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An analytical method is proposed for the design of guideway elements sub
ject to jerk and acceleration limits. The method generalizes the limits 
on lateral jerk and acceleration familiar in highway design to the fore-aft 
and vertical modes. It is proposed that, W1der combinations of these modes, 
the magnitudes of the jerk and effective acceleration vectors must be 
limited. Equations describing the level of discomfort are derived for both 
constant and variable-speed motion along horizontal and vertical curves. 
The equations explicitly include the effect of superelevation. A four-spiral 
switch for use in a personalized rapid transit system is analyzed in detail. 
It is found that a length reduction of more than 25 percent is possible by 
using superelevation. A right angle turn composed of two spirals and a 
circular arc is detailed. It is foWld that the use of superelevation can re
duce the magnitudes of the effective jerk and acceleration vectors by more 
than 50 percent. Finally, a four-spiral grade change is detailed. Dis
comfort is investigated and compared for constant speed and zero fore-aft 
thrust motion. It is shown that the usual analytical approach that includes 
only the centripetal component of acceleration and jerk can lead to con
siderable error in predicting discomfort. 

•IT IS well known that human beings experience discomfort when subjected to accel
eration and jerk. Considerable experimental work has been done to evaluate the effects 
of particular types of acceleration and jerk and the data have been used in the geomet
ric design of automotive test tracks (1, 2), highways (3), and railroads (4). Physiological 
mechanisms associated with acceleration discomfort have also been extensively studied (5). 
Most of the work has been concerned with accelerations and jerks in one mocte: later:u, 
fore-aft, or vertical. There has been very little work describing discomfort levels due 
to combinations of these modes, although the importance of such work has been noted 
(5, 6), and the authors are aware of one experimental study on the subject (7). 
- Evaluation of discomfort in combined modes has not been important for the geometric 
design of highways and railroads. Only the lateral comfort limits are used for the geo
metric design of highways and railroads. Curvatures in the vertical plane are limited 
by visibility requirements and grades by engine power and surface friction limitations. 
In recent days, however, there has been considerable interest in automatically controlled 
vehicle systems like personalized rapid transit (PRT) and dual mode transit. In such 
systems, vehicles run on fixed guideways with off-line stations (6, 8, 9). 

Because of electronic sensing, novel types of vehicle suspensTon-te.g., air or mag
netic), and a Wliform power-weight ratio, the highway limitations on grade and vertical 
curvatures would not apply. Thus, the geometric design of guideway elements for these 
networks will to a large degree be determined by comfort criteria. Furthermore, in 
networks with closely spaced stations and interchanges, space limitations would be very 
stringent. Such limitations require that geometric design incorporate quantitative cri
teria involving combinations of fore-aft, lateral, and vertical accelerations and jerks. 

In this paper a mixed mode measure of discomfort is developed by defining an "ef
fective" acceleration vector~ as shown in Figure 1. ~ is the difference between the 
total acceleration (including gravity) and the acceleration associated with self weight, 
-gn. In three dimensions, the fore-aft component of acceleration, if present, would be 
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vectorially included in & . The magnitude of il. is termed the acceleration discomfort 
index and is assumed to be a direct quantitative measure of the amount of acceleration 
discomfort. J., the time derivative of g., in a frame of reference attached to the vehicle, 
is termed the effective jerk vector. The magnitude of Jo is assumed to measure the 
amount of jerk discomfort. From these assumptions, it is possible to derive expres
sions for the amount of jerk and acceleration discomfort in terms of the vehicle speed, 
speed change, and guideway centerline geometry and superelevation. 

Three examples of geometric design of components of a PRT network are presented 
as applications of the methods of the paper. The techniques described are also appli
cable to the geometric design of other transportation systems. The first example is 
concerned with a four-spiral switch that connects an off-line acceleration or decelera
tion lane with the main line. Dais used the four-spiral combination horizontally as an 
unbanked switch for PRT networks (12). In this paper we investigate the possibility of 
decreasing the length of such a switch by banking the guideway. 

