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The paper involves a discussion of research into the use of a logit mathe­
matical formulation to model modal split. The model investigates the ex­
tension to the multimodal situation in terms of both user and system vari­
ables. Time and cost difference are the major variables introduced for the 
systems; income, age, and a rush-hour dummy are other variables entered. 
The trip modeled is a short commuter trip, which is a part of a longer 
overall trip and involves the access to a commuter rail station only. The 
line-haul portion is not considered. The mathematical formulation is 
probabilistic in nature and can be used with any number of choices of 
mode. Four choices were available for the research data. Two methods 
of aggregating, summing probabilities or taking absolute choices, were 
discussed and tested. The value of time can be developed by the use of 
time and cost coefficients derived for the model. A value was found that 
was similar to some of the previous values but of lesser magnitude than 
values found for longer trips. The model coefficients themselves were 
derived by a computer program that employed a maximum likelihood tech­
nique to iterate to significant values. 

•STUDIES to improve the flow and direction of traffic volumes have been conducted for 
many years. As early as 1844, traffic counts were being made in France. Yet it was 
not until federal legislation in the United States in 1944 that transportation planning, in 
the form of origin-destination studies, evolved in a recognizable form. Only since 
1955 has there been any advance beyond simple extrapolation of past trends. Modern 
analytic predictive planning, then, has been developing for only a relatively short span 
of less than 20 years. From the relevant technology, there has evolved a relatively 
standard format for predicting future flows. This has been called the "urban trans­
portation planning" (UTP) package. 

The package generally comprises 4 models: trip generation, trip distribution, modal 
split, and network assignment. Martin, Memmott, and Bone (15) and Davis (5) discuss 
the UTP package in full but crumot agree on a precise sequencefor the 4 moaels. The 
first authors prescribe modal split to remove the transit riders before distribution and 
assignment, while the latter inserts modal split after distribution to try to achieve a 
total picture. 

This paper concerns only one part of the UTP package: the choice of mode for a 
relatively short journey. 

Since the late fifties, major transportation studies have been carried out in almost 
all major cities in North America. Each study was required to build its own models 
for future prediction. A definite advantage can be gained if some degree of standardiza­
tion can be obtained. That has not previously been possible because of the nature of 
the explanatory variables employed in the models. Early work by Wynn (25), Carroll 
(4), and Adams (1) placed a large emphasis on urban land use and zoning. That was 
followed by Chicago Area Transportation Study reports by Howe (12), Biciunnas (3), and 
Sharkey (20, 21) and a Milwaukee study report by Hadden (9). They placed emphasis 
only on socioeconomic measures and activity levels derived from urban zonal theory. 
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This meant that changes in the systems would not be reflected in the results of the 
models. A second shortcoming in the use of variables such as income and car owner­
ship was the continual inflationary trend as the standard of living increased . Both of 
the above groups used linear techniques in the model formulas and aggregate groupings 
in zones as the basic unit for prediction. 

The use of high levels of aggregation resulted in a very high variance within the zones, 
especially when short trips were being considered. To illustrate, a trip from zone A 
to adjoining zone B could var y from s everal blocks to more than a mile. Also, gen­
eralized zonal activity could override important small pockets of different types of land 
use. 

By the late fifties, interest in system variables had begun to rise. Large studies in 
Washington, Chicago, San Francisco, Toronto, and Philadelphia resulted in the definition 
of a set of diversion curves for modal- split prediction. The models related either time 
differences or time ratios to the percentage of total trips diverted from one mode to the 
other. The techniques used are well documented by Quinby (18), Hamburg and Guinn 
(10), and Hill and Von Cube (11). Quinby recognized the mathematical inferiority of 
regression in this case and proposed that Pearl-Reed logistic curves be fitted before 
he finally settled on a Gompertz exponential curve formulation. The above works led 
to a large set of diversion curves illus trating the diversion to transit with a change in 
travel time ratios, for different cost ratios and income levels. They were developed 
by Traffic Research corporation and documented by Deen, Mertz, and Irwin (7). How­
ever, the portions of the curves of highest predictive value were also the areas of 
greatest uncertainty, for no corroborating observations were available for the predictive 
areas. 

