the evaluation of the methods and the 
models should be done with a set of data other than that used for the model calibration. 
However, in the present study the original body of data was already quite small (159 
individuals), and splitting that would only have left too few either for the model estima­
tion or for the control group. An alternative procedure was adopted. It involved taking 
random samples from the data, computing the corresponding probabilities for each in­
dividual, summing them up to the expected value, and comparing the actual and expected 
values. By taking enough samples and getting the expected values and their standard 
deviations for each method and model, one could perform statistical tests (t-tests) to 
see whether there are any differences among the 3 methods or among the 12 models. 

Twenty samples of 20 individuals were drawn, and the t-tests were undertaken. Un­
fortunately, no differences either among the methods or among the models were detected 
this way. The hypothesis that the results are statistically equal could not thus be re­
jected. 

It was, therefore, decided to engineer the answer to these 2 questions. First, the 
methods were checked for dominance. No model could be excluded because of dominance 
(based on all 3 methods). The decision was then made to rank the methods and the 
models. This ranking was based on multiple criteria. The ranking criteria were di-



Figure 1. Transportation system between Skokie and Chicago Loop. 
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Table 1. Time and cost variables of transportation system. 

Notation 

Link Description Tjme Cost Note 

1 Walk to car or bus Tl 
2 Wait for bus T2 IC car access to station, T2 = 0 
J Take car or bus to station T3 C3 
4 Wa lk lo station platform T4 II walk access to station, Tl = T2 = T3 = C3 = 0 
5 Wait for train T5 
6 Lin e haul in train T6 C6 C6 = train fare ., Egress to work T7 Walk was only egress mode 
8 Walk to car TB 
9 Ori ve to parking lot in Loop T9 C9 T9 includes parking timej C9 excludes parking cast 

10 Egress to work TIO ClO Walle was only egress mode ; ClO = parking cost 

Table 2. Socioeconomic variables. 

Nata- Models Used 
Descripti on ti on 

Incom e (house hold or unrelated individual) I 1 through 9 
Workers per household (dummy 1, 0 if 1 and l H otherwis e) 
Walk access to station (dummy 2, O if distance ls 5 miles 

Dl All 

and 1 if otherwise) 
Automobile ownership 

•one·haU mile was dala supported walk access distance to station , 

Table3. Description of models. 

Time 

Model Description Relationship• 

Access Tl + T2 + T3 + T4 + T5 - TB 
Line-haul T6 - T9 
Egress T7 - TIO 

Access Same as model 1 
Line-haul Same as model 1 
Egress Same as model 1 

Total access Tl + T2 + T4 + T5 + T7 - TB - TIO 
Line-haul Same as model 1 

Excess Tl + T2 + T4 + T5 - TB - TlO 
In-vehicle 

access T3 
Line-haul Same as model 1 

Excess Same as model 4 
In - ve hicle T3 + T6 - T9 

~xcess Same as model 4 
7 10 

T otal l; Ti - l; Ti 
i=l i =B 

Excess Same as model 4 
Total Same as model 6 

Total Same as model 6 

Excess Same as model 4 
Total Same as model 6 

10 None 

11 None 

12 Excess Same as model 4 

D2 Ali' 
A 10 through 12 

Cost 

Description Relationship• 

Access -C3 
Line-haul C9 - C6 
Egress ClO 

Total access ClO - C3 
Line-haul Same as m odel 1 

Total access Same as model 2 
Line-haul Same as model 1 

Total access Same as model 2 

Line-haul Same as model 1 

Total access Same as model 2 
Line-haul Same as model 1 

Total access Same as model 2 

Line-haul Same as mode l 1 

Total C9 + Cl 0 - C3 - C6 

Total Same as model 7 

Out-of-pocket ClO - C6 - CJ' 

None 

Parking ClO 

Par king Cl O 

•See Table 1 b6 = Bus fare to station or parking cost at the sta tion, no driving costs 
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vided into 2 categories: classification criteria and criteria based on expected values. 
The classification criteria included 3 items: 

1. Misclassified automobile users, 
2. Misclassified transit users, and 
3. Proportion classified correctly. 

A group membership probability of 20.5 was used as a rule for correct group classifica­
tion, and the correctly classified proportion was obtained based on these classification 
results. The classification criteria are given in Tables 4, 5, and 6 for the logit, probit, 
and discriminant methods respectively. 

