
PREDICTIONS OF INTERCITY MODAL CHOICE FROM 
DISAGGREGATE, BEHAVIORAL, STOCHASTIC MODELS 
Peter L. Watson, Transportation Center, Northwestern University 

This paper reports the results of some empirical prediction tests on dis
aggregate, behavioral, stochastic models of modal choice. It is discovered 
that the expected-number calculation (summation of probabilities) yields 
modal-choice predictions with a high degree of accuracy, although a caveat 
is in order regarding the transferability of such models: They should be 
transferred with care and only to similar situations. The stability of the 
models is evidenced by the fact that they can be broken down by trip pur
pose and reaggregated without loss of predictive power. Finally, the 
method of obtaining predictions by classifying probabilities is considered 
and rejected. 

•IN RECENT years, work in the area of modal choice has tended to concentrate on the 
development of disaggregate, behavioral, and stochastic models. (Modal choice should 
be interpreted as including route choice.) Those developments have led to a model type 
that has a number of advantages over the traditional zonal-based models. First, the 
building of models at the disaggregate level with the individual as the basic decision
making unit means that problems of zonal homogeneity are avoided and that better use 
is made of the data collected. Second, because the models are based on the observable 
behavior of the individual traveler, they are more realistic. Third, the introduction 
of the stochastic element means that modelers are now concerned with the probability 
that a given mode will be chosen rather than with the modal split of a set of travelers 
from a zone. [A more detailed and comprehensive statement of the advantages of dis
aggregate, behavioral, and stochastic models is given by Stopher and Lisco (1).) The 
result of these modifications is that a generation of models has evolved that perform 
most successfully in rnrms oi foeir ai:Jiiiiy t.u <.it:::;criut:: ami t::.1q1iai.u muual d11:,i.,:;e;;. T;i., 
models both reflect acceptable hypotheses about traveler behavior and achieve accept
able levels of significance in a statistical sense. 

However, if the new generation of models is tu bt:: a useful addition to the planner's 
set of tools, it must be demonstrated that the new models have acceptable prediction 
properties. A comparison of the prediction capabilities of both aggregate and disag
grega te models would be desirable, but documented evidence on the aggregate models 
is not readily available. Moreover, the aggregate nature of the data used in zonal
based models means that they cannot be used to produce disaggregate predictions in 
the same situation. Until the 2 types of model can be tested on the same data set, one 
sided statements of prediction capability must suffice. 

It is the aim of this paper to investigate the capabilities of disaggregate, behavioral, 
and stochastic models of modal choice. An exposition of the prediction methodology is 
followed by a serie$ of empirical tests that determine predictive performance under 
different conditions. 

The tests were carried out by using data from the Edinburgh-Glasgow _area modal
split study, which investigated modal choices in the Forth-Clyde corridor of the central 
lowlands of Scotland. Details of the study background, data collection, and model 
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development are given in another report (2). The travel data represent medium-range 
intercity trips. The choice modeled is between car and train; each of those modes 
carried approximately 45 percent of total traffic. The main aim of the study was to 
examine the transferability of disaggregate models from intracity commuting situations 
to other trip lengtl1s and purposes; thus, models were developed for 3 trip pur poses
journey to and from work (JTW), business (BUS), and s ocial-recreational (SOCREC)
and for total travel. The variables that resulted in the best explanatory models for 
each trip purpose are given in Table 1. The abbreviations in Table 1 are defined as 
follows: 

TD Rel = time difference relative to total journey time, 
CD -Rel = cost difference relative to total journey time, 

WW Tim = difference in walking-waiting time, 
WW Rel = difference in walking-waiting time relative to total journey time, 
TJT Ca = total journey time by car, 

SUBCOS = cost of access-egress to and from station, 
Ju Tra = number of walk, wait, and travel segments in train journey, and 
Ju Diff = difference in number of segments by each alternative. 

The "relative" versions of time and cost differences and the relative walk-wait time 
variable reflect the fact that a given time (or cost) saving becomes less important as 
the length (or cost) of the journey increases. The "journey unit" variables represent 
a variable developed to reflect the inconvenience of each trip by allocating 1 trip unit 
to each segment (walking, waiting, and riding) of the trip . 