Errors in those earlier models were potentially very high. Much of the error in 
prediction was attributed to the level of aggregation at which the models were built. 
Working at the zonal level did not allow the large variance within the zonal populations 
to be accounted for. Reducing to the basic component, the individual user, overcomes 
that problem . The model can then be aggregated to any level desired with less chance 
of variance errors occurring. 

Modal split provides a good point to start from in redeveloping the UTP package at 
the disaggregate level. Data are relatively easy to gather, the result can be easily 
measured by survey, and the variables of influence can be defined. 

Once the modal-split model has been completed, it is anticipated that the use of a 
similar technique and mix of user and system characteris t ics will allow the whole 
package to be integrated. Several authors who have done work with stochastic models 
of modal split include Warner (25), Quarmby {17), and Lisco (14). Currently 3 s eparate 
classes of .models exist, depending on the t ypeof statistical technique: discriminant 
analysis, probit analysis, and logit analysis . The use of linear regression has been 
largely superseded because of the possibility of predicting negative probabilities and 
values greater than one. 

Discriminant analysis (8) is based on the existence of overlapping normal subpopula­
tions that are distinct in the decision sense. By identifying attributes that can account 
for the difference in choice, a function that discriminates among the populations can be 
developed. Models by Quarmby (17) and McGillivray (16) employed user characteris­
tics as well as system characteristics, but the set of variables and their form are still 
a subject for much debate and research. Probit analysis was first suggested for modal 
split by Warner (25), who rejected it as computat ionally too complex. Lisco (14) was 
the first to use this method successfully for his economic studies on the valueoi time, 
a result derived from the cost and time coefficients of his modal-choice model. Lave 
(13) has since built other modal-split models by using this mathematical form. It is 
aTechnique that requires a normal distribution of threshold values, which may not always 
be a valid assumption. 

Logit analysis was developed by Thiel (24) in the multinomial sense. Stopher (23) 
limited his use of this technique to binary models in his research at Northwestern­
University. Rassam, Ellis, and Bennett then developed a multimodal aggregate model 
of modal split for access to a Washington airport. 

This paper attemps to document the next step: the development of a multimodal, 
stochastic, disaggregate model of modal split for a short journey. 
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THE MODEL 

In the past, models of modal split have usually been restricted to 2 dimensions. 
When more than a binary choice exists, a set of binary models is required to produce 
the final result. The design of this set of models requires that some step-by-step 
choice process be presumed among the modes. If this were not the case, a great mun­
her of models would result, for each mode would be compared in,dividually to each of 
the alternate modes. It is then desirable to be able to compare all modes at once, with­
out having to make an a priori decision on which modes are to be directly compared. 
The substitution of an n-dimensional model to replace the binary system should be a 
progressive step. A brief outline is given below of the form of the logit model. 

The choice of a modal-split model is based on the premise that the probability of 
using a particular mode is a continual function whose dependent variable p ranges from 
0 to 1 according to some function of the sociological traits of the user and the charac­
teristics of the modes involved. Thus, as any- of these variables change so does the 
value of the function and hence the probability. The use of a simple linear relation is 
rejected because of the bounds imposed by the 0-to-1 range. The function should be 
asymptotic to both of those limits. This can be done using a logit formulation. The 
binary logit relation may be generalized as 

eG(x) 
p = 

1 + e Gl x) 

(q = 1 - p) 

q = 1 

1 + e 
GIX) 

where G(x) represents a function to describe the response relation to a particular mode. 
It may be formulated as 

Nl+N2 
G(x} constant+ L ~x. 

k=l 

where Nl is the number of system-dependent variables (such as time or cost) anci N2 is 
the number of system-independent variables (such as age or income). 