A right angle turn using a circular arc with spiral easement at both ends is described 
next. The discomfort along such a curve and the effect of superelevation are investi
gated for constant speed motion along the curve. 

The use of spiral curves along with a straight inclined line to achieve a grade change 
makes up the third example of the paper. Motion along such a curve is considered both 
with zero fore-aft thrust and with constant speed, and it is shown that the two differ 
significantly in terms of the discomfort caused. The work generalizes previous work 
(1) by using formulas that include the fore-aft components as well as the normal modes. 
The error introduced by considering only the centripetal component of acceleration (1) 
is also investigated. -

THEORETICAL DEVELOPMENT 

Consider a subject in a moving vehicle in some preferred configuration like sitting 
or lying down. The basic principle postulated here is that, in the presence of accel
erations in addition to that of gravity, the discomfort experienced by the subject is 
a function of the vectorial difference between the total body force on the subject and a 
datum corresponding to his self weight. Although this idea has been stated by others 
(1, 5), its mathematical consequences in connection with transportation guideway design 
have not been fully explored. 

To make the above concept more explicit, consider a triad of mutually perpendicular 
unit vectors fixed in the vehicle with f tangent to the guideway centerline in the direc
tion of travel of the vehicle, !! normal to the vehicle, and l: in the lateral direction of the 
vehicle. n and l: are shown in Figure 1. Then we define the effective acceleration vec
tor by 

where 

g = acceleration of the vehicle and 
g = acceleration of gravity. 

-gn - g + e (1) 

It is assumed that I .ee I determines the level of acceleration discomfort. In equation 
form, 

(2) 

where ¢ is termed the acceleration discomfort index. Analogously, it is postulated 
that jerk discomfort is essentially due to the subject's having to adjust to a changing 
force field and consequently may be analyzed by considering an effective jerk vector J, 
defined by 

(3) 
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In Eq. 3 the differentiation is assumed to be performed in the D, ,!,, and f frames of ref
erence. The level of discomfort due to jerk is expressed by means of a jerk discom
fort index l/), This index is assumed to be given by the magnitude of the effective jerk 
vector. In equation form, 

Equations 2 and 4 tacitly assume that all components are equally significant in 
causing discomfort. That is, a radial jerk or acceleration of a certain magnitude 
would cause the same level of discomfort as would a normal or fore-aft jerk or ac
celeration of that same magnitude. [A more general mathematical theory in which 

(4) 

this assumption is not made is presented elsewhere (10).J The degree of validity of 
this assumption is a matter for experimentation, andthe answer will depend signifi
cantly on the amount of lateral restraint incorporated in the seating. The methods 
developed in the present paper, however, remain valid even though the assumption is 
not strictly true. Geometric designs will be obtained by limiting the maximum amount 
of</! and 1/J, denoted respectively as </!• ax and ip ... x, along a curve. Then one simply sets 
¢au = min (a,, aQ, a..) and 1/J.ax = min (Jt, Je, J.), where at, ae, and a. are acceleration 
limits in respectively the fore-aft, lateral, and normal modes and Jt, Je, and J. are the 
respective jerk limits in those modes. It may also be remarked that the present treat
ment excludes discomfort caused by motion about a body axis (e.g., rolling) and by the 
simultaneous presence of acceleration and jerk. 

Experimental work is needed to determine acceptable levels of </!• ax and 1/>• ax• The 
present work will present solutions based on ¢.ax = 8 ft/ sec 2 and 1/J.ax = 8 ft/ sec 3 • These 
numbers are consistent with reported experimental work (6) but are somewhat higher 
than the 0.15 g allowable lateral acceleration suggested by-AASHO (3). In any case, it 
is felt that levels this high would be suitable if passengers were seated and had good 
lateral restraints. 

