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Lane changing is a very important component in highway traffic flow. Many 
researchers have recently presented mathematical models to describe 
lane-changing behavior. This paper focuses on the linear model by Gazis, 
Herman, and Weiss, the nonlinear model by Oliver and Lam, and the sto
chastic model by Worrall, Bullen, and Gur. Our objective is to evaluate 
the validity of these models by using aerial photographic data. Unknown 
parameters of the linear and nonlinear models, as well as the probability 
transition matrix of the stochastic model, are estimated by using the ex
perimental data. Some statistical analyses are carried out to measure 
their validity. 

•LANE CHANGING is a very common and complex phenomenon in highway travel. There 
may be a variety of reasons why a driver changes lanes: driver's lane preference, local 
traffic concentration, and average speed, to name just a few. It is impossible to model 
lane changing in mathematical forms that would take into account all causes for a lane 
change. Even if we could do that, the model would be too complex to have any practical 
value. This is one of the reasons why we want to study the lane-changing phenomenon 
in a macroscopic fashion. Another reason is that, even though traffic is a nondeter
ministic process, we cannot identify each individual driver's behavior. Thus, the best 
we can do is to study their average behavior. 

The objective of this study is to validate and compare the available lane-changing 
models. There is a definite need to understand the relation between lane-change ma
neuvers and traffic flow conditions. The results we found may be directly applicable to 
the development of freeway traffic control strategies. 

Several lane-changing studies have been made before. Oliver (7) proposed a theoret
ical model for lane changing on a two-lane, unidirectional roadway-:- In his paper, traf
fic was assumed to behave as a compressible fluid, obeying the equation of continuity. 

where 

~l oq1 ( ) ( ) at+ ax = P21 x, t - P12 x, t 

~2 oq2 _ ( ) ( ) at+ ax - P12 x, t - P21 x, t 

k1 = concentration of lane i, i = 1, 2; 
q1 = flow of lane i, i = 1, 2; 

(1) 

P12(x, t) = lane-change function that describes transfer of vehicles from lane 1 to lane 
2; and 

P21(x, t) = lane-change function that describes transfer of vehicles from lane 2 to 
lane 1. 

Furthermore, the lane-changing functions were assumed to satisfy 
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P12(x, t) = akHx, t)[k23 - k2(x, t)] 

P21(x, t) = ,BkHx, t)[k13 - k1(x, t)] 
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(2) 

where a and ,8 are unknown constants to be estimated from experimental data, and k13 
and k23 are jam concentrations of lanes 1 and 2 respectively. Experimental results 
were given in a later paper by Oliver and Lam (8). 

A different approach was given by Worrall, Bullen, and Gur (12) where an elementary 
stochastic model was hypothesized. They made the following assumptions: 

1. Lane changes were independent with an equal probability of occurrence for all 
vehicles; and 

2. xn :i: o, if IHI = 1; xn = 0, if Ji-j I -/ 1 where X~l = number of lane changes ob
served between lanes i and j within subsection m during time t, and 

Pr(xrJ = N) = exp(->..iJ X tH>..:1 x tr 
N! 

(3) 

(N = 0, 1, 2, .. . ) as a Poisson process where Xi3 equals average number of lane changes 
between lanes i and j within subsection m during unit time and may depend on the flow 
or density. 

It is assumed that the probability of a vehicle changing lanes in section m is a func
tion only of its position in section m-1 and of the lane into which the change is made. 
The position of the vehicle is proposed as an outcome of a finite Markov process that 
defines a probability transition matrix T within section m. Specifically, 

t21(m), b(m) ... , t2,(m) 
T(m) = 

for an r-lane highway, where t 13 (m) is the probability that a vehicle in lane i in section 
m-1 will make a lane change to lane j in section m. For simplicity, T(m) is further 
assumed to be independent of m. The probability transition matrix is to be estimated 
from experimental data. 

