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DEVELOPMENT AND IMPLEMENTATION OF 
A PARKING ALLOCATION MODEL 
Raymond H. Ellis, Paul R. Rassam, and John C. Bennett, 

Peat, Marwick, Mitchell and Company 

This paper develops the underlying assumptions of the parking allocation 
model and describes the results of its calibration and application in a case 
study. This version of the model incorporates three of the basic variables 
influencing parking choice: cost, walking distance, and capacity constraint. 
The model is embedded in a linear programming context that uses a dis
utility concept to combine the effects of the trade-offs among cost, dis
tance, and other variables. Parkers arriving during a given time period 
are allocated such that their joint disutility is minimized, subject to ca
pacity and demand constraints. In general, the performance of the parking 
allocation model in its first operational application is encouraging. It does 
replicate the distribution pattern of parkers among facilities and the facility 
totals. Initial testing suggests that the model captures the dynamics of the 
parking project. Based on these results, further careful pilot applications 
are warranted. 

•A SYSTEMS ANALYSIS of parking was structured by the authors in a previous paper 
(!). This parking analysis framework hinges on a parking allocation model (PAM) that 
simulates the choice of a parking facility by a trip-maker. The objective of this paper 
is to report on the experience gained in applying PAM in an initial case study. 

For purposes of this discussion, it is necessary to situate this model into the 
broader context of the urban transportation planning process. When we recognize the 
simultaneous nature of the urban travel process, it is nonetheless necessary, at the 
present time at least, to assume a sequential process to simulate the urban travel 
phenomenon. In this context, the parking analysis described in this paper follows 
modal split and, ideally, precedes assignment. Hence, the parking analysis process 
assumes a fixed stock of automobile trips; the interaction between the cost and incon
venience of parking on the one hand and the demand for various modes of transporta
tion on the other should be taken into account as part of the modal-split analysis. In 
other words, aggregate parking demand at a given final destination is explicitly as
sumed to be an exogenous input to PAM. 

The purpose of PAM is to accept a stock of automobile trips to a final destination 
and to allocate these trips to a set of parking facilities. Given this fixed-demand con
text, each parker would ideally want to park at his final destination and do so at no 
cost. As a matter of fact, this is what happens in low-density residential areas or 
even in the CBD of a small community. However, in higher density centers, it is 
obviously not possible for each parker to achieve these ideal conditions. Thus, the 
concept of competition for the available parking spaces is introduced in the analysis. 
When the competition reaches a threshold level, parking spaces are no longer "free," 
and either a time limit or a price is imposed. 

In this competitive environment, parkers must make choices among alternative 
facilities characterized by attributes such as (a) the total out-of-pocket cost of park
ing; (b) the spatial separation between the parking facility and the final destination; (c) 
the service provided by the facility in terms of waiting time, safety of the user, and 
protection of his vehicle; (d) the location of the parking facility with respect to the 
travel routes; and (e) the likelihood of finding a space. It can be hypothesized that, 
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when selecting a facility, a user implicitly or explicitly trades off among these, and 
perhaps other, attributes and, hence, assigns some disutility to each of the facilities 
that he considers. 

Each parker will attempt to minimize his own disutility. To simulate such a process 
in which the available choices change as each parker is allocated would theoretically 
require that a sequential order be assigned to each parker and that the process be re
peated until all parkers are allocated to a facility. Changes in the available choices 
occur when the capacity of a facility is reached. To make the allocation algorithm 
computationally tractable (in terms of running time) requires some approximation of 
the process. It can be assumed that a joint disutility minimization performed over a 
relatively short period of time sufficiently approximates the individual disutility mini
mization that would occur over the same time span. In other words, parkers are 
grouped within a given arrival period and assigned simultaneously to parking facilities 
in a way that minimizes their joint disutilities. For a given time period of arrival a, 
this can be stated mathematically as follows: 

subject to 

where 

Minimize I: I: I: I: Z(j ,k,q,d) x X(j ,k,q,d) 
j k q d 

I: I: I: X(j ,k,q,d) s: s(a,k) for each k 
j q d 

I: X(j ,k,q,d) = T(j ,q,d) for each (j ,q,d) 
k 

j = index identifying a zone of final destination; 
k = index identifying a parking facility; 
q = index identifying a group of parkers (by purpose or income or both); 
a = index identifying a time period of arrival; 
d = index identifying a time period of departure (d ;;e a); 

X(j ,k,q,d) = number of parkers arriving at time period a, departing at time period 
d, belonging to group q, destined to zone j, and allocated to facility k; 

Z(j ,k,q,d) = disutility of each of the parkers; 
s(a,k) = supply (number of spaces) available at time period a in facility k; and 

T(j ,q,d) = number of parkers belonging to group q, destined to zone j, arriving 
in period a, and departing in period d. 

(This formulation assumes that parking duration is not subject to any restriction. Other
wise, the supply constraints must be slightly modified.) 