The expected-value criteria were computed based on the results of the 20 random 
samples and included the following: 

1. Average absolute error, which = [(actual number of automobile users - expected I 
value of automobile users) /20]; 

2. Percent error, which = (1/20) [(actual number of automobile users - expected 
value of automobile users)/actual number of automobile users 1; 

3. Standard deviation of error, and 
4. Rank sum of the 20 predictions. [This item was obtained by ranking the results 

of 20 sample predictions (in case of a tie, the rank average was assigned for each tied 
value) and summing the ranks for each model. The lower the rank sum is, the better 
the model is.] 

These results are given separately for each method in Tables 4, 5, and 6. 
In the discriminant analysis method, 2 values have been given for classificatory 

measures. The upper ones were derived by using sample proportions as the a priori 
probabilities and the lower ones by using 0.5 as the a priori probability (Eq. 6). The 
latter a priori probability produces better classification results. The same does not 
hold true for the expected-value statistics (Tables 4, 5, and 6), however; but the sam­
ple proportions as a priori probabilities now give better results. In the ranking anal­
yses reported below, the classification rankings correspond to those values obtained 
with 0. 5 a priori probability. 

Ranking Analysis of Estimation Methods 

The methods were ranked separately by using the classification criteria and the 
expected-value criteria. Each column for each model was assigned a rank of 1 to 3. 
The best method was assigned the rank of 1. In case of a tie, the average of a rank 
sum was assigned for each tie. The ranks were then summed by column and row to 
yield a rank sum for each method. The inspection of the statistical measures given in 
Tables 4, 5, and 6 indicates that discriminant function always produces the lowest stan­
dard error. An experiment with another data set proved this is not always true. Hence, 
this criterion, expected-value criterion 3, was dropped from the ranking of the methods. 
The priority ranking of the 3 estimation methods is given in Table 7. The results of 
the ranking analysis indicate that the logit analysis is the best method. Examination of 
data given in Tables 4, 5, and 6 reveals, however, that the differences between logit and 
probit analyses are very small. In any case, logit analysis seems to slightly edge both 
probit and discriminant analyses. 

Ranking Analysis of Model Specifications 

A similar ranking as undertaken for the methods of estimation was performed for the 
12 model specifications. In addition to the classification criteria and criteria based on 
expected values, the number of variables in the model was used in ranking the models 
to input (approximately, of course) the data collection and model estimation costs. 
Ranks run from 1 to 12; no averaging was done for ties, but the lowest tied rank was 
assigned for all ties. The results of this ranking analysis are given in Table 8. 

Three comments may be made on the basis of these ranking results. First, models 
without any explicit system variables appear to be best accorcing to the classification 
criteria. Model 10 and model 11 rank as first and second. According to expected-value 
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Table4. Ranking criteria for logit Table 5. Ranking criteria for probit 
estimation method. estimation method. 

Classification Classification 
Criteria Expected-Value Criteria Criteria Expected-Value Criteria 

Model Model 

1 20 16 0.774 1.04 0.3 0.88 142.5 1 22 16 0.762 1.05 0.5 0, 87 138.5 
2 20 17 0.767 1.02 0.5 0.90 130 2 21 16 0.767 1.02 0.5 0. 89 129 
3 22 18 0.748 1.08 0. 7 0.94 143 3 22 18 0.748 1.08 0.7 0.93 141.5 
4 21 14 0. 779 0.98 1.1 0.93 118 4 22 14 0.773 0.99 1.1 0.92 118 
5 21 14 0.779 0.97 0.7 0.92 117.5 5 22 15 0. 767 0.99 0.9 0.91 121 
6 21 14 0.779 0.98 0.8 0.93 112 6 22 14 0.773 1.00 0.9 0.91 122.5 
7 20 14 0.786 0.98 0.7 0.91 116.5 7 20 13 0.792 0.99 1.1 0.89 119 
8 23 14 0.767 1.10 0.8 0.98 HO.G 8 23 14 0.767 1.10 0.9 0.97 144 
9 22 13 0.779 0.96 1.3 0.97 118.5 9 22 13 0.779 0.98 1.6 0.96 119 

10 21 16 0,767 1.07 0.8 1.16 115. 5 10 21 16 0.767 1.06 0.4 1.11 110.5 
11 18 17 0.779 1.15 0 1.15 144 11 23 15 0.762 1.15 1.4 1. 10 149 
12 21 16 0.767 1.12 0.9 1.24 151 12 21 16 0.767 1.11 0 .1 1.20 148 

Table 6. Ranking criteria for discriminant Table 7. Ranking of estimation methods. 
estimation method. 

