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The concepts of process control and their applicability to concrete produc­
tion are discussed. The commonly used types of process control charts are 
reviewed, and concurrent use of R- and X-charts is recommended. Par­
ticular attention is given to selection of producer's risk, rational subgroup, 
and subgroup size and to correct procedures for determining the variation 
needed to set control limits. In addition, operating characteristic curves 
are presented to show how the number of rational subgroups used in setting 
up these charts affects the probability of falsely declaring a process in con­
trol. Other operating characteristic curves are presented to show the ef­
fect of rational subgroup size on the ability of R- and X-charts to detect 
respectively changes in process variation and slippages in process means. 
Guidelines for initial use are offered for producers who wish to institute 
formalized process control in concrete plants but who lack the necessary 
data. The paper also discusses the applicability of acceptance control 
charts to concrete inspection. Their concepts and assumptions are con­
sidered in light of concrete properties, and it is concluded that they are 
not appropriate for concrete inspection. Specifically, it is shown that as­
sumptions necessary for proper use of acceptance control charts are not 
satisfied by concrete properties and that, even if they were, there would 
be no advantage in using them instead of equivalent acceptance sampling 
plans because the amounts of sampling and testing required would be the 
same. 

•DURING the last decade, highway engineers have sought better ways to ensure that 
construction materials comply with specification requirements. In the process, some 
confusion has resulted. Some have attempted to use process control charts instead of 
acceptance sampling plans, perhaps in the mistaken belief that there is no difference 
between acceptance control charts and process control charts and that either type can 
be substituted for acceptance sampling plans. In fact, this is not the case. 

As Juran and Gryna (1) see it, "process control or 'correction' refers to the se­
quence of events by which a process is kept free of sporadic troubles, i.e., the means 
by which the status quo is maintained." This is in contrast to acceptance sampling, 
which is defined by the American Society for Quality Control (in ASQC Standard A2-1970) 
as the "sampling inspection in which decisions are made to accept or reject a product." 
Similarly, acceptance control charts are used to judge the acceptability of a process 
and are similar to acceptance sampling plans. If specific conditions are met, ac­
ceptance control charts can be used instead of acceptance sampling plans, but they 
can never replace process control charts. The function of process control charts is 
to keep a process in a state of statistical control, whereas the function of acceptance 
sampling plans and acceptance control charts is to judge the acceptability of either a 
product or a process, and no pretense is made that the process judged is in a state of 
statistical control. 
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The differences between acceptance sampling and process control are well known. 
The necessary conditions for proper use of acceptance control charts as substitutes 
for acceptance sampling plans are also well understood. But unfortunately, the liter­
ature dealing with these subjects seldom reaches practicing highway engineers, and 
therefore valuable information goes unused. Consequently, engineers responsible for 
ensuring quality concrete hold basic misconceptions, which although not specifically 
stated are implied in the literature available on attempts made to ensure concrete qual­
ity. These misconceptions can be summarized as follows: 

1. Process control charts can be substituted for acceptance sampling plans or ac-
ceptance control charts and sampling can thus be reduced, 

2. Acceptance control charts are interchangeable with process control charts, and 
3. Buyers can successfully perform process control. 

A review of basic process control concepts and the conditions necessary for proper 
use of acceptance control charts is usually enough to show that process control has 
nothing in common with inspection or acceptance control charts and that process con­
trol can be successfully performed only by producers. It also shows that the amount 
of sampling for process control could exceed that necessary for inspection and that, in 
practice, process control is a difficult task. 

Thus, in hope of dispelling some of these misconceptions, the major objective of 
this paper is briefly to review, in a form easily available to highway engineers, the 
basic concepts and types of control charts for their applicability to concrete production, 
in order to prepare for the eventual, almost certain, introduction of formalized pro­
cess control by the concrete industry. A secondary objective is to suggest guidelines 
for initial use to those producers who wish to initiate process control but who lack the 
appropriate data because public agencies and other buyers have assumed responsibility 
for testing all output from their plants. 

No new theory is presented-rather, well-established concepts are reviewed to see 
how they can be applied to concrete. In this respect, the references given are im­
portant and should be consulted wherever the paper dwells only briefly on any of the 
topics discussed. 

PROCESS CONTROL CHARTS 

Concrete is a manufactured product. As such, its production must be systematically 
controlled if compliance with specification requirements is not to be left to chance. As 
for any other product, acceptance sampling will reject most or all concrete produced 
if its production cannot be controlled to attain the desired properties and property 
levels. Thus, prospective sellers must ensure that their concrete can consistently 
and economically satisfy market requirements. 

Ensuring that concrete can be economically manufactured involves capability studies; 
ensuring that it constantly meets buyer demands requires process control. Both capa­
bility studies and process control involve physical manipulation of machines and ma­
terials, and for that reason they are the responsibility of the manufacturer. The buyer 
can observe these functions and use the resulting information, but seldom can he per­
form either for two reasons. First, the buyer and his inspectors may be removed 
from the manufacturing process. Second, inspectors rarely have the many skills 
necessary for effective process control, which involves such tasks as sharpening 
tools, calibrating measuring devices, blending materials, and operating machinery 
as well as a knowledge of applied statistics. Most inspectors are not that knowledgeable, 
and, even if men with the necessary skills could be found, producers might prevent 
their interfering with production. This, however, does not mean buyers should ignore 
process control. Buyers should encourage it and understand it well to analyze process 
control data and make informed decisions. Process control data are usually available 
in the form of control charts, and buyers or their representatives must be familiar 
with the types of control charts and concepts involved to take advantage of the infor­
mation they provide. 
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Concepts and Nomenclature 

In simplest terms, control charts are graphical tests of hypotheses. These charts 
are based on the idea that in a manufacturing process variations are inevitable but can 
be minimized by eliminating causes of large variations. According to control chart 
theory, total variation in process output is composed of two parts: variation due to 
assignable causes and random or inherent variation . The former is the variation that 
can be identified and eliminated by removing the assignable causes. The latter is that 
variation that cannot be attributed to any single factor and cannot be economically elim­
inated. When all variation due to assignable causes is removed and only random vari­
ation remains, the process is said to be in control. Control charts are used to test 
graphically the hypothesis that differences in properties of the process output are due 
only to random variation, i.e., that the process is in control. 