A CASE STUDY 

Pittsburgh, Pennsylvania, was chosen as the case study for pilot implementation of 
PAM. This city was chosen because (a) it is a medium-sized city; (b) it has a well
defined CBD, a feature that facilitated this initial analysis; and (c) an acceptable data 
base for a parking system analysis was available. A home-interview study was per
formed in 1967, and a parking study, consisting of an inventory, occupancy counts, 
and curb-side interviews, was performed in 1969 (£). 

This paper will focus on the allocation of long-duration work trips for which it is 
assumed that workers arrive during a single period and that their durations are strati
fied in three categories: between 7 and 8 hours; 8 to 9 hours, and longer than 9 hours. 
This initial focus on the long-duration work trip is logical inasmuch as parkers for this 
purpose constitute from 40 to 50 percent of the total parkers in cities of greater than 
500,000 population, and they consume over 70 percent of the total space-hours. Fur
ther, the dynamics of the early-arriving work-trip parkers has significant impacts on 
the personal business and shopping parkers who generally arrive at later time periods. 
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The study area (Fig. 1) was divided into 116 zones in which 74 parking facilities are 
open to the public. Curb parking was not considered in the analysis inasmuch as it 
represents a very small fraction of available space and is subject to time restrictions. 

The data base required to calibrate and validate PAM involved demand data, supply 
data, and CBD network data. Demand data were obtained from the curb-side interview 
of parkers; information was obtained on the number of parkers in each facility by final 
CBD destination, trip purpose, and parking duration. Information on the socioeconomic 
characteristics of the drivers, the number of people sharing the parking cost, and the 
arrival time at the parking facility was not available in the survey. Supply information, 
including the parking rate structure and facility capacities, was available from the in
ventory work sheets. A detailed CBD walking network was coded in which each zone 
was represented by a centroid located in the middle of the zone and connected to the 
street network by four "dummy" walking links. Interzonal walking distances were esti
mated by skimming this network, whereas intrazonal walking distances were manually 
estimated. Information on waiting times at the parking facilities was not available; 
however, the three major factors influencing parking choice, i.e., parking cost, ,,;;alk
ing distance, and facility capacity, were available in the calibration data set. 

DEVELOPMENT OF THE CALIBRATION DATA SETS 

The joint distribution for parking cost and walking distance for work trips with a 
duration of 7 hours or longer is given in Table 1. Although, as might be expected, 
there is considerable dispersion in the data, a definite trend of decreasing parking cost 
with increasing walking distance is evident. This dispersion can be attributed to the 
following factors: 

1. The data displayed cover a relatively large geographic area. 
2. Low-cost parking facilities are located closer to the final destination in the pe

riphery of the CBD than they are in the central portion. 
3. Although not explicitly indicated in the survey, this joint distribution is directly 

influenced by the effects of available supply, i.e., capacity constraints. For example, 
in the core of the CBD, there are cases when the closest available facility is about 
1,000 ft or more from the final destination, and the cost for this facility is still quite 
high. 

4. Other factors such as the approach route may influence the choice of a parking 
facility. 

5. Consumers generally lack full information concerning the available choices. 

The trade-off between walking distance and parking cost is most acutely faced by 
those destined for the core area of the CBD, as shown in Figure 1 by Liberty Avenue, 
Grant Street, and Boulevard of the Allies. Plotting the joint distribution of cost and 
distance only for those parkers whose final destinations are within this triangular area 
(Table 2) reduces the dispersion and accentuates the relation between cost and distance. 

To further reduce the scattering, we stratified the data by intervals of 200 ft for 
distances up to 3,000 ft and intervals of 500 ft for distances greater than 3,000 ft. The 
average parking cost for each of the distance intervals is shown in Figures 2 and 3 for 
the entire study area and the core area respectively. Thus, four calibration data sets, 
disaggregated and grouped data sets for the entire study area and the core area, were 
developed. 

FORMULATION OF THE DISUTILITY FUNCTIONS 

The PAM proposed in this paper does not lend itself to a calibration procedure as 
generally understood. Because of the structure of the model, the output of PAM is de
fined implicitly rather than explicitly. This is in contrast to, for example, a modal
split model in which the output variable, modal split, is an explicit function of the input 
variables. Hence, to exercise PAM requires that an initial estimate of the disutility 
function be obtained. However, validation must be based on the ability of the model to 
replicate the observed interchanges between final destinations and parking facilities 
together with consideration of the quality of the disutility functions. 
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Figure 1. Study site. 
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Tabie i. rercentage of parkers in entire study area who wiii waik a given distance from and pay a given 
price for a parking space. 

