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This paper deals with the problem of land use plan design. An efficient 
land use plan design model can provide a ready tool to achieve the optimal 
future plan for an urban area or a region through the satisfaction of the de
sign constraints and at an optimum of public and private costs. After the 
basic features of a land use plan design model are discussed, the difficul
ties associated with the existing model procedure are examined. The use 
of a simple procedure based on a random-search technique is then eval
uated. The validity of the random technique is established through a series 
of small-scale, controlled experiments with hypothetical areas. The 
controlled-experiment procedure is also used to estimate the plan
effectiveness parameters involving the random method. 

•IN RECENT years considerable interest has been directed toward the formulation of 
mathematical models to describe the process of land use planning and design. Under 
the general heading of the land use model, there are 2 distinct types of models: design 
model and simulation model. A land use simulation model is an attempt to describe 
the process of supply and demand of land for various activity uses in an area over a 
space of time under a set of public and private decisions. Such a model tends to trace 
the future land use pattern that will evolve from the existing pattern under certain 
given conditions. On the other hand, the concept of a land use design model is to create 
an ideal land use design for an area at some future year-an ideal plan that will mini
mize the total cost as well as satisfy the community development objectives and design 
standards. In other words, a land use simulation model attempts to predict what the 
land use pattern will be, and the design model attempts to depict what the land use 
pattern should be. To be precise, the fundamental distinction between a land use sim
ulation model and a land use design model is essentially the functional distinction be
tween the positivistic and normative models. 

BACKGROUND INFORMATION 

Basic Features of a Land Use Design Model 

Most of the land use models developed in the past few years are simulation models 
and are positivistic in nature (1, 4, 7). These models are concerned with the problem 
of land use forecasting and are-useato design only in a trial-and-error fashion. Little 
attempt has been made, however, to develop a normative model that will provide a 
target plan for an area. The present study involves the development of a land use de
sign model that will offer a ready tool to achieve the ideal future plan for an urban 
area or a region at optimum of combined public and private costs. Such an optimal 
design is effected through the satisfaction of the constraints imposed by a series of 
predetermined design standards for the elements of the proposed plan. In other words, 
that plan is chosen from a series of alternative plans that best satisfies both cost and 
design constraints. The usefulness of such a model is evident from the fact that it 
will enable practicing planners and engineers to arrive at a desired pattern of future 
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land use through a more systematic and expeditious process than that offered by the 
conventional approach. 

A land use design model can be viewed as a design tool for the land use pattern of 
an area. The total available land is quantified by dividing the plan area into a number 
of cells and by specifying the size and location of each cell in the area. The design 
demand is established by the land area required by each of the discrete land use ac
tivities or elements, such as residential neighborhoods, schools, hospitals, and parks. 
These discrete land use elements are termed modules, and the entire land use system 
of an area is expressed in terms of a set of modules. The basic operation of a land 
use design model consists of the placement of given modules in the specified cells of 
the plan area. In the following paragraphs, the functions and definitions of some of the 
key elements of the model are discussed. 

Modules 

In the land use plan design process, the modules are the basic building blocks. A 
module, as it is used in the model, is a discrete design unit expressed as a physical 
entity, for example, a single-family residential area, a neighborhood commercial area, 
an industrial area, or a recreational area. Each module unit is expressed in terms of 
space required for the primary land use activity as well as the secondary service areas 
necessary for the proper functioning of the activity concerned. For example, a module 
for a neighborhood commercial center might have as the primary area a building site 
for the stores and as supporting areas a parking lot, truck-loading facilities, ware
houses, internal vehicular circulation space, pedestrian malls, open space and land
scaped places, ingress-egress zones, and arterial and collector street rights-of-way. 
In this way, the entire land use activity of an area can be decomposed into a set of 
discrete, self-sufficient modular units of uniform functional characteristics. The 
number of modules that may be located in the area under consideration will depend on 
the space requirements for various land use activities at the design year. These space 
requirements are obtained by translating the forecast information of socioeconomic 
variables such as population and employment on the basis of the design standards that 
are established by the planning agency of the area under consideration. 

Cells 

After the module types are defined and the numbers and sizes are established, the 
plan area is divided into a number of cells-spatial units that have more orless uniform 
characteristics, such as soil and topography or natural or man-made boundaries. 
Although the shape of these cells can have almost any pattern, there is a limitation on 
the size; the smallest cell should be large enough in area to accommodate at least one 
of the largest modules. The delineation of the cells, therefore, depends on the specifi
cation of the modules and their sizes. Because the size of the modules depends on the 
type of plan design, the size of the cells is also influenced by the level of planning; 
therefore, the cells for a regional plan would obviously be much larger than the cells 
for a community plan. 

