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This paper presents a convenient graphical solution for the optimization of 
an excavator-truck earthmoving system by considering it as a cyclic queu­
ing system. Four different situations are analyzed with reference to the 
variability of the service time of the excavator and the transit time of the 
trucks: constant service time and constant transit time; random (negative 
exponentially distributed) service time and random transit time; constant 
service time and random transit time; and random service time and con­
stant transit time. Mathematical solutions are presented for the first 
three situations, and the solution of the fourth situation is obtained via 
simulation. The optimum number of trucks is determined as a function of 
two ratios-cost per hour of excavator /cost per hour of truck and transit 
time/service time. The unit costs of earthmoving are obtained as a func­
tion of transit time/service time and the optimum number of trucks, N. 
There is a point at which optimal values of N are independent of the vari­
ability of service and transit times. 

•EARTHWORKS are undoubtedly a major activity in modern highway construction. In 
terms of unit cost per unit area of roadway constructed, plant costs in earthworks 
amount to at least 50 percent of such costs (1). A considerable part of these costs 
arises from earthmoving operations, typical of which are excavating-hauling activities 
carried out using plant systems composed of excavators and hauling units. The ef­
ficiency of these systems and consequently the reduction in costs per unit of earth 
moved is dependent primarily on the appropriate selection of the number and size of 
units that are served by an excavator. Various investigators have developed methods 
of optimization for this particular type of problem (2, 3, 4, 5). Nevertheless, their use 
as a tool in the management of the highway construct ion i ndustry is, to say the least, 
very limited. 

The purpose of this paper is to present an analysis of the excavator-truck combina­
tion as an earthmoving system in which the object is to calculate the optimum number 
of trucks for a particular size of excavator. The optimum number of trucks is ex­
pressed as a function of the ratio of costs of excavator to costs of trucks and the ratio 
of transit time to loading time for different assumptions about the variability of transit 
and loading times. 

STATEMENT OF THE PROBLEM 

An earthmoving system composed of one excavator and N trucks is shown diagram­
matically in Figure 1. This may be considered as a queuing system that is described 
as follows: A truck is loaded, travels to the tip, and returns to the back of the queue 
or, if there is no queue, begins loading immediately. If there were a continuous queue 
of trucks, the excavator would move an average of X cubic yards per hour. If the ex­
cavator is idle for a proportion P 0 of the time, the cost per cubic yard of earth moved 
will then be 
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(1) 

where K1 is the cost per hour of the excavator, K2 is the cost per hour of a truck, and 
F N is defined as 1/(1 - P 0). 

The problem is, then, to determine P
0 

(and hence FN) for any particular N and any 
particular set of assumptions about the service time and the transit time. 

The service time is defined as the time that elapses from the start of loading one 
truck until the excavator is available to start loading the next truck. The transit time 
is the time taken by a truck from leaving the excavator to arriving at the back of the 
queue. Both these times will, in general, be subject to random fluctuations. 

If the mean service time is T. and the mean transit time is Tt, R is defined as the 
ratio Tt/T •. The standard deviations are c. T, and ctTt; c. and ct are then "coefficients 
of variation". 

In the simplest theory, a completely deterministic one, c. = ct = 0, whereas in the 
queuing theory approach (5), the probability distributions are negative exponential and 
thus c. = ct = 1. These two situations may be regarded as extremes between which any 
practical situation will lie. 

This paper carries out the analysis of the optimization problem in four sections, 
each corresponding to a different set of assumptions with regard to the variations of 
loading time and transit time. The variations are as follows: 

1. Constant service time and constant transit time (c, = ct = O); 
2. Random service time and random transit time (c. = ct = 1); 
3. Constant service time and random transit time (c, = 0, ct = 1); and 
4. Random service time and constant transit time (c, = 1, ct = 0). 

CONSTANT SERVICE TIME AND CONSTANT TRANSIT TIME 

When c. = ct = O, clearly, the optimum value of Nin this completely deterministic 
analysis is either the integer immediately below R + 1 or the integer immediately above. 
If R

0 
is the highest integer that is less than R, the choice lies between N (= R

0 
+ 1) and 

N + 1. 
With N = R

0 
+ 1, the shovel is idle a fraction (R - RJ/(R + 1) of the time, so that the 

FN value is (R + l)/(R
0 

+ 1). With N + 1 trucks, the shovel is never idle a.11d therefore 
FN+1 = 1, 

From Eq. 1 it can be seen that the two systems are equally good if CN = CN+i• or 

R + 1 (Ki + N\ = K1 + N + l 
R 0 + 1 K2 '/ K2 

or 

K1 = .!....:_~ (1 + R ) 
K2 E 0 

(2) 

where E = R - R
0

• 

The regions of optimal N are shown in Figure 2 in the parameter space which has 
axes R and K1/K2 at right angles. 

