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In the fundamental relationship between flow and concentration, flow (in 
vph) increases with concentration (in vehicles/mile) until a critical point 
is reacp.ed. After this critical point, flow decreases to zero as concentra
tion increases to saturation. This is a deterministic model relating flow 
rate q to concentration k. In this paper this deterministic model is ex
tended by allowing a probabilistic distribution of concentrations for a given 
mean value of flow. The specific application is to traffic proceeding up a 
two-lane hill. In this stochastic model, platoons arrive at the bottom of 
the hill in a Poisson fashion with parameter >,, and at the top of the hill in a 
Poisson fashion with parameter µ. Because the size of platoon at the top 
of the hill is generally considerably larger than that at the bottom, >,, > µ. 
The distributions of platoon sizes at both the bottom and the top of the hill 
are additional parameters in the formulation. Vehicles on a hill represent 
a birth and death process where arrival of vehicles at the bottom corre
sponds to births and arrival of vehicles at the top of the hill corresponds 
to deaths. Because the lower bound on the number of vehicles is zero and 
the upper bound is determined from the length of the hill and the length of 
vehicles, there are a finite number of possible states. These states are 
incorporated into a finite Markov chain with a transition matrix determined 
by >.., µ, and the distribution of platoon sizes at the bottom and top of the 
hill. The transition matrix generates the probability of various concentra
tions on the hill as a function of the input parameters and time t. Hence, 
instead of two concentrations corresponding to a mean flow rate, we gen
erate a probability distribution that varies with time for a whole range of 
concentrations. The Markov process also generates certain dynamic prop
erties of the system such as relative stability. These and other stochastic 
properties of the Markov process are included to provide an extension of 
the classical flow-concentration deterministic model. 

•ONE of the most complicating features in the analysis of traffic flow is its probabilistic 
nature. Two identical roadways may have an average flow of 500 vph, but the various 
parameters that measure the performance of the roadway could be significantly different 
in any given time interval. Some of these parameters are speed, concentration, number 
of passes completed and aborted, number of accidents, and percentage of slow-moving 
vehicles. The actual state of these traffic parameters fluctuates over time, so we must 
usually be satisfied with measuring an average value and perhaps some extreme values. 

Solomon (12) observed that variation in speed from the normal flow of traffic was a 
leading cause of accidents. Very slow or very fast vehicies are involved in an abnor
mally high percentage of accidents. This study emphasizes the role and need for a more 
detailed analysis of traffic flow, in particular the need for a probabilistic model that 
treats random fluctuations in traffic behavior as a function of time. 

It is the purpose of this paper to analyze the stochastic nature of one important traffic 
parameter, concentration. The classical relationship between flow and concentration 
is a deterministic one (6, 8): The flow rate increases with concentration until a critical 
point is reached, after which the flow rate decreases to zero. In this paper the deter
ministic model embodied in the fundamental diagram of flow and concentration is ex-
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tended by allowing a probabilistic distribution of concentrations for a given average 
value of flow, which is itself a random and changing quantity. Furthermore, the rela
tive stability of traffic flow will be measured by observing the rapidity with which a low 
concentration is transformed into a high concentration and vice versa. Hence, certain 
dynamic characteristics of traffic behavior will be presented. 

The model to be presented is a Markov birth and death process. Along with the 
requisite mathematical development, data and results of a field study that tested the 
feasibility and utility of the model are included. It should be noted, though, that the 
model developed in this paper is but a tool and not an end in itself. The model will pro
duce, with appropriate input, information about probabilities of various concentrations 
as a function of time and other factors. 

The two-lane hill is a frequently encountered configuration that causes disruption 
and turbulence in the normal flow on level roadways. It is a physical setting in which 
concentration of vehicles obviously and directly affects flow rate. Every driver has 
experienced the agony of heavy traffic proceeding uphill; the speed of the platoon is con
trolled by the slowest moving vehicle when passing is not permitted or is too risky. As 
the concentration increases, so does the probability of encountering a slow-moving 
truck. The two-lane hill will be the physical setting for the stochastic extension of the 
fundamental diagram of flow and concentration. 

BIRTH AND DEATH STOCHASTIC MODELS 

The birth and death process is one type of stochastic process in which the time 
parameter is continuous and state space is discrete. Usually a population of individuals 
(or things) is considered where the size of the population at time t is X(t). During the 
interval t to t + At, the population may increase (birth) or decrease (death). We will 
consider the number of vehicles on the hill as our population of individuals; when ave
hicle arrives at the bottom of the hill it is a birth, and as a vehicle reaches the crest of 
the hill it is a death. As t varies, vehicles will enter and depart the hill, i.e., births 
and deaths, and X(t) will then denote the number of vehicles on the hill at time t. If we 
then can obtain the probabilistic description of X(t) we have a probabilistic description 
of the number of vehicles on the hill for any time t. 