When the process is in statistical control, variation is at a minimum, and computed 
statistics of the output properties assume predictable patterns, which in most cases 
can be characterized closely by known frequency distributions . Control charts make 
use of these facts in a simple, systematic way. To set up a control chart, variation 
due to assignable causes is eliminated, the magnitude of the random variation is com­
puted, and the frequency distributions of the properties of the process output are deter­
mined. Then, the sample size and statistic to be used in testing the hypothesis of con­
trol are chosen along with a confidence interval. Once these parameters are known, 
the critical values for the hypothesis that only chance variation exists can be computed 
and plotted. The result is a control chart in which the limiting lines correspond to 
critical values that the controlled statistics cannot exceed in order not to reject the 
hypothesis of control. 

Control charts can be used for different purposes and based on a number of statis­
tics. Control charts are commonly used for process control, for process acceptance, 
and for analysis of past data. These uses give rise to the nomenclature of process 
control charts, acceptance control charts, and control charts to analyze past data. 
Besides taking their names from their intended function, control charts are also named 
for the statistics used. The process control charts most commonly used, which take 
their names from the statistics used, are the following: 

1. Control charts for fraction defective (p-charts); 
2 . Control charts for number of defects (c-charts); 
3. Difference control charts; 
4. Cumulative sum control charts ("cusum" charts); 
5. Standard deviation control charts (er-charts); 
6. Control charts for sample ranges (R-charts); and 
7. Control charts for sample means (X-charts). 

Charts Applicable to Concrete 

The choice of the statistic to be used in a control chart depends on the nature of the 
product and process to be controlled, nature and ease of testing, reproducibility of 
test methods, and expertise of the control chart users. Thus, to decide which sta­
tistic is most appropriate, the advantages and shortcomings of each must be viewed 
in light of the product's properties eligible for control. 

In the case of concrete, producers could choose to control the same properties that 
concrete buyers measure for acceptance sampling: slump, air content, and cylinder 
strength. But their choice is not and should not be limited to these properties. Among 
other variables eligible for control are the amounts and quality of ingredients used in 
making concrete. The choice depends on the producer and on his knowledge of the re­
lations between chosen control variables and desired properties of the final product. 
For concrete, it is possible to control slump and strength by controlling the water­
cement ratio and air content by controllin~ the amount of air-entraining agent. Thus, 
the properties likely to be chosen for control can all be measured on a continuous 
scale, and statistics such as mean, standard deviation, and ran~, as well as fraction 
defective, can be computed for each property. This means that X-charts, er-charts, 
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R-charts and p-charts as well as others are all theoretically applicable to concrete 
production. Although applicable, all of these charts do not offer the same advantages. 

p-Charts-Charts to control the fraction defective (p-charts) are desirable from a 
management point of view. They provide a continuous record of quality for economic 
studies and management decisions. However, they are not very helpful to the quality 
control engineer because a production unit can be out-of-specification for more than 
one property and because, by controlling the total fraction defective, he does not know 
which property is causing defects or in what proportion. Thus, information essential 
to prevent defects is not readily available. Moreover, p-charts require large sample 
sizes, and, unless testing is relatively inexpensive and nondestructive, they are eco­
nomically undesirable. Because concrete testing is time-consuming and expensive 
and because concrete can be defective for more than one property, p-charts are not 
the most appropriate for control of its production. 

c-Charts-Number-of-defects-per-unit control charts are used when one single pro­
duction unit can have a large number of defects that are not necessarily detrimental to 
performance of the production unit but are nevertheless undesirable, for example, 
numbers of blemishes per square yard of cloth, scratches on a refrigerator, or minor 
defects in a car. This type of control chart requires that the testing be by attributes. 
It is not the most appropriate to control such variables as are encountered in concrete 
production. 

Difference Control Charts-Difference control charts are used to test the hypothesis 
that a process output is no different than material in a standard lot kept under the same 
environmental conditions as the process output being judged. They are employed when 
test results are sensitive to such conditions. The process is said to be in control if 
the control statistic of an output sample does not differ from the corresponding sta­
tistic computed from a sample taken from the standard lot by more than the difference 
expected due to sampling variations. For concrete, no standard lot can be kept because 
it hardens, and thus this type of control chart is not appropriate. 

Cusum Charts-Cumulative sum control charts can be used for control of both the 
process average and fraction defective. These charts are statistically more discrim­
inating than the corresponding Shewhart charts, or X- and p-charts. But their limits 
depend on the average run length (ARL) and are difficult to compute without the aid of 
a computer or such monographs and tables as those given by Kemp (2, 3). Although 
these charts, in principle, are applicable to concrete production, it is-believed that 
they will not be well received by the concrete industry. What is gained in statistical 
efficiency with cusum charts does not compensate for the simplicity and clear graph­
ical display of the process operation lost by not using the corresponding classical 
Shew hart charts. 

a-Charts-Standard deviation control charts (a-charts) are adaptable for control of 
the variability of output properties that can be measured on a continuous scale, such 
as those of concrete, and thus they could be used. However, they require large sample 
sizes. If the sample is less than 10, the range is preferable as a measure of variabil­
ity. Because in concrete testing it is very difficult to sample 10 or more consecutive 
production units, a-charts are not the most appropriate. The range control chart is 
more effective because it allows judging variability at more frequent intervals. 