A simple mathematical manipulation in terms of variable differences illustrates the 
symmetry of the formula . The system-dependent variables are used in terms of dif­
ferences to reflect the advantage of one over the other while only a single function is 
dealt with. That symmetry may be extended to the multidimensional form by p1·oposing 

M L eGm(x ) 

m=l 

A pictorial representation is given in Figure 1 of a binary-choice situation. 
The major problem, given the relation above, is the estimation of the coefficients in 

each equation. That was done by the use of a maximum likelihood estimator procedure. 
The estimation technique requires that a base mode be established. The generalized 

formulation above does not lend itself to the maximum likelihood estimator technique. 
For that reason, the model is developed in terms of (n - 1) different modes, and the last 
mode is determined by the limitation that the sum of the probabilities is one. To in­
volve the system variables of the last (or base) mode requires that these particular 
variables be somehow related to the base mode. That can be done by ,usi.r)g differences 
or by using ratios. Both techniques are valid; however, for this model, the former was 



Figure 1. Typical 2-dimensional logit curve. 
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chosen. To have a model that can be realistically analyzed and that conceptually follows 
the formulation stated above required that the coefficient of the system variable be kept 
constant for each mode. Also each system variable must be related to each mode. For 
example, a comfort rating could not be entered into the bus mode if it were not entered 
in the car mode or in every other mode. On the other hand, the user characteristics 
need not be entered in each mode equation and should not have like coefficients unless 
there is a like correlation. 

Several advantages are attributable to this technique, particularly in terms of theo­
retical assumptions. There is no assumption of normality to be met in the G(x) func­
tion, resulting in a more generally applicable model. Also the use of a probabilistic 
sum for aggregation gives a better conceptual idea of the true process that occurs in 
this mechanism. 

To make this model operational requires some aggregation because collection of 
the information for each trip would be prohibitive. The methodology for this aggrega­
tion is still a question for review and testing. There are 2 distinct possibilities. First, 
if our sample is 10 percent, then each datum is a proxy for 10 other members of the 
population. It may be assumed that all 10 will make the same absolute choice as the 
proxy, i.e., the mode of highest probability according to the model. Thus, to aggregate, 
one multiplies the result by the sample ratio. Second, again if the sample is the same, 
the probabilities for the individual mode choices and not the ultimate choice are con­
sidered. To aggregate, one obtains the sums of the probabilities and multiplies those 
sums by 10. This better describes the behavioral process because we are dealing with 
human beings who can and will change their habits in this nonexact manner. The scope 
of this work included only a minor attempt to determine the superior methodology. 
That is a matter for further study. 

DATA BASE AND VARIABLES 

The data used to derive and test the models have been titled the "suburban station 
access" data. They were collected from people using the Chicago and Northwestern 
Railroad suburban routes from the northwest corridor into Chicago. The trips that 
were modeled were not trips to the center of the city but rather shorter access trips 
between home and the commuter station. The 4 modes involved in the study were 
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walk, drive and park, driven, and bus. A final set of 117 observations was used to build 
the models with a good balance of each modal user. A second set of 400 observations 
was used to test the models. The second set had a different modal user mix and slightly 
different geographical are.a, Those 2 factors would help in providing a good test of the 
technique. 

Probably the most important task for the model builder is the choice of variables to 
be used in the models. Below is a brief discussion of the variables that were available 
from the given data. 

Cost 

Because cost is the measure of almost all other goods and services, it should be 
significant in the decision to use a mode of travel. However, true costs are seldom 
evaluated by the user; rather he sees only direct costs such as parking, gas, and tolls. 
His decision, then, is based only on this perceived cost. Betak (24) feels that this vari­
able could prove much more important if the costs of the different modes were eco­
nomically substitutable; however, the investment in a car, for example, is basic to a 
family and not related directly to a particular trip. That is a system variable and as 
such is entered as a difference between the mode and a base mode. Because the walk 
mode has no monetary cost associated with it, it is used as the base mode. 

Time 

Time is another important system characteristic. Attitudes toward time vary ac­
cording to the activity during a given period. Therefore, time was entered for waiting, 
walking, parking, and access time separately; but, except for walking time, no advantage 
was obtained over total travel time. Overall time, then, is entered as a difference vari­
able in the model. 