Distance (ft) 

500- 1,000- 1, 500- 2,000- 2, 500- 3,000- 3, 500- 4,000- 4,500- 5,000- 5,500-
Cost($) >500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 

>1.00 1.1 1.1 1.0 4.9 7.9 2.4 1.5 0,4 0.3 0.4 
1.00 to l.50 0.2 1.5 1.5 2.5 1.1 0.5 0.2 
1.50 to 2.00 8,9 9.2 12.9 10.9 6.7 2.4 0.1 
2.00 to 2.50 6.3 2.9 6.0 1.8 1.1 0.3 0.1 
2.50 to S,00 1.2 0.6 2. I 0.6 
3.00 to 3. 50 0.6 

Table 2. Percentage of parkers in core area who will walk a given distance from and pay a given price for a 
parking space. 

Distance (ft) 

500- 1,000- 1, 500- 2,000- 2, 500- 3,000- 3, 500- 4,000- 4, 500- 5,000- 5, 500-
Cost($) >500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4, 500 5,000 5,500 6,000 

>1.00 0.3 2.9 5.5 1.6 2.4 5.3 4.5 1.3 0.8 0 ,2 0.1 0.4 
1.00 to 1.50 1.9 2.9 4.7 2.4 0.7 0.3 0.3 0.1 0,2 
1.50 to 2.00 8.5 9,3 10.2 9.2 3.7 1.4 0.2 0. 1 0.2 
2.00 to 2.50 5.2 3.1 4.5 1.2 0.8 0,3 0.1 0.1 
2.50 to 3.00 0.9 0.5 0.9 
3.00 to 3.50 0.3 0.2 



Figure 2. Relationship between cost and distance (entire study 
area). 
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Figure 3. Relationship between cost and distance (core area 
only). 
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Table 3. Calibrated cost-distance relation and corresponding disutility functions. 

Model 
Number 

lb 
2' 
3' 

Cost-Distance Relationship" 

C = 218 - 4.5*D 
C = 45 + exp(5.587 - 0.067*D) 
C = 45 + exp(5.157 - 0.041*D) 

Standard 
Error of 
Distance 
Coefficient 

0.001 
0.012 
0.002 

Correlation Coefficient 

Log
Transformed 
Equation 

0.94 
0.80 
0.88 

Actual 
Equation 

0.94 
0.87 
0.88 

Disutility Function 

Z = C + 4. 5*D 
Z = C + 268*[1 - exp(-0.067*D)l 
Z = C + 174*[1 - exp(-0.041*D)) 

8Cost is expressed in cents and distance in 100 ft. bEqs. 1 and 2 pertain to the core area . cEq. 3 pertains to the entire study area. 
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Although several variables could be considered, it has been assumed that cost and 
distance are the two variables that characterize a facility and determine parking choice. 
It has also been hypothesized that these two variables can be combined into a single 
measure of disutility. What can be observed by examining a plot of parking cost versus 
walking distance (Figs. 2 and 3) is that, despite a certain scattering, cost decreases as 
distance increases. Let f(C, D) = 0 be the relationship between cost and distance. This 
relationship can be readily calibrated by least squares once a functional form has been 
selected for f(C, D). 

The next step of the analysis is to determine how C and D can be combined into a 
single measure of disutility. When D is equal to zero or very small, disutility is equal 
to parking cost. If f(C, D) is viewed as a trade-off between cost and distance, then the 
derivative of C with respect to D can be viewed as a marginal rate of substitution be
tween cost and distance. Hence, the contribution of distance to disutility can be defined 
as the sum of the "substitutions" made between a given distance D* and the "ideal" dis
tance, namely O. 

To illustrate this definition, let us assume that f(C, D) is such that 

C = -c!D + {3 

where 01 and /3 are two positive, calibrated constants. (In other words, a straight line 
has been fitted to the plot of cost versus distance.) In such a linear formulation, the rate 
of substitution of distance into cost is equal to 01 and, therefore, constant. Hence, the 
contribution to the disutility measure by the distance characteristic D* of a given facil
ity is 01D*. If C* is the cost associated with D*, the disutility of this facility becomes 

z = C* + CID* 

A linear model is attractive because of its simplicity. However, it is unlikely that 
the rate of substitution should remain constant over the range of possible distances. 
Furthermore, the difference in the disutilities of two facilities located at distances of, 
say, 500 and 1,000 ft should be greater than the one corresponding to two facilities lo
cated at, say, 2,000 and 2,500 ft. To this end, two functional forms are available for 
f(C, D), namely an exponential function where 

C = 01exp(-/3D) (01,/3 > 0) 

and a power function where 

(01,/3 >O) 

In both cases, the marginal rate of substitution is a decreasing function of distance as 
can be seen from the derivatives of these functions: 

l~I = 01/3exp(-/3D) 

and 

It can be seen that the rate of substitution reaches (asymptotically) zero when dis
tance becomes large. According to the definition given earlier, the contribution of a 
walking distance D* to the disutility measure becomes in the case of the exponential 
formulation 

/
0 l~I = 01[exp(-/3D)]~* = 01[1-exp(-/3D*)] 