Plan Constraints 

After the modules are defined and the cells are delineated, it is necessary to identify 
the constraints that are associated with the land use plan of the area. These constraints 
form an essential part of the plan design process, for as a whole they control the fea
sibility of a plan. They are derived from the general planning objectives and, con
sequently, from the specified design standards. As model input, these constraints are 
expressed in mathematical form, either by a binary standard or in terms of quantifiable 
distances. As an example of a binary standard, a particular constraint might be so 
established that a specific module can or cannot be placed in certain soil types. On 
the other hand, other constraints might be of a nature that a specific module must be 
within or at least a certain measurable distance from other module types, and so on. 
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In general, these constraints can be classified into 2 major groups: cell-module con
straints and intermodule constraints. The cell-module constraints are those that ex
clude location of specific modules in certain cells consisting of incompatible soil. This 
type of constraint can also be used to preserve some cell areas for the exclusive em
ployment of specific land uses. For example, the cells of a regional corridor that con
sists of wildlife habitat, wetlands, forests, and woodlands can be excluded from the 
module-placement process. The intermodule constraints are specified to ensure 
spatial accessibility and compatibility among the module units, and they are expressed 
in terms of spatial distances between modules. For example, a constraint can be 
established specifying that a school must be within a 2-mile radius from the neighbor
ing residential areas, or a sewage treatment plant must be placed at a distance of at 
least 1 mile from the closest residential areas. 

Site and Linkage Costs 

The public and private costs associated with the placement of all land use activities 
can be broadly divided into 2 basic categories: site development cost, which includes 
the construction and maintenance costs of the module elements, and linkage cost, which 
consists of construction, maintenance, and operation costs of facilities such as trans
portation routes, water and sewer lines, and connections for other public utilities be
tween a pair of module units. The site costs are computed on the basis of the soil type 
and the type of module unit, and they are expressed as dollars per acre of module size. 
The linkage costs are dependent on the types of module unit to be linked and on the 
comparative sizes of these units. The linkage requirements for any pair of module 
types are determined, and construction and maintenance costs per unit distance of 
linkage as well as the vehicle operation and road-user costs are calculated. The cost 
values represent present worth values of all cash flows for an interest rate of 6 percent 
considered during a period of 20 years. 

EXISTING PROCEDURE OF MODULE PLACEMENT 

The original attempt to develop a design model for a land use plan of an area was 
initiated at the Southeastern Wisconsin Regional Planning Commission (3, 5, 6). 
Although the work of the commission firmly established the potential vaTue-or a land 
use design model, the present form of the model is not adequate to develop realistically 
an ideal land use pattern for an area. The most serious objection to this model is the 
technique used in the spatial placement of the activity modules. 

In order to locate a module in a cell, the design area is successively divided in half, 
and module elements are assigned to either of the 2 halves of the partition so as to 
minimize the combined site and linkage costs in the selected partition. The evaluation 
of minimum costs is made by means of a hill-climbing procedure, and such an evalua
tion continues until no improved partition can be obtained by shifting a unit element 
from one half of the partition to the other half. The entire sequence of partitioning is 
repeated again and again within each of the halves of the preceding scanning process 
until all the module elements are assigned to cells in the last partition. In this process 
of module placement, no module once located in one half of a partition can ever be 
reassigned to the other half in a later scanning. 

The technique, which has been utilized in this model, of set decomposition in a series 
of binary partitions has an inherent shortcoming in its failure to account for the pos
sibility that a particular module element might have been better placed in a different 
topographic area after the initial partitioning had placed it earlier in a less desirable 
area. To remedy such errors, called holistic, the provision of higher value partitions 
in model operations has been suggested (5). However, such a modification might not 
be too advantageous for the following possible reasons: 

1. Although this modification might be expected to cut the holistic errors to some 
extent, it would not eliminate the errors completely. For example, in a 3-way or 4-way 
partitioning process, the possibility of a particular module element being trapped in a 
certain cell would obviously be less than that in a 2-way or 3-way operation respec
tively; however, it would still be subject to a certain degree of holistic errors. 
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2. Even if it were at all possible to establish a level of multi-way partitioning, which 
would reduce the holistic errors to an insignificant degree, the incorporation of such an 
improvement in model operation would result in an excessively large number of com
putations, and this in turn, would increase the computer time to an impractically large 
amount. 

