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Multispectral remote-sensor data, coupled with computer processing 
techniques, provide the capability to automatically delineate surface soil 
distributions on the basis of spectral properties. An airborne line scanner 
was used to collect synoptic terrain information in 10 synchronous spec­
tral bands spanning the visible and near-infrared radiation range. The 
fact that scene data are recorded directly onto computer-compatible mag­
netic tape allows the use of sophisticated analog and digital processing 
techniques for terrain analysis and automatic extraction of scene elements. 
Results of recognition processing of multispectral data collected over a 
Kansas test site demonstrate that limited surface soil mapping is feasible 
by this technique. Fluvial soils of varying texture were accurately delin­
eated on the floodplains of the Kansas River and on a small tributary of 
the Kansas River. Recognition of upland clay soils derived from different 
parent materials was less successful. This upland recognition may have 
been adversely affected by small training set size, heterogeneous soils, and 
slope-illumination variations. Recommendations for continuing research 
include the study of soil reflectance phenomena, further development of 
processing techniques, and collection of multispectral data under optimal 
conditions. 

•DESCRIBED in this report are the results of an intensive study into the use of multi­
spectral data for automatically discriminating soils in a highway test area in north­
eastern Kansas. The study was carried out by the University of Michigan's Willow Run 
Laboratories under the sponsorship of the Federal Highway Administration in coopera­
tion with the State Highway Commission of Kansas. 

REMOTE-SENSOR DATA 

Multispectral scanner data used in this study were collected at about 3: 00 p. m. on 
March 4, 1970. The data were recorded at 3,000 ft above the terrain (approximately 
4,000 ft above mean sea level). Fifteen spectral bands in the 0.40- to 13. 5-µ.m wave­
length range were recorded by 2 double-ended line scanners. These data were recorded 
directly onto computer-compatible magnetic tape. 

Ten of the 15 spectral bands spanning the 0.40- to 0.90-µm range were used for this 
study (Table 1 ). These 10 bands were recorded synchronously. The other 5 bands in 
the 1.0- through 13.5-µ.m range were not recorded synchronously with the 10 bands and 
were thus not processed for use in the analysis. 

In addition, 70-mm color (Kodak 8442) and color infrared (Kodak 8443) film were ex­
posed with 60 and 20 percent over lap respectively. 

KANSAS STUDY SITE 

Multispectral data were collected over an area midway between Topeka and Lawrence, 
Kansas (site 5, described by Stallard in a paper in this Record). In the portion of the 
test area investigated in this study-the first 15 of the 27-mile test strip-3 major soil 
parent materials are found: residual limestones and shales, glacial drift, and waterlaid 
(fluvial) sediments. As one would expect, the soils derived from these parent materials 
vary considerably in their physical properties. The soils derived from fluvial materials 
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range in surface texture from silt to clay and in plastic indexes from 5 to 20. The 
upland residual- and drift-derived soils are mostly clays having plastic indexes from 
20 to 50 (1). 

The soils are also characterized by their reflectance (color) differences (Figs. 1, 2, 
3, and 4). In order of most reflective (lightest) to least reflective (darkest), the soils 
rank as follows: fluvial silts, upland clays derived from glacial drift, fluvial silty 
loams, upland clays derived from residual rocks, and fluvial clays (2). The fluvial 
silty loams were very similar in reflectance to upland clay soils derived from residual 
rocks. As with most soils, the reflectance of each sample increased monotonically 
with increasing wavelength. Thus, the greatest reflectance differences between these 
soils, for the 0.4- to 1.0-µm spectral range, occurred in the near-infrared wavelengths. 

SOIL SIGNATURES 

Computer-implemented processing techniques employed in this study make use of 
the surface spectral differences of the soil units recorded by the scanner. The dif­
ferences are determined by the direct extraction of spectral "signatures" from the 
data, one signature for each class of interest. The signatures are obtained by locating 
a known sample area of each soil on an image display of the entire test area. Each 
sample ru·ea is known as a "training set" and is defined either by its image coordinates 
(digital display) or by electrouic gates (CRT display). Only spectral information from 
the sample areas is then made available to the computer. The computer subsequently 
determines the mean and the variation of the electronic signals for each training set. 
Within each training set the spectral reflectance is likely to vary within the limits that 
define that soil; therefore, the spectral signatures consist of mean values and standard 
deviations for each channel. The means and standard deviations of all channels consti­
tute the statistical spectral signature for the soil represented by that training set. 