D* 



This element of the disutility function can be interpreted as follows. At zero dis
tance, the disutility due to distance is zero. At a large or "infinite" distance, this 
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dis utility is represented by o:. For intermediate distances, disutility is a fraction of 
o:, the fraction being an exponentially decreasing function of distance. Hence, the dis
utility of a facility characterized by C* and D* is expressed as 

Z = C* + o: [1-exp(- ,9D*)] 

In the case of the power function, the same steps could be followed to derive the ex
pression of the disutility, provided that the "ideal" distance is not zero but is small, 
say 100 ft (otherwise, the function is not defined). If Do is such a distance, then the 
disutility becomes 

(D* <!'. Do) 

At this point, an observation should be made concerning parking cost as such and 
the fraction of that cost that can be substituted for in terms of distance. Examination 
of the data reveals that, for the long-term parkers considered, the minimum cost of 
parking Co is 50 cents. Thus, given that a trip-maker has decided to park in the study 
area, the "substitutable" amount of his parking cost C is C - Co. Alternatively, one 
could assume that, inasmuch as there is no parking space under Co available in the 
study area, the function f(C,D) should yield no value of C under Co. This condition 
implies that the asymptotic value of the exponential function should be Co instead of 0. 
To this end, the dependent variable in the least-squares estimation of the parameters 
ai and i9 becomes C - Co. Inasmuch as the logarithmic function is not defined when its 
argument tends to 0, the value of Co was set at 45 cents so that the log-linearized re
lationship could be calibrated by least squares. 

CALIBRATION OF THE DISUTILITY FUNCTIONS 

Numerical results presented in this paper should be viewed as preliminary inas
much as application and testing of the model are under way at the present time. Sev
eral calibration runs of the cost-distance trade-off function f(C,D) have been performed. 
However, not all of the corresponding disutility functions have been used as input to the 
model. As noted earlier, the "quality" of an estimated disutility function depends not 
only on statistical measures (such as standard errors or correlation coefficients) but 
also on the extent to which the model using this function reproduces the observed allo
cations of parkers among parking facilities. 

The present discussion focuses on the calibration of the linear and exponential dis
utility functions, which have actually been used as input to the parking allocation model. 
The results of the calibration of the cost-distance relationships and the corresponding 
disutility functions are given in Table 3. The first two disutility functions pertain to 
the triangular core of the study area, whereas the third one is representative of the 
entire study area. All three functions have been calibrated on cost data grouped by 
distance intervals as described earlier. The relatively low standard errors of the co
efficients and high correlation coefficient are due, in part, to the grouping of data. 

APPLICATION OF THE PARKING ALLOCATION MODEL 

The three calibrated disutility functions given in Table 3 were used as input to the 
parking allocation model. One arrival period and three departure periods, i.e., be
tween 7 and 8 hours, 8 to 9 hours, and longer than 9 hours, were used. To facilitate 
the comparison of estimated statistics with observed or actual statistics, we aggre
gated the 116-zone area structure into 10 districts. As shown in Figures 4, 5, and 6, 
total volumes allocated by each model to each of the 10 aggregate districts are gener
ally in close agreement with the observed totals. The index of determination R2 between 
estimated and observed values is 0.95 or better for each of the three models. 

Similarly, the estimated aggregate disutilities of the parkers in the 10-district 
structure exhibit a high correlation with the observed values. These disutilities were 



Figure 4. Observed and estimated facility totals 
(model 1). 
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Figure 6. Observed and estimated facility totals 
(model 3). 
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Figure 5. Observed and estimated facility totals 
(model 2). 
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evaluated for each allocated parker by means of the disutility fW1ction input to each 
model. For example, Figure 7 shows the observed versus estimated disutilities at 
both the facility and final destination levels for model 2. 
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Finally, it is of interest to compare the interchanges between parking districts and 
final destination districts. In the 10-district structure, there is a total of 100 such 
possible interchanges. The observed set of interchanges contains 48 zero cells. 
Model 2 replicated exactly 47 of these zero ct:lls on a one-to-one basis. Models 1 and 
3 replicated 46 zero cells, also on a one-to-one basis. This result is interesting to 
note inasmuch as it demonstrates the ability of PAM to replicate a parking pattern 
with reasonable accuracy. The comparison of nonpaired zero cells between actual 
observations and model estimates are shown for each model in Figure 8 through 10. 

For each model, the index of determination R2 between actual observations and 
model estimates is relatively high. Specifically, the R2 values are 0.82, 0.85, and 
0.80 for models 1, 2, and 3 respectively. 

SUMMARY AND CONCLUSIONS 

The present paper develops the W1derlying assumptions of the parking allocation 
model and describes the results of its calibration and application in a case study. This 
version of the model incorporates three of the basic factors influencing parking choice, 
namely, cost, walking c'l.istance, and capacity. Whereas the importance of cost and 
distance is readily recognized, the importance of capacity should be emphasized in 
any allocation model. 