The compressible fluid approach was also applied by Gazis, Herman, and Weiss (1) 
and later extended by Munjal and Pipes (5) to multilane freeway on-ramp perturbation 
studies. In these studies, the rate of lane changes was hypothesized as 

oq1 0K1 _ (v- K ) -+--a,~ - l 
ax ot 

for a two-lane uniform unidirectional freeway and as 

~ 0K1 = V - bK ox + at a,~ 1 

(4) 

(5) 
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for a two-lane non-uniform unidirectional freeway, where K1 is the deviation from the 
equilibrium concentration in lane i, i = 1, 2. No experimental studies were made for 
these on- and off-ramp models. However, a similar study was carried out for a free
way lane drop by Munjal and Pipes (6) in which aerial photographic data were used for 
experimental validation and gave encouraging results. 

The work by Levin (3) is concerned with the mathematical modeling of the delay and 
distance experienced by a vehicle making a lane change by using gap-acceptance con
cepts. 

Although we have mentioned four lane-changing hypotheses, Levin's work (3) is not 
considered further here because of the complexity of his delay and distance models and 
th e excessive data r equi red for validation. Therefore, we have reduced our study to 
three models, the linear lane-changing model (Eq. 5), the nonlinear lane-changing model 
(Eqs . 1 and 2), and the stochastic model (Eq. 3). 

The aerial photographic data available from the Federal Highway Administration are 
of the three-lane Long Island Expressway. Our first task is to extend the two-lane 
linear and nonlinear models to three-lane models. The unknown parameters of the 
linear and nonlinear models, as well as the probability transition matrix of the sto
chastic model, are estimated by using the aerial data. Some statistical analysis is also 
carried out to provide a quantitative measure of the validity of each model. 

DATA ACQUISITION AND REDUCTION 

Data were supplied from two sites that were selected to study the traffic flow on 
grade- and curvature-free multilane freeway sections with no nearby on- and off-ramps. 
These were the Long Island Expressway (three lanes wide) in New York and the Pali
sades Interstate Parkway (two lanes wide) in New Jersey. Traffic count studies showed 
both sites to carry a medium-to-high flow of traffic. The present analysis is carried 
out for the Long Island Expressway only because it provides more accurately reduced 
data. Daily 5-min traffic counts were taken for a week to determine a reasonable esti
mate of different time periods for various constant traffic-flow levels. The Long Island 
Expressway site is free of access for a distance of 3.2 miles; the westbound direction 
was chosen for data collection. This section is between the interchanges at Guinea 
Woods Road and Jericho Turnpike (Fig. 1). 

The data wer e collected by aerial photography. A sequence of 70-mm color photo
graphs was taken at 2-sec intervals with a Maurer 220 pulsed-sequence camera, a light
weight camera designed for aerial reconaissance. A 38-mm Zeiss Biogen wide-angle 
lens with a relative aperture of f/4.5 was used, allowing filming of about 1 mile of free
way from the helicopter, a Bell 47G3Bl, hovering at a constant altitude of 4,000 ft. 
Magazines of 225 ft were used, which allowed continuous filming of about 30 min of 
traffic by using the 2-sec frame. Photographs obtained in this manner were projected 
on a film reader on-line with a computer, and this system permitted an accurate mea
sure of the coordinates of vehicles in the photographic image. 

The Benson-Lehner 29E film-reading system containing two crosswires and l0x 
magnification optics was used to read the x-y coordinates of the vehicles. This informa
tion was stored in electronic accumulators in the 282E Telecordex, which was connected 
to an IBM 1800 computer through a special interface. The data-reduction processing 
immediately followed the reading of data. There was a real-time feedback to the opera
tor if any rereading of data was required. 

Details of the film-reading technique and the associated computer software to develop 
trajectories of vehicles relative to an actual ground-based coordinate are given by 
Tashjian and Knobel (9 ). 