EFFECT OF SUPERELEVATION 

Banking of curves to completely eliminate lateral force on the vehicle is well estab
lished in highway, railroad, and automotive test track design. We will show that the 
bank angle corresponding to zero lateral force also minimizes the discomfort indexes 
d~fi~::c bj" E;~. 2 :::.~:! 1. c~~eide~ !!?.e ~e!!te~l!!!~ ~1..!~V~ 0f th';' g1_·dctf:'~::ly t0 liP. in thA 
horizontal plane, and let the angle of bank be 0. Let !5 be a unit vector in the vertically 
upward direction and p a unit vector in the horizontal direction as shown in Figure 1. 

From elementary dynamics (11), the acceleration of the center of mass of the ve-
hicle is given by -

2 "f ~ = -v "P + v_ 

where " = 1/ R is the centerline curvature, R is the radius of curvature, and v is the 
speed of the vehicle. From Figure 1 and Eq. 1 it follows that 

~ -gn + g~ - v2"p + vi 
(-g+ g COS 0 + V

2
K Sin 0)!J+ (g Sin 0 - V

2
K COS 0)!'.+ Vf 

and therefore 

It may be readily verified that ¢ is minimized by the choice 

2 

0 = 0* = tan- 1 v " 
g 

(5) 

(6) 

(7) 

(8) 
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By setting l! = -V2Kp in Figure 1, it also follows that this choice reduces the lateral 
component of the thrust on the vehicle to zero. Thus, we have shown that a guideway 
with a bank angle defined by Eq. 8 will result in zero lateral thrust on the vehicle and 
will also minimize the acceleration discomfort index ¢. 

From Eqs. 3, 4, and 6 it follows that the effective jerk and jerk discomfort index 
are respectively given by 

J. = (-gs sin 9 + 2VVK sin 9 + V2K sin 9 + V
2

K 9 cos 9)!} 

+(ge cos 9 - 2VVK cos 9 - v2 i< cos 9 + V2K0 sin 9)~ + vf (9) 

and 

(10) 

We note that bank angle 9 does not explicitly appear in the expression for IP· By equat

ing d!/J to zero, we obtain 
de 

e 2gvKv + gv2
i<. 

g2 + V4K2 
(11) 

as a necessary condition for IP to attain a minimum. It may then be checked that e as 
defined by Eq. 11 is precisely the time derivative of 9,f defined by Eq. 8. This means 
that, if the bank angle is given by Eq. 8 at all points of the centerline curve, then Eq. 11 
will be satisfied. Thus we have shown that a guideway bank angle defined by Eq. 8 will 
minimize the jerk discomfort index IP· 

Thus we conclude that the bank angle defined by Eq. 8 not only reduces the lateral 
thrust on the vehicle to zero but also minimizes both discomfort indexes that we have 
defined. [It is possible to obtain this conclusion for the more general case in which 
the centerline curve is not restricted to horizontal. Furthermore, a more general form 
of the function than that assumed in Eq. 2 is possible. The results are presented in a 
separate report (10). l This bank angle will be referred to hereafter as the optimal 
bank angle. The discomfort along an optimally banked curve may be obtained by sub
stituting from Eqs. 8 and 11 for 9 and 9 in Eqs. 7 and 10. The corresponding expres
sions for the effective acceleration and jerk vectors and the discomfort indexes are 
given as follows: 

= [(V4K2 + g2)½-g]n+ Vf 

[[(V4K2+ g2)½ _;]2+~V2}½ 

(v4K2 + g2f ½ (2v3K2V + V4KK)!_1 + vi 
(V4K2 '+ g2r½ [(2V3K2V + V4KK)2 + v2(V4K2 + g2)]½ 

In practice, the bank angle could be limited by other considerations, and the value ob
tained from Eq. 8 would be too high to be practical. 

