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Because the physical properties (thermal expansion and shrinkage) and 
mechanical properties (strengths and moduli of elasticity) of the com
ponents of concrete are different, concrete is considered a multiphase 
material. For the sake of simplicity, it is assumed in this paper that 
there are two phases: the cement stone (i.e., the hardened cement paste) 
as the matrix and the aggregate particles as the discrete phase. Because 
the phases are prevented from free deformation by their strong bond, 
hampered strains impose balanced stresses on cement stone and aggregate; 
thus, the concrete gets in a residual stress condition. Three elementary 
models (disk, circular cylinder, and sphere) simulating a cement disk of 
outer shell and an aggregate disk of inner core will be applied to illustrate 
the evaluation of residual stresses in concrete due to temperature varia
tion, shrinkage, and creep. Diagrams are also presented for easier ap
plicability of the method. 

•CONCRETE is a building material consisting of two phases, the viscoelastic cement 
stone (i.e., hardened cement paste) and the elastic aggregate, where differential phase 
properties affect the development of strains and stresses in a definite manner. 

Such nonhomogeneous, non-isotropic materials cannot freely develop motions upon 
physical and mechanical influences because the identical deformations on phase inter
faces necessarily impose inner constraints and the concrete gets in an equilibrium 
condition of residual stresses. 

In what follows, some ideas will be presented that are related to the development of 
residual stresses in each phase, due to phase differences in concrete. An exact solu
tion is very difficult; therefore, it has to be approximated by introducing certain ele
mentary assumptions. Phases are assumed to fit together without slip and gaps to 
meet the principle of compatibility. This leads to the assumption that, in any point of 
the interface, the strains of cement stone and aggregate in a given direction are equal. 

The main difficulty affecting concrete residual stress calculations is that knowledge 
of the mechanical properties of the concrete and its phases is required, as well as the 
particular physical characteristics of each phase and the resultant concrete character
istics. Although the strains can be measured directly as deformations, the stresses 
should at most be deduced from strain values. The effective moduli of elasticity of the 
cement stone and aggregate (E, and E.) required for the determination of the stresses 
in cement stone and aggregate are by no means the ones obtained by some of the usual 
methods from uniaxial loading but are complex characteristics obtainable only in
directly from certain measurements in a concrete of given composition and quality. 
Thus, the effective E, and E. cannot be determined by independent tests on the cement 
stone or aggregate, or, if they are, such results can only be applied with approximate 
corrections. Such a simplified method, based on the standard modulus of concrete E 0 

and on the absolute volumes of cement stone and aggregate v, and v., is presented be
low. 
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Concrete stress ac is assumed to be composed of stresses a, and a. in the cement 
stone and the aggregate respectively, leading to the relationship 

O'c = CO', + (1 - C)0'0 

strains E being identical, Eq. 1 leads to 

E, = Ej[c + (1 - c)n] 

where n = E./E, and c = f(v,). 

(1) 

(2) 

Ee, v,, and v. are known for a given case, whereas n can be determined by the suit
able deformation condition as follows. In the case of low stresses, Ee may be replaced 
by the initial tangential modulus 

Eco = 550,000p 

P = fj[fc + 200] 

where fc, in kips/cm2
, is the concrete cube strength. In general, the modulus of de

formation Ee for stress at any time t is 

EC = vEco kip/ cm 2 

where 

E,o c + (1 - c)n 

vE, 0 

The rate of creep Cf) at any time t is given as 

(3) 

(4) 

(5) 

(6) 

k
0

, the factor characterizing the time of beginning of application of the sustained load, 
can be expressed as 

, /6 

k - 3 9 0.77t 
0 - • X e 

k, is a factor expressing the effect of the moisture content n, (in percentage) of the 
surroundings: 

k = 115 - Tl, 
r 100-0.7n,. 

o is a process function of the creep, which is 

o = 1 - 3 
-0 .1t

112 

(7) 

(8) 

(9) 

Cf)" is the final value of creep, and O' is either the prism or cylinder strength O'p or the 
tensile strength a, of the concrete in kip/ cm 2

• 

To provide uniformity of treatment, the average concrete strain Ee is assumed to be 
of the form 
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(10) 

which is obtainable from the free deformations of cement stone and aggregate. Here 
c is a function of the absolute cement volume in the concrete, expressed approximately 
by 

3/2 
C = V, (11) 

This last equation is supported by experimental values on thermal deformations (°'c, 
°'• , and 01. ), on shrinkage (E"c, , E"ss, and E"., ), and on creep of concretes. 