One of the simplest birth-death processes is the one used to derive the stochastic 
nature of a single-server queuing system with Poisson arrivals and an exponential ser
vice time. In this system the probability of a birth in a small interval At is assumed 
to be proportional to the length of At and likewise for a death. Usually >.. is the average 
birth rate, and µ is the average death rate. If we denote the probability of n individuals 
in the system at time t as P 0 (t), then the forward Kolmogorov difference equations are 
(making standard assumptions) 

P.(t + ti.t) = (1 - >..li.t - µli.t) Pn(t) + (1 - >..li.t) µli.t Pn+1(t) 

+ (1 - µli.t) >..li.t Pn_1(t) n ~ 1 

Po(t + ti.t) = (1 - >..ti.t) Po(t) + (1 - >..ti.t) µti.t P1(t) 

What this system means is that we can be in state n at time t + li.t in three possible 
ways: 

1. Be in state n at time t and have no births and no deaths in the interval li.t, 
2. Be in state n + 1 at time t and have no births but one death in the interval li.t, or 
3. Be in state n - 1 at time t and have no deaths but one birth in the interval li.t. 

The usual procedure is to let At become very small and obtain a system of differential
difference equations whose solution determines various properties of the process X(t). 
A closed-form solution for the time-varying X(t) is very difficult in this example, as in 
most other models, but the so-called steady-state solution is readily attained and widely 
known. The steady-state solution is appropriate for large values of t wherein initial 
transient influences become dampened. In this example the steady-state solution would 
be 

p[x = n] = (1 - >../µ) (>../µ)" 
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This steady-state distribution is very simple, and as such we can calculate important 
properties of the birth-death process in the steady state; e.g., the average number of 
individuals in the system is X/(µ - X), whereas the expected time in the system for each 
individual is 1/(µ - X). 

Modeling this single-server queuing system mathematically permits both analysis 
and synthesis of the system. For example, we can predict the change in system char
acteristics by varying the parameters X and µ, or we might have an optimization prob
lem in which we want to minimize the expected number of individuals in the system 
subject to constraints on X andµ. These same comments of course apply to a valid 
model of traffic proceeding up a hill. We would like to have a model with which we 
could perform the following operations (however, we do not deal with such applications 
specifically in this paper): 

1. Predict changes in system characteristics if the passenger or transport arrival 
rate or both change, 

2. Predict changes in system characteristics if physical changes in the roadway 
are made, and 

3. Optimize various objective functions subject to constraints on the parameters. 

For example, we might want to predict changes in the probability distribution of con
centrations of a hill if heavy transport vehicles increased in density by 25 percent or 
if the speed capabilities of trucks decreased 15 percent because of heavier loads. 

CHARACTERISTICS OF THE TRAFFIC MODEL 

In describing a multiple birth and death process that approximates the flow of traffic 
proceeding uphill on a two-lane highway, we should first see how this model differs 
from the single-server queuing model. In the single-server queuing model we assume 
that individuals arrive at a service station, form a waiting line, and wait their turn for 
service. Only one individual is served at a time. This is not the case in the traffic 
system, for as soon as a vehicle arrives at the foot of the hill it begins service, i.e., 
climbing the hill. The traffic model is then a self-service model; we let X(t) be the 
number of vehicles on the hill at time t. Another difference is that in the single-server 
queuing model we assume that all arriving customers are homogeneous in the sense 
that their service distributions are all the same. In the traffic model we have two types 
of customers or arrivals: transport vehicles and passenger vehicles. The performance 
of each type of vehicle on the hill is considerably different. A third crucial difference 
lies in the nature of the arrivals and services: In the queuing model we assumed that 
individuals arrive in a Poisson fashion and are serviced in an exponential fashion. In 
the traffic model that is simply not true, for vehicles do not flow freely or randomly on 
the highway, especially on hills where platoons are formed behind slow-moving vehicles .. 
What happens is vehicles arrive at the foot of the hill in bulk and leave the hill in bulk. 

The multiple birth and death process for traffic flow on hills includes features not 
present in the ordinary queuing model, i.e., self-service, nonhomogeneous vehicles, 
bulk arrivals, and bulk finishes. P1J (t) is defined as the probability of i cars and j 
trucks on the hill at time t; the possible states of our system will be pairs of nonnega
tive integers (i, j ). We make two assumptions. 