R-Charts-Control charts for sample ranges (R-charts) are widely used to control 
the variability of process output. They are applicable to concrete properties and are 
considered the most appropriate for control of concrete variability. 

X-Charts-Perhaps the most widely used and misused of all control charts are those 
for sample means. These are simple to construct and provide self-explanatory dis­
plays of process conditions with time. Because of their simplicity and because the 
theory for these charts is widely published, X-charts are considered the most appro­
priate to control the levels of concrete properties. 

R- and X-charts then emerge as the most logical choices for control of concrete 
production. Next, it must be determined whether they should be used separately or 
concurrently. The ultimate goal of process control is the elimination of defective pro­
duction units. In the case of concrete properties, defectives can be caused both by 
shifts in means and by increases in variability. Thus, for effective control of the 
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process, R- and X-charts must be used concurrently. To illustrate this point, con­
sider air content. If mean air content coincides with that desired, but its variability 
as measured by the standard deviation is larger than allowed, some concrete batches 
will have air contents outside the desired limits. This is shown in Figure la, where 
cr 0 is the desired standard deviation and X 0 is the desired mean. If the process mean 
and standard deviation coincide with those desired, no results will exceed the toler­
ances. However, if X0 approaches the desired but cr 0 increases to cr 1, some results 
will exceed the limits as represented by the shaded areas. Similarly, if the mean of 
the process shifts to X0 ± o while the process standard deviation remains approxi­
mately equal to that desired, results will again fall outside the limits as shown in 
Figure lb. If the mean increases to X0 + o, some re~lts will exceed the upper limit 
as represented by the area A2 • If the mean shifts to X0 - o, a fraction of the results 
represented by area A

1 
will exceed the lower limit. Thus, to ensure that the process 

output meets specification tolerances, both the process mean and the variability must 
be controlled, and R- and X-charts must be used concurrently. 

Information Required for R- and X-Charts 

Choosing the types of control charts to be used is only the first step. Next comes 
the more difficult task of gathering the necessary information. Constructing R- and 
X-charts requires knowing the frequency distribution of sample means and sample 
ranges, the frequency distribution of the control properties, the desired process mean, 
the standard deviation of the control properties when the process is operating at the 
level of control desired, the probability of falsely looking for trouble in lhe procei:;s 
when none exists, and the size of the rational subgroup to be used. 

The frequency distributions of sample means and sample ranges are well known. 
Their parameters are extensively labulaled in lhe quality control literature and present 
no problem. The literature also indicates that the frequency distributions of concrete 
properties are approximately normal (4). The desired process mean is usually set in 
the specifications and needs no attention at this stage, but the remaining parameters 
are not so readily obtainable. The selections of subgroup size and the probability of 
falsely looking for process trouble depend on costs, whereas standard deviations to be 
used must either be determined from given standards or obtained through process 
capability studies. 

The choice of producer's risk (the probability of falsely looking for assignable causes 
when none may exist) depends on the economic consequences of not discovering assign­
able causes in those instances where they do exist. To stop the process and look for 
trouble adds to production costs, but so does rejection of production units. In choosing 
the probability of falsely looking for trouble, the cost of looking for assignable causes 
and discovering none must be balanced against that of rejection resulting from assign­
able causes going undetected. If looking for assignable causes is inexpensive, whereas 
the cost of rejection is high, the probability of falsely looking for trouble should be 
relatively large, say, 5 to 10 percent. However, if the cost of looking for trouble in 
the process is high whereas the cost of rejections is low, this probability should be 
chosen to be low. 

For concrete, the cost of rejections can be very high; for example, rejection of a 
6-yd3 load of concrete means a loss of at least $90. A few rejections can quickly dis­
sipate a day's profit. But chasing nonexistent assignable causes on 5 percent of the 
occasions when a sample is recovered from the process can be more expensive yet, 
especially if work must stop. This suggests that initially setting the probability of 
falsely looking for trouble at approximately 1 percent and using the customary 3cr limits 
is still appropriate. This risk could then be changed, based on actual cost data. 

The choice of the rational subgroup must be consistent with the objective of control 
charting and must be based on both economic and process considerations. The objec­
tive of the range chart is continuous testing of the hypothesis that process variation 
does not differ from its variation when in control by more than expected due to sampling 
variation alone. For proper testing of this hypothesis, R-chart limits must be based 
on random variation alone, i.e., on the variation representing control. If other than 
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random variation were included, the resulting limits would be wider, with loss of 
sensitivity of the R-chart to changes in process variation (5, ch. 13, p. 42). Simi­
larly, the intent of an X-chart is to detect shifts in process average greater in magni­
tude than those expected due to random variation. This is accomplished by continuously 
testing the hypothesis that the process mean at any time does not differ from that of the 
process when in control by more than expected due to random variation. The limiting 
values of the expected shifts, which are the X-chart limits, depend on the random vari­
ation. Again, if these limits were computed based on a standard deviation including 
other than random variation, they would be wider and would result in loss in sensitivity 
of the X-chart to shifts in process average. 