Criteria Expected-Valu e Criteria Rank Sum by Criteria 

Model Expected 
Method Rank Classification Value Total 

38 8 0.710 1.09 0.8 0.48 134.5 
12 30 0. 736 Legit 63.5 64.5 128 
37 7 0 ,729 1.08 0. 7 0.50 128 Pro bit 72 75.5 147.5 
12 29 0.743 Discriminant 80.5 76 156.5 
36 7 0.729 1.08 0.5 0 ,55 119 
13 29 0.736 
44 5 0.691 1.05 0. 7 0.44 122 .5 
13 31 0.724 
44 3 0.704 1.06 0.8 0 .42 131 
15 29 0.724 
44 4 0.698 1.06 0. 8 0.43 137 

Table 8. Ranking of model specifications. 14 31 0.717 
40 6 0.710 1.07 0. 5 0.44 132 
15 29 0.724 
40 11 0 . 680 1.11 0.3 0.59 123 .5 Model by Criteria 
13 34 0.704 
37 10 0.704 1.06 0.3 0 ,52 130.5 Expected 
H 28 0.736 Rank Classi!ication Value Total 

10 58 1 0.630 1.08 0. 7 0.53 124 
21 16 0. 767 10 7 7 

11 44 5 0.691 1.10 0.9 0.50 135 11 5, 10 10 
17 18 0.779 7 4 4, 5, 10 

12 47 2 0 . 691 1.09 0.9 0.49 146 9 9 6 
14 23 0 ,767 5 6 2 

Table 9. Coefficients and standard deviations of model 5. 

J...u111t ProbH Dlscrlrnlnnnt 

Variable Coef. S. D. Coef- S. D. Coe!. S.D. 

Constant term - 0.384 1.722 -0.337 1.040 -0.358 
Time 

Out-or-vehicle -0.316 0.114" - 0.173 0,0639' -0. 114 0.147 
In-vehicle~ -0 0206 0.0559 - 0 0165 0 0321 -0,0085 0 0037 ' 
Tota l 

Cost 
Access• 0.0158 0, 0088 0.0087 0.0052 0.006 0.0048 
Line-haul 0.0414 0.0248 0.0249 0.0148 0.0170 0.0129 
Total 

Income" -0.0136 0.0056' -0.0074 0.0033" -0.0056 0.0018" 
Automobile ownership 
2 -.;..vd;cr.:; per ~.cu.:;chul~ ! .!l!C a.S07" l .0£7 C.2!1." f.USU!. c.21e· 
Walk access 2. 176 0 .780' 1.277 0 ,447" 0 .711 0.226" 

•s ignificant at o 05 level 
bTimA rlifferences are transit time minus automobile rime in hundreds of seconds. 
'Cost differences are aulomobile cost minus transit cost in cents 
din thousands of dollars 



Table 10. Coefficients and standard deviations of model 9. 

Log!t Prohlt Discriminant 

Variable Coef. S.D. Coef. S. D. Coef. S , D. 

Constant term 1.075 1.143 0.584 0.694 0.288 
Time 

Out-of-vehicle -0.271 0.141 -0.145 0.0806 -0.103 1.34 
In-vehicleb 
Total -0.0327 0.0552 -0.0236 0.0319 -0.0157 0.0062' 

Cost 
Accessc 
Line-haul 
Total 0.0165 0.0088 0.0092 0.0051 -0.0068 0.0034 

Incomed -0.0157 0. 0054' -0.0087 0.0031' -0.0070 0.0023· 
Automobile ownership 
2 workers per house hold 1.837 0.501' 1.032 0.278' 0.722 0.226 
Walk access 1.996 0. 769' 1.174 0.443' 0. 684 0.217' 

•significant at ·0.05 level. 
bTime differen~s are transit time minus aulomobile time in hundreds of seconds. 
('Cost differences are automobile cost minus transit cost in cents, 
din thousands of dollars 

Table 11. Coefficients and standard deviations of model 10. Table 12. Means of selected transit system 
variables. 

Loglt Probit Discriminant Variable Value· 

Variable Coef. S.D. Coef. S. D. Coef. S.D. Total travel time 3,624 
Out-of-vehicle time 749 

2.218 0.573 1.220 0.319 0.725 In-vehicle time 2,875 Constant term 
Time 

OJ.t-of-vehicle 
In-vehicleb 
Total 

•Time is in seconds, and cost is in cents. 

Cost 
Accessc 
I' -haul 

1J, 
Automobile ownership 
2 workers per household 
Walk access 

'Significant at ·0.05 level . 