FOUR-SPIRAL SWITCH 

The first example we consider is that of a four-spiral curve that can be used as 
either a merge or diverge switch at stations and interchanges in PRT networks. The 
four-spiral switch is shown in Figure 2. The equation for the spiral curve is 

f3 = cs2 (12) 
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If /3 is small, then Eq. 12 may be approximated by 

" - £ x3 J - • 
3 

(13) 

The spiral set shown in Figure 2 uses four spirals of the form of Eq. 13 . The spirals 
are matched for position, slope, and curvature at junction points 2, 3, and 4. The first 
spiral winds, the second unwinds, the third winds, and the fourth unwinds. The curva
ture at points 1, 3, and 5 is zero. Maximum curvature is attained at points 2 and 4. 
The slope of the spiral set is zero at both ends. The use of the spiral set as a switch 
permits acceleration and deceleration lanes to be packaged parallel and near to the 
main traffic lane. It can be shown (!_, ~) that 

16h 
C = -- (14) 

L 3 

where h and L are as shown in Figure 2. It follows further from Eqs. 13 and 14 that 

(15) 

We next consider the banking of the switch. It will be assumed that the bank angle 
varies linearly along each of the four spirals; is zero at points 1, 3, and 5; and attains 
its maximum value 90 at the points 2 and 4. It follows immediately that between points 
1 and 2 9 is given by the equation 

9 
49oX 

L 

Furthermore, if a vehicle is traveling at speed v, then 

B = 4V9o 
!.: 

(16) 

(17) 

We next consider the problem of finding the discomfort experienced by traveling at 
comitant speed along the switch. By symmetry it suffices to study the problem only in 
the first sprial, between 1 and 2. By using Eqs. 13 through 17, it follows that Eqs. 7 
and 10 become 

{ [ (
49 x)] h

2
v

4
x

2 
x {4e )} ¼ r/J = 2g

2 
1 - cos --t"- + 1,024 U - 64ghv

2 
L

3 
sin\~ x 

If on the other hand the four-spiral curve is optimally banked, the bank angle as 
given by Eq. 8 is 

and the discomfort indexes given earlier take the form 

~ h
2
v

4
x

2)½ r/J* = g 1 + 1,024 -- - g 
g2Ls 

(18) 

(19) 
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h2 5 ~ 1 2 4.._2~ - ½ 
1/)if = 1,024 ~ 1 + 1,024 ~ 

gL6 g-La 
(20) 

Equations 18 and 20 were programmed on a digital computer to permit numerical in
vestigation. In all computations, h = 8 ft and v = 60 ft/ sec were chosen. For selected 
values of L and 00 , ¢ and l/J were computed over the range 0 ,; x ,; L/ 4. In every case, 
both ¢ and w attained their maximum values, denoted respectively as ¢,ax and l/J• ax, at 
x = L/4. Figure 3 shows the dependence of¢ ... and l/>max on the switch length. The 
curves show that a substantial reduction of discomfort can result from banking. 

It is of interest to graphically depict the switch length reduction possible with bank
ing as shown in Figure 4. The figure is a design curve based on the design assumptions 
of ¢._.. s: 8 £t/ sec 2 and l/>.ax s: 8 £t/ sec3

• The curve was obtained by solving Eq. 18 by trial 
and error with x = L/ 4. The procedure was to £ix 80 and vary L by small inerements 
over a wide range. The value of L corresponding to l/>.u = 8 ft/ sec 3 was then found . In 
every case, ¢max was less than lbmax• By doing this for several values of 80 , we obtained 
the data shown in Figure 4. Values of So in the range 0 ,; So ,; 0* were selected. It 
follows by setting x = L/ 4 in Eq. 19 that 9,f = 3/a radian (21 deg 30 min). 

RIGHT ANGLE TURN 

A right angle turn may be accomplished by means of a circular arc blended with the 
straight at both ends through spiral curves as shown in Figure 5. We shall design the 
right angle turn with no banking to keep l/J ,; 8 ft/ sec 2 and then investigate the effect that 
banking has in re<:}ucing discomfort. Vehicle speed in the right angle turn will be taken 
as constant. 