The models were estimated by using logit analysis (1) so that 

p _ eG(•) 
t - 1 + eG(x) (1) 

where Pt is the probability of choosing the train, and G(x) is a linear combination of 
the explanatory variables. 

METHODOLOGY 

Two main methods of obtaining predictions from disaggregate models of modal 
choice have been advocated. The first proceeds by a summation of predicted choice 
probabilities, and the second is a classificatory approach. The following discussion of 
the methods of obtaining predictions is set in terms of a car-train choice, where the 
dependent variable is the probability that the train will be chosen. Having calibrated 
the model, one can calculate the probability of choosing the train for each individual 
traveler, and those probability estimates are used to derive the prediction of the mun
ber who will choose the train. The predictions are derived on the assumption that the 
important result from a prediction point of view is the expected number of travelers 
who will choose a given mode. Thus , the models are calibrated by using the individual 
traveler as the basic unit of analysis, and the results are then aggregated to produce 
results that are meaningful from a planning standpoint. (The appropriateness of this 
approach will be taken up again in the discussion of the criteria that will be used to 
evaluate the prediction results.) 

Table 1. Model content. 

Purpose 

JTW 
BUS 
SOCREC 

Total 

Variables 

TD Rel, CD Rel, WW Rel, Ju Dif 
TD Rel, CD Rel, WW Tim, Ju Dif 
TJT Ca, SUBCOS, WW Tim, Ju TRA 

TD Rel, CD Rel, WW Tim, Ju Dif 

Expected-Number Approach 

This method derives from the fact that 
the expected value of a random variable is 
the sum of the products of the potential 
outcomes and the probabilities of their oc
currence. Binary outcomes, coded as 0 
or 1, are the special case of a Bernoulli 
random variable such that 

E(p) = 1 (Py) + 0 (1 - Py) (2) 
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E(p) = expected value of the probability, Pr = probability of choosing the train, and 
1 - Pr = probability of not choosing the train (i.e., of choosing the car) . Thus, the ex
pected value is equal to the probability of choosing the train. To obtain the expected 
nwnber of ira.vele1-=s who will choose the train (i.e ., the expected number of positive 
outcomes in the sample) requires that the expected values be summed. 

E(#) = LE(Pr 1) =L PT! (3) 
I I 

E(#) = expected number of positive outcomes (train choices), and Pu = probability that 
the i th traveler will choose the train. 

An example may clarify this point. Suppose that 10 travelers had the following ob
served probabilities and choices , where 1 = choice of train: 

Choice 

1 
1 
0 
0 
1 
0 
1 
1 
0 
1 

Predicted 
Probability 

0.9 
0.7 
0.2 
0.5 
0.8 
0.4 
0.8 
0.6 
0.3 
0.7 

In this example, 6 travelers chose the train, i.e., there were 6 travelers with a 
probability of choosing the train equal to one; the sum of those probabilities is equal 
to the number of travelers choosing the train. The prediction of the number of train 
travelers (the expected number) is obtained by summing the predicted probabilities. 
That sum is equal to 5. 9; therefore, it is predicted that 6 travelers will choose the 
train. 

This method is based on the premise that the predicted probabilities can be used to 
assign travelers to the alternative modes. Misclassifications are minimized by allo
cating traveler s about a probability of U.5. 'flus means that, ii the travel er s pr ob
ability of c hoosing a t r ain is greater than 0 . 5, he is assigned to the set of train 
travel ers · if the pr oba bility is less than 0.5, he is assigned to the set of car travelers . 
The numbers assigned to each set then cons titute the prediction of the number who will 
choose each alternative. 