Thus, for control chart purposes, it will be necessary to obtain a sample reflecting 
only random variation. Such a sample is also known as the rational subgroup, and 
most quality control books offer guidelines for its proper selection. These guidelines 
can be succinctly summarized: Include in the subgroup only consecutive production 
units manufactured with the same materials and under essentially the same conditions. 
It is reasoned that such a sample is most likely to reflect random variation alone be­
cause the process mean and variation are likely to remain stable over short periods. 

Unfortunately, this golden rule cannot always be easily applied because recovery of 
samples from consecutive production units can be physically difficult or even impossible. 
For concrete, testing consecutive production units is difficult because it takes about 
20 minutes to sample and test one production unit. During that time, a plant in full 
production can mix at least 10 batches, and concrete testing cannot be postponed. Thus, 
sampling consecutive units is a remote possibility unless more than one tester is pro­
vided, or variables other than those inspected for acceptance sampling are used for 
control-probably an unlikely case. However, if production of nonconsecutive units 
occurred under essentially the same conditions and within a relatively short time, 
variation among them might approach that of consecutive units. Under these circum­
stances, a sample approaching the rational subgroup would still be obtainable with one 
tester. Thus, when sampling for process control, care should be taken to ensure that 
sampling is performed as quickly as possible, and during sampling that aggregates, 
cement, admixtures, and personnel remain unchanged. 

A subgroup consisting of consecutive or nearly consecutive production units is also 
desirable from a practical point of view and preferable to a random sample. The 
practical importance is that such a sample facilitates the identification of assignable 
causes. For example, assume that a random sample of size n is recovered over 2 
hours and has to be used for control chart purposes. Further assume that the mean 
computed from this sample shows a lack of control when plotted on the X-chart, that 
individual test results are not available, and that the problem is to identify what caused 
the process mean to shift. 

Under these circumstances, it is not known at what point during production the pro­
cess first came under the influence of assignable causes. Thus, all factors present 
during the 2-hour period, but not before, must be suspected and investigated. In con­
crete production many things can change in 2 hours, and the list of suspects may be 
large, making it difficult to isolate the culprit if it has not disappeared meanwhile. 
But if the sample consisted of consecutive or nearly consecutive production units, the 
search would be limited to factors present during a very short time. The list of sus­
pects would be smaller, and chances of the culprit disappearing would be minimized. 
Thus, random sampling that is essential for acceptance sampling is undesirable in 
sampling for process control. 

Another factor influencing the control limits is sample size. The larger the sample 
size is, the tighter the limits and greater the sensitivity of the charts. Choice of sub­
group size depends chiefly on economics. In choosing sample size, testing costs must 
be balanced against the consequences of producing defectives. Thus, optimum sample 
size and sampling frequency should be determined for each separate process. However, 
findings of theoretical studies can serve as a .guide until enough information is accu­
mulated from case studies. A. J. Duncan made one such study of sample sizes for X­
and R-charts (~ p. 398), summarizing his findings as follows: 
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"l. The customary sample sizes of 4 or 5 are close to optimum if the shifts to be 
detected are relatively large, e.g., if the assignable cause produces a shift of 2cr' or 
more in the process average. If it is the aim of the chart to detect shifts in the pro­
cess average as small as lcr', sample sizes of 15 to 20 are more economical than 
sample sizes of 4 or 5. 

"2. If a shift in the process average causes a high rate of loss, i.e., high relative 
to the cost of inspection, it is better to take small samples quite frequently than large 
samples less frequently. For example, when the rate of loss is high, samples of 4 or 
5 taken every half hour are better than samples of 8 or 10 taken every hour. 

"3. Under certain circumstances charts using 2cr or even 1.5cr limits are more eco­
nomical than charts using the conventional 3cr limits. This is true if it is possible to 
decide very quickly and inexpensively that nothing is wrong with the process when a 
point (just by chance) happens to fall outside the control limits, i.e., when the cost of 
looking for trouble when none exists is low. Contrariwise, it will be more economical 
to use charts with 3.5cr to 4cr limits if the cost of looking for trouble is very high. 

"4. If the unit cost of inspection is relatively high, the most economical design is 
one that takes small samples (say samples of 2) at relatively long intervals (say 
every 4 to 8 hours) with narrow control limits, say at ±1.5cr." 

If the concrete properties conventionally tested were chosen for process control, 
which is likely to be the case, it is suspected that assignable causes would produce 
large shifts in process average. But this is only a conjecture, which cannot be sub­
stantiated with available data. The bulk of the data available to the author for the tra­
ditionally measured concrete properties were obtained under random sampling. They 
thus reflect random as well as assignable cause variation and preclude determining 
the magnitude of changes in process averages due to assignable causes. If for process 
control producers chose other than the conventionally tested properties, the magnitude 
of shifts in mean due to assignable causes would still be unknown because data on other 
than conventionally tested properties are almost nonexistent. This precludes choosing 
sample size on the basis of the expected magnitude of shifts in process mean, and the 
choice must be made on the basis of cost of rejection, which can be high. Thus, it 
appears desirable to test small subgroups at frequent intervals, and samples of four 
taken at least every hour are a good starting point in accumulating the data necessary 
for determining optimum sample size. 