Some of the important features are 

1. All photographic image points of interest corrected for the optical distortion 
produced by the combined effect of the aerial camera lens and film magazine, 

2. Position and orientation of the aerial camera in ground coordinates determined 
from camera and ground reference points, 

3. Reference points transformed from film coordinates to ground coordinates, 
4. Automobile coordinates transformed from film coordinates to ground coordinates, 
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5. Automobile coordinate points translated into distance and lane position relative 
to a prespecified ground point, 

6. Position and speed of a car in its previous frame predicted from the position and 
speed of that car in any subsequent frame, 

7. Automobile position matched in previous frame to the trajectory (i.e., the pre
dicted position computed during processing of every frame), 

8. Car trajectories smoothed for improved estimate of position and speeds, and 
9. Data tape generated that contains a car number, associated distances along the 

road, and corresponding times, speeds, and lane numbers of the car. 

The concentration k and the number of lane changes P 1 J from lane i to lane j are 
needed for model validations. For reasons to be explained in the next section, we sub
divide the film into 3-min time periods. Within each time period, we calculate the flow 
q, space-mean speed v, and concentration k. Because the aerial data were taken at an 
interval of 2 sec, these parameters can be obtained from the following procedures. 

Let R1, R2, ... Rk denote a set of points along the roadway. For each point RJ that 
a car passes during the filmed period, we will have the following situation. We observe 
that the car at time to is at a distance Xo and at time to + At is at a distance x1; RJ is 
between Xo and x1. At is the time interval of the photograph taken, say 2 sec. The rela
tion is shown in Figure 2. Then the time that the vehicle passes RJ is, by linear inter
polation, given by 

R - x., t = I At + to sec 
X1 - X., 

(6) 

The velocity at RJ is estimated by 

V = (RI - Xo) V1 + (Xi -RJ) Vo 
X1 - Xo X1 - Xo 

(7) 

where v1 and v0 are the velocities at x1 and Xo respectively. Thus, when RJ tends to Xo, 
v would tend to Vo• 

If the number of cars passing RJ in the photographed time period (3 min) is n, then 
the average velocity (space-mean speed) is 

n 
V=--

n 1 
L -
i=l V1 

and the density is 

k = q/v 

where q = n x 20 is the hourly flow. 
We shall make use of these statistics in the next section. 

MODEL VALIDATIONS 

(8) 

(9) 

Because the aerial data were taken from a three-lane site, we need first to extend 
the two-lane model to three lanes for a non-uniform roadway. The non-uniformity 
means that the three lanes have different q-k relations. The model as extended by 
Munjal and Pipes ~) is 

(10) 
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The time interval of 3 min is chosen for calculating concentrations because 

1. It is long enough to average out fluctuations over a constant flow period, 
2. It contains enough cars to be statistically meaningful, and 
3. It is short enough that a sufficient number of intervals are available from the 

constant flow period. 

The first algorithm is used to estimate a, b, and c in Eq. 10 and is as follows: 

1. Find k1(i), k2(i), ki(i) for each 3-min interval i, i = 1, 2, ... , n by using Eqs. 8 
and 9, where the subscripts stand for the lane number. Next, compute K1(i) = k1(i) -k1, 
where k1 is the mean of k1(i). K:!(i) and Ka(i) are similarly computed. 

2. Find the number of net lane changes for each lane and for each time period i, 
over a 3,200-ft stretch of road section and denote them as .t1(i), .t2(i), and .t3 (i). 

3. Use a least squares procedure to obtain estimates of a, b, and c. That is, we 
find a, b, and c that minimize 

n 
f = L ([aK2(i) - bK1(i) - .t1(i)]2 + [bK1(i) - aK:!(i) + cKa(i) 

i=l 

The minimizing values of a, b, and c are denoted by ao, bo, and· Co respectively. 
The aerial data used are from two films, the first of 849 frames, starting at 9: 50 

a. m. on August 21, 1969, and the second of 821 frames starting at 5: 55 p. m. on August 
22, 1969. The numbers of car trajectories are 271 for lane 1, 538 for lane 2, and 584 
for lane 3 on the first film and 249 for lane 1, 496 for lane 2, and 562 for lane 3 on the 
second film. The flow and space-mean speed are 2,953 cars/hour and 84.8 ft/sec for 
the first period and 2,852 cars/hour and 86. 7 ft/sec for the second period. We feel that 
these two films can be considered to have the same constant flow rate. They both belong 
to service level B [according to the Highway Capacity Manual (2)]. Net lane changes 
for lanes 1, 2, and 3 are obtained and are given in Table 1 under the "experimental" 
columns. Estimates of a, b, and c by using the above data are ao = 15.04, bo = -15.84, 
and c 0 = -0.39. These parameters are used in the linear model, and the theoretical 
net lane changes are computed by 