Discussion of Methods 

To examine the relative performance of these 2 methods requires the establishment 
of criteria that will be used to judge them. Although the models that yield the predic
tions of probabilities are disaggregate models, in the sense that the unit of analysis is 
the individual traveler, testing their predictive abilities at a disaggregate level is in
appropriate for a number of reasons . The true probability that a given traveler will 
choose the train is unknown. It is, therefore, not possible to test the ability of the 
models to predict (accurately) the probability of a given choice. The known informa
tion is the choice that the traveler was observed to make , and it is possible to compare 
the predicted probability with the observed choice. That is the basis of the classifica
tion criterion that has been applied to predictions by classification . However, a con
sideration of the meaning of the probability of choice reveals that the use of classifica
tory ability as a test of a model that predicts probabilities is a meaningless test. 
Consider, for example, a traveler for whom the probability of choosing the train is 
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0.6. That probability can be interpreted as implying that, for a large number of ob
servations, the traveler would choose the train 60 percent of the time. The classifi
cation approach would, however, assign him to the train group and, if he were observed 
to take the car, would treat it as an erroneous classification. 

Thus, neither the expected-number approach nor the classification approach should 
be judged on its ability to predict either the probabilities or the actions of individual 
travelers. That is not a serious problem, however, because the use of disaggregate 
models in a planning context requires that aggregate, not disaggregate, predictions be 
derived. This leads to an evaluation of both the prediction approaches and the predic
tive capabilities of the disaggregate models themselves in terms of their abilities to 
produce accurate aggregate predictions of the number of travelers who will choose a 
given mode. 

PREDICTION TESTS 

Although the procedures that are used to derive predictions are very simple, a ca
veat is in order before the prediction tests are undertaken. The most appropriate test 
of a predictive model involves 2 data collection efforts: one to calibrate the model and 
the other, preferably after a system change, to test the predictions. Such an effort is 
seldom possible. Thus, it is necessary to employ a second-best approach in which 
both the model and the predictions must be tested on the same data set. The more ideal 
situation of 2 random samples is approximated from the population by the following pro
cedure. The data set is randomly divided into halves: One half is used to calibrate the 
models, and the other is used for the prediction tests. The tests described in this paper 
employ a double-edged version of this procedure in which coefficients are estimated for 
both halves of the data set, after which the coefficients and data sets are interchanged 
to obtain 2 sets of predictions, which are summed to provide the final prediction. It 
is acknowledged that this testing procedure is not ideal, but, in the absence of more 
extensive data collection facilities, it is the best available. 

After the models given in Table 1 are calibrated, the expected-number procedure 
was used first to obtain predictions of the expected number of train travelers. The re
sults are given in Table 2. It is clear that the differences between the number of trav
elers who are observed to choose the train and the number who are predicted to choose 
the train are small. Two tests are proposed that will indicate the magnitude of the 
prediction errors. The first considers the difference between the predicted and ob
served numbers of train travelers and expresses the error in prediction as this dif
ference relative to the observed number. In other words, f 1 indicates how close the 
model comes to providing a perfect prediction of the number of train travelers. The 
second takes a rather broader view of the prediction process and examines it from the 
point of view of modal split. Given the nature of the predictions, i.e., that the prob
ability of choosing the train, PT, is equal to one minus the probability of choosing the 
car, 1 - Pr, the models also provide a prediction of the number of travelers who will 
choose the car, L (1 - PT 1 ). It is obvious that the difference between predicted and 

1 

Table 2. Predictions of number choosing train. 

Set 1 Set 2 Sets 1 and 2 

Approach Purpose Predicted Observed Predicted Observed Predicted Observed Number 

Expected number JTW 125 117 123 135 248 252 360 
BUS 245 249 241 235 486 484 878 
SOCREC 241 237 208 211 449 448 1,202 

Total 582 589 601 595 1,183 1,184 2,440 

Classi[ication JTW 138 117 143 135 281 248 360 
BUS 263 249 260 235 523 484 878 
SOCREC 148 237 182 211 330 448 1,202 

Total 574 589 609 595 1,183 1,184 2,440 
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observed train travelers will be equal (although a different sign) to the difference be
tween predicted and observed car travelers. That being the case, the number of er
roneous predictions can be regarded as an indicator of the failure of the model to pre
dict correctly the modal split and may be expressed relative to the sample size to 
provide an alternative measure of prediction performance £2 • Thus, 

= OBS - PRED x lO0 
E:i OBS 

and 
= OBS - PRED l00 

€2 N X 

Applying those error measures to the predictions given in Table 2 yields the follow
ing percentages: 

Measure JTW 

1.59 
1.11 

BUS 

0.41 
0.23 

SOCREC 

0.22 
0.08 

Total 

0.08 
0.04 

Although it may be argued that £2 overstates the performance of those models, it is 
clear that they predict extremely well. 