Regardless of the sample size ultimately chosen, its effect on sensitivity of X- and 
R-charts can be shown with operating characteristic curves (6, p. 391). The OC­
curves shown in Figure 2a show how sample size affects the X-chart 's ability to detect 
a shift in mean of a given magnitude. The QC-curves shown in Figure 2b show how 
sample size affects the R-chart's ability to detect changes in process variation. It 
can be seen that the probability of not catching a shift in process average of the same 
magnitude increases as sample size decreases. For example, the probability of not 
detecting a shift in mean of magnitude 2 .Ocr', on taking the first sample after the shift 
has occurred, varies approximately from 0.04 for n = 6 to 0.55 for n = 2. Similarly, 
Figure 3 shows that the probability of not detecting a change in process standard de­
viation when it doubles (>- = 2) varies from 0.52 for n = 6 to 0.82 for n = 2. The OC­
curves also show that the probability of not catching large changes in process average 
and variation, upon taking the first sample after the changes have occurred, is rela­
tively high with small subgroups. But the probability of not catching changes in pro­
cess average and variation on the first and / or second sample after the changes have 
occurred is the product of the probability of not detecting the change for each individ­
ual sample, and generally the probability of not catching a change with any of g con­
secutive subgroups is P', where P is the probability of not catching the change with a 
single subgroup. Because P is a fraction, the probability of not detecting a change in 
either process average or process variation in any of g subgroups quickly becomes 
small even for moderate values of g. For this reason, sampling for pror.P.88 r.ontrol 
should occur at frequent intervals. 

Having chosen the producer's risk and rational subgroup size, the value of the stan­
dard deviation to be used must still be determined before R- and X-charts can be 



Figure 1. Effects on fraction defective of changes in standard 
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Figure 2. QC-curves for process control 
charts for 3a limits. 
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constructed. This variation may be known from past experience, derived from given 
standards, determined through process capability studies, or approximated from recent 
process output. In setting up R- and X-charts, two situations can arise. In the first, 
with no standards given, the minimum achievable process variation is unknown, and 
the process must be brought into control with respect to itself. In the second, stan­
dards are given and the process must be controlled to meet the standards but need not 
necessarily be brought into control with respect to itself. When no standards are 
given, the process must be manipulated until all assignable cause variations are elim­
inated and the properties conlrolled assume predictable patterns. For correct de­
termination of whether a process has reached a state of control, the decision must be 
based on test results from a large number of rational subgroups. But because testing 
is usually costly, it is customary Lo accepl the hypothesis that a process has reached 
control solely on the basis of limited data from the recent past and to estimate the 
standard deviation to be used in setting control limits from these same data . This 
procedure, which involves some risks, consists of the following steps (discussed 
fu1·ther in~' ch. 13, pp. 46-63): 

1. Test a predetermined number of subgroups of size n ; 
2. Compute the mean and range for each subgroup; 
3. Using appropriale formulas based on the data collected and the subgroup size, 

calculate upper and lower limits for both the R- and X-charts; 
4. Plot the subgroup ranges and means respectively on R- and X-charts; and 
5. If all plotted points fall within the control limits , accept the hypothesis of con­

trol; otherwise reject it. 

However, a process thus declared in control may in fact not be. The probability of 
the process not having reached a state of statistical control depends on the number of 
rational subgroups and the subgroup size. King (7, 8) has computed these probabilities 
for a number of subgroups of size five as a function-of shifts in process average. The 
resulting QC-curves and OC-curve upper bounds are shown in Figure 3, in which a 
process whose mean has shifted from the true but unknown process mean by 1.0a' 
would be accepted as being in control with respect to itself only 3 percent of the time, 
if the X-chart were based on 25 subgroups of 5. However, if the mean had shifted the 
same amount, the process would be accepted as in control approximately 90 percent of 
the time, if the mean control chart were based on two subgroups of five. Thus, of the 
OC-curves shown, that based on 25 subgroups of 5 gives the lowest probability of de­
claring a process in control with respect to itself when in fact it is not. This is one 
reason why most books on quality control recommend basing the X- and R-charts on 
at least 25 subgroups of 5. Another reason is that such control charts have been ob­
served to work well in practice. 

In some cases, particularly as producers accumulate data, the standard deviation 
is known, and control limits can be easily determined. More frequently, standards 
are given, and the standard deviation to be used for process control is derived from 
them. This is usually the case when the sole objective of process control is to meet 
the buyer's (or inspecting agency's) requirements, and producers choose the same 
properties for control that will be tested for acceptance sampling. In those situations, 
the standard deviation to be used in construction of X- and R-charts is taken as one­
sixth the specification range for each control property. This approach assumes that 
the process is capable of producing outputs whose properties have standard deviations 
equal to or less than one-sixth the respective specification ranges. 

For concrete properties, standards are given in the form of specifications, and 
bringing the process into control with respect to itself could appear to be superfluous 
work. It is desirable, however , to ensure that the process is capable of meeting the 
specifications. When a process is brought into control with respect to itself, the pro­
cess mean may differ from that specified, but process variation is close to a minimum 
and represents that economically achievable. Thus, bringing the process into control 
with respect to itself will reveal whether it can meet specifications; if it cannot, de­
fectives will result. Undertaking production under these circumstances is very risky 
if the buyer is using statistical acceptance sampling plans (as defined in ASQC Standard 
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A2-1970) for inspection. Consequently, producers should bring the process into con­
trol with respect to itself whenever possible. However, because concrete testing is 
costly and difficult, it is suggested that initially producers use a minimum of five sub­
groups of five to establish control limits instead of customary 25 subgroups of 5. This 
gives a probability of falsely declaring the process in control of approximately 50 per­
cent (Fig. 3) when the mean shifts by 1.0cr. But producers could revise the limits and 
reduce this probability by using results from subgroups tested subsequently to monitor 
the process and falling within the control limits. 