To negate the importance of capacity would imply in a certain sense that parking 
supply is always available, which is often not the case. The argument that market 
forces determine pricing policy is no doubt valid. However, it is when demand ex
ceeds supply that a trader raises his price. Thus, the awareness of the "imbalance" 
that exists in the real-world cannot be replicated in a simulation model without first 
noting that capacity is reached and then "raising" the price so as to maintain the park
ing facility at its peak occupancy. Furthermore, from a modeling standpoint, capacity 
constraint is certainly a desirable attribute that, everything else being equal, intro
duces an internal "control mechanism" into the model. Even better, this readily avail
able "mechanism" is neither artificial nor as difficult to define as highway capacity, 
which is a recognized determinant of route choice in assignment models. Finally, if 
an allocation model is to become a tool for providing meaningful information to 
decision-makers, consideration of capacity becomes essential. 

The parking allocation model is embedded in a linear programming context in which 
a disutility concept is used to combine the effect of the trade-offs between cost and 
distance. It is also a convenient device for incorporating other variables such as 
those mentioned earlier. Joint or simultaneous minimization of the disutility of 
parkers is a basic assumption of PAM. It has been noted that PAM is performed as 
an approximation to individual minimization and that the shorter the time span is within 
which parkers are grouped, the better this approximation is. In this regard, it is 
interesting to refer to Figure 7 and observe that, for each final destination district, 
the total disutility of the parkers allocated by the model is only slightly lower than 
the corresponding observed disutility. Capacity and demand constraints are easily 
incorporated in the framework of a linear program. Finally, computational algo
rithms that are highly efficient are available. (The problem described herein can be 
solved in approximately 1 min of processing time on an IBM 360/65.) 

It should be noted that the results of the model presented in this paper are "uncor
rected." Briefly speaking, such corrections or "tWling" of the model results could 
mainly be performed by examining the final destination-parking facility interchanges 
in which major discrepancies occur and by adjusting the corresponding disutilities to 
make the facility more or less attractive, as may be required. 

In general, the performance of the parking allocation model in this first operational 
application is encouraging. It did replicate the distributional pattern of parkers among 
facilities and final destinations and the facility totals in each district. The close cor
relations between observed and estimated allocations, shown in Figures 8, 9, and 10 
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for each of the three models calibrated, suggest that PAM captures the dynamics of 
the parking process. Based on these results, further careful pilot applications are 
warranted. 
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DISCUSSION 
Swaminathan Sundaram and C. C. Feng, 

Department of Civil and Environmental Engineering, University of Colorado 

The authors have developed a rational approach to the problem of parking allocation 
by embedding PAM in a linear programming context. This is acceptable, assuming that 
the joint disutility minimization is performed over a relatively short period of time. 
The discussion that follows aims to add information on the linear programming aspects 
of the paper and the limitations that possibly can be faced in practice. 

Linear programming is a process of optimization where the objective function is 
linear and the constraints are also linear. Any linear programming problem can be 
expressed in the form of equality relations among the variables, which are nonnegative. 
This standard form is as follows: 

Minimize Z = C1X1 + C2X2 + C3X3 + , .. + CnXn 

subject to the constraints 

where 

X1 ;;, 0' X2 ;;, 0' ... Xn ;;, 0' and 
bi ;;, 0 (i = 1 to m). 

xi are the variables, and b1 are the constants. 

(1) 

Generally the problem at hand may not be in standard form as above but may be 
transformed into one by means of suitable manipulations, introducing slack and surplus 
variables. For example, if the inequality is of the form 

(2) 

it can be put in the equality form as 



where Xn+1 is a nonnegative slack variable. 
The authors' formulation of the model is as follows : 

subject to 

Minimize l: El: l: Z(j ,k,q,d) x X(j ,k,q,d) 
j k q d 

r: r: r: X(j ,k,q,d) s: s(a,k) for each k 
j q d 

l: X(j,k,q,d) = T(j ,q,d) for each (j,q,d) 
k 

where the notations are as defined in their manuscript. 
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(3) 

(4) 

(5) 

( 6) 

The constraints in Eq. 5 can be transformed in equality form by use of slack vari
ables. For application of linear programming technique s(a,k), the number of spaces 
available at time period a in facility k should be treated as constants. Hence, theo
retically minimization can be performed only over the relatively short period of time 
during which s(a,k) is reasonably constant. The determination of acceptable variation 
in s(a,k) is dependent on the sensitivity of the optimal solution to small perturbations 
in s(a,k). 