RANDOM SERVICE TIME AND RANDOM TRANSIT TIME 

When service time and transit time are random, the distributions of both times are 
negative exponential, and the system is then the simple cyclic queuing system analyzed 
by Griffis (~): 

p = 1 
o f N! 1 

i=O (N-i)! R1 

(3) 



Figure 1. Basic layout of an 
excavator-truck earthmoving system. 

Figure 2. Regions of optimal N in the parameter space log. 
( K1 /K2) • R for the condition Cs = Ct = 0. 
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Figure 3. Regions of optimal N in the parameter space log. 
(K1/K2) • R for the condition Cs = c1 = 1. 
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To avoid numerical calculations using tables of the cumulative Poisson distribution, 
the values of F N have been calculated for various values of R. The critical values of 
K1/K2 have been calculated following the p1·ocedure of the previous section. Below a 
critical value of K1/K2, N is the optimal number of trucks, whereas immediately above 
it N + 1 is better. The results of this are shown in Figure 3. 

This representation has the advantage of convenience for the engineer on site, as he 
does not need to perform any calculations other than those to find K1/K2 and R (= TJT.). 
If, for example, the ratio of mean transit time to mean service time was 7 while the 
ratio of hourly costs was 1. 5 (log

0 
K1/K2 = 0.405), the optimum N value is read off from 

Figure 3 as being 6. From Figure 2, in the deterministic analysis, the choice would 
have been 8 trucks. 

Figure 4 shows the values of FN plotted against R, from which it can be seen that, 
for R = 7, F 5 = 1.50, whereas, for R = 8, Fa= 1.22. Since, from Eq. 1, CN is propor­
tional to FN (K1/K2 + N), the difference between CB and Ca (according to the queuing 
theory calculations) is about 3 percent. 

CONSTANT SERVICE TIME AND RANDOM TRANSIT TIME 

In this section the service time is assumed constant (= T.) while the distribution of 
transit time is negative exponential (with mean T t). Again, R = T JT,. The state of 
the system is defined by the number of trucks left behind in the queue at the moment 
when a truck has just completed its loading. The equilibrium probability of being in 
state i is Q1 • The transition probability between successive states i and j is written 
as q(i, j), which means that (if i > 0), during a service time T,, (j - i + 1) trucks have 
arrived (out of a possible maximum of N - i). The probability of any particular truck 
arriving in a time T. is 

1 T exp(-t/Tt)dt = 1 - exp(-T,/Tt) = 1 - exp(-1/R) = 1 - r 
t 

(4) 

0 

where r = exp(-1/R) and t = a random transit time . 
The distribution of the number of trucks arriving during the loading time is binomial, 

with parameters (1 - r) and N - i. Therefore, 

q (i,j) = N-I cj-1+1 (1 - r)J-l+lrN-l-J (j = i - 1, ... ' N - 1) (i > 0) (5) 

When i = 0, the excavator is idle until the first truck arrives. Since there are N 
trucks out and their arrivals are Poisson events, the expected time to the first arrival 
is T t/N. After the first one has arrived, the number that arrive during the first load­
ing time, T., is again binomial, with parameters (1 - r) and N - 1. Therefore, 

The transition probabilities, q (i, j), are therefore known for all i (= 0, 1, ... , N - 1) 
and j (i - 1, i, ... , N - 1). 

In equilibrium, 

and 

j+l 

QJ = L Q1 q (i, j) for j = 0, 1, ... , N - 2 

i=0 

N-1 

QN-1 = L QI q (i,N - 1) 

i=0 

(6) 

(7) 
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The form of these equations allows them to be solved by successive substitution, so 
that 

... ' 

Qi _ 1 - q(0, 0) 
Q

0 
- q{l, 0) 

~ =1~ -q(0, 1) - ~~ q(l, l)vq(2, 1) 

finding successively, 

N-1 

Finally, the condition L QJ =' 1 may be applied, so that 

j=0 

(8) 

All transitions from i to j (where i > 0) take a time T.. The average time for any 
transition from Oto j is T. + TJN, so that, after a state 0, there is, on average, a 
time T JN during which the excavator is idle. Over a long time, the proportion of time 
during which the excavator is idle is 

Therefore, 

F ,, 

R 
F ,, = 1 + N Qo (9) 

where Q
0 

is given by Eq. 8. 
The results are again shown in graphical form in Figure 5, showing regions of op­

timal Nin the (R, Ki/K2) parameter space. The curves from Figure 2, the completely 
deterministic analysis, are superimposed on these present results. The shaded regions 
are those in which the optimal values of N given by the deterministic and this present 
analysis are identical. In these regions, naturally enough, the queuing theory approach 
also gives the same results. 

The shaded areas lie approximately on the straight line 

log.~~= 0.5 + 0.135 R (10) 

For example, if R = 4 and log. (Ki/K2) = 1, the analyses under the assumptions already 
considered give the same solution of N0 pt = 5. As R becomes larger, however, the 
practical values of log,, {K1/K2) tend to lie below the shaded areas, indicating that the 
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estimates of N
0
pt by the three analyses differ. For example, if R = 10 and log

0 
(K1/K2) = 

0, the values of N
0
Pt estimated by the three analyses are 11 by the deterministic theory, 

7 by the queuing theory analysis, and 8 by the analysis using constant loading time and 
negative exponential transit time. 