L1 = aoK:!(i) - boK1(i) 

L2 = boK1(i) - aoK:!(i) + CoKa(i) - aoK:!(i) 

L3 = a0 K:!(i) - c 0 Ka(i), i = 1, 2, ... , n (11) 

The theoretical values of L/j = 1, 2, 3) are those under the "model" columns in Table 1. 
The two-lane model by Oliver and Lam (8) is now extended to a three-lane model re-

sulting in the following form -

with 

P12(i) = crlc~(i)[k2J - k2(i)J 

P21(i) = ,Bk~(i)[k1J - k1(i)] 

(12) 



Figure 1. Long Island Expressway test site. 
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Figure 2. Relation between vehicle position and time. 
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Table 1. Net lane changes from linear model. 

Number of Net Lane Changes 

Lane 1 Lane 2 Lane 3 

Experi- EJ<Perl- Experi-
Interval Model mental Model mental Model mental 

1 -0.2 5 0.3 -4 -0.1 -1 
2 1.5 0 -0.8 -1 -0.7 1 
3 0.7 -1 -0.8 6 0.1 -5 
4 -2.2 -4 3.5 5 -1.3 -1 
5 -0.1 6 0.1 -5 0 -1 
6 -0.4 4 0.2 -7 0.2 3 
7 -3.1 4 1.1 2 2.0 -6 
8 0.4 4 -0.3 -6 -0.1 2 
9 0.4 0 -0.7 1 0.3 -1 

10 1.1 0 -2.8 -9 1.7 9 
11 1.9 3 -3.5 3 1.6 -6 
12 -1.8 -1 3.2 3 -1.4 -2 
13 1.4 2 -3.9 -2 2.5 0 
14 -0.7 1 2.3 5 -1.6 -6 
15 1.5 1 -1.B 3 0.3 -4 
16 2.0 9 -3.3 -8 1.3 -1 
17 0.9 2 -1.2 -4 0.3 2 
18 -0.2 5 1.1 4 -0.9 -9 

Mean 0.173 2 ,28 -0.406 -0,83 0.233 -1 .45 

X 

t 
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Table 2. Results of nonlinear model. 

Number of Lane Changes From Lane i to j Net Gain (Cars) of Lane I 

p., P21 p,, p., L, L, L, 

Experi- Expert- Experi- E:•perl- Experl- Experl- Experl-
Interval Model mental Model mental Model mental Model mental Model mental Model mental Model mental 

1 7.6 7 9.9 12 8.6 10 13.7 11 2.3 s 2.8 -4 -5.1 -1 
2 5.8 9 8.7 9 7.6 10 10.4 9 2.9 0 -0.1 -1 -2.8 1 
3 9.9 12 10.4 12 9.2 5 9,9 10 0.5 0 0.2 5 -0.7 -5 
4 5.3 12 7.7 8 6.7 8 9.6 9 2.4 -1 0.5 5 -2.9 -1 
5 7.5 4 10.3 10 9.0 10 10.6 11 2.8 6 -1.2 -5 -1.6 -1 
6 6.3 6 10.8 10 9.5 13 8.3 10 4.5 4 -5.7 -7 1.2 3 
7 4.9 3 6.4 7 5. 7 8 7,5 14 1.5 4 0.3 2 -1.8 -6 
8 9.6 9 9.8 13 8.6 10 12.7 8 0.2 4 3.9 -6 -4.1 2 
9 8.2 11 11.0 11 9.7 11 10.3 12 2.8 0 -2.2 1 -0.6 -1 