An important requirement in the linear programming method is that the feasible 
region formed by the constraint equations be a convex set; i.e., if any two points within 
the region are connected by a straight line, that line should always lie entirely within 
the feasible region. This is always true conceptually, even in the higher dimensions, 
except in the degenerate cases where feasible solutions are nonexistent. In the present 
linear programming problem of the PAM described by Eqs. 4, 5, and 6, there is a 
possibility of degeneracy, even though this situation may rarely be faced in practice. 
For example consider a very simplified representation of constraints in Eqs. 5 and 6 
for only two variables, X1 and X2. The point brought out can of course be generalized. 
The constraint equations, Eqs. 5 and 6, take the simplified form 

T (7) 

The region enclosed by the constraints and the process of minimization of the objective 
function can be geometrically illustrated as shown in Figure 11. 

The region that includes the sets of x1, x2 fulfilling the constraints is called the 
feasible region. In this figure, the straight line AB representing the equality con
straint is the feasible region. Any point in AB is a feasible solution, and the optimum 
occurs either at A or at B. Depending on the values of the constants S1, S2, and T in 
Eq. 7, the graph may take the shape shown in Figure 12 where the feasible region is 
the line CD and the optimum occurs at C or D. Some values of S1, S2, and T, may re
sult in a degenerate case as shown in Figure 13. 

Obviously no point can be found that can simultaneously satisfy all the constraints; 
hence, no feasible region or solution exists. In the model under study, s is the supply 
available, and Tis the total number of parkers. Hence under certain circumstances, 
when the number of parkers outstrips the supply considerably, there is a possibility 
of a degenerate case where no feasible solution exists. 

A linear programming problem can also face a case of unbounded solution, but in 
the present model there seems to be no possibility of this occurrence due to the equality 
constraints in Eq. 6. 
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Figure 8. Observed and estimated allocation in 
the 10-district structure (model 1). 
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Figure 10. Observed and estimated allocation 
in the 10-district structure (model 3) . 
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Figure 9. Observed and estimated allocation 
in the 10-district structure (model 2). 
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Figure 13. Degenerate case with feasible region 
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Another observation with respect to the formulation of the objective function is of 
importance. The authors assume functional forms for f(C, D), where C and Dare cost 
and distance; e.g., 

(a, {3> 0) (8) 

Then the contribution of distance to the disutility function is defined by the authors as 
the sum of the substitutions made between a given distance D* and the ideal distance, 
namely 0. Thus, the disutility of a facility characterized by C* and D* is expressed as 

(9) 

If the functional forms assumed for f(C, D) are indeed a close approximation of the real 
situation, then, for a facility characterized by D*, the corresponding C* is given as 

C* = Cite 

Substitution of Eq. 10 into Eq. 9 yields 

z = O!e-,BD• + O!(l - e-,Bn• ) = a 

(10) 

(11) 

This implies that the disutility is constant for all facilities under consideration. This 
does not appear to be true as can be seen from Tables 1 and 2, which describe joint 
distribution of cost and distance. It can be calculated that more than 55 percent of the 
parkers park closer than 1,500 ft from their final destination, and more than 80 per
cent park closer than 2,500 ft from their final destination. From this it appears that 
parkers find distances of more than 2,500 ft to cause more disutility, even at the re
duced cost. Hence, the disutility function characterized by Eq. 9 requires some modi
fications. It is suggested that some form of relative weightage be attached to cost and 
distance, giving more weightage to less walking distance after 2,000 ft as depicted by 
the joint cost and distance distribution tables. It is hoped that this modification will 
add to the work done by the authors and help create a more realistic model. 

Harry B. Skinner, Federal Highway Administration, Denver 

The information in this paper represents an excellent and innovative approach to the 
problem of parking allocation. This procedure will surely serve as a basis for an im
portant parking planning tool. 

Through PAM the authors treat parking supply and demand as deterministic com
modities. The resultant allocation of parking demand to the supply is subject to a fixed 
facility capacity and a disutility objective function. It would appear that a more appro
priate approach would have been to assume a stochastic character to supply and demand 
because (a) parking supply is, to some extent, a function of demand and demand, to a 
certain extent, a response to, inter alia, the availability of space; (b) the planning 
process that generated the input statements of demand is acknowledged to be a less
than-perfect projection of future need; and (c) the allocation output is merely a tool to 
guide the decision-maker. 

The computational effort in treating this problem stochastically would not be sig
nificantly increased, and the result would serve as a better tool because it would not 
be rigidly fixed to a given demand and a given supply. A probabilistic element of the 
objective function would allow the demand to respond to the supply, and a probabilistic 
supply constraint would allow the supply to respond to the demand. The resulting al
location would be improved in the following two ways: 

1. Establish a supply-demand relation, and 
2. Establish a probabilistic demand (rather than merely assign demand determin

istically to supply, set the likelihood of accomplishing an occurrence). 
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This, in turn, should more nearly optimize a system of parking facilities of projected 
size and location and represent a more valuable tool to the decision-maker. 

It may also be beneficial to the decision-maker if a sensitivity analysis were per
formed on the final parking allocation. The purpose would be to guide the decision
maker in answering such questions as the following: What would be the resultant usage 
of the facility or system of facilities if a change in pricing policy were implemented? 
How would a change in location affect usage of a facility? 