Six of the soil spectral signatures used in this study are shown in Figure 5. These 
are based on training set areas selected with the help of the State Highway Commission 
of Kansas. 

RECOGNITION PROCESSING 
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are straightforward. With the spectral signatures of the soil classes in its memory, 
the computer simply "reads" through the entire data set (all of the multispectral data 
1·ecorded f1=on1 the test site) and indicates the location of data "similar" to any one of 
the signatures. For the computer, similarity is defined by a mathematical decision 
rule. A number of decision rules are possible, and some are potentially more powerful 
than others. 

The decision rule used for this processing was the "likelihood ratio." In likelihood­
ratio processing, each resolution element of the data is classified as "target" or "not 
target" by noting whether the likelihood ratio Lis greater than or less than some threshold 
value T. In simple form the likelihood ratio is 

> T = target 

,; T = no target 

where 

P,(T) = a priori target probability; 
P(T / S) = probability of target, given a data sample; 
P.(Bn) = a priori probability of backgrounds n; and 

P(Bn/S) = probability of background n, given a data sample. 

The result of this yes-no type of decision rule is a computer "recognition map." This 
map is an image display wherein all areas recognized as being similar to a given signa­
ture are displayed as a particular symbol or color. Areas of the test site unlike any of 
the signatures are left blank. Thus, only materials of interest are displayed on the rec­
ognition map. 



Table 1. Band pass, spectral color, and rank of 
optimal spectrometer channels. 

Figure 1. Fluvial silt with dark clay windows. 

Figure 3. Fluvial clay on a recent floodplain . 

Figure 5. Spectral signatures of Kansas soils. 
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Spectrometer 
Channel 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

50 Percent 
Peak-Power 
Band Pass (µm) 

0.412 to 0.427 
0.451 to 0.465 
0.481 to 0. 501 
0. 501 to 0. 521 
0. 521 to 0. 548 
0. 548 to 0. 579 
0.579 to 0.623 
0.623 to 0.674 
0.674to 0.744 
0. 744 to 0. 852 

Spectral 
Color 

Violet 
Dark blue 
Blue 
Blue-green 
Green 
Yellow 
Orange 
Red 
Dark red 
Near infrared 

Rank of 
Optimum 
Channels 

3 
6 
8 
4 
1 (best) 

10 (worst) 
7 
5 
9 
2 

Figure 2. Shale-derived upland clay loam with drift 
soil in background. 

Figure 4. Silty loam soil on a recent terrace. 
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For purposes of economy, it is often advisable to reduce the number of data channels 
employed in processing. To determine which spectral channels are most useful, a 
digital program compares each signature with every other signature and determines 
which channels show the greatest differences between them. The ranking criterion is 
an input linear combination of pairwise distances. In other words, the best single 
channel for discriminating the soil samples is chosen first, then the channel that along 
with the best one is best, then the one that along with the chosen two is best, and so on. 
Statistically it is shown that the probabilities of misclassifying the various soils de­
crease with the addition of increasing numbers of data channels but that this change in 
misclassification probability declines very little after the best 5 or 6 channels have 
been selected (Fig. 6). The optimum 6 of the 10 channels were used in this study 
(Table 1). 

COMPUTER RECOGNITION RESULTS 

Ten training set areas were selected to represent the 6 major soil classes that char­
acterize the Kansas test site: fluvial silt, fluvial silty loam, fluvial clay, clay derived 
from limestone, clay derived from shale, and clay derived from drift. Each of the 
training sets was a portion of a bare plowed field. The data were collected in early 
spring (1970) when as much as 50 percent of the agricultural fields were either freshly 
plowed (or disked) or had been plowed the previous fall. In other words, each training 
set signature was for the plowed soil of a cultivated field and was expected to be similar 
only to other plowed fields having the same kind of surface soil. No signatures were 
programmed for fallow fields or other nonbare soil areas. The objective was to clas­
sify soils in bare soil areas only. The recognition map results are shown in Figures 
7 and 8. 

Two types of error are inherent in computer-recognition maps of this sort. One 
type of error is a result of nonbare soil areas being classified by the computer as bare 
soil. The second type of error is a result of inadequate recognition of bare soil areas 
or areas classified as the wrong type of soil. 

Analysis of the recognition results for the 15- by 1-mile data set indicates that few 
nonbare soil areas were incorrectly classified as bare soil. (Ground observations and 
color aerial photography collected at the same time as the multispectral scanner data 
helped establish the validity of the recognition results.) Several heavilv wooded. north­
facing slopes in the upland portion of the test site were spottily classified as upland clay 
soil. These areas were found to have accumulated as much as a foot of dead leaves 
from the previous fall (the trees were still bare) and had a reddish-brown appearance 
very similar to upland clay derived from drift. 