10 6.1 10 14.6 10 12. 7 19 10.6 10 8.5 0 -10.6 -9 2.1 9 
11 8.9 9 14.0 12 12.2 10 13.8 16 5.1 3 -3.5 3 -1.6 -6 
12 6.7 10 7.4 9 6.6 9 7.7 11 0.7 - 1 0.4 3 -1.1 -2 
13 4.8 11 16.8 13 14.5 11 12.4 11 12.0 2 -14.1 -2 2.1 0 
14 10.5 5 7.1 6 6.4 4 7,.4 10 -3.4 I 4.4 5 -1.0 -6 
15 11.7 6 10.8 7 9.8 8 8.4 12 -0.9 I -0.5 3 1.4 -4 
16 9,9 9 13.3 18 11.7 7 11.4 8 3.4 9 -3.7 -8 0.3 -1 
17 9,8 11 10.8 13 9.5 9 12.0 7 1.0 2 1.5 -4 -2.5 2 
18 10.3 10 8.1 15 7.2 7 11.6 16 -2.2 5 6.6 4 -4.4 -9 

Mean 7.88 8,55 10.44 10.83 9.18 9.38 10.46 10.83 2.56 2.28 -1.28 -0.83 -1.28 -1 .45 

Figure 3. Lane-change frequencies (nonlinear model). 
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P2s(i) = yk~(i)[ksJ - ks(i)J 

Ps2(i) = 6J.<l(i)[k2J - k2(i)] (13) 

(i = 1, 2, ... , n) where 

Pq = number of lane changes from lane i to lane j, 
klJ = jam concentration, and 

a, fj, y, and 6 = parameters to be estimated. 

The second algorithm that is used in this paper estimates a, {3, 'Y, and 6 of Eq. 13 
and compares the theoretical and experimental statistics in the following manner: 

1. Use the values k1(i), ~(i), and ks(i) calculated from the first algorithm; 
2. Find ex, {3, 'Y, and 6 such that all of the following 

n 
S1 = ~ [P12(i) - akHi)[k2J - k2(i)J }2 

i=1 

n 
S2 = ~ [P21(i) - /jk~(i)[k1J - k1(i)] }2 

i=1 

n 
Ss = ~ [P23(i) - yk~(i)[ksJ - ks(i)] }2 

i=1 

n 
S4 = ~ [Ps2(i) - 6J.<l(i)[k2J - k2(i)] }2 

i=1 
(14) 

are minimized, and let ao, /3o, 'Yo, and lio be the minimizing values of a, {3, 'Y, and 6 
respectively; and 

3. Find theoretical values of Pq by using ao, /3o, 'Yo, and 60 in Eq. 13, and compare 
the differences 

L1(i) = P21(i) - P12(i) 

L2(i) = P32(i) - P2s(i) + Pdi) - P21(i) 

(15) 

for i = 1, 2, ... , n, which are net gains or losses for each lane due to lane changes. 

Using the same data as used for the linear model, we summarized the experimental 
and computed results by using the nonlinear model as given in Table 2 and shown in 
Figure 3. More information is provided by Table 2 than by Table 1 in that not only is 
the net gain for each lane due to lane changes recorded (L1, L2, Ls) but also each in
dividual lane-changing flow is recorded (P12, P2s, P32). If we consider the average be
havior of lane changers, i.e., if we look at the mean values of the samples we collected, 
the nonlinear lane-changing hypothesis seems to be superior to the linear lane-changing 
hypothesis. This is not surprising because the nonlinear model has more mechanisms 
than the linear model. 

To validate the stochastic model, we divide the road stretch into 16 sections of 200 
ft each and calculate the probability distribution of cars in each lane of each road section 
for the entire filmed period (821 + 849 = 1,670 frames). The probability transition 
matrix T for sections 1 and 16 is also calculated: 
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[

Tu T12 Tu] 
T = T u T 22 T~ 

T 31 T 32 Tss 

where T1 i is the ratio of the number of lane changes from lane i to lane j to the total 
flow in lane i. The 200-ft road section is chosen mainly to ensure that T1 J = 0 for 
li-j\ >t. 