Also, PAM uses a disutility function that is derived from a cost to park and distance 
to walk relationship. This is reasonable when considering the accommodation of long
duration work-trip parking. Work-trip parking is an important element of the total 
parking consideration in any community. For many parking facilities, this is the 
"bread and butter" of the operation. However, the measure of success of many oper
ations is the accommodation of the short-term parker on a shopping trip, a business 
call, a professional visit, and the like. Surely, the derivation of a disutility function 
for nonwork-oriented parking would have to consider parameters other than cost and 
distance. Experience with the idiosyncrasies of parkers indicates that it may be neces
sary to take account of such things as self- or attendant-park operations and the char
acter of the neighborhood through which the parker must walk to arrive at his final 
destination. 

For a projected allocation a uniform set of conditions can be assumed. This is not 
so for current conditions and, therefore, not so for the derivation of the disutility func
tion. For instance, a parking facility on the periphery of a renewed section of the city 
may be used by parkers having destinations in only half the set of possible destinations 
in the region of possible influence of the facility. Or a facility one block removed from 
a renewed area and separated from that area by an economically depressed and despoiled 
neighborhood will probably demonstrate a different disutility relation than a comparable 
facility completely surrounded by a renewed and vital setting. 

These brief comments are intended only to stimulate consideration of techniques that 
may make the basic model more useful and should in no way be interpreted as question
ing the credibility of the concept or the technique. 

George T. Lathrop, Department of City and Regional Planning, 
University of North Carolina 

In general the authors have presented a potentially useful technique for accomplishing 
their stated objective: to simulate the choice of a parking facility by a user traveling to 
a given final destination (within the context of a concentrated travel destination area). 
They are to be complimented particularly on the simplicity of the model and its as
sumptions and the success of the simulation, given that simplicity. It goes without say
ing that one of the self-defeating aspects of many urban simulation models of all types 
in the past has been the complexity in parameters and mathematics, which have been 
necessary to make them "work," but which have made them so complicated that they 
are almost impossible to use (by normal humans). 

If I have areas of concern about the model, they might be grouped under two head
ings: technical concerns and concerns about application. 

In the technical area, I would have appreciated a more extensive review of the 
linkage matches. As the authors note with proper caution, the linear programming 
algorithm provides a system minimization that is accepted as a reasonable model of 
the grouped behavior or choices of individual decision-makers. They also note the 
disparity between the simultaneous behavior assumption of the linear programming 
format and the sequential nature of the actual process. Clearly, if the objective of 
the model is to be realized, to even a reasonable extent, there should be some strong 
correspondence between the choices actually made and the choices simulated or pre
dicted by the simulation. 

In the same vein of technical comments, the authors are also quite properly cautious 
in their claims for applicability of the model. Without replication independent of the 
data used for calibration, the "utility" of the coefficients of the disutility function must 
remain unknown. Of course, this question in no way addresses the use of the linear 



programming model; the specific parameters of the disutility function and the cost
distance aggregations are the application-specific values. 
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Along those same lines, it is interesting to note that the results of a linear disutility 
model apparently approach the quality of the results of the more complex functions. 
Given the nature of the linear programming algorithm itself and the earlier observa
tions on the merits of simplicity, this is most encouraging. 

Turning to concerns about application of the model, it must first be noted that, be
yond their introductory statements concerning the objective, the authors refrain from 
suggesting potential uses other than by inference. 

I think it is reasonable to raise the question of what might be called the ''black-box 
syndrome." To elaborate, the presumption must be that the model will not be used by 
the devisors of the model alone. In the long run, assuming that other testing and vali
dation leads to reasonable results, it may be further assumed that the technique (and 
even perhaps a computer program packaged and distributed for the purpose) will be 
used by many other persons to accomplish exactly the objective stated: to simulate 
individual choice. The computer program will be written to accept input of parkers 
by final destination, parking facilities by capacity and cost, and distance from all 
destinations to all origins. Output will be a listing of parkers versus capacity and a 
set of linkages between th-a final destination and parking locations. Instructions for 
fitting curves (or straight lines) to minimize variation between the actual and simulated 
situation will complete the package. Forgotten will be the authors' careful precautions 
about aggregation of data and grouping of origins and destinations and warnings about 
simultaneous versus sequential decisions and system versus individual optimization. 

My concern about this eventuality should in no way reflect on the authors. They 
have done a careful job both of developing their technical work and of couching their 
conclusions about that work in thoughtful, well-chosen, and cautious reservations. My 
concern is rather with the creation of simulation models and their implementation on 
the computer, inasmuch as it is apparent that one of the frailties of human nature is 
to forget what is in the "black box" and to begin to accept the output as infallible. Un
fortunately, there does not seem to be much that can be done. Perhaps in this case 
careful explanation of the assumptions inherent in the model and clear statements of 
exactly what goes on inside might help. The authors have done this to a large extent. 
It is up to the distributors and users to continue. 