Time of Day 

A rush-hour dummy variable was entered to try to ascertain any difference in atti­
tude between the morning rush period and the rest of the day. The dummy has a value 
of 1 if the trip is taken in the rush period and O otherwise. It is entered linearly as 
were the previous variables. Thus, a separate factor is entered for the rush-hour 
period. 

Age 

Age was entered in 2 forms. Age was divided into 4 groups-less than 25, 26 to 45, 
46 to 65, and older than 65-in an attempt to eliminate the linear effect of entering age 
directly into the model. This was done by using 3 dummy variables each taking either 
1 or O value with a maximum of 1 variable having the value 1. It was hoped that this 
stratification would delineate different attitudes toward the separate modes at different 
age levels. Age was also tried as a linear variable. 

Income 

Income was treated in the same way as age. A linear correlation should not be ex­
pected between a variable such as this and choice, so that a set of 5 dummy variables 
was put forward. The groups were less than $ 5 thousand, $ 5 to $ 8 thousand, $ 8 to $12 
thousand, $12 to $17 thousand, $17 to $ 2 5 thousand, and greater than $ 2 5 thousand per 
year. Some researchers have used income as a combining variable, especially with 
items of cost (for example, de Donnea, 25). Time limitations preve11ted that idea from 
being tested with respect to the multimode case. 

Car Ownership 

Car ownership was entered when an automobile was involved in the mode, i.e., for 
driving or riding. It was added linearly, but an argument could be made for making it 
a preemptive variable for the drive mode. That is, if the user does not own a car, he 
cannot possibly drive to the station. 
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Sex 

The coefficient of the sex variable reflects the attitude of the female relative to the 
male toward the mode involved, for it is in the form of 0 or 1. 

Stage in the Family Life Cycle 

There was a high expectation for this set of variables. The set comprised 3 dummy 
variables that categorized the population sociologically according to 4 different classes. 
The first variable takes the value of 1 if the user is unmarried and living at home. The 
second has a value of 1 if he is unmarried and independent or if he is married with a 
spouse who does not compete for the use of the car. The third has a value of 1 if 
the user is married and has a spouse who goes to work separately. All others are 
together in the fourth group by reason that they will respond O to all of the above vari­
ables. The variables were entered to try to model the user characteristics and their 
relative traveling-mode priorities. It was felt that there might be some interrelation 
between this variable and the ownership variable. 

Trip Purpose 

The trip purpose variable could be used to describe the different economic demand 
generated by the separate trip purposes. That would involve stratifying and thus com­
plicating the model, making it computationally impossible for the capacity of the pro­
gram used unless separate models are built for each purpose. Thus, a constant demand 
function was assumed with respect to trip purpose, and the variable was not included. 

THE RESULTS 

Below is an outline of the most significant model obtained in runs of the maximum 
likelihood program to develop the logit model coefficients. variables were eliminated 
if the t-value (in brackets below) obtained was not significant at the 0.90 level, and the 
program was rerun. Some of the variables (stage in the family life cycle and age) 
mentioned in the previous sector failed to be significant at all as a result. 

For walk mode, 

G1(x) = 0 (base mode) 

For drive mode, 

G2(x) = -0.114 AC - 0.00421 ~t + 0.238 FRICT - 0.0123 WALK PLS + 1.49 CAR 

(5.03, 0.9995) (5.14, 0.9995) (3.29 , 0.995) (214, 0.975) (3.32, 0.995) 

+ 0.0108 AGE - 5.57 IDl - 7.42 ID2 - 7.97 ID3 - 7.09 ID4 

(1.57 , 0.900) (2.22, 0.975) (3.28, 0.99) (3.80, 0.999) (3.53, 0.995) 

For driven mode, 

G3 (x) = 0.114 1::ti.C - 0.00421 1::ti.t - 2.26 RUSH+ 1.169 ID4 

(3.45, 0.995) (J.97, 0.950) 