Because the angle {3 0 over which the spiral extends need not be small, we discard the 
approximation introduced in Eq. 13 and use Eq. 12 exactly for the spiral curve. From 
Eq. 12 we have 

I<. 
d{3 

ds 
2cs = 2c ½{3½ 

Furthermore, if the bank angle 0 varies linearly along the spiral, it follows that 

If the maximum bank angle is 00 , then 

and thus, substituting for ", 

½ 0 = So ({3/ f3o) 

(21) 

(22) 

(23) 

Substituting from Eqs . 21 and 22 in Eqs. 7 and 10 gives the following discomfort indexes: 

(24) 
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In particular, for the unbanked curve putting 90 = O, we have 

i/, = 2c ½v2{3½ 

I/; = 2cv3 

If the maximum allowable values for ¢ and iJ> are ¢0 and i/>o respectively, we have 

C = ....!£2._ 
2v3 

2 

fJo = ..l.3__ 
21/JoV 

(25) 

(26) 

Furthermore, because the curvatures are to be matched at the point where the spiral 

and circular curves blend and the curvature of the spiral at this poi.J1t is KO = 2c ½{10 ½, 
we obtain the radius of the circular arc R as 

R = _! 
K 

1 v2 

=---=-2#. ¢0 
(27) 

Equations 26 and 27 completely determine the geometry of the right angle turn. To 
get an idea of the space taken up by the curve, we defme two terms L0 and D as shown 
in Figure 5. The distance D is of importance when how the interchange fits in with ex
isting road patterns and structures is considered. For the spiral we have 

dx 
ds cos f3 :~ sin f3 

Using Eq. 12 and mtegrating these equations approximately with the help of Taylor 
series expansions for cos f3 and sin fj, we get 

(28) 

If (x0 , y0 ) are the coordinates of the point P where the spiral and circular arcs blend, 
a little geometric analysis shows that 

Lo = Xo +Yo+ 2R sin (rr/4 - {30 ) COS 11/4 

D = Yo sec rr/4 + R sin (rr/4 - /Jo) - R[l - cos (11/4 - f10)J 

Substituting from Eq. 28 gives 

Lo = c f1o + - f10 - - f1o - - f3o + V 2 R sm 17 4 - f3o -½( ½ 1 ½ 1 ½ 1 ½) .rn . ( 1 ) 
3 5 21 

D = V2 C 
2 

- /30 
2 

- - {10 
2 + R[sin (11/ 4 - {10 ) - 1 + COS (11/ 4 - /30 )] 

-1/: (1 3/: 1 7
/:) 

3 21 
(29) 
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The parameters for the unbanked right angle turn obtained from Eqs. 26, 27, and 29 are 
summed up as follows: 

f3o = ¼ rad= 14 deg 20 min 

R = 32 ft D 

40.2 ft 

13. 7 ft 

(variable values: v = 16 ft/ sec, ¢0 = 8 ft/ sec2, 1µ 0 = 8 ft/ sec 3
) 

To investigate the effect of banking this curve on discomfort, we programmed Eq. 24 
on a digital computer, and the values of ¢ and 1/J were obtained for several values of So, 
the maximum bank angle. Numerical values were found at several points along the 
curve. In every case, the discomfort indexes attained their maximum value at the 
point P. The maximum value of each discomfort index for motion along the curve at 
a constant speed of 16 ft/ sec is plotted against the bank angle in Figure 6, which brings 
out the considerable reduction in discomfort possible by introducing banking. 