RANOOM-SEARCH TECHNIQUE 

The most ideal model operation would be an exhaustive search to develop a series 
of experimental plans by placing each of the modules in each of the cells and sequen
tially evaluating the respective costs in order to arrive at an optimal design. Such an 
operation is practically impossible in a complex system with a large number of cells 
and modules. However, a probabilistic procedure can be adopted to eliminate the large 
number of trials required in such an exhaustive search. The random-search technique, 
as discussed by Brooks (2), can be modified and used in the module-placement process. 
In this probabilistic procedure, a set of experimental plans is developed through the 
combination of module-cell arrangement designed in a random fashion. The estimate 
of the best plan is simply that experimental plan where the random assignment of the 
module-cell combinations produces the lowest total cost and best satisfies the design con
straints. 

In applying this technique, one can assume that there is an optimal zone of module
cell combinations, which contains a number of best alternative plans. This optimal zone 
can be defined a priori by establishing the level of plan accuracy that can be assumed 
as the proportion of optimal zone plans in the entire space of possible experimental 
plans. Another element that has to be decided a priori is the probability of "success," 
or the probability that at least one of the experimental plans is contained in the optimal 
zone. This probability can be expressed as 

where 

S = 1 - (1 - ar 

S probability of success of the experiment, 
a level of plan accuracy, or the ratio of optimal zone to total number of pos

sible experimental plans, 
1 - a probability that a trial plan will fail to be made inside the optimal zone, and 

n = number of trials required to obtain the best plan with the plan accuracy a 
and the probability of success S. 

Solving the above equation for n, we get 

n = log (1 - S)/log (1 - a) 

By predetermining the vaiues of S and a, we can obtain the value of n from the equa
tion given above. Table 1 gives the respective values of n for corresponding values of 
a and S. Even if the optimal zone is assumed to be relatively too small or, in other 
words, if the number of possible alternative best plans is too small compared to the 
total number of possible experimental plans, the number of trials required to achieve 
the best plan with a very high probability of success is not more than 919. Further
more, the number of trials required to achieve a certain level of plan accuracy as well 
as probability of success does not depend on the number of module-cell combinations. 
Therefore, such a technique can be conveniently applied to the land use design problem 
of a comparatively large area or region. 

MODEL ALGORITHM 

The operation of the random-placement method as applied to a land use plan design 
model is briefly discussed in the following steps: 
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1. Input information is fed to include cell data, site and linkage costs, constraint 
schedule, and plan effectiveness parameters a and S. 

2. A module type is chosen through the use of a uniformly distributed random
number generator. If the module chosen is one that has been used before, more random 
numbers are generated until an acceptable one is found. 

3. A cell is then chosen for this module again through the use of a uniformly dis
tributed random-number generator. If the cell chosen is already occupied with a 
module, another number is generated until one is found that is unoccupied. 

4. Before a chosen module is placed in a chosen cell, a check is made to test whether 
such a placement violates the site and design constraints. The scanning continues until 
all the modules are assigned to the cells. At this point one experimental plan has been 
developed. 

5. Site costs for the individual modules are computed, and the total site cost of the 
plan is obtained. 

6. Linkage costs for all required links between the different module types are cal
culated, and the results are totaled. The total cost of the experimental plan is the 
combined total site cost and total linkage cost. 

7. The entire procedure is repeated for as many trials as necessary to obtain the 
desired plan accuracy and the probability of success that are both specified as input 
information. 

8. During the iterations, the minimum total cost and the module-cell arrangement 
that gives this cost is stored as running data. At the completion of the trials, the 
optimal plan and its cost are printed out. 

VALIDATION OF THE PROPOSED TECHNIQUE 

Controlled experiments were conducted to test the validity of the random-model 
algorithm. The results obtained from the random algorithm were compared with the 
results generated by an algorithm based on the exhaustive-search technique. This 
was accomplished by considering a number of hypothetical study areas consisting of 
10 to 15 cells and a total land area ranging from 1,600 to 2,400 acres. Because of the 
limitation imposed by the number of iterations required for an exhaustive search (101 
or 3,628,800 iterations or number of possible plans for 10 cells and 10 modules, ex
cluding the repetitions of a plan), the study area was not made any larger. Each cell 
contained a combination of soil types, and no 2 cells had the same soil combination. 
The experiments were conducted in the following 3 steps: 

1. Optimal plan based on site and linkage costs; 
2. Optimal plan based on all costs and only positive intermodule constraints; and 
3. Optimal plan based on all costs and both positive and negative intermodule con

straints. 

In each step, experiments were made with various given cell-module combinations. 
The two parameters a and S involving the plan effectiveness in a random-search tech
nique were also varied over a range. Furthermore, trials were made with the same 
cell-module combinations and plan effectiveness parameters but with different 
random-number seed values to initialize the random-number generators. 