Next, the classification approach was used to obtain predictions of the number of 
train travelers. These predictions are essentially different from those presented in 
the preceding section because they derive not from the summation of probabilities but 
from the use of the estimated probabilities to assign travelers to modes. Thus, the 
basis of this method is a classification procedure that assigns travelers with an es
timated probability of more than 0.5 to the train and those with an estimated probabil
ity of less than 0. 5 to the car. It should be noted at this point that the estimated prob
abilities that are used were obtained from the random-division estimations. The 
resulting predictions are also given in Table 2. 

The error percentages associated with the predictions by classification are as 
follows: 

Measure JTW 

13.31 
9.17 

BUS 

8.06 
4.44 

SOCREC 

26.34 
9.82 

Total 

0.08 
0.04 

In evaluations of the predictive performance of these models, both absolute and com
parative with regard to the alternative methods of obtaining the predictions, it is im
portant to note that the tests carried out reflect the ability of the models not simply to 
replicate the data on which they were calibrated (the nature of the calibration technique 
means that such a procedure yields perfect replications) but to predict travelers from 
a second random sample that is taken from the same population as the sample used to 
calibrate the model. 

In the light of this consideration, the predictions obtained from the expected-number 
approach are remarkably accurate. If only the £i's are considered, the highest error 
among the 4 models is 1.59 percent. The classification approach does not perform so 
well, and the errors associated with the predictions derived by classification are sev
eral orders of magnitude greater than those by the expected-number procedure. 

Several factors may contribute to the relative failure of the classification approach. 
It was argued above that classification implies the ability to make precise inferences 
about an individual's action from his predicted probability. However, probability 
statements are only meaningful from a prediction point of view when aggregated 
either for the population of travelers or for multiple trips by the individual traveler. 
It seems very likely that the failure of the classification method to result in accurate 
predictions is a result of the inappropriate attempt to match predicted probabilities 
with specific actions. 
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PREDICTIONS WITH NONRANDOM DIVISIONS 

It has been argued that the random-division procedure is improper when large data 
sets are used because the new distributions should differ little from the parent distri
bution and, therefore, the process of randomly dividing the data should result in little 
change. It is against that background that the non-random-division tests are advocated. 
The argument that nonrandom divisions should be used to counter the above problems 
is not very attractive because such divisions are usually based on income (or other 
socioeconomic characteristics). If one believes that those factors affect modal choice, 
it is unreasonable to expect that a model built for one income group would predict well 
for travelers in a different income group. In short, it is argued that a model should be 
able to predict well in the case of a further sample drawn from the original population, 
(i.e., a sample with similar distributional characteristics to the one used to calibrate 
the model); it is not reasonable to expect a model to predict well when presented with 
a new set of data whose distributional characteristics are different from those of the 
calibration data, whether the differences are the result of non-random-resampling 
procedures or even the transfer of the model to a new, but different, situation. 

COMPOSITION OF THE PREDICTIONS 

Having undertaken the above detour to deal with the question of nonrandom divisions, 
it is now appropriate to return to the main stream of this paper. The prediction re
sults presented above were obtained for 3 trip purposes-journey to and from work, 
business, and social-recreational-and for total travel. It should be emphasized at 
this point that a different model was constructed for each trip purpose, for it was found 
that the same model did not explain modal choices equally well in each case. Thus, the 
models used in this paper represent the ones that may be considered best, in the statis
tical sense, for each trip purpose. In the same way, the model for total travel is the 
model that best explains the modal choices of all travelers regardless of trip purpose. 
A comparison of the predictions from the total-trip model with the sum of the predic
tions from the models for the different trip purposes is as follows: 