- 1.460 
1.660 
1.624 

0.343' 
0.476" 
0.663' 

-0.797 
0.940 
0.963 

0.184' 
0.266" 
0.376 

-0.592 
0.623 
0.511 

0.126" 
0.194' 
0.162' 

bTime differences are transit time minus automobile time in hundreds of seconds, 
ccost differences are automobile cost minus transit cost in cents. 
din thousands of dollars 

Table 13. Effect of changes in travel time and cost on transit proportion. 

Automo-
Transit bile 
Time Time 
Up 30 Down 23 

Model Percent Per.cent 

Quarmby 9.0 
Wohl-Kraft - 7.3 -6.2 
McGillivray -7.5 
warner -6.4 
Ltsco -34.6 
Model 7 - 8.8 
Model 7 -15.0 

Table 14. Value of time. 

Value 
of Time 

Model Method ($/hour) 

Logit 0.71 
Probit 0.22 
Discriminant 0. 83 

Logit 3.49 
Probit 3.44 
Discriminant 3.60 

Log it 0.62 
Pr obit 0. 71 
Discriminant 0.65 

Transit 
Cost 
Up 30 
Percent 

-1.6 
-5.6 
-6.4 

-8.1 
-7.0 

Standard 
Error 
of Value 
of Time 

1.17 
1.23 

3.02 
2,90 

0.82 
0.86 

Automo-
bile 
Cost 
Down 23 
Percent 

-8.0 
-2.0 

Percent 
ol 
Wage 
Rate 

12.5 
16.0 
14.0 

62 
61 
64 

]I 

12.5 
11.5 

Remarks 

Reported by McGillivray 
Reported by McGillivray 
Reported by McGillivray 
Reported by McGUli vray 
Change in total travel time and total travel cost 
Change in total travel time and total travel cost 
Change in excess time 

Variable Value• 

Total travel cost 58.2 
Line-haul cost 38.2 
Total access cost 20.0 
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criteria, however, models that have explicit system performance variables rank best. 
Model 7 and model 5 rank as the first and second. 

Second, it is interesting that model 10, which has only 1 system variable (a dummy 
for walk access), and user attributes (car ownership, which probably is not system in­
dependent, and number of workers in the household), seems to be as good as models 5 
and 7. Thus, the decision to buy a second car often signifies car choice, and the deci­
sion to reside near the transit station signifies transit choice. These choices are, of 
course, conditioned by socioeconomic factors such as the number of family members 
in the labor force and income. The effect of the extent of the public transportation sys­
tem on modal choice may be negligible at present. The good performance of model 10 
is not of spurious nature, as the actual survey proved (1., p. iii): 

This study indicated that diversion of Loop-bound trips ... is made mainly from other rapid transit 
modes, along with suburban railroads and buses, with only a small number being diverted from au­
tomobile trips. 

Third, the results of the ranking analysis indicate that model 12, which included only 
those variables that were statistically significantly (at the 0.05 level) different from 0, 
consistently showed poor performance. The customary null hypothesis, b = 0, may not 
be a good one. There seems to be a reason to remember that 0 is a very particular 
coefficient; it implies no relation between the dependent and the explanatory variables. 
Why should a variable be excluded solely because its coefficient, which is the maximum 
likelihood estimate, has a wide standard error? In this study, all the variables were 
originally included because they should have an effect on modal choice and not because 
they were available in the data set. Coefficients and standard deviations are given in 
Tables 9, 10, and 11 for models 5, 7, and 9. 

COMPARISONS WITH OTHER SIMILAR MODELS 

McGillivray (5, p. 40, Table 13) computed changes in modal split for the policies oi 
increasing relative travel time by 30 percent and increasing relative travel cost by 30 
percent for 4 models. These results are reproduced here along with 3 new results for 
the same policies. The new results are those for Lisco's original model, for model 7 
when the change is in total travel time and total travel cost, and for model 7 when the 
change is in excess time (Tables 12 and 13). 

With regard to a 30 percent increase in transit time, it appears that the 4 results 
reported by McGillivray are largely identical; models developed by Quarmby, Wohl­
Kraft, McGillivray, and Warner estimate the change in transit proportion to be between 
6% and 9 percent. A much different result is obtained by using Lisco's model; there 
the same increase in transit time would decrease the transit proportion by 34% percent. 
Model 7 estimates the decrease in transit proportion to be nearly 9 percent in response 
to the 30 percent increase in total transit time; a result similar to those reported by 
McGillivray. However, if the change is in excess time, then model 7 indicates a 15 
percent reduction in transit proportion. 

With respect to travel costs, the results reported by McGillivray indicate that a 30 per­
cent increase in transit cost (or 23 percent decrease in automobile cost) would decrease 
the transit proportion by 6 to 8 percent. There is an exception: The Wohl-Kraft model 
estimates this change to be about 2 percent. The results obtained by Lisco's model and 
model 7 give support to the 6 to 8 percent figure; the percentages for Lisco's model and 
model 7 are 8 and 7 percent respectively. 