Both site and linkage costs for the given soil and module types were prepared on the 
basis of data obtained from the Southeastern Wisconsin Regional Planning Commission. 
The module definitions and the types of intermodule constraints were kept the same as 
those used in the existing model. This was done in order to coordinate the present 
research with the commission's ongoing work on the problem of land use plan design. 

In general, the probability obtained experimentally of a given plan falling within the 
predetermined optimal zone was observed to be greater than the theoretical value. This 
would give an overall indication that the random procedure of module placement can be 
used with a good degree of success. Apart from the testing of the validity of the random 
technique, the controlled-experiment procedure was made also to estimate the optimal 
values of the parameters involving the plan effectiveness. A more detailed descrip-
tion of the experiments and their results is given in the following paragraphs. 
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Experiment 1: Random Placement With No Constraints 

In this series of experiments, the total cost of any one plan is equal to the summa
tion of site and linkage costs. Because each cell was assigned with its own individual 
soil characteristics, the site cost, which is soil-dependent, was different for each 
module placement. The cost data were derived from the data used by the Southeastern 
Wisconsin Regional Planning Commission for the village of Germantown, Wisconsin (5). 
The study area consisted of 10 cells, each one having an area of 160 acres. Each ceIT 
was made 0.5 mile square to aid in defining the locations of the cell centroids, for all 
linkages are measured from centroid to centroid. Only 5 module types were included 
in this set of experiments in order to limit the number of iterations in exhaustive 
search. The module types and their space requirements are as follows: 

Type 

Low-density residential 
Medium-density residential 
Neighborhood park 
Neighborhood commercial center 
Secondary school 

Number 

1 
2 
3 
4 
5 

Acres 

126.10 
62.70 

6.40 
64.00 
20.00 

Both the site and linkage costs are given in Table 2. For site costs, the rows are 
the different cell numbers and the columns are the different module types. Each ele
ment of the matrix gives the cost of placing that particular module type in that partic
ular cell. For linkage costs, both the rows and the columns are the various module 
types. In this case, any one element in the matrix gives the aggregated cost per mile 
of linking any one module type to another. These linkage costs take into account the 
cost for connecting module types not only by roads or highways but also by water, 
sewer, gas, electric, and telephone lines. 

Double counting was eliminated in the process of linking module types by a linkage
satisfaction matrix that was set up. This matrix is of the same size as the linkage cost 
matrix, and it is operated by a simple binary code where 0 means that a particular link
age is not satisfied and 1 means that the linkage is satisfied. The linkage- satisfaction 
matrix is initialized with all O's, and it simply becomes a matter of providing linkages 
unt il all the elements in the matrix become 1. 

The exhaustive-search algorithm was then used to develop all possible experimental 
plans. Inasmuch as there were 10 cells and 5 modules, the number of combinatorial, 
nonrepetitive plans was 10 x 9 x 8 x 7 x 6 or 30,240 plans. As a part of the output, the 
total plan costs were printed in descending order. The output data were used to define 
the optimal zone as well as to obtain the associated plan costs in order to check the re
sults obtained from the random-search algorithm. 

To discount any experimental error, we ran the random algorithm several times with 
different values of a and S. The results obtained from these runs are given in Table 3. 
These results seem to indicate that the random procedure provides a., effective tech
nique when no constraints are assigned with the module-placement process; all the best 
plans obtained from the random-model runs are well within the specified optimal zone. 
Therefore, the next step was to determine whether constraints put on the module place
ment would have any effect on the performance of the technique. 

Experiment 2: Random Placement With Positive Constraints 

In this experiment, the same set of modules and the same study area as used in ex
periment 1 were considered, and only positive distance constraints were added to the 
program. By a positive distance constraint is meant that certain types of modules can
not be farther apart than a specified distance. If, in any experimental plan, the modules 
are placed farther apart, then the plan is considered infeasible. 

The exhaustive-search algorithm was run, and both the feasible and infeasible plan 
costs were printed out in descending order. The number of feasible plans resulting 
from the run was 20,880, while the number of infeasible plans was 9,360. This gave a 
feasibility of 69.05 percent. 



Table 1. Plans required to obtain at s 
least 1 plan in optimal zone by 
random-placement method. a 0.80 0.85 0.90 0.925 0.95 0.975 0.99 

0.1000 16 18 22 25 29 35 44 
0.0750 21 24 30 33 38 47 59 
0.0500 32 37 45 50 59 72 90 
0.0375 42 50 60 68 78 97 120 
0.0250 64 75 91 102 119 146 182 
0.0125 128 151 183 206 238 293 366 
0.0100 161 189 230 258 299 367 459 
0.0075 214 252 306 344 398 490 612 
0.0050 322 378 460 517 598 736 919 

Table 2. Input data for experiments. 