In summary, Ellis, Rassam, and Bennett are to be congratulated for a potentially 
useful application of a straightforward technique to a nagging problem. The simplicity 
of the assumptions and procedure will encourage others to both use their particular 
application and attempt similar applications in the same spirit. We may all look for
ward to the examination of alternative parking facility location strategies that use the 
model. 

AUTHORS' CLOSURE 
The authors would like to thank Sundaram and Feng, Skinner, and Lathrop for taking 

the time to comment on the paper. 
Sundaram and Feng's comments focus on two points: theoretical considerations rel

ative to the transportation problem and interpretation of the disutility function. Re
garding the first point, we would like to note that, for lack of space, we deliberately 
avoided a theoretical discussion of linear programming. We certainly agree with 
Sundaram and Feng about situations arising in which total parking demand outstrips 
total supply. In the computer program, requisite cells are introduced if demand and 
supply are not equal. The second point that they made, namely that disutility remains 
constant for all facilities, is probably a misinterpretation. In the relationship defining 
the disutility of a facility characterized by a cost C* and a distance D* to a given des
tination, namely 

Z = C* + 01[1 - exp(-,BD*)] 
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C* and D* are actually observed values. Specifically, C* is not derived from the re
lationship 

C = O!exp(-,BD) 

Thus, we believe that their second point may not be founded. 
It should be noted that discontinuities may exist in the disutility function; for example, 

a parker may be unwilling to accept a walking distance greater than 1,500 ft. Consider
ation of such discontinuities can be accommodated within the current formulation of PAM. 
Estimation of the disutilities would require in-depth studies of the attitudes and per
ceptions of parkers, an alternative to the calibration strategy used in the current study. 

We agree with Skinner that the problem could be cast in a stochastic programming 
framework. His comments regarding the stochastic nature of demand and supply are 
most appropriate. We envisaged such an approach but wanted to proceed by steps; 
therefore, we initially cast the problem in a deterministic framework. Also, we feel 
that the data acquisition and processing necessary to define the stochastic functions, 
not to mention computer running time, would require significant additional resources. 

One of the reasons we chose to cast this problem in a linear programming frame
work was the relative ease of treating post-optimality problems. It is often possible 
to analyze the effects of changes in the price and supply vectors without re-solving the 
problem. For example, the operator of a given garage could determine how much he 
could raise his price (in the absence of a Phase II Price Board) without losing cus
tomers. Parametric programming techniques would be a most useful addition to the 
current computer package. 

We certainly agree with Skinner on the desirability of introducing other variables 
into the disutility function. The general formulation of the problem does not preclude 
considering other factors such as waiting time, approach route, or whether a facility 
is attended or not. However, we wanted to proceed cautiously inasmuch as this was 
the first operational application of the model. One might also add that consideration 
of these other factors would require a substantial amount of data, which at present are 
not easily available. The main difficulty would probably be to find one single data 
source so that all the factors defining parking choice are compatible, which is not the 
case when the data base is assembled from secondary sources with all the ensuing def
initional and sample size problems. 

Lathrop raises two technical issues, namely, the linkage matches and the param
eters of the disutility functions. Linkage matches have been one of our primary con
cerns in testing the model , as shown in Figures 8 , 9, and 10. We fully agree with 
Lathrop that "if the objective of the model is to be realized, to even a reasonable 
extent, there should be some strong correspondence between the choices actually made 
and the choices simulated or predicted by the simulation." In this sense, we were 
particularly encouraged by the near replication of the zero cells (47 and 46 out of 48 
on a one-to-one basis). We believe that, by more closely examining the nonzero 
linkages and by introducing (selectively) more variables into the disutility functions , 
we might obtain improved linkage matches. 

In addressing the issue of the parameters of the disutility functions, Lathrop raises 
a critical question, the answer to which has eluded us for the time being inasmuch as 
we have not had the opportunity to test the model in other cities. Ideally, one would 
seek a set of so-called universal coefficients. However, transportation is a field in 
which such an optimistic outlook has always been tempered, willingly or not, by reality. 
Thus, we would rather seek to identify a set of variables and ranges of their associated 
coefficients that an analyst could easily adapt to a specific situation. In other words, 
keeping in mind that models, albeit useful tools, are not panaceae, we would attempt 
to narrow, to a reasonable degree, the options left to a field practitioner. 

In conclusion, we would like to state how much we agree with Lathrop about the 
''black-box" syndrome. Modeling, and especially computer modeling, can easily be
come misleading whenever the proper caveats are cast aside. Should we conclude by 
saying that the myth of Icarus has often been forgotten? His "black box," if we dare 
say, offered great promises until.... He really should have listened to Daedalus' 
warnings! 