Constructing R- and X-Charts 

Once necessary decisions have been made and essential parameters chosen, con­
struction of R- and X-charts is reduced to a simple step-by-step procedure. When no 
standard is given, R- and X-charts must be based on observed data obtaided from the 
process during the immediate or recent past. The necessary steps are as follows: 

1. Take g rational subgroups of size n from the process, as close in time as pos­
sible, and compute the average range Ras follows: 

R = 

where 

g 
L ~ 

i =l 
g 

R1 = the range of each subgroup of size n, and 
g =number of subgroups of size n. 

Then the upper control limit UCL and lower control limit LCL are computed as fol­
lows and the R-chart plotted as shown in Figure 4b: 

where 

- d3 -UCL = R +k- R 
dz 

LCL = R - k d3 R 
d2 

k =the number of range standard deviations corresponding to one minus the proba­
bility of falsely looking for trouble (usually taken as two or three), 

d2 =the mean of the distribution of relative range R/cr' for sample of size n, and 
d3 = the standard deviation for the distribution of the relative range for sample size 

given (values of d2 and d3 are tabulated in most quality control books, but some­
times under different names, .§_, p. 908). 

2. To set up the X-chart from the g subgroups, compute the grand mean X as 
follows: 

where 

Xi =the individual test results, 

ng 

L Xi 
X = ::!__ 

ng 

g =the number of rational subgroups, and 
n = the size of each rational subgroup. 

Then compute the UCL and LCL as follows, and plot the X-chart as shown in 
Figure 4a: 
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Figure 5. Example of process control 
chart when standards are given. 
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When the mean and standard deviation of control properties are known or derived 
from specification limits, the procedure for setting up R- and X-charts for subgroups 
of size n becomes very simple. Letting a' equal the known or derived standard de­
viation, the procedure for constructing R-charts reduces to the following steps: 

1. Compute R by R = d2o', where R =the average range, d2 =the mean of the rela­
tive range, and a' =the known or assumed process standard deviation. 

2. Compute the R-chart UCL and LCL as follows-UCL = d2a' + kd30' and LCL = 
d20'' - kd30''. 

3. Plot the R-chart as shown in Figure 5b. 

Similarly, letting the given or specification mean equal X, the procedure in setting 
up an X-chart for standard given reduces to the following steps: 

1. Compute the UCL and LCL as follows-

= a' UCL =X +k­
.fo 

= a' 
LCL =X - k­

,/ll" 

2. Plot the X-chart as shown in Figure 5a. 

Both the procedure for no standard given and the procedure for standard given as­
sume that the control properties are normally distributed. This assumption is usually 
of no great consequence unless the properties controlled follow distributions deviating 
markedly from normality. As already mentioned, concrete properties can be taken to 
be approximately normally distributed, and this assumption should not result in dif­
ficulties. 

Operation of R- and X-Charts 

Consistent with the objective of using control charts graphically to test the hypothesis 
that the control statistic does not fall outside the allowed intervals, the operation of R­
and X-charts reduces to three steps: 

1. Sampling and testing rational subgroups, 
2. Computing subgroup means and ranges, and 
3. Plotting subgroup means and ranges on the appropriate control charts to see 

whether they fall within the chosen confidence intervals (which are represented graphi­
cally by the control limits). 

If the values of subgroup ranges and means fall within the corresponding control 
chart limits, the process is considered in control, and routine testing is continued. 
If either the mean or range of one or more subgroups plots outside the control limits, 
the process is taken to be out of control. When a point on either plot is out of control, 
assignable causes are sought, and if found they are identified and eliminated. During 
the search for assignable causes, testing frequencies are increased, and testing con­
tinues until there is reason to believe that the process is back in control and likely to 
remain there. When there is evidence that control has been restored, routine testing 
is resumed until another point again plots out of control, and the cycle then starts again. 

Experienced quality control personnel have refined the basic rules for operation of 
control charts in attempts to prevent the process from going out of control at all. They 
have established criteria for action before assignable causes can cause trouble. For 
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example, 2cr limits are often used as a warning limit for action when too many points 
approach or exceed those limits. Other criteria are also used. Duncan summarizes 
the common action criteria as follows (.§_, p. 347): 

"l. One or more points outside the control limits. 
"2. One or more points in the vicinity of a warning limit. This suggests the need 

for immediately taking more data to check on the possibility of the process being out of 
control. 

"3. A run [defined as successive items of the same class] of 7 or more points. This 
might be a run up or run down or simply a run above or below the central line on the 
control chart. 

"4. Cycles or other nonrandom patterns in the data. Such patterns maybe of great help 
to the experienced operator. Other criteria that are sometimes used are the following: 

"5. 11. run of 2 or 3 points outside of 2cr limits. 
"6. A run of 4 or 5 points outside of 1cr limits." 

This multiplicity of criteria increases the chances of falsely looking for trouble, and 
the choice among action criteria should be based on economics. 

R- and X-Charts Suggested for Inilialion of Formalized 
Process Control in Concrete Plants 

The properties to be controlled, size of the rational subgroup, and probability of 
falsely looking for trouble are the responsibilities and choices of producers. They 
should also choose whether to control each process with respect to given standards or 
with respect to itself. To make these decisions, producers must rely on data sys­
tematically collected and properly analyzed. To the writer's knowledge, however, few 
concrete producers practice formalized statistical process control, as defined in ASQC 
Standard A3. For this reason, it seems appropriate for public agencies to suggest 
process control charts for producers to use until they can accumulate enough informa­
tion to set up quality control systems properly on an individual plant basis. Such sug­
gestions follow, based on the points discussed, which it is believed may provide a good 
starting point and yield good results: 

1. Bring the process into control with respect to itself to ensure that specifications 
can be met; 

2. When the process is in control with respect to itself and variation is consistent 
with the specification ranges, set up R- and X-charts based on the standard deviation 
derived from the specifications, i.e., one-sixth the range for the property inspected; 

3. Use a probability of falsely looking for assignable causes of approximately 1 
percent by using 3cr limits control charts (k = 3); and 

4. Use both R- and X-charts to minimize rejections and a rational subgroup of size 
four. 

Were these suggestions taken, most concrete plants could be controlled to meet 
specifications. In New York, control charts based on these guidelines were used in 
three case studies with good results (4). There is every reason to believe that results 
would be similar using these guidelines for other plants. 