For bus mode, 

Q4(x) = -0.114 l::ti.C - 0.00421 At- 1.34 RUSH+ 2.025 (a constant) 

(1.85, 0.9S0) 

Likelihood ratio test, 120.06 with 15 deg of freedom; proportionate pseudo R-squared, 
0.686 

In the statements given above, AC is cost difference; At is time difference; IDl, ID2, 
ID3, ID4 are income dummy variables; FRICT is ½ cost of parking + walking from park-
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ing at 6 cents/min; WALK PLS is the walking time in sec; CAR is car ownership; AGE 
is age; and RUSH is time of day. 

The likelihood ratio test is highly significant even as high as 0.999, indicating that 
the model is valid. The proportion~te. pse.urlo R-squared statistic is only an approxi­
mation and not a true R-squared value. The latter value was used for comparison of 
models within the research program only and should be taken only as a rough guide and 
not as absolute. 

A multiple F-value of 6.954 was obtained in a secondary evaluation of the model (on 
the larger data set). (A value of 3.38 is significant at the 0.999 level.) 

From this set, the mean true proportions and those predicted by the model when the 
predicted probabilities were summed and when the exact count was made from the in­
dividual decisions were as follows: 

Mean Summed Exact 
Mode True Probabilities Count 

Walk 0.135 0.112 0.078 
Drive 0.293 0.217 0.208 
Driven 0.469 0.398 0.453 
Bus 0.103 0.273 0.191 

This indicates that 17 percent were misplaced for the probabilities sum and 8 percent 
were misplaced for the absolute count. Unfortunately, for both cases, all of those mis­
placed were put on the buses. That indicates that G4(x) is overestimating and may be 
attributable in part to the constant being placed in that modal sector. Throughout the 
research, the placing of the constant had a definite effect on the model. Further re­
search is required to investigate the sensitivity of the constant. 

A secondary result of the model as constituted is the derivation of a value of time. 
In this case, it is a value of time saved. From the above coefficients of time difference 
and cost difference, we calculate the value $1.33/ hour. Based on a 2,000-hour work 
year and the average yearly wage of the data set ($11,000), this value is 24.1 percent 
of the wage rate. That is only about half the value derived by Lisco (14) in his probit 
analysis. stopher (22) found the value to vary from 0.33 to 0.14 depending on the salary. 
The above value fallsin the middle of that range. 

,-,""'.,_,T,-,T TTC,Tr"\'TI.TC, 
\..,V.1. .. \...,.LJ VUJ.V.L'OJ 

The most important conclusion that can be made is that it is possible to build a sig­
nificant modal-split model by using this technique. Some further work should be done 
with respect to the constant. 

The value of time for the short journey seems to be less than similar values derived 
by Lisco for longer trips in the same geographical area. 

Many of the more definite conclusions concern the choice of variables for the models. 
The most disappointing variable was stage in the family life cycle, which failed to be 
significant in any of the sectors. Perhaps it would reflect a large importance when 
related to the longer overall trip. 

Once again, time and cost proved to be significant as explanatory variables. That 
was expected. What is slightly surprising is that cost attained the same level of signif­
icance as time. It was expected from previous studies that time would be the more 
important variable. The difference in significance between the two, however, was only 
minimal. It can, therefore, be concluded that time and cost are both highly important 
in consideration of this modal choice. 

One convenient advantage of this method is the unavailable mode situation. If, for 
example, the bus were not available to a user, it could be assigned an arbitrarily large 
time difference so that its probability were reduced to a very small value approaching 
zero. 

It is not possible to claim that this is an operational model. The variable set should 
be refined, the problems with a constant should be studied, and a definite statistical 
advantage should be established over other modeling techniques. If the evening peak is 
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used, there may be a whole different set of variables, for the results of the morning 
peak put definite limits on the evening return trip. Given that the problems can be 
resolved, the next step is an extension to include the other 3 steps in the urban trans­
portation planning package. 
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