GRADE CHANGE 

To analyze a grade change, we first analyze discomfort along a curve with zero 
superelevation in the vertical plane. If the tangent to the curve is inclined at Y to the 
horizontal, the acceleration components for motion along such a curve are 

.@o = -gn - ~ + !!- = -gn - (g sin Yi - g cos Y n) + (-v2"n + vi) (30) 

We consider two possible methods of traversing a curve in the vertical plane, namely, 
constant speed (v = 0) and zero thrust. In the latter case, vehicle acceleration is solely 
due to gravity and v = g sin 'Y. The expressions thus obtained for the effective accelera
tion and jerk and the discomfort indexes are presented as follows, where the subscript 
c denotes constant speed motion and subscript z denotes zero thrust motion. 

(s,,)c = [-g(l - cos Y) - V2 K]!} - g sin Y.! 

</) 0 = [2g2 (1 - COS 'Y) + V4
K

2 + 2gV2K (1 - COS Y)] ½ 

(J:0 ) 0 = (- gy sin 'Y - V
21<) !} - gy cos Y.! 

1pc = (g2 'Y2 + v4 1< 2 + 2gv2'YK sin i') ½ 

(!!,.). = [-g(l - cos Y) - V2 K]!} 

¢, = g(l - cos Y) + V
2 K 

(;r.). = (-g}' sin y - v2
i'< - 2gv" sin y)n 

1/Jz = \-g'Y sin Y - V
2K - 2gvK sin y\ 

A grade change may be accomplished by means of a straight sloping line connected 
to the horizontal at either end by two spirals as shown in Figure 7. If the straight 
segment is eliminated, the grade change just becomes a vertical version of the four
spiral curve of Figure 2. Such a curve was used as a grade change for an automotive 
test track (1). We will compare the discomfort in traversing the grade change for the 
zero thrusCand constant speed cases. 

In the zero thrust motion, maximum speed is attained at point 5 and maximum dis
comfort is attained in the lower half of the grade change. For the constant speed case 
the discomforts in the lower and upper halves are equivalent. Therefore we consider 
only the bottom two spiral curves in Figure 7. Taking the origin at point 5 as shown 
in Figure 7 and matching slope and curvature at points 3 and 4 yields the following 
equations for two spirals: 



Figure 1. Banked guideway and 
acceleration. 

Figure 3. Discomfort indexes versus switch length. 

-t;,.,..x , v = 60 ft/sec 

-----Pmax, h = 8 ft 

-----
140 160 180 200 220 

SWITCH LENGTH (ft) 

Figure 5. Right angle turn. 

Figure 2. Four-spiral switch. 

y 
.hT .b. 4 4 

H 

(j) 

Figure 4. Switch length versus bank angle. 

200 

-180 
~ 

_J 

160 

140 

¢max" 8 ft/sec2 
1"max,:; 8 ft/sec3 

v 60 ft/sec 
h 8 ft 

OPTIMAL BANK ANGLE 

1200 .1 
16 

.1 
8 

~ 
16 

.1 
4 

Figure 6. Discomfort in a right angle 
turn. 

B 

- 1':'-n,ax , v = 16 ft/ sec 

--- lrrax. R = 32 ft 

~ 

" ' ' ' '-
' ' 

Cf'TIMUM BANK ANGLE 

, __ 

00--~-~1---------"-1__-
ik "!; i 3" 

BANK ANGLE ( rad ) 

e. (rad) 

" 

.2 
16 



.{3 = 2~
2 

x2 0 ,;; x ,;; L 
1/ 2 

L 

21 

{3 = -~ X 2 + 401 
X - 01 L / 2 < X ,;; L' 

L 12 L' 
(31) 

where, because of the small angles involved, we have replaced s by x. 
By substituting these expressions for {3 in the formulas for effective acceleration 

and jerk and discomfort indexes, we obtain the expressions for ¢., 1/>z, ¢0 , 1/)0 , and the 
discomfort indexes for zero thrust and constant speed motions for each of the two bot
tom spiral curves of the grade change. The expressions are given in the Appendix and 
were programmed on a digital computer to find the discomfort indexes at several points 
from 3 to 5. Because the speed along the grade change varies in the zero thrust case, 
the speed for constant speed motion may be taken equal to either the maximum speed 
or the minimum speed of the zero thrust case. For numerical computations the follow
ing values were chosen: 