The second type of recognition error was more serious than the first type. Of the 
approximately 1,100 acres of bare soil fields, 784 acres were automatically classified 
as one kind of soil or another. Of the classified areas, about 85 percent is considered 
to be correct recognition, based on landform and soil data supplied by the State Highway 
Commission of Kansas. Most of the incorrect classification came as a result of fluvial 
silty loam soil being classified as clay soil derived from shale. This misclassification 
is not surprising if one considers the close similarity of the signatures of these 2 soils 
(Figs. 1 and 2). 

A marked difference between soil recognition in upland and relatively level floodplain 
and terrace areas occurred. In upland areas less than 50 percent of the bare fields 
was recognized, while almost 75 percent of the lowland soils was classified. This dif­
ference in recognition success is thought to be due to the nature of the bare fields in the 
upland areas. In general the fields were small and the soils were heterogeneous com­
pared with the fluvial areas. Slope effects are thought to cause colluvial mixing of the 
several soils present and to effect the reflectance from these surfaces. 

Soil surfaces, like most all natural objects, are not Lambertian (perfectly diffusing) 
reflectors. Sunlight incident on a soil surface is not reflected from that surface iso­
tropically but is reflected rather differentially in different directions in relation to the 
incident angle of radiation and the nature and aspect of the reflecting surface. Also 
relative changes in reflectance with angle are wavelength dependent, being greater for 



Figure 6. Average probabilities of misclassification of soils using from 1 to 
10 data channels. 
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Figure 7. Multispectral soils recognition for Kansas River floodplain. 
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Figure 8. Multispectral soils recognition for Slough Creek floodplain area. 
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the shorter wavelengths than for longer wavelengths (3, 4). Figure 9 shows illumination 
geometry and variations in scanner view-angle geometry for this study site. Although 
no ground measurements were made to confirm this hypothesis, it is suggested that sig­
natures established for several upland soils were affected by slope and scanner view­
angle considerations. Signatures established for level fluvial areas were not adversely 
affected by slope and, thus, were applicable to the entire floodplain and terrace areas. 

The recognition results for the Kansas River floodplain (Fig. 7) show the change 
from medium to heavy soil textures with increasing distance from the river. The 
change in texture closely corresponds to changes in landform, from floodplain veneer 
(silt deposits) to meander scars and minor terraces (silty loams) to older terrace de­
posits (clays). There appears to be a great deal of detail in surface variation as a 
result of historical meandering of a tributary, the Delaware River, across the Kansas 
River floodplain. 

Good recognition results were achieved in the floodplain area of a small stream, 
Slough Creek, 12 miles north of the Kansas River (Fig. 8). Here, in addition to fluvial 
soils, the computer recognized small areas of clay derived from glacial drift on the 
floodplain. These small windows of clay were later found to be eroded areas occurring 
on the break in fluvial terraces. Apparently theseterraces comprise reworked glacial 
drift, thus rendering the upland clay recognition where the subsoil is exposed to view (!)· 

SUMMARY 

The results of this research indicate that useful and relatively accurate computer­
recognition maps of soils may be developed through the use of multispectral data. There 
are, however, a number of important questions to be answered before this technique 
can become operational. Most fundamental is the question of precisely what soil param­
eters determine the spectral signature characteristics on which the computer-recognition 
results are based. In some cases, organic matter content of the surface may determine 
reflectance characteristics; in other cases it may be moisture, surface texture, mineral 
composition, or a combination of several or all of these. Second, at what level are sur­
face spectral differences likely to delineate soil-mapping classes? Indications are that 
detailed soil delineations are available for bare areas in this way but that some ground 
observations are initially necessary to define the training sets and soil classes. What of 
nonbare soil areas? Signatures may be established for nonbare areas, and soils infor­
mation can be inferred from the subsequent recognition maps in the same way that photo 
interpreters currently infer soil information from vegetation, landforms, rock outcrops, 
and land use-although this technique was not used in this study. 

At the present state of the art, successful multispectral sensing of soils requires the 
following conditions: (a) the area to be surveyed should have a very large population of 
fields bare of vegetation at the time of the data collection flight; (b) data should be col­
lected as near to solar noon as possible and in a direction parallel to the solar direction 
to minimize angle effects; (c) the terrain should be fairly level; and (d) some a priori 
soils information should be available for programming the computer. 
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