Three comments are in order on the basis of these results. First, model 7, where 
the travel time was broken down into excess and totai t ravei time compuneni:s, suggests 
that travelers value excess time differently from in-vehicle time. This result was ob­
tained also by Quarmby and Kraft and Wohl. These models , Quarmby, Wohl -Kraft, and 
model 7, also estimate an identical magnitude for the change in transit proportion in 
response to a change in total travel time. Second, it is somewhat surprising that models 
by McGillivray and Warner on the one hand and by Lisco on the other estimate such dif­
ferent responses, even though the models are largely similar and do not include the 
excess-time term. McGillivray and Warner models give results similar to the other 
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models mentioned above, but Lisco's model estimates modal choice to be much more sen­
sitive to changes in travel time. Third, changes in modal split in response to changes in 
travel cost appear to be equal by all the modal-choice models; however, Wohl and Kraft, 
who use a different type of model, estimate less sensitivity with respect to travel cost. 

VALUE OF TIME SAVED 

Values of time saved, or more commonly values of time, were computed from model 
7 (excess time, total time, and total cost), from model 8 (total time and total cost), and 
from model 9 (excess time, total time, and out-of-pocket cost). The results, including 
the standard error of the value of time and value of time as a percentage of the wage 
rate, are given in Table 14. 

Value of time, in dollars/hour, was computed as (b1/b2) x 0.36, where b1 and b2 are 
the estimated coefficients of total travel time difference and total cost difference re­
spectively. Variance (b1/b2) is computed from the following formula: 

Var (b1/b2) = l/b~ [b~ var (b1) + b~ var (b2) - 2b1b2 cov (b1b2)] 

+ l/b~ [b1 var (b2) + b2 cov (b1b2)J 

It appears from the results that all 3 methods of estimation produce approximately 
the same values of time. Models 7 and 9, which both have excess and total travel time 
variables, with the cost term being total cost difference in the former and out-of-pocket 
cost difference in the latter, obtain largely equal values of time. The average value of 
time for model 7 is 82 cents /hour and for model 9 is 66 cents /hour. These ratios are 
about 14 and 12 percent of the wage rate respectively. 

Model 8, which has total travel time and total travel cost variables but no excess 
time variable, obtains a much higher value of time: approximately $3.50/hour or 62 
percent of the wage rate. (In Lisco's study the time value was 40 percent of the wage 
rate, and in Quarmby's 20 to 35 percent.) 

The standard errors of all value of time estimates are quite large. Data given in 
Table 11 show that the standard errors are about equal to the values of time themselves. 
Two comments may be made on the basis of the results. First, the out-of-vehicle and 
in-vehicle times must have extremely different values because of the large difference 
in value of time depending on whether it was computed from a model where excess time 
is explicitly accounted. This result was also indicated by the results obtained in the 
previous section, where choice of mode was much more sensitive to out-of-vehicle than 
in-vehicle times. From the coefficients of models 4, 5, 6, 7, and 9, it may be inferred 
that out-of-vehicle time is 6 to 15 times the in-vehicle time, most of the values being 
around 7. [Quarmby found the out-of-vehicle time to be 2.5 to 3.0 times the in-vehicle 
time. In Ergiin 's recent study the value of walking time was estimated to be between 
$4.50 and $11.50 (8). This result is in general agreement with the findings of this pa­
per.] Second, in spite of the large standard errors estimated for the value of time in 
this study, it appears that the value of time savings may not be so large as previously 
believed. This concerns especially the in-vehicle time. Therefore, to be realistic 
any economic study of a transportation improvement must consider the out-of-vehicle 
and in-vehicle times separately. 

CONCLUSIONS 

Three major conclusions of this paper are as follows: 

1. The methods of estimation, commonly used in probabilistic modal-choice models, 
probit, logit, and discriminant analyses, all yielded comparable results. Any of them 
can be used with equal success. 

2. At present, the modal-choice behavior of travelers appears to be only marginally 
influenced by the travel times and travel costs. This, in turn, implies that travel ser­
vice by automobile and transit are not perfectly substitutable services and should, there­
fore, be modeled separately. 
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3. The values of travel times obtained are substantially lower than those previously 
reported. In particular, the value of out-of-vehicle time is much different from the 
value of in-vehicle time. This fact should be recognized in any economic study of a 
transportation improvement if travel time is given a monetary value. 
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