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Transverse contraction joints in rigid pavements were long considered 
essential to preventing pavement damage from volume-change stresses. 
Continuously reinforced concrete pavement handles these stresses in 
another way. It allows the pavement to develop a regular pattern of very 
fine random cracks. In previous analysis of such pavements, it has been 
extremely difficult to evaluate the effect of cracks on the load-carrying 
capacity and subsequent performance of the slab. This paper presents an 
analytical look at the problem of transverse cracking in continuously re­
inforced concrete pavements. The influence of these cracks on the longi­
tudinal bending rigiditywas studied by usingbasic moment-curvature rela­
tions. A relation was developed that expresses the average moment of 
inertia due to the effect of the crack as a function of material properties and 
slab geometric characteristics. Results showed that a significant drop of 
80 to 90 percent in the bending rigidity is encountered at crack locations. 
Furthermore, the development length bond idea was used to specify the 
slab portion affected by the discontinuity. A procedure to simulate this 
effect by using the discrete-element method of slab analysis is outlined. 
The procedure is general and simple to use. 

eA GENERAL discrete-element method for solution of discontinuous plates and slabs 
has been developed by Hudson, Matlock, and Stelzer (1, 2). The method is based on a 
physical model representation of a plate or slab by bar~ springs, and torsion bars that 
are grouped in a system of orthogonal beams. Computer programs developed for the 
aforementioned method are designated by the acronym SLAB. These programs have 
the ability to handle complex problems with combinations of load and a variety of dis­
continuities (cracks and joints) and support conditions. 

In previous analyses of rigid pavements, it has been difficult to evaluate the effect 
of cracks on the bending stiffness and the load-carrying capacity of the slab. This 
paper describes the use of discrete-element SLAB methods to study the behavior of 
continuously reinforced concrete pavement (CRCP) including modeling of cracks and 
joints. 'T'he effect of cracks on slab bending stiffness was investigated in this study by 
using basic moment-curvature relations, which consequently made discrete-element 
modeling of the crack feasible. 

THE PROBLEM AND THE APPROACH 

CRCP may be defined as a concrete pavement in which the longitudinal reinforcing 
steel acts continuously for its length and no transverse joints other than occasional 
construction joints are installed. In actual practice, the continuity is sometimes in­
terrupted by expansion joints at structures. Except for these, there is technically no 
limit to the length a CRCP can be. 

Transverse contraction joints were long considered essential to preventing pavement 
damage from volume-change stresses. CRCP takes care of these stresses in another 
way. It allows the pavement to develop a regular pattern of very fine random transverse 
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cracks (Fig. 1). The design concept for this pavement type is to provide sufficient 
reinforcement to keep the cracks tightly closed and to provide adequate pavement 
thickness to carry the wheel loads across these tightly closed cracks (3). 
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Because of volume-change stresses, crack formation in the continuously reinforced 
pavement slab is inevitable until the expansive materials are perfected. Therefore, 
a thorough understanding of the behavior of a pavement structure with such discon­
tinuities is needed. The real pavement system, including the cracks, must be analyzed. 
This can be approximated with reasonable confidence by using the SLAB programs. 

Figure 2a shows a cracked portion of CRCP, and Figure 2b shows a variation in the 
moment of inertia in the cracked region. The exact shape of this curve is not clearly 
known because of the complexity of the problem. The discrete-element method was 
applied to the discrete CRCP by using basic moment-curvature relations. In these 
relations, an average moment of inertia, which simulates the effect of cracks on slab 
bending stiffness, was determined. Furthermore, the development length bond concept 
(4) was used to specify the slab portion over which the average inertia could realis­
tically be applied. 

ANALYSIS AND MODE LING 

Theoretical Background 

Analytical solutions for two-dimensional plate problems have been discussed by 
others (5), who characterize three kinds of plate bending: thin plates with small de­
flections, thin plates with large deflections, and thick plates. 

For thin plates with small deflections (i.e., in which the deflection is small in com­
parison with thickness), a satisfactory approximate theory of bending of a plate by 
lateral loads can be developed by making the following assumptions: 

1. There is no deformation in the plate's middle plane; 
2. Points of the plate, which initially lie "normal" to the middle surface of the plate, 

remain "normal" to the middle surface of the plate after bending; and 
3. Normal stresses in the direction transverse to the plate can be disregarded. 