First, the distribution of times between platoon arrivals at both the bottom and the 
top of the hill is exponential with parameters 1/X and 1/µ. respectively. Equivalently, 
platoon arrivals at the bottom and the top of the hill can be shown to be Poisson with 
parameters X and µ, respectively. The measurement of time between platoon arrivals 
by our own convention shall be from the front of the lead car of a platoon to the front of 
the lead car of the next platoon. 

Second, given a platoon arrival, the change in the state of the hill can be by more 
than one vehicle. Thus, a discrete distribution A1J gives the probability of i cars and j 
trucks arriving in a platoon at the bottom of the hill for all combinations of i and j. 

I: A1J = 1 A1J ~ 0 
ij 

Similarly, a discrete distribution f1J gives the probability of i cars and j trucks arriving 
in a platoon at the top of the hill and departing the system for all combinations of i and j. 



For example we may have 

f10 = 0.1 

fo1 = 0.1 

fu = 0.2 

f2,1 = 0.3 

f3,1=0.3 
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f1J 2 0 

Given that a platoon arrives at the crest and that the state of the hill is (1, 1 ), we must 
use conditional probability to !'ind the correct probabilities of f10, fo1, fu; the modified 
distribution would be 

f10 = 0.1 + g:i + 0.2 = 0.25 

fo1 = 0.25 

fu = 0.50 

The aforementioned process should really not be called a birth and death process, 
for the standard terminology of a birth and death process requires that, in a small 
interval of time At, only a single birth or death has positive probability. (Rosenshine 
of Pennsylvania State University suggested the name multiple birth and death. ) Finally 
we must observe that in the queuing model presented earlier it was implicitly assumed 
that one could have any number of individuals in the system. Certainly this is not the 
case on the hill where there are physical limitations due to the actual length of the road
way and corresponding lengths of vehicles. Assume then that N and M are upper limits 
to the number of cars and trucks on the hill; if the state of the system is at some point 
N and M, then no more vehicles can enter the hill until some vehicles in the system 
leave. Hence the process under consideration will have two reflecting barriers: the 
state (0,0) and the state (N,M) where N + M = Q. Q is the maximum number of vehicles 
that can be physically present on the hill at any one time when we consider the average 
length of cars and trucks and make plausible assumptions about the proportion of each 
present. However, for the sake of illustration we simplify the problem by calling N and 
M the respective upper limits for cars and trucks present on the hill. 

MODEL FORMULATION 

We now consider the Kolmogorov differential-difference equations that describe this 
multiple birth-death process with reflecting barriers. Because the required notation is 
a bit abstruse for a general model let us first set N = 4 and M = 2. P 1J(t) is the proba
bility of i cars and j trucks on the hill at time t where of course for each t E (0, co) 

I: P1J(t) = 1 
(i,j) 

We shall also specify the conditional probability distribution of arrivals and finishes 
given that an arrival or finish has occurred. Let A1J be the conditional probabilities of 
i cars and j trucks arriving, given that an arrival has occurred, and f1J be the condi
tional probabilities of i cars and j trucks finishing the hill (i.e., reaching the crest), 
given that a finish has occurred. In our example set 

A10 = 0.5 

Ao1 = 0.3 

Au= 0.1 

A21 = 0.1 

f10 = 0.6 

fo1 = 0.17 

fu = 0.17 

b = 0.50 
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(The fact that the possible sets of bulk arrivals and bulk finishes are the same is only 
coincidental in this example.) 

The usual procedure in birth-death processes is to write P1J (t + At) where At is some 
very small interval in terms of P 1J (t). For example, we set i = 2 and j = 2 and consider 
P22(t + At); i.e., we want to write an expression for the probability of being in state (2,2) 
at time t + At. There are the three mutually exclusive and exhaustive ways of being in 
state (2,2) at time t + At: 

1. Be in state (2,2) at time t and have no arrivals or no finishes in At, 
2. Be in state (i,j) at time t and have (2-i, 2-j) arrivals and no finishes in At, or 
3. Be in state (i,j) at time t and have (i-2, j-2) finishes and no arrivals in At. 

When t is very small we cannot have both an arrival and a finish int time so that no 
other possibilities are available. Hence, when t is sufficiently small P22(t + At) is ap
proximately equal to the sum of the following three expressions: 

1. Prob-no arrivals or finishes in At and system in state (2,2) at time t, 
2. :E Prob-(2-i, 2-j) vehicles arrive and no finishes in At and the system is in 

(i,j) 
state (i, j) at time t, and 

3. :E Prob-(i-2, j-2) vehicles finish and no arrivals in At and the system is in 
(i,j) 

state (i,j) at time t. 