RANOOM SERVICE TIME AND CONSTANT TRANSIT TIME 

It was not found possible to analyze the situation of random service time and con­
stant transit time theoretically, and therefore simulation was used. The service time 
is negative exponentially distributed with mean T1 while the transit time is constant and 
equal to T t. If the "headway" before the j th truck is hJ [that is, the time from the mo­
ment the (j - 1) th truck leaves the excavator until the moment the j th truck leaves the 
excavator), then the j th truck will join the back of a queue if 

N-1 

L hJ-1 > Tt 

i=l 

and the headway hJ will be a random service time, from the distribution exp(;/T,); 
w~re~,if • 

N-1 

L hJ-1<Tt 

i=l 
N-1 

the headway hJ will be the sum of a random service time and the different Tt - L hJ-t 

N-1 i=l 

and there will have been an idle time Tt - L hJ-i. Therefore, over a large number 

i=l H 

of headways H, the time for which the system has run will be L h;. All this is equiv­
alent to saying 

j =l 

N-1 

ZJ = YJ if L ZJ-1 > 1 

i=l 

hJ where zJ = T and yJ = a ratio of a random service time and R, and 
t 

N-1 N-1 

ZJ = YJ + 1 - I ZJ-1 if I ZJ-I < 1 

i=l i=l 

where the yJ are independent negative exponential variables with mean 1/R. 
Under the first set of conditions, the idle time, expressed in terms of T,, is IJ = O; 

under the second set of conditions, 

N-1 

IJ = 1 - L ZJ-1 

i=l 



Figure 4. Relationship between FN 
and R for different values of N0 p,. 

Figure 5. Regions of optimal N in 
the parameter space log0 (K1/K2 ) - R 
for the condition c5 = 0, c, = 1; 
curves from Figure 2 have been 
superimposed. 
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Figure 6. Regions of optimal N in the parameter space log0 

(K 1/K2 ) - R for the condition c, = 1, c, = 0. 
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Figure 7. Regions of optimal N in the 
parameter space (c., c,) for R = 10, log0 

(K1/K2 ) = O; the dotted line is 
N0 p, = 8.75 from the interpolation 
formula. 
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The proportion of time, P
0

, that the excavator is idle is 

E (I) . 
Po = E (;J) as J - = 

Therefore, 

E (v,) 1 
P O = 1 -~ = 1 - R E (z) as j - = 

Since FN = 1/(1- PJ, FN =R,E (z) as j-=. 
The problem has not been solved analytically but has been simulated on the Univer­

sity of Leeds KDF 9 computer. The graphs resulting from this analysis are shown in 
Figure 6. 

An extensive empirical analysis of the simulated values of N0 pt with C
5 

= 1, ct = 0 
together with the values of N00 , NRR' and N0R and other simulations with 11real11 values 
of c. and ct have shown that the best interpolation formula is of the form 

This amounts to a linear interpolation when either c. or ct is fixed. For example, 
if ct = 1, the expression is reduced to 

If R = 10 and log
0 

(Ki/K2) = 0, N00 = 10.6 (from Fig. 2), NRR = 6.9 (from Fig. 3), N0R = 
7 .6 (from Fig. 5), and now (from Fig. 6) it can be seen that N. 0 = 7.1. The interpolation 
formula above may be used to give Nopt fo1· any 11real 11 values of c . and c l . For example, 
if c. = 0.33 and ct = 0.33, N

0 
tis estimated to be 8.75, or in integer form, 9 trucks. 

Figure 7 shows, fo1· the exa1~ple already chosen, the regions of optimal Nin the (c,, ct) 
space. Now N

0
pt = 8.75 is the average of N00 and NRR' the two estimates found by exist­

ing standard techniques, and so it may be said that the N
0
pt = 8.75 curve in Figure 7 di­

vides the space into two regions. Above and to the right of it, the Griffis model is bet­
ter than the deterministic model, whereas below and to the left of it, the deterministic 
model is better. The fact that the first of these regions is larger than the second shows 
that, in the absence of any information about the values of c, and ct, the Griffis queuing 
theory model is likely to give better results than the deterministic model. 

CONCLUSIONS 

The graphical solution presented in this paper has the advantage of simplicity and 
expedience for the man at the site. 

By careful selection of excavator-truck combinations, i.e., by selecting an appro­
priate ratio (K1/K2) in function of R, optimization of N can be made independent of the 
variability of service and cycle times, thereby making the optimizing exercise far 
simpler. 

If for practical considerations such as availability of plant the determination of op­
timal N becomes dependent on the variability of service and cycle times, then the 4-
point interpolation proposed may be used by initially assuming values for c, and ct that 
can be adjusted by obtaining data during the field operations. 

The simplicity of the procedure may be of great advantage, especially in road con­
struction where the length of haul roads and face of excavation change rapidly. 
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