The algoritpm proposed by Worrall and Bullen (to t was used to calcul ate the approx
imate T, say T, for the entire road stretch. This T is employed for each 3-min 
interval to obtain the theoretical value of lane changes. That is, we want to find 1' such 
that 

is as close to the experimental value of a1e as possible, where a1 and a1e are the dis
tributions of vehicles by lane in section 1 and section 16 respectively, and a1e is the dis
tribution, by lane, of vehicles in section 16 estimated by using the transition matrix T. 
Therefor~, the probability transition matrix of the entire road stretch (16 sections) is 
just R = T 15 . The estimated R from the algorithm is 

[

o. 7235 o.2478 o.0287] 

R = 0.1513 0. 7038 0.1449 

0.0211 0.1398 0.8391 

This transition matrix, R, is used for each 3-min time period for estimating the num
ber of lane changes. Results are given in Table 3 and shown in Figure 4. 

STATISTICAL COMPARISONS 

A better comparison can be made if we employ some quantitative measure of the 
validity of each model. The approximate normal statistic u can provide such a measure. 
We outline the procedure in the following. 

1. Calculate 

ei (i) = Li (i) - Li{i), j = 1, 2, 3, i = 1, 2, ... , n (16) 

where j is the lane number, n is the total sample size, and Li (i) and Li (i) indicate the 
number of net lane changes for lane j in sample i from the experimental data and com
puted data, in turn. 

2. Obtain 

(17) 

3. Compute 

(18) 

4. The approximate u-statistic is 



Table 3. Results of stochastic model. 

Number of Lane Changes From Lane 1 to J Net Gain (Cars) of Lane I 

p,, Pu p., P., L, 

E:xperl- Expert- E:xperl- E:xperl- Experi-
Interval Model mental Model mental Model mental Model mental Model mental 

1 7.8 7 9.8 12 9.2 10 11.2 11 2.0 6 
2 6.7 9 9.3 9 8.8 10 10.1 9 2.6 0 
3 9.0 12 9.9 12 9.7 5 9.6 10 0.9 0 
4 6.4 12 8.5 8 7.8 8 9.4 9 2.1 -4 
5 8.1 4 0.0 10 9.4 10 10.2 11 0.7 6 
6 8.0 6 9.7 10 8.8 13 9.1 10 1.7 4 
7 6.4 3 8.o 7 7.6 8 8.6 14 1.6 4 
8 9.0 9 9.8 13 9.4 10 10.9 8 0.8 4 
9 8.1 11 9.9 11 9.7 11 9.9 12 1.8 0 

10 6.4 10 11.0 10 10.4 19 9.8 10 4.6 0 
11 8.1 9 11.0 12 10.5 10 11.4 16 2.9 3 
12 7.0 10 8.1 9 7.8 9 8.5 11 1.1 -1 
13 6.2 11 11.7 13 11.0 11 10.9 11 5.5 2 
14 9.0 5 8.1 6 8.o 4 8.5 10 -0.9 1 
15 9.5 6 9.5 7 1l.4 8 8.6 12 0 1 
16 9.0 9 10.5 18 10.3 7 10.3 8 1.5 9 
17 8.7 11 9.9 13 9.5 9 10.8 7 1.2 2 
18 8.7 10 8.8 15 8.4 7 10.3 16 0.1 5 

Mean 7.02 8.56 9.6 10.83 9.25 9.38 10.07 10.83 1.68 2.28 

Figure 4. Lane-change frequencies (stochastic model). 
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Table 4. u-statistic of lane-changing models. 

Lane 1 Lane 2 Lane 3 

Model lul c1' lul c1' lul c1' 

Linear 3.09 0.002 0.36 0.719 1.79 0.073 
Nonlinear 0.168 0.867 0.295 0.768 0.182 0.856 
stochastic 0.677 0.498 0.147 0.883 0.807 0.420 

'Represents the exceedence {tail) probabllitv given by the formula a= prob (I u I ) u,.] . 
bUslng Fisher's Comblnetlon•of-Tests Statistic (11) 

k 
A • -2 I: lln a-1 "' chi-square {2k) 

1 

where k is the degree of freedom. 