We can now write in more classical terminology the Kolmogorov equations where we 
have utilized the independence of the probability of being in a given state and the event 
of arrivals and finishes (except at boundaries) plus the fact that the Prob [2-i, 2-j) ar
rivals J = Prob [(2-i, 2-j) arrivals\ an arrival] x Prob [an arrival]. Pdt + At) = (1 - >-.At) 
(1 - µAt) P22(t) + (1 - µAt) >-.At [A21 Po1(t) + A11 P11(t) + Aoi.Pu(t) + A10 x P12(t)] + (1 - >,,ll,t) µAt 
[f10P32(t)J. Rearranging terms, dividing by ll,t, andnegl ecting terms on the order (At)2 yield 

P 22 (t + ~/ - P 22 (t) = (->-. - u) Pdt) + >.. [A21 Po1(t) + Au P11(t) 

+ Ao1 P21(t) + A10 X P12(t)J + µf10 P32(t) 

Now we let At ... 0 and on the L.H.S. we have by definition P~2(t), i.e., the derivative of 
P~2(t). In this example we have 15 possible states so that employing the same limiting 
procedure to each of the 15 possible states would yield a linear system of 15 homo
geneous differential equations of the first degree; the system would have the following 
simple form: 

P' (t) = A P(t) 

where A is a 15 x 15 matrix and not a function of t. 
One of the easiest methods of obtaining the 15 forward Kolmogorov equations is to 

write the approximate probabilities of moving from state (i,j) at time t to state (i',j') 
at time t + ~t. This is shown in detail in Figure 1, where for brevity we have omitted 
the At associated with each>-. andµ and terms on the order (At)2. The first line in 
Figure 1 indicates that, if the process is in state (0, 0) at time t, it can conceivably be 
in states [(0,0), (1,0), (0,1), (1,1), (2,1)) at time t + At. In particular the probability 
that the process will be in one of these states is 1. The forward Kolmogorov equations 
for state (2,2) were obtained by setting P22(t + At) equal to the column entries below 
(2,2) multiplied by their respective states. In fact this is how all the forward Kolmo
gorov equations could be obtained. Note that in the row associated with state (3,0) at 
time t are the conditional probabilities with superscripts attached. If the process is in 
state (3,0) at time t and an arrival occurs, then it is impossible for the arrival to con
tain two cars and one truck; hence, the probabilities of the other three possibilities 
must be amended. In our example At~, Atl, and Ai31 are the conditional distributions of 
arrivals, given that an arrival occurs and that the arrival can be in only one of three 
states, (1, 0 ), (0, 1 ), or (1, 1 ). In this example 
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A(3l _ 0.5 
lO - 0.5 + 0.3 + 0.1 

A(3l _ 0.3 
01 - 0.5+0.3+0.1 

A(3l _ 0.1 
u - 0.5+ 0.3+ 0.1 

The Kolmogorov equations for this example produce a system of 15 linear differential, 
first-degree, and homogeneous equations of the form 

P'(t) = A P(t) 

At this juncture we can proceed in one of two directions: 

1. Find the solution of this system of linear differential equations with various 
initial boundary conditions, or 

2. Find the steady-state probabilities by making t very large, i.e., set P;J (t) = 0 
and solve the system of 15 linear equations, subject to :E P 1J = 1. 

ij 

The form of the solution to the linear system of differential equations in the first 
direction is 

P(t) = eAt P(0) 

Methods for obtaining this solution and solutions for the second direction are discussed 
in the next section. 

SOLUTION PROCEDURE 

For the example in the previous section we had 15 possible concentrations, i.e., 
N = 4 and M = 2. Suppose that the arrival of platoons at the bottom of the hill is 5/min 
and at the top of the hill is 3/min so that we set >.. = 5 and µ = 3 in Figure 1. The condi
tional distributions (A1J} and (f1J} will be the same as those given earlier. The average 
flow rate of platoons at the bottom of the hill is 5/min, but of course in some minutes 
there may be 0 platoons and in other minutes 10 platoons moving through the system in 
such a way that the limits N and M are not violated. 

Bw,o1(t) is a 15-component vector that represents the probability of being in each of 
the 15 states at time t given that at time 0 the state was (0,0). Of course, for different 
values of t these probabilities are different, but the sum of the 15 components is 1. To 
obtain B(o,oi(t)we must solve the following set of 15 linear differential equations: 

where A is the 15 x 15 matrix in Figure 1 with >.. = 5 andµ = 3. The general form of 
such systems is given by 

where B10,oi(0) is the boundary condition and represents a starting state of (0,0) at time 
0. The solution procedure is to obtain the matrix ,tA\ there are two well-known proce
dures for deriving this matrix (2, 10). The first relies on obtaining 15 distinct eigen
values of the matrix A so that A- can be diagonalized, and the second is simply a series 
expansion of the matrix ,tAt. We have chosen the second method for computational ex
pedience. 