ACCEPTANCE CONTROL CHARTS 

In some instances, the specification range is much greater than six process standard 
deviations, and the process output can meet the specification limits even when the pro­
cess mean has shifted out of control. When this occurs, there is little chance of pro­
ducing defectives, and it may be desirable to use the kinds of X-charts known as ac­
ceptance control charts. 

Their construction requires that the process standard deviation be lmown. Their 
control limits do not coincide with those of X-charts for process control based on 
the same sample sizes and standard deviations. Unlike process control charts, ac­
ceptance control charts are not designed to detect lack of process control. Their 
only goal is to ensure with known risks that the percentage of defective output is limited 
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to preestablished levels. In this respect, acceptance control charts resemble accep­
tance sampling plans with standard deviation known. In fact, double-limit acceptance 
control charts and double-limit sampling plans by variables with standard deviation 
known both require approximately the same sample size to ensure the same quality 
levels with the same risks. But, although statistically identical to variables sampling 
plans with known standard deviation, acceptance control charts differ in concept. Ac­
ceptance control charts accept or reject a process, whereas acceptance sampling plans 
accept or reject lots. The course of action required to implement the decisions of 
acceptance control charts is to do something about the process. The action required 
to implement the decisions made with acceptance sampling plans is to reject or accept 
individual lots, which are limited amounts of production. 

Another basic difference between acceptance control charts and acceptance sampling 
plans lies in the sampling. Acceptance sampling requires random sampling, whereas 
for acceptance control charts it is desirable to take the necessary sample all at once. 
This is because, if the sample is recovered over a particular period, a change in the 
process that has taken place during that time may be covered up by the averaging of 
sample results (§_, p. 435). 

Limits for Acceptance Control Charts 

The limits for acceptance control charts depend on the following quantities: ac­
ceptable process level (APL), rejectable process level (RPL), producer's risk (01), 
consumer's risk ((3), subgroup size (n), and process standard deviation (a'). These 
quantities have meanings analogous to the parameters necessary to design sampling 
plans by variables. Specifically, APL is the process fraction defective that can be 
accepted with no adverse consequences. RPL is the process fraction defective that 
can barely be tolerated. Producer's risk is the probability of rejecting a process 
that is producing a fraction defective equal to the APL. Consumer's risk is the prob­
ability of accepting a process producing a fraction defective equal to the RPL. Sub­
group size n is the number of consecutive units that should be tested to ensure meeting 
the conditions set by specifying the APL, RPL, a, and {3. Process standard deviation 
is the standard deviation to be used to determine the limits; it should approximate the 
standard deviation of the process measured when no assignable causes are present. 

Once Cll, {3, APL, and RPL are chosen, n is set and must be calculated from these 
quantities before the limits for acceptance control charts can be derived. The value 
of n is independent of the magnitude of the standard deviation, which is assumed known 
and is computed as follows: 

where 

Za = normal deviate corresponding to OI, 

Z~ = normal deviate corresponding to {3, 
ZAPL = normal deviate corresponding to the APL, and 
ZRPL =normal deviate corresponding to the RPL. 

Knowing n and a 1 the control charts limits are obtained as follows: 

where 

UCL =upper control limit, 
LCL = lower control limit, 
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U = upper specification limit, 
L = lower specification limit, 

Za = normal deviate corresponding to Cl, 

Z~ =normal deviate corresponding to {J, 

0 ' = known standard deviation, and 
n = sample size. 

It should be emphasized that these limits are derived using the specification limits 
as reference points, whereas the reference point for process control chart limits is 
the design or specified mean, as shown in Figure 6 (9). This is not accidental. It is 
consistent with the assumptions that the specification-range should be greater than 6cr' 
to use acceptance control charts and that the process mean can shift about the design 
mean without producing defectives so long as the standard deviation remains unchanged. 

Applicability to Concrete 

The objective of acceptance control charts is to reject processes whose output equals 
or exceeds the RPL. This objective limits their applicability to only those properties 
that can be measured immediately after manufacturing. If those properties cannot be 
measured immediately after production, use of these charts leads to two difficulties. 
First, if the process shifts to the rejectable level, defectives will be produced during 
the time lag between production and testing. Depending on the time elapsed, this can 
result in accepting substantial amounts of inferior product. Second, a process op­
erating at a rejectable process level at the time the sample is produced can shift back 
to an acceptable level while waiting for test results. When this happens, rejecting the 
process on the basis of the last available data leads to rejecting an acceptable process 
and causes unnecessary manufacturing delays. 

Concrete properties that can be measured immediately after mixing are slump and 
air content, and in principle acceptance control charts can be used for these properties 
provided that sampling and testing are performed at the plant site. But, although ap­
plicable in theory, the use of acceptance control charts for slump and air content is 
neither practical nor desirable. They are not practical because no saving in testing 
is realized, and they are not desirable because conditions for the use of acceptance 
control charts do not exist. 