Experiment 1 and 2 Modules Experiment 3 Modules 

Item Cell 2 3 4 5 2 3 4 

Site 1 859,337 1,098,970 124,538 166,663 50,000 859,837 1,098,970 402,204 166,663 
development 2 753,013 1,002,898 92,871 496,912 50,000 753,014 1,002,899 302,619 496,912 
cost 3 646,190 906,827 63,204 827,160 50,000 646,190 906,827 203,034 827,160 

4 570,050 846,836 60,128 773,276 50,000 570,050 846,835 142,533 773,275 
5 493,910 786,844 75,016 719,390 50,000 493,910 786,844 182,032 719,390 
6 522,857 827,096 55,112 703,690 50,000 522,857 827,096 176,204 703,690 
7 584,524 866,962 59,158 765,425 50,000 584,523 866,962 189,619 765,425 
8 560,819 808,316 59,348 754,155 50,000 560,819 808,216 189,633 754,155 
9 475,448 709,804 55,492 681,150 50,000 475,448 709,804 176,232 681,150 

10 503,273 802,468 59,824 758,950 50,000 508,273 802,468 191,704 788,950 
11 577,231 854,648 197,069 793,055 
12 667,643 904,387 289,218 433,907 
13 684,055 950,719 296,654 462,807 
14 676,874 942,907 292,113 443,027 
15 499,153 768,450 176,218 692,420 

Linkage cost 1' 0 0 54,800 109,600 13,700 0 0 50,000 109,600 
2' 0 0 54,800 109,600 13,700 0 0 50,000 109,600 
3• 54,800 54,800 0 0 0 50,000 50,000 0 50,000 
4' 109,600 109,600 0 0 0 109,600 109,600 50,000 0 
5• 137,000 137,000 0 0 0 

Intermodule 1' 10.00 10.00 1.75 1. 75 4.00 10.00 10.00 -0.70 2.00 
distance 2' 10.00 10.00 1. 75 1. 75 4 .00 10.00 10.00 -0.70 2.00 
constraints 3• 1. 75 1.75 10.00 10.00 10.00 -0 .70 -0 .70 10.00 -0.70 

4• 1. 75 1.75 10.00 10.00 10.00 2.00 2.00 -0.70 10.00 
5• 4.00 4.00 10.00 10.00 10.00 

11 Modules 

Table 3. Results of random placement. 

Number Rank Number of Selected Plan Feasible 
of Optimal Plans 

Constraints a s Trials Zone Test 1 Test 2 Test 3 Test 4 Test 5 (percent) 

None 0.005 0.99 918 <151 54 13 15 4 11 
0.005 0.95 597 <151 28 20 10 46 109 
0.005 0.90 459 <151 26 7 1 82 5 
0.005 0.80 321 <151 31 87 2 5 15 
0.01 0.99 458 <302 14 14 31 215 1 
0.01 0.95 298 <302 82 94 10 44 46 
0.01 0.90 229 <302 35 120 137 223 164 
0.01 0.80 160 <302 129 196 36 275 40 

Positive 0.005 0 .99 1,165 <104 14 3 6 7 21 78.83 
(method 1) 0.005 0.95 765 <104 41 15 6 101 46 78.10 

0. 005 0.90 588 <104 16 8 34 1 2 78.14 
0.005 0.80 401 <104 141 31 52 8 22 80.12 
0.01 0.99 584 <208 23 49 61 14 15 78.49 
0.01 0.95 379 <208 10 56 23 41 9 78.69 
0.01 0.90 294 <208 35 95 36 28 72 78.00 
0.01 0.80 201 <208 18 201 25 205 14 79.72 

Positive 0.004 0.99 1,178 <85 87 6 25 78.22 
(method 2) 0.004 0.95 768 <8 5 5 67 14 78.16 

0.004 0.90 588 <85 4 37 39 78.75 
0.004 0.80 411 <85 16 52 36 78,51 
0.008 0.99 586 <175 111 62 5 77.26 
0.008 0.95 374 <175 77 142 31 79.63 
0.008 0.90 296 <175 38 271 135 77.70 
0.008 0.08 205 <175 73 84 141 79.03 

Positive and 0.005 0.99 2,516 <68 41 36.49 
negative 0.005 0.99 2,574 <68 2 35.66 