The series expansion for the matrix ,tAt is 

At (At) 2 (At)3 
L = I + At + 2! + 3! + ... 
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Figure 1. Transition matrix at t + ~t. 
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Figure 2. Transition matrix for illustrative example. 

lal 0 0 1 0 2 0 3 0 4 0 0 1 1 l 2 1 

o,o .158 .103 .060 .029 .012 .063 .077 .088 

1,0 .143 .099 .064 .034 .015 .ass .070 .090' 

2,0 .121 .093 .069 .041 .020 .043 .060 .092 

3,0 .101 .085 .072 ,046 .024 .033 .051 .094 

4,0 .091 .078 .068 .043 .023 .029 .047 .097 

0,1 .143 .093 .052 .024 .009 .065 .078 .090 

1,1 .135 .089 .054 .027 .011 .056 .071 .093 

2,1 .123 .087 .059 .031 .014 .047 .063 .096 

3,1 .107 .082 -062 .035 ,016 .039 .055 .098 

4,1 .097 .077 ,061 .035 .017 .033 ,051 .100 

0,2 .134 .082 .044 .020 .008 .066 ,078 .091 

1,2 .123 .079 . 046 .022 .009 .056 .071 .095 

2,2 .114 .078 .oso .025 .011 .047 .064 .098 

3,2 .104 .076 .053 .027 .012 .039 .056 .101 

4,2 .098 .on .055 .029 .013 .035 .052 .102 

(bl 

o,o 1,0 2,0 3,0 4,0 0,1 1,1 2,1 
.120 .086 .058 .031 .014 .046 .062 .096 

2,1 3,1 4,1 0,2 1,2 2 ,2 3,2 4,2 

M.21 

/..All M.21 

MOl /..All M.21 
M(3) 

01 
M(3) 

11 

1' 

MOl /..All M.21 

MlO MOl /..All M.21 

1-1'-µ MlO ~1 /..All M.21 

µflO 1-1'-µ M(3) 
10 

M(3) 
01 

M(3) 
11 

µflO l-1'-11 1' 

1-1'-µ 1' 
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1-1'-µ 1' 

µfOl µflO 1-1'-µ A 

\Jfll µfOl µflO 1-1'-µ 1' 

µf21 µfll µfOl µflO 1-µ 

3 l " 1 
0 2 1 2 2 2 3 2 4 2 

,057 .040 .017 .034 .051 .062 .148 

.062 .047 .014 .029 .046 .06; .171 

.068 .058 .010 .022 .039 .059 .204 

.073 .068 .007 .016 .034 .058 .238 

.075 .070 .006 .014 .033 .060 .265 

.056 .037 .019 .038 .057 .069 .164 

.061 .043 .015 .032 .052 .069 .192 

.066 .051 .012 .023 .044 .065 .217 

,071 .059 .009 .019 .039 .063 .246 

.074 .062 .007 ,017 .037 .064 .270 

,055 .035 .021 .092 .064 .077 .184 

.061 .041 .016 .034 .057 .076 .214 

.066 .048 .013 .027 .049 .072 • 239 

.071 .054 .009 .021 .042 .069 .264 

.073 .058 .008 ,018 .039 .067 .278 

3,1 4,1 0,2 1,2 2 ,2 3,2 4,2 
.067 .052 .012 .025 .044 .065 .223 
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The number of terms required to approximate 1,At of course depends on the size of t; for 
large values of t a larger number of terms are required. 

When t = 1 min, the probabilities of being in each of the 15 states, given one starts 
in a particular state, are given in Figure 2. If at t = 0 the state of the hill is (0, 0), then 
the probability that the state of the hill is (0,0) at t = 1 min is 0.1589, whereas the prob
ability that the state of the hill is (4,2) at t = 1 is 0.1481. The probabilities of various 
concentrations at t = 1 depend quite naturally on the state of the hill at t = 0 (each row 
in Fig. 2 is different). The probability of being in state (0,0) at t = 1, given that the hill 
is in state (0,1) at t = 0, is 0.1433. If we want to know the probabilities of various con
centrations when t = 2, the matrix 1,At would be needed where t = 2. 

It might be expected that for large values of t the probabilities of various concentra
tions are independent of the starting states. This indeed is true and is a well-known fact 
about Markov processes. In this small illustrative example, this steady state was 
reached when t = 6 min. Figure 2b shows the steady