Acceptance control charts are desirable if the following conditions are satisfied: 

1. The specification range is wide enough to accommodate shifts in process averages 
of considerable magnitude without resulting in defectives, 

2. The process standard deviation is known and stable, 
3. The production units included in the subgroup represent consecutive production, 

and 
4. The decision of rejection can be enforced. 

Neither slump nor air content meets these conditions, for reasons that will now be 
discussed. 

Specification Range-Acceptance control charts are used to give producers of a uni­
form product an advantage when the specification range is considerably greater than 
six times the process standard deviation. If the specification range is very large, 
compared to the six standard deviations needed to meet the specifications, the pro­
cess average can be allowed to shift considerably without resulting in defectives. 
Under these circumstances both acceptance sampling and process control can be re­
laxed (Fig. 7). The specification range is 12 process standard deviations. But for 
most properties the specification limits need provide only a range of six standard de­
viations to eliminate nearly all defectives. This means that the process average shown 
in Figure 7 can shift to ±30'' from the nominal design value while producing almost no 
defectives. Only when the process average moves outside the shaded area will de­
fectives begin to be produced. But large shifts are not likely to occur, and thus the 
chances for defectives are almost nonexistent. Because production of defectives is 
unlikely, the producer need not be particularly meticulous about process control. He 
needs only to prevent very large shifts in the process average, which usually take very 
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little effort to avoid. Similarly, the buyer is not likely to receive defectives and can 
afford to accept the material so long as the process is monitored to prevent large shifts 
in process level. To ensure this , he can rely on acceptance control charts , using his 
own data or the producer's data. But for slump and air content, the specification range 
usually approximates the needed six standard deviations (4). This means that small 
shifts in the process level are likely to result in large fractions defective. For this 
reason, to ensure that process control is pursued, concrete buyers should use accep­
tance sampling and rely completely on their own data, and acceptance control charts 
are inappropriate. 

Standard Deviation-In the preceding discussion, it was tacitly assumed that the 
process standard deviation was known. In fact, the process standard deviation for 
slump and air content changes from plant to plant (4). Moreover, there is no impar­
tial way to assume a safe value. If small standard-deviations are assumed, producers 
of unacceptable quality are rewarded and buyers penalized . If large standard devia­
tions are assumed, producers of uniform quality will suffer unnecessary and unfair 
rejection. These points are most important, and one may convince himself of their 
validity with a few simple sketches. This means that, to be fair in setting up accep­
tance control charts, the standard deviation should be determined for each separate 
concrete plant, and control chart limits would have to change from plant to plant. The 
result would be an administrative nightmare. 

Subgroup-For acceptance control charts, the sample should consist of consecutive 
production units. Recovery of such a sample is a difficult task for concrete, even if 
the sample size is small. The sample size for acceptance control charts depends on 
e1, {3, APL, and RPL and can be relatively large. For example, for an APL of 0.003 
and RPL of 0.036, the necessary sample size is 10 if el = 0.05 and f3 = 0.10. If higher 
quality levels were required, the sample size would be larger. These relatively 
large sample sizes make recovery of samples consisting of consecutive or almost con­
secutive production units a difficult task. This is another drawback for acceptance 
control charts. 

Enforcement of the Rejection Decision-As already discussed, acceptance control 
charts accept or reject a process and not a finite or tangible amount of material. If the 
buyer uses acceptance control charts, he can encounter difficulties in enforcing re­
jection. When a process is rejected, a producer can refuse to look for assignable 
causes. In such cases, the buyer cannot really enforce his decision. He can stop 
buying the product, but, if the producer has an alternative, less demanding market, 
he may not care. Because the decision does not involve material, but rather doing 
something totally under the producer's control, the buyer must depend on the producer's 
cooperation . Within the same company, acceptance control charts can work because 
the producer and those responsible for process acceptance report to the same manager. 
In such cases, disputes can be quickly resolved with no necessity for litigation. But 
in a vendor-vendee relationship, this arrangement can lead to problems. 

Amount of Sampling-From the point of view of testing and sampling, there is no 
advantage in using acceptance control charts. If a point on the acceptance control 
chart represents the amount of material as a lot, then to ensure the same quality 
levels with the same risks, acceptance control charts and sampling plans by variables 
with standard deviation known require the same sample size. In fact, sample size is 
computed with the same formula. But for an acceptance sampling plan, sample size 
must consist of a random sample. This is an advantage because sampling of consecu­
tive concrete production units is difficult, and acceptance sampling plans by variables 
with standard deviations known are preferable to acceptance control charts. 

To summarize, then, acceptance control charts lose on all accounts, and their use 
in concrete inspection is not appropriate. 

SUMMARY 

It is hoped that this paper has served to stress that for concrete 

1. Process control is a difficult task requiring (a) constant sampling and testing, 
(b) constant attention of plant managers, and (c) constant care by manufacturing per­
sonnel; and 
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2. Concrete buyers should avoid assuming responsibility for process control be­
cause (a) it requires interfering with management of the production process, (b) it 
requires skills that concrete inspectors cannot be expected to possess, (c) it requires 
decisions that are properly the responsibility of plant managers, and (d) it could re­
quire more sampling than acceptance sampling. 

It is also hoped that the discussion of acceptance control charts makes it clear that 
process control charts and acceptance control charts cannot be used interchangeably 
and that acceptance control charts are not appropriate as a replacement for acceptance 
sampling in concrete inspection. 

Finally, the author hopes that those responsible for buying concrete will read the 
literature referenced in this paper before deciding to use process control or acceptance 
sampling to ensure quality concrete. The author is confident that the informed buyer, 
except on rare occasions, will choose acceptance sampling. 
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