RESIDUAL STRESSES DUE TO TEMPERATURE VARIATION 

It is assumed that the thermal expansion coefficients of concrete and its components 
(01 ., 01. , and aJ and the Poisson's ratios (µ, and µ. . ) are known. Similarly, the con
crete composition (absolute volumes v, and v. ) and the concrete modulus of elasticity 
(E e) should be given. a c is simply calculated by means of Eq. 10 (1). Approximate 
calculations of the residual stresses will be attempted by the following three model 
types: 

1. Plane disk or linear model consisting of intercrossing cement stone and aggre
gate disk elements of absolute volumes v, and v. respectively (Fig. 1); 

2. Circular cylinder model (Fig. 2) ; and 
3. Spherical model (Fig. 3) with the cement stone as outer shell and the aggregate 

as core. 

Starting from certain accepted equations of statics, kinematics, and strength of 
materials, some important relationships between the n = E. / E , ratio and the stresses 
a, and a. in cement stone and aggregate due to 1 deg C of temperature variation have 
been compiled and are shown in Figures 1, 2, and 3. Because temperature variation 
may be considered as an instantaneous effect, zero rate of creep ip has been assumed. 

The important relationships on the basis of the elasticity equations are given below: 

1. For disks (Fig. 1), 

p = p, = a sd V' = - Pa = - CJ ad Va 

p (O! c -01, ) E v = (et.-01. ) E 
1 - /J, sd s 1 - µ . od Va 

CJ = .E.. l::i.t 
sd Vs 

(a . - o:.) (1 - c)E t:,.t 
} _ µ , sd 

CJad = - .E.. t:,.t v. 
(o: ' - a.) c E l::,,.t f _ µ, · ad 

1-cv ~1-n d = -- .....!. X a Ilo /3d 
C Va - µ,, 

1-cv ~1-n - s R - • 
0 - -c- V 1-'d - - µ 

a s 

2. For cylinders (Fig. 2), 

p (01 , - o:,) XE (a . - a,JE 
1 + µ. , + (1 - µ, )/ V n sc V, = 1 - /J o ec 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 



4 

1 + v. t 
O'ts,I = p - V-, - /);. O',s,i = - pl:J.t 

2v. At 
O'ts,o = - P~ ._. 

a,.,, = - pl:J.t 

a,.,o = 0 

O',s,o = 0 

a, •. 1 = - pt:,.t 

cr,.,o = 0 

p.c = (1 - 1.)v. 
1+ µ. + ( - µ,)/ v. 

3. For spheres (Fig. 3), 

p- (ac-a,) 2Ev_(a.-aJE 
- l + µ, + 2 (l - 2µ,) / v. " • - 1 - µ. •• 

1 + 2v. 
a "·' = P ~ l:J.t a,.,; = - pl:J.t 

Ots,o == 
3v. 

p-1:J.t 2v, 

cr, •. 1 = - pt:,.t 

a, •. o = 0 

O',s ,o = 0 

cr,.,1 = - pt:,.t 

O' rs,o = 0 

n, = n 0 p, 

(1 - 2µ , )/ 2v. 
/3, = 1 + µ, + 2(1 - 2µ, )/ v. 

(19) 

(20) 

(21) 

(22) 

(23) 

/n11\ 
\L<"t) 

(25) 

Figure 4 shows the n and E, values versus v,, whereas Figure 5 shows the variation 
of mean a, values based on the three models for a,= 20.10- 6 deg C, a. = 10.10-6 deg C, 
v = v 0 = 1, µ, = µ. = 0, µ, = 0.2, andµ. = 0.1. Because interfaces have been assumed to 
contact each other slipping-free, approximate values based on the linear model can 
also be obtained by assuming µ, = µ. = 0. 