Composite 
Tail 
Statisticb 

14.325 
1.124 
3.378 

L, I., 
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0 -4 -2 .0 
-1.3 -1 1.3 
-LO 5 0.1 
-0.5 5 -1 .6 
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-0.6 2 -1.0 
0.7 -6 -1. 5 

-1.6 1 -0. 2 
-5.2 -9 0.6 
-2.0 3 -0.9 
-0.4 3 -0. 7 
-5.6 -2 0. 1 
1.4 5 -0. 5 

-0.0 3 0.8 
-1.5 -8 0 
0.1 -4 -1.3 
1.8 4 -1.9 

-0.99 -0.83 -0.69 
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(19) 

The summary of the u-statistics for both models is given in Table 4. 

The entries in the last column of Table 4 obey the chi-square distribution with 6 
degrees of freedom in accordance with Fisher's Combination-of-Tests Statistic where 
we have combined the results over all three lanes for each model. Referring to the 
tabulation of chi-square values, it is seen that an observed value of A or greater for 
the linear model has occurrence probability of less than 0.05, whereas the correspond
ing values for the nonlinear and stochastic models are approximately 0.98 and 0. 75. 
These results are only approximate, but they do indicate relative ranking. On this 
basis we rank the three models as the nonlinear model, the stochastic model, and the 
linear model in this order according to the u-statistics. 

The superiority of a model over others can also be viewed by the complexity of the 
model or the amount of information used in parameter estimation. The nonlinear model 
clearly has more mechanisms than the linear model. Moreover, the value of jam con
centration is used in the nonlinear model, whereas it is not used in the linear model. 
The stochastic model is a completely different approach and does not hypothesize a 
density oscillation between lanes. It estimates the frequency of lane changes by fixing 
the boundary conditions at both ends of the road stretch. Because of this complexity, 
it is very difficult to evaluate this model against the other two models. However, the 
extensiveness of data preparation is about the same for all three models. 

One shortcoming of the stochastic model is that the algorithm suggested by Worrall 
and Bullen only gives an approximate solution of the probability transition matrix. This 
probably explains why, with more parameters to estimate (six for a three-lane highway), 
it is still not better than the nonlinear model according to the validation results. (It is 
noted that, although T has nine unknowns, the constraints 

reduce the unknowns to six.) 

3 
I; tw i = 1, 2, 3 
j=l 

We should be more careful here to interpret the u-statistics given in Table 4. Any 
deviation from the assumptions in which the u-statistic is derived can result in a large 
value of u, e.g., the non-zero mean of eJ in Eq. 17, the mutual dependence of the sam
ples. If corrections can be made, the u-statistics will, in general, be improved. 

Both models assume the unknown parameters to be independent of concentration. 
These parameters have been estimated by first fitting the experimental data by using a 
constant flow of traffic. How valid this assumption is can be tested by using data from 
a different constant flow level of traffic and computing the lane changes by using the 
same parametric values. Available aerial data do not provide enough samples for this 
kind of study. However, some preliminary inspection suggests that the unknown param -
eters are concentration-dependent. 

CONCLUSIONS 

Three lane-changing models, the linear lane-changing model by Gazis, Herman, and 
Weiss, the nonlinear model by Oliver and Lam as extended here, and the stochastic model 
by Worrall and Bullen, were selected for experimental validation with aerial photographic 
data supplied by the Federal Highway Administration. The unknown parameters of the 
linear and nonlinear models, as well as the probability transition matrix of the stochastic 
model, were estimated from the data. The number of lane changes was then calculated 
by using models with estimated parameters. It was found, statistically, that the non
linear model gave excellent validation results for every lane of the three-lane Long 
Island Expressway, and the linear and stochastic models gave excellent results only for 
lane 2. Generally speaking, the three models are ranked as the nonlinear model, the 
stochastic model, and the linear model. 
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