0 .005 0.99 2,530 <68 54 36.28 
0.005 0,99 2,556 <6 8 32 35.92 
0.005 0,99 2,368 <6 8 4 38.77 
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The random algorithm was then run a number of times for various values of a and S. 
The problem of infeasibility of a plan was handled in 2 different ways. In the first case, 
only the feasible plans were included in the universe of possible experimental plans. 
An a-value and an S-value were chosen, and an n was calculated from the formula. 
This n was then the number of feasible plans that must be generated in order to obtain 
1 experimental plan that falls within the optimal zone a of the feasible plans. In this 
procedure, it was not important how many total plans were generated as long as the 
number of feasible plans equaled n. The results obtained by running the random algo
rithm using this approach are given in Table 3. Based on the optimal zones as defined 
by the exhaustive search, the plans selected are well within the desired subregions in 
almost all cases. 

Although the first method of handling the infeasible plans is the most direct and 
accurate approach, it would require comparatively long computer time as the com
plexity of the system would increase. Therefore, it was decided to test an approxi
mate approach in dealing with the infeasible plans. In the second method, the infeasible 
as well as the feasible plans were included in the universe of total plan designs. Ac
cordingly, an adjustment of the a-value, or optimal zone, was necessary and was ac
complished in the following manner: 

a* = (a)(Pf) 

where 

a* probability of obtaining an optimal feasible plan, 
a = plan accuracy, and 

Pf = probability that a plan is feasible. 

The original formula was then modified as 

S = 1 - (1 - a*)" 

or 

n = log(l - S)/log(l - a*) 

The occurrence of feasible plans was recorded for some initial iterations, and at some 
point in the program the percentage of feasible plans Pf was calculated. Because the 
same level of plan accuracy was desired, that is, an optimal zone of some small per
centage of the feasible plans, the original a-value read in as input data was then multi
plied by the percentage of feasible plans. The resulting a*-value along with the given 
probability S was put back into the formula, and a new n or number of experimental plans 
was calculated. The inclusion of plan constraints has the effect of increasing the num
ber of experimental plans necessary to achieve a given level of plan accuracy. For 
example, if the specified values of a and S are 0.05 and 0.90 respectively, then the 
number of experimental plans is 45; whereas, if the plan constraints are considered 
and the percentage of feasible plans Pf is observed to be 0.10, then the number of ex
perimental plans increases to 460 from 45 to achieve the same plan accuracy. 

The results as obtained from the second method are also given in Table 3. The 
results would again indicate the effectiveness of the random procedure; the rank of the 
best plan is within the specified optimal zone in almost all trials. Comparing the num
ber of trials required by this approach and those required by the first method shows 
that they do not vary considerably. However, there is a shortcoming inherent in this 
method of handling the infeasibility of plans. Because, in this case, the universe of 
total plans included both feasible and infeasible plans, the modified optimal zone also 
could contain, by chance, some plans that are not feasible. Furthermore, a compar
ison of the actual percentage of feasibility with the corresponding percentage values, 
as obtained in the trials conducted by this method, indicated that these values are on 
the average 9.36 percent higher than the value calculated by the exhaustive search. 
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This would mean that the adjusted value of a is larger than it should be, and, therefore, 
the required trials calculated would be less than they actually should be. 

The percentage values of feasible plans as generated by the first method were also 
computed to check with the results of the second method. In this case, as in the second, 
the percentage values of feasibility were higher than the actual percentage. Having on 
the average a value of 9. 71 percent higher than the known value would again seem to 
indicate that a running average from the random procedure would not provide a very 
reliable estimate of the percentage of feasible plans. It is also felt that this method 
would decrease in its reliability as the percentage of feasible plans would decrease. 

Experiment 3: Random Placement With Positive and Negative 
Constraints 

In this set of experiments a negative distance constraint was added to the con
straint schedule. A negative distance constraint means that a certain module type, in 
this case a sewage-treatment plant, cannot be closer than a specified distance to any 
of the other module types. 

The study area was increased to 15 cells in orc;ier to accommodate the negative dis
tance constraint because too small a study area would cause a great percentage of in
feasible plans. But the increase in number of cells necessitated a decrease in the 
number of module types to be considered so that the computer time to conduct an ex
haustive search would not be excessive. Accordingly, the number of module types 
was reduced to 4. Therefore, the number of combinatorial, nonrepetitive plans is 15 x 
14 x 13 x 12 or 32,760. The module types and their space requirements are as follows: 

Type 

Low-density residential 
Medium-density residential 
Sewage-treatment plant 
Neighborhood commercial center 

Number 

1 
2 
3 
4 

Acres 

126.10 
62.70 
45.00 
64.00 

An exhaustive search of all possible plans showed that there were 13,664 feasible 
plans and 19,096 infeasible plans. The percentage of feasibility was therefore 41. 71 
percent. The random algorithm was run only 5 times with the same values for a and 
S for each run. The number of trials was calculated on the basis of the feasible plans 
only. The results of these runs are given in Table 3. In each case, the selected plan 
fell within the desired optimal zone. Although the number of iterations necessary to 
generate the required number of feasible plans was high, more than 2, 500 in most cases, 
this number is still small compared with the 32, 760 possible plans that would have to 
be checked if an exhaustive search were to be made. 

The percentage of feasibility was also computed for each run. Comparing these 
values with the known percentage value of 41. 71 percent shows that on the average 
these values are 5.09 percent lower than the known value. 

ESTIMATION OF PLAN-EFFECTIVENESS PARAMETERS 

When the random method is used, the 2 parameters involving the plan effectiveness 
must be decided beforehand. These 2 parameters are the desired level of plan ac
curacy, a, and the probability of success of achieving an optimal plan, S. 

Because a land use plan design process is a complex system that entails a large 
number of factors, an absolute lowest cost plan may not be attainable. Moreover, it 
can be reasonably assumed that in the total universe of experimental plans there exists 
a subregion, consisting of a number of plans whose total costs are close to the lowest 
cost, where the differences in plan costs are not so significant. Accordingly, a satis
factory solution to the problem of optimization can be well achieved if an experimental 
plan from this subregion is attained. In the random procedure, the relative size of this 
subregion of good response with respect to the total universe is defined as the plan 
accuracy. On the other hand, the definition of success used in the procedure is to ob-
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tain an experimentally selected plan that falls within the desirable subregion, and the 
probability of success is the desired level of assurance that a planner would like to 
have of achieving an optimal land use plan. 

To estimate the values of a and S that might be reasonably used in a land use plan 
design mode, we conducted experiments with various cell-module combinations over a 
range of values for each of the 2 parameters. The soil characteristics of each cell 
were also varied to provide different cost values for placing the various module types 
in different cells. Furthermore, the random-number generators were initialized at 
the beginning of each trial with different random-number seed values. 

First, an exhaustive search procedure was adopted in placing modules in cells, and 
plan ranks and their costs were obtained in descending order. The algorithm was run 
several times with changing soil characteristics. The results were then plotted to de
velop the cost curves. Some of the typical cost curves as obtained from trials with 4 
modules and 8 cells are shown in Figure 1. Similar cost curves were also developed 
for several higher order cell-module combinations, but they are not shown here be
cause of the enormousness of their sizes. It was consistently observed, however, that 
the assumption of the existence of a low-cost region in the universe of experimental 
plans is reasonable. Such a subregion or optimal zone is characterized by a valley at 
the end of the cost curves. This valley region, where the plan costs approximate the 
lowest cost, is shown in Figure 2, which shows the plan costs of 152 best plans out of a 
possible 30,400 experimental plans in a set of trials with 6 modules and 10 cells. Each 
curve shown in Figure 2 represents a trial with different soil characteristics and con
sequently with different site costs. 

It was observed that the significant breaks in cost curves take place at points causing 
low-cost regions to include, on the average, about 5 to 10 percent of the total plans. 
Therefore, assumption of a plan accuracy value within a range of 0.5 to 1.0 percent 
would be very reasonable. Lower values would be desirable for plan design of small 
areas, such as in site planning or for those situations where cost estimates are more 
precise and accurate and where a comparatively small difference in plan cost could 
affect the planning decisions. On the other hand, higher values of plan accuracy would 
be reasonable for the design problem of large areas, such as a region where the model 
input data cannot be so precise and the planning decisions are dependent on manyfactors. 

In the next set of trials, results from the random algorithm were compared with the 
exhaustive search output to obtain a distribution of best plan rank. In each trial 50 runs 
were made for each a and S combination, and the rank of the best plan obtained from a 
random run was noted. The ranking was done on the basis of the exhaustive search 
output. The results obtained from the trials made with 4 modules and 10 cells are 
given in Table 4, where the distribution of best plan riU}k is presented for various com
binations of a- and S-values. The best plan ranknumbers for only95th percentile and 
lower values are shown because for higher percentile values the best plan rank num
bers, in some cases, fell beyond the optimal zone. The percentile value indicates the 
probability that the best plan obtained from a particular random run will be at least 
the xth lowest cost plan. For example, the probability that the best plan generated by 
a random rwi with a-value of 0.005 and S-vaiue of 0.99 will be the fourth iowest cost 
plan or better is 0.80. 

It may be observed from the entries given in Table 4 that, for a given value of plan 
accuracy, the best plan rank number seems to become better as the S-value for the 
probability of plan success is made higher. However, although the S-value of 0.9 gave 
significantly better results than the S-value of 0.8, the results did not improve appre
ciably as the S-value was increased to values higher than 0.9. This trend was con
sistent for all the percentile values of best plan rank number distribution. Therefore, 
it would seem to be reasonable to assume that a range of 0.85 to 0.95 is an appropriate 
range of values for S. Because an increase in the S-value would mean an increase in 
number of iterations, the S-value could be ta.ken as 0.9 in most cases without affecting 
the plan results. However, higher values can be considered in such cases where cell
module combinations are not large, and lower values would be reasonable for a high 
order of cell-module combinations. 



Figure 1. Costs of plans with 4 modules and 8 cells. 
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Figure 2. Optimal zones of costs for plans with 6 modules and 10 cells. 
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Table 4. Distribution of best plan rank. 

Percentile 

a s 0.25 0.50 0.60 0.70 0.80 0.90 0.95 

0.005" 0.99 I 2 3 3 4 7 9 
0.95 1 3 3 6 9 11 14 
0.90 3 5 6 8 12 16 20 
0.80 3 5 8 11 17 22 25 

0.01' 0.99 3 5 6 8 12 16 20 
0.95 3 5 8 11 17 22 25 
0.90 3 9 12 14 18 25 33 
0.80 4 16 21 23 28 37 38 

0.025' 0.99 5 10 13 16 23 30 36 
0.95 7 24 27 35 50 80 100 
0.90 6 21 27 38 58 90 97 
0.80 11 38 47 57 70 94 120 

aopti mal zone, 25 lowest cost plans 
bOptimal zone, 50 lowest cost plans. 
captimal zone, 125 lowest cost plans~ 

100 

,. 
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CONCLUSIONS 

A land use plan design nolds immense potentiality in the field of land use planning. 
The model can be used to design a set of ideal plans for a series of forecast years 
ranging from 5 to 30, each design being developed independent of others and based only 
on the initial conditions and the forecast requirements. The series of land use plan 
designs derived from the model will then display the most economic and efficient land 
use pattern that can be obtained at a particular design year. This, in turn, will aid in 
making decisions concerning the development of public and private policies regarding 
the use of land in a systematic and efficient way. 

The model provides a normative tool rather than an evaluation process to arrive at 
an optimal land use plan design. While considering the role of the plan constraints in 
shaping the final solution, one should make a distinction between values and a design 
to satisfy values. The search procedure used in the model attempts to create a de
sign, and the plan constraints are simply the limitations imposed on such a design. 
The model does assume a set of values that is reflected in a set of plan constraints. 
Because values are subjective, there can be no optimal set of values. The model is 
therefore a normative one given a set of values. The same statement can be made of 
any normative model. 

The basic use of the proposed model is in preparing a target plan at any level of 
land use planning, such as neighborhood, community (town or village), metropolitan, 
regional, state, or even national level. Although at any of these levels the general 
structure of the model algorithm remains the same, the nature of the input data and 
plan constraints would be different from one level to another. The type of input data 
currently available makes it possible to apply the design model only at community, 
metropolitan, and regional levels. Furthermore, the model can be well utilized in 
capital works programming in a time-simulation framework. By running a series of 
design model runs on a 5-year time increment starting back from the target year, the 
proper sequence of capital works programming can be determined. The greatest im
pact of the proposed model on metropolitan plan-making will probably be in establish
ing a standard or norm against which all proposed plans can be evaluated. Another 
application relates to measuring the cost of any suggested plan design constraints. 

The use of a simple procedure for improving the operation of the model based on 
the random-search technioue has been discussed here. The validity of the random 
technique was established through a series of controlled experiments where the re
sults obtained from the random model algorithm were compared with the results gen
erated by an algorithm based on an exhaustive-search technique. The study clearly 
indicated that the random method of module placement can be used with a good degree 
of success. Apart from the testing of the validity of the random technique, the con
trolled experiment procedure was also used to determine the appropriate values of the 
parameters involving the plan effectiveness. 

It was the intent of the paper to evaluate the merit of the random-search technique 
as a useful tool in the preparation of a land use plan design. This has been established 
through the result of small-scale controlled experiments with hypothetical areas. How
ever, the random algorithm is currently being applied in several real-world problems 
of land use plan design at different levels of planning in the southeastern Wisconsin 
region. 
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