H level difference = 10 ft 
v = minimum speed = 16 ft/ sec 
01 maximum slope = 0.20 radian (11 deg 27 min} (32) 

The corresponding maximum speed for zero thrust motion turns out to be 29.93 ft/sec. 
The maximum values of the discomfort indexes were found for zero thrust motion and 
for motion at constant speeds of 16 ft/ sec and 29. 93 ft/ sec and are shown in Figure 8. 
It is observed that the discomfort for constant speed motion at the higher speed is con
siderably more than for zero thrust motion. 

McConnell (1) considered only the centripetal component of the acceleration v2 
K and 

the corresponding jerk in evaluating discomfort . Denoting the corresponding discom
fort indexes by ¢M and 1/)M we have 

(33) 

The expressions obtained on substituting for K and k in Eq. 33 are also included in the 
Appendix. It is of interest to investigate the degree of error introduced by this as
sumption. To do this, we compared the maximum discomfort as given by Eq. 33 with 
the values obtained for (¢ 0 ).ax and (1/>c} ... from the expressions in the Appendix. This 
was done for two values of the speed, v = 16 ft/ sec and v = 60 ft/ sec, and two values of 
the maximum inclination, a= 0.20 radian (11 deg 27 min} and 01 = 0.40 radian (2 deg 17 
min). The results are given in Table 1. 

The effect of the speed is readily observable. A study of the expressions given 
earlier indicates that at higher speeds the centripetal component provides the major 
contribution to ¢0 and ip0 and therefore ¢M and 1/>M provide better approximations to ¢c 
and 1/)0 at higher speeds than at lower speeds. As for the effect of inclination at a given 
speed, the expressions indicate that, as the inclination increases, the approximate ex
pressions (Eq. 33} would become less accurate. However, for any realistic angle of 
grade, the inclinations would still be fairly small, and therefore the error in Eq. 33 is 
not very sensitive to variations of the inclination. These conclusions are borne out by 
the numerical values given in Table 1. 

ACKNOWLEDGMENT 

This work was supported in part by the Urban Mass Transportation Administration, 
U.S. Department of Transportation. 



22 

Figure 7. Grade change. 
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Figure 8. Discomfort on a grade change. 
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Table 1. Contribution of fore.aft component to discomfort. 

Maximum 
Slope Speed (\!,),,. (11.), .. (¢.), •• 
(rad) (ft/sec) (rt/s;:,c') (rt/sec') (lt/ ec') 

Ill= 0.20 V = 16 6.39 0.68 1.39 
V = 60 10.27 9.60 9.66 

°' = 0.04 V = 16 1.28 0.14 0.28 
V = 60 2.03 1.92 1.86 

Note: L' = 160 ft. 

(!).) .... 
(tt / s,;c') 

0.16 
7.68 

0.03 
1.54 
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APPENDIX 
DISCOMFORT EXPRESSIONS FOR FOUR-SPIRAL GRADE CHANGE 

Spiral 1: 0 < x < L '/ 2 

40! 
K : -X 

L '2 

4a 2 
g(l - cos /3) + ~ V X 

L 

12 g~ vx sin f3 + 
4

~
2 

v3 

L 2 L 

• 4a 
l<. =-V 

L '2 

[ 
160? 8ga ] 

1
/ 2g2 (1 - cos {3) + L' 4 v4x2 + L ' 2 v

2
x (1 - cos {3) 2 

4av ½ 
~ 0 = - , - (g2x2 

+ v4 + 2gv2x sin {3 ) 2 

L z 

4a 2 
¢M = - V X L '2 

4a 3 

~M = L ' 2 V 

Spiral 2: L '/2 < x < L' 

2a 2 4a 
f3=--X+-X-Q' 

L 12 L' 
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