RESIDUAL STRESSES DUE TO SHRINKAGE 

Residual stresses due to shrinkage can be determined by applying the relationships 
obtained for residual thermal stresses. Evidently, because shrinkage stresses are of 
a permanent character, the calculation of stresses has to take into account the creep 
rate C() for the given concrete grade and time. In general, aggregate shrinkage is prac
tically negligible as compared to that of the cement stone; thereby, the second term in 
Eq. 10 can be omitted. Thus the concrete shrinkage at time tis expressed by 

E: c,=C X E:ss 

At an arbitrary time, shrinkage of concrete or that of the cement stone is given by 
the process function corresponding to the given conditions 



or 

•ss = o(t)E ss,co 

The process function can be written as 

o(t) = 1 - e•a 
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where a depends on the given circumstances (cement grade, water-cement ratio, degree 
of hydration, ambient humidity, and mean drying thickness) and on the time. For rela
tive humidities of about 90, 70, and 40 percent, as well as 10 cm of mean drying thick
ness, a may be ass umed as 0.07t113

, 0.10t1 13
, and 0.13t 113 respectively (2). 

Final shrinkage values of concrete for high early strength portland cement, 10 cm 
of mean drying value, relative humidities of 90, 70, and 40 percent, and water-cement 
ratios of 0.4, 0.6, and 0.8 are shown in Figure 6. Figure 7 shows characteristic values 
(E

0
, f0 <P, v, v0 , E,0 ) for 28-day portland cement of f 0 = 245 kip/cm2 (3,500 psi) based 

on the plane disk (linear) model for µ, = µ. = 0. Hence, among characteristics needed 
to calculate stresses, the ratio n and the modulus of elasticity E, have been calculated 
by means of Eqs. 16 and 2 respectively. Tensile and compressive stresses in cement 
stone and aggregate were obtained with the following formulas: 

For tensile stresses, 

cr,., = (,,,, - ,
0
,,)E, = ,,,, (1 - c)vE,

0 

and for compressive stresses 

a.,= - €0 , nE, = - •,, (1 - c)(v,/v.)E, = - a,, v,/v. 

(26) 

(27) 

Because there is no uniform temperature or shrinkage along the concrete cross 
section, in addition to the stresses obtained by assuming uniform distribution, residual 
stresses develop in elementary fibers due to temperature gradients and variable 
shrinkage (moisture). It is evident from the informative stress values presented that, 
under the combined effect of cooling and shrinkage, the tensile strength of cement stone 
may be exceeded and inner microcracks as well as surface cracks may develop. 

STRESS REARRANGEMENT IN CONCRETE DUE TO CREEP 

For simplifying the calculation of the stress rearrangement, the effect of diversity 
of the different kinds of rocks will be neglected. It will also be assumed that their 
creep may be ignored. However, it should be stressed that the results of the latest 
experiments clearly show the effect of the different kinds of rocks on the development 
of shrinkage and creep (17, 18, 19). 

The sustained load, inthemoment of application, induces initial stresses in the 
cement stone and aggregate in the concrete. In the course of time, the values of these 
stresses change as the deformations increase, but still the new stress state developed 
is a state of equilibrium of stresses. 

The eigenstresses developed are determined-by assuming the cross section to be 
planar-by satisfying the equilibrium of deformations with the help of a simple model 
wherein the cement stone and skeleton of the aggregate are of plane disk lamination. 
A more accurate model has been applied by Baker (20) wherein he tried to describe 
the stress pattern developed within the concrete by alattice consisting of vertical, 
horizontal, and diagonal bars. 

The experiments conducted on creep showed that the aggregate, possessing no sig
nificant anelastic properties, behaves as a large system of elastic rigidity. As a 
matter of course, the stresses originally developed in the cement stone will decrease 
owing to its creep, and their major part will be transferred to the skeleton of aggregate. 

In order to clarify this question, let us start from the simple model already men
tioned above (Fig. 1), where a plane disk lamination of each of the elements (cement 
stone and aggregate) was assumed. 



Figure 1. Plane disk model. Figure 2. Circular cylinder model. Figure 3. Spherical 
model. 
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Figure 4. Values of n and Es versus Vs. 
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Figure 6. Final concrete shrinkage versus v,. 
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Naturally, a model in which both vertical and horizontal and even diagonal lamina
tions are assumed would strongly entangle the problem. In general, the Poisson's 
ratio has been supposed in the calculations to be different from zero. 