Item 

Predicted 
Observed 

Sum 

1,183 
1,184 

Total 

1,183 
1,184 

The comparison of the combined results of the different trip purposes reveals that 
the predictions obtained are identical. That finding has some interesting implications 
for planners attempting to develop modal-choice models . In many cases, it is of in
terest to deal with different trip purposes separately. For example, in an investiga
tion of staggered work hours, one might wish to consider the work trip in some detail 
and to ignore other purposes. Similarly, one who studies modal choice on trips to 
recreational sites may not wish to consider commuting trips. The results presented 
above have 2 interesting features in this regard. First, it is possible to isolate spe
cific trip purposes, which may be modeled and used for predictive purposes, without 
being affected by the omission of the remaining trip purposes. Given the fact that 
planners are not always concerned with global changes, it is clearly useful to be able 
to separate the trip purposes. Second, it may further be implied that the models need 
not necessarily all be built at the same time. That may be an important consideration 
for the planner who may not be able to mount an effort of sufficient scale to yield models 
of all types simultaneously. 

In more general terms, the evidence presented above indicates that it is possible to 
build separate disaggregate models of modal choice for different trip purposes. More
over, all the models predict with a high degree of accuracy. For a planner concerned 
with subregional problems, this is an important finding. It is also demonstrated that 
the sum of the predictions from the separate models is equivalent to the prediction 
from the model for all trip purposes. The intent is not to place great emphasis on 
the possibility that models built separately may be combined in order to predict over
all mode choices; nevertheless, an important feature of these models is that separate 
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models may be built without impairing their joint ability to predict modal choices for 
all travelers. 

CONCLUSIONS 

A number of interesting conclusions may be drawn from the above investigation, 
but first it should be noted that the results are based on the empirical investigations 
of the Edinburgh-Glasgow area modal-split study data. As such, the results are data 
specific and require corroboration. It is argued that the sizes of the data sets and the 
consistency of the results imply generality; this should not, however, be taken as 
proved. 

The first, and most important, conclusion is that disaggregate, behavioral, and 
stochastic models of modal choice are able to predict modal choices with an extremely 
high degree of accuracy, in some cases with prediction errors of less than 1 percent. 
It would have been interesting to compare these error properties with those of aggre
gate models based on the zone as the unit of analysis. However, the error properties 
of aggregate modal-choice models are not well documented, and few data sets exist 
that are amenable to both aggregate and disaggregate analysis. An interesting area 
for future research would be an explicit comparison based on the dual analysis of a 
single data set. In the meantime, the disaggregate results must stand alone. There 
can be no doubt, however, that disaggregate models predict with a high degree of ac
curacy. 

The second conclusion is that the expected-number approach is to be preferred for 
deriving predictions from disaggregate models of modal choice. The classification 
approach is conceptually inferior, in the sense that its attempts to match predicted 
probabilities and observed behavior are inconsistent with the interpretation of the pre
dicted probability. The classification approach is also an inferior predictor, as dem
onstrated by the fact that it produces predictions of modal-choice behavior whose pre
diction errors are several orders of magnitude greater than those of expected-number 
predictions. On both counts, the classification approach must be rejected in favor of 
the expected-number approach. 

The third conclusion concerns the potential ability of disaggregate models to predict 
in circumstances that are spatially or temporally different from those under which the 
model was developed. The conclusion derives from the discussion of the random -
division testing technique. It is argued that models should only be expected to predict 
well in new situations when the underlying distributions are similar to those on which 
the model is based. Thus, an intracity modal-choice model should not be expected to 
predict transatlantic mode choice; nor would a model developed for one income group 
necessarily predict well for another income group. 

The fourth conclusion is that disaggregate models of modal choice built separately 
for different trip purposes yield accurate predictions for each trip purpose. In addition, 
the results of the separate models may be combined to yield accurate predictions of 
overall modal choice. That finding may have interesting implications for planners 
interested in subregional analyses. 

In more general terms, it may be concluded that the results presented above are 
extremely promising and augur well for the use of disaggregate, behavioral, stochastic 
models in a predictive framework. A caveat is in order at this point: The predictions 
under consideration in this paper are point estimates. It is important that confidence 
intervals be developed in order that the prediction range may be assessed. It is hoped 
that future work will be undertaken, both to develop confidence intervals and to con
firm the results of this analysis, that will lead to the use of disaggregate modeling 
techniques as a useful planning tool. 
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