With these assumptions, the deflected surface of an isotropic plate is described by 
the biharmonic equation 

where 

D the bending stiffness of the plate, 
w = the deflection (with positive upward), and 
q = the lateral load. 

A complete discussion of this equation is given elsewhere (5). 

(1) 

For a given set of boundary conditions, solution of this differential equation gives 
all the information necessary for calculating stresses at any point in the plate. Closed­
form solutions of this equation are available for a number of special cases, including 
homogeneous isotropic plates, which are generally round with finite radii or with in­
finite dimensions in the x and y directions. The loading conditions in most closed-form 
solutions are either uniform over the entire plate or concentrated in the center of the 
plate. As the problem becomes complex, with various combinations of load, support, 
and stiffness conditions, closed-form solutions are generally not available, and a 
numerical method must be used to solve the problem. The discrete-element method 
is such a method. 

Figure 3 shows the discrete-element model of the slab, as suggested by Stelzer and 
Hudson (2). The slab or the rigid pavement structure is replaced by an analogous 
mechanical model representing all stiffness and support properties of the actual slab. 
The joints of the model are connected by rigid bars that are in turn interconnected by 
torsion bars representing the plate twisting stiffness C. The flexible joint models the 
concentrated bending stiffness D and the effects of Poisson's ratioµ.. The modulus of 
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subgrade support k is represented by independent elastic springs, i.e., the Winkler 
foundation (6). A problem involving almost any physical combination of loads and 
restraints applied to a slab, including lateral loads, in-place forces, and applied 
couples or moments, can be solved. Furthermore, slab discontinuities as well as 
partial subgrade support can be simulated on the model. 

The deflection at each joint is the unknown. The basic equilibrium equations are 
derived from the free body of a slab joint with all appropriate internal and external 
forces and reactions. These equations sum the vertical forces at each joint and sum 
the moments about each individual bar. A complete derivation of these equations and 
the fourth-difference equations can be found elsewhere ~). 

Crack Effect and Method of Attack 

Because a discontinuity, such as a joint or crack, creates a change in the moment of 
inertia or stiffness (Fig. 2), it can be simulated on the discrete model with one of the 
following methods. 

The first method requires a clear determination of stiffness variation in the crack 
region, which is then divided into increments sufficient to define the effect of the dis­
continuity. A disadvantage of this method is that it may not be possible to define the 
stiffness variation in the cracked region accurately enough to yield reasonable results. 
Furthermore, as the number of increments in either the x or y direction increases, 
computer time increases, making the solution impractical in some cases. 

The second method, which was used in this study, deals with an average value of 
stiffness that considers the discontinuity effect. The derivation of this average value 
was solely based on basic moment-curvature relations and is independent of increment 
length. Hence, the whole structure can be divided into about 15 increments in each 
direction, and reasonable results can be obtained. 

Derivation of Average Moment of Inertia Y 
For the determination of average moment of inertia I, the following assumptions are 

made: 

1. A plane section remains plane before and after bending; 
2. A straight-line neutral axis can be assumed to represent the average of the actual 

variable position of the neutral axis; and 
3. At the fine crack location, very slight curvature is needed to bring the two parts 

of the slab in touch and hence allow the transfer of bending. 

With these assumptions in mind, consider a 1-ft wide slab section, as shown in Fig­
ure 4 (after Winter et al., 4). Because of the cracks, the actual rigidity of the structure 
is variable along its length; it is largest between cracks where the tension in the con­
crete contributes to the rigidity and is smallest at the cracks. For the slab shown in 
Figure 4, we derive from the basic moment-curvature relation 

where 

p = average radius of curvature, 
M,, = working moment, 

1/p = M,,/ET 

E = modulus of elasticity of concrete, and 
Y = average moment of inertia. 

Furthermore, we derive from the strain diagram (Fig. 5) 

1/p = e0 / [d(l - K) J = f./[E.d(l - K) J 

(2) 

(3) 



where 

e. = average strain in reinforcement, 
I, average stress in reinforcement, 
E. = modulus of elasticity of steel, 
d distance from top compression fiber to the centroid of steel, and 
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K = 2[ f Pn(l + PnY - Pn] (4) 

in which 

P percentage of longitudinal reinforcement = {area of steel A./gross area of 
concrete b x t) x 100, and 

n = E./ E. 

In Eq. 4, K is a fraction that, when multiplied by d, gives the distance to the neutral 
axis of the section (Fig. 5). This is based on the cracked transformed section (4). It 
is worthwhile to note that the area of concrete in the percentage of reinforcement term 
is the gross area of the section and not, as defined in the equations for reinforced con­
crete, the width of the section times the distance from extreme compression fiber to 
the centroid of the steel. In Eq. 4, P should be expressed as a ratio rather than as a 
percentage. 

By combining Eqs. 2 and 3 and solving for I, we get 

(5) 

To determine the average stress in the reinforcement, we must consider the contrib­
uting effect of the concrete in tension. Let the average tensile stress of concrete be­
tween cracks be expressed as 

(6) 

where 

fr = flexural stress of concrete, and 
k1 = a reduction factor based on experimental results (2). 
The part of the resisting moment corresponding to the average tensile stress of con­

crete fv as shown in Figure 6 (after Yu and Winter,~), is 

M' = Tc (2t/ 3) (7) 

where 

Tc = the tensile force in the concrete. 

By substituting the value of Tc (Fig. 6) in Eq. 7, we get 

(8) 

Further development of this equation is presented elsewhere (7), where the modulus of 
rupture (flexural stress at instant of cracking f.) is expressedin terms of the compres­
sive strength of concrete f; @). In final form 

Hence, the stress in the reinforcement f: corresponding to M' can be computed by 

f: = M'/A.jd 

(9) 

(10) 



Figure 1. Continuously reinforced concrete pavement. 

I 

Transverse 
Direction X 

/ 

Figure 2. Effect of a discontinuity on the bending rigidity of the slab. 
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where 

f: = tensile stress in the steel due to flexural stress in concrete at points away from 
crack, and 

j = 1 - (K/3) 

But at the cracked section, the steel stress f, is 

f, = M,,/ A,jd (11) 

The value of the working moment Mw depends on whether the s teel or the concrete 
stress governs (Fig. 7). If the former controls, we derive from Eq. 11 

M,, = A1 f,jd 

where 

f, = the allowable stress in the steel. 

On the other hand, if the concrete stress governs, then 

(12) 

where 

f
0 

= the working compressive stress in the concrete. 

By substituting the controlling value of M,, in Eq. 11, we derive the value of the steel 
stress at the crack and the actual average steel stress T. at the instant of crack in­
itiation: 

T, = f, - f: 
Hence, the average moment of inertia is given by 

T = M,,nd(l - K)/(f. - f:) (13) 

In this equation, the average moment of inertia T is expressed in terms of slab geo­
metrical characteristics and material properties. By using the preceding analysis, we 
get the variation of the percentage of reduction in bending stiffness versus the percent­
age of reinforcement for different concrete compressive strength values (Fig. 8). Bend­
ing stiffness reduction ranged from 80 to 90 percent for the change encountered in the 
percentage of reinforcement. However, it is important to note the minor influence of 
the concrete compressive strength on stiffness reduction. 

In the development of these curves, the allowable concrete compressive stress was 
0.45 f;, and the allowable tensile steel stress was 0.75 of yield, which is equivalent to 
a safety factor of 1.33. 

Several values of the yield stress, ranging from 40 to 70 psi, were tried. Fortu­
nately, for the range and safety factor in the steel mentioned previously, the variation 
of the percentage of reduction in bending stiffness was independent of the yield stress. 
This is due to the fact that the working moment M,,, the lower of the values from Eqs. 11 
and 12, was governed by the latter equation where the concrete stress controls. If a 
lower allowable steel stress is desired (i.e., < 0. 75fy), Eq. 12 may need to be modified. 

Region Affected by the Crack 

Discontinuities in structural members not only cause severe localized bending stiff­
ness reduction but also influence a certain amount of the area around them. Therefore, 
after determination of the average moment of inertia and the corresponding reduction 
in bending stiffness, one more step is required before the discrete-element model of 
the problem is performed. The length over which the original bending stiffness should 
be reduced to simulate the effect of the discontinuity must be determined. 
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A slab portion under the effect of transverse loading (Fig. 9a) is considered. Be­
cause the concrete does not resist any tension stresses at the crack, the compression 
force in the upper concrete fibers has to be balanced by a tensile steel force to maintain 
equilibrium at that section. In actuality, concrete fails to resist tensile stresses only 
at a crack. Between cracks, the concrete does resist moderate amounts of tensile 
stress; this reduces the tensile force in the steel (Fig. 9b), which creates a variable 
force in the bar. Because the bar must be in equilibrium, this change in bar force is 
resisted at the contact surface between steel and concrete by equal and opposite forces 
produced by the bond between steel and concrete. Figure 9c shows a distribution of the 
bond stress in the cracked region; it should be remembered that the bond development 
is the rate of change of tension. For the free body of a bar segment shown in Figure 9d, 
if U is the magnitude of the average bond force per unit length of bar, then EFx = 0 yields 

Udx + T - (T + dT) = 0 

:. Udx = dT 

By integrating over the required length, we get 

a 

u of dx = 

where 

T1 = tension in steel at some point between cracks, and 
T2 = tension in steel at crack. 

Hence, 

.'.a= A.f.fU 

(14) 

(15) 

Assuming that the bond force per unit length U is the resultant of shear-type bond 
stresses u uniformly distributed over the contact area, then 

U = uEo 

where 

Eo = the perimeter of the bar(s). 

By substituting the value of U in Eq. 15, we derive 

a = A,f./uEo 

Hence, total affected length is as follows: 

L = 2a and L = 2(A,f./uEo) 

(16) 

(17) 

(18) 

For the determination of the allowable bond stress u as well as f
1

, the ACI 1963 code 
(Section 1301) specifies the following: 

1. For tension bars, the allowable bond stress u is governed by 

u = 3.4 .JT'c/¢-,: 350 psi (19) 
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where 

r/! = the bar diameter; and 

2. The allowable stress in the steel shall not exceed 24,000 psi. 

Discrete-Element Modeling of the Crack Effect 

By the previous analysis, the amount of reduction in bending stiffness, as well as the 
length over which it should be applied, has been determined. In this section, a method 
for modeling the effect is discussed. 

In this method, there are two cases to be considered. In the first case, the region 
affected by the discontinuity extends over an even number of increments (Fig. 10a}. 
If we assume, for example, that this region is two increments long (L = 2h}, it is de­
fined by three stations: two edge stations (i-1, j and i+l, j) and a middle station where 
the crack is located (i, j}. Because the stiffness in the discrete-element model (Fig. 3) 
is lumped at the elastic joints or station locations in order to simulate the effect pre­
viously described, it is necessary to apply the total amount of the previously determined 
bending stiffness reduction at each middle station (in this case only one, i, j) and half 
of that amount at each of the boundary or edge stations, namely i-1, j and i+l, j. As an 
example, if the amount of reduction in bending stiffness is 90 percent of the original full 
value, 90 percent of the stiffness should be reduced at station i, j and 45 percent at each 
of the edge stations i-1, j and i+ 1, j. 

In the second case, the area influenced by the crack extends over an odd number of 
increments, for example, three (L = 3h}, as shown in Figure 10b. The main difference 
between the two cases is the relative position of the ends of the reduced stiffness region 
and station locations. When there is an even number of increments, a station is located 
at each of the boundaries or edges of the concerned region, which requires the half-value 
refinement discussed previously. When there is an odd number of increments, the edges 
of the reduced stiffness region lie midway between stations, and for modeling the total 
reduction in bending stiffness is applied at each station (i-1, j, i, j, and i+ 1, j), with no 
exception. 

For the case where the number of increments is even, it was mentioned that a half 
value of the stiffness reduction should be applied at the edge stations. To test the sen­
sitivity of the half reduction, we studied several examples. These covered a wide range 
of thicknesses, moduli of elasticity, crack spacings, and moduli of subgrade reaction. 
Without exception, neglect of the half-value reduction at the edge stations produced only 
negligible changes in deflections and principal stresses. 

To validate this observation, we considered a problem involving a 20- by 40-ft pave­
ment loaded with a 12-kip concentrated load placed 4 ft from the edge (Fig. 11). The 
thickness of the pavement was 8 in., and the modulus of subgrade reaction was 100 lb/ 
in. 3 • The reduction in bending stiffness was applied over a length of 12 in. at each trans­
verse crack location. Figure 11 shows the change in deflection with the increase of the 
percentage of reduction in bending stiffness; as shown, the rate of change in deflection 
was almost negligible up to about 50 percent of the stiffness reduction, and then a signif­
icant increase was observed. Thus, the application of a half value of stiffness reduc­
tion at the edge stations produced almost negligible changes in stresses and deflections. 

Therefore, it is recommended that the half bending stiffness reduction at the edge 
stations be neglected when there is an even number of increments, when the subgrade 
is not very weak, i.e., k ""'> 40 lb/in.3, and when there is no loss in subgrade support. 

Suggested Method and Sample Problem 

The following step-by-step method is suggested for the application of SLAB programs 
in the analysis of discontinuities in CRCP: 

1. Determine the physical characteristics of the concerned pavement, such as mod­
ulus of elasticity, thickness, and percentage of reinforcement; 

2. Determine the percentage of reduction in bending stiffness to be applied at crack 
locations (from Eq. 13 or Fig. 8); 



Figure 7. Stress distribution 
at crack location. 
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Figure 8. Percentage of reduction in bending stiffness at crack 
location and percentage of longitudinal reinforcement. 

94 · 

92 

90 
~ 
Cl) 
C 

i 88 
en 
er> 
C 

'g 86· 
Cl) 

(D 

.£ 84 
C 
0 
+' 

~ 82 
Cl) 

II:: 
Cl) 

g BO 
c 
Cl) 

~ 
~ 78 

76 

74 

Note: Plot is based on an allowable 
concrete compressive stress 
of 0.45 f~ and allowable 
tensile steel stress of 0 .75 fy. 

% reduction in bending Stiffness= (1- i) 100 

1<; = gross moment of inertia 

bt3 
=12 

I =Average moment of inertia (Eq . 313) 

02 0 3 0.4 0 .5 0.6 0.7 0 8 0 9 1.0 I I 
longitudinal Percentage Reinforcement, P = ~: x 100 

(b) 
--foLL) ----------~t:=!::::=.!!..::O ====l•!±!~ <!t==.Cl..=O==-:J=====1,e!___ 

M(E:Jd,F ]L-~ _3JM AL 
(c) 

(a) 
Station No. 

(b) 
Station No. 

i-2,j 

I 

I 

f 

i--2,j 
I 
I 

• I 
I 

I. 

I+ ,j 

L=2h 

',i i+l,j i+2,j 
I 

I I 
CRAfi< 

LOCA ION 

l 
I 
I 

I .I [=3h 



Figure 11. Effect of crack severity on deflection under a 12-kip wheel load. 
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3. Determine the length affected by the discontinuity (from Eq. 18); 
4. Decide on the increment length that best matches the slab geometry, as well as 

the length determined from step 3; and 
5. Apply the percentage of stiffness reduction determined in step 2 at each crack 

location over the length from step 3. 

This method is applied on the example problem shown in Figure 12. A 24- by 40-ft 
slab, loaded with 2, 9,000-lb wheel loads located at 2 and 8 ft from the edge was con­
sidered (Fig. 12), and the reduction in bending stiffness was 90 percent over a length 
of 12 in. 

Besides the condition with 90 percent stiffness reduction at the crack location, two 
other conditions were studied: the hinged condition, where there is zero stiffness at 
the discontinuity, and the uncracked condition, where the full slab is treated as one 
piece. The variation in deflections for each of these cases is shown in Figure 12. The 
effect of the hairline cracks is clearly shown by the 30 percent deflection increase in 
the 90 percent reduction case over the uncracked case. Furthermore, a comparison 
of the hinge and the uncracked cases showed a 60 percent increase in maximum deflec­
tion for the hinged condition. 

Implementation of Results 

The development of the application of discrete-element analysis to the continuously 
reinforced pavement problem will enable designers to more confidently analyze design 
problems. The SLAB method should be used in a sensitivity analysis of the rigid pave­
ment problem in general. Very specific design analyses can now be made of both 
jointed pavements and CRCP, which up to this time were approximated by still other 
techniques. This development will be implemented in the design process. 

CONCLUSION 

The problem of transverse cracking in CRCP and its influence on the bending rigidity 
of the slab in the longitudinal direction have been studied by using basic moment­
curvature relations. A procedure to simulate this effect by using the discrete-element 
method is outlined. 

The results of the study have indicated that the effect of cracks on the bending rigidity 
of the slab is highly significant. The reduction in bending stiffness varied from 80 to 
90 percent of the original full value for the range of percentage of longitudinal reinforce­
ment studied. Obviously, as the crack width increases, the bending reduction also in­
creases, and ultimately a hinge exists as in the case in a jointed concrete pavement. 
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