Compressive Force 

At an instant t = 0, i.e., at the moment of application of the load, the compressive 
force induces the stresses CT00 and CT ao in the cement stone and aggregate respectively. 
The compressive force may be calculated from the formula 

7 

(28) 

where the following relationships may be assumed: 

F,o = v,Acc,,o = A,CT,o 

F80 = v.Ac a.a = A8c,8o 

v,A 0 + v.A 0 = Ac 

The common deformation is 

from which 

where 

1 - C 
no'Y8 = -C-, 

y =~ and 
a Ve' 

E 80 = no Eco• 

From Eq. 28, 

From these 

Effect of Creep 

F,o F.o F 
(o = (,o =AE = A E =J\EE:80 

s co a ao c c 

F = F E.o x v8 - F - 1 - c F 80 co Eco V, - ,ono'Ya --C- so 

F,0 = cF 

F 80 =(l-c)F 

cF 
CT,o = E:oE,o =A= CCTco 

s 

(29) 

(30) 

As a result of creep, the initial compressions increase with the time. The incre
ment of deformation, i.e., the creep, is 

where IP is as given. 
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Due to the creep, the ac0 initial compressive stresses decrease in the cement stone, 
first (probably due to a self-compaction) with a lower, later with a higher, and then 
again with a lower rate of change in stress. This latter slowdown may be due to the 
development of a'"' tensile stresses. Meanwhile, only a very small (commonly negligible) 
a."' compressive stress increment is added to the a.0 initial compressive stresses in 
the aggregate. During this transfer of compressive stresses, the cross section is in 
a state of equilibrium. At this state the deformation £ 2 is the value of the slow defor
mation of the cement stone £ 20 reduced by mechanical resistance of the aggregate . 

At an instant t, due to the state of eigenstress, a c,p = -a""' Y. . In this equation, cr • .,, is 
compressive stress (a negative value) and crc,p is tensile stress. 

For the simplified estimate of the increment of the compressive stress induced in 
the aggregate, it seems convenient to apply the reduction factor <P, that is based on 
Dischinger' s theorem. This factor is as follows: 

_ C [l -<1 -cl-,, ] 
1/J, --r=-c - e (31) 

For the determination of the stresses due to shrinkage, the deformation equilibrium 
equality can be used. According to that, the shrinkage of the concrete may be assumed 
as being composed of the shrinkages of the cement stone and aggregate. 

Because the shrinkage of the aggregate, just like its creep, is very small in com
parison to the similar deformation of the cement stone, it is negligible. Thus, the 
shrinkage of the concrete is governed, first of all, by the cement stone. 

The free deformation of the cement stone, as one of its basic characteristics, may 
be obtained from Eq. 10 as 

The reduced creep of the concrete is given by the relationship 

t' 
c, s 

Accordingly, the stresses in the aggregate and cement stone due to the creep are 

and 

respectively where, at an instant t, E c and E. are as given in Eq. 2, E, = vE ,0 , E. 

d 1/ 0 n 0 E., an 11 = .....---,--. 
.l + cp 

Effect of Moment 

(32) 

(33) 

It is assumed that the moment M applied together with a compressive force F is so 
low that it causes only a low tensile stress at both edges of the specimen, so that no 
crack occurs in the cross section. Then the deformation equilibrium constraint equa
tion states that the rotation of the cross section calculated on the basis of either the 
aggregate or cement stone is the same. The amount of traverse of the stresses may 
be obtained by the same deduction by the respective application of the formulas. 

All that has been said is to be applied also to other kinds of materials. 
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CONCLUSIONS 

Concrete can be considered as a two-phase composite material for the description 
of both its physical (thermal expansion, shrinkage) and its mechanical (compressive, 
tensile, and flexural strains, creep) properties. One of the phases is the viscoelastic 
cement stone, i.e., the porous hardened cement paste, as the matrix; the other is the 
elastic aggregate particles as the discrete phase. The influence of these two phases 
on the concrete properties differs significantly. 

The two phases in the concrete are forced to deform together causing a mutual re
striction, i.e., a state of residual stresses in both the paste and the aggregate. Ap
proximate descriptions of these residual stresses can be obtained by applying formulas 
of the theory of elasticity (Eqs. 1 through 11) on any of the three elementary models: 
disk, circular cylinder, and sphere. In these models the cement paste is an outer shell 
and the aggregate is an inner core. It appears that the results obtained by the disk 
model (Eqs. 14, 26, 27, 32, and 33) provide the best estimates for practical purposes. 

Stresses capable of causing cracking in the concrete c:an be produced by shrinkage 
or temperature change without any external loading. 

Finally, it is demonstrated that the compression creep causes a rearrangement of 
the stresses in concrete by reducing the compressive stresses in the paste and by in
creasing those in the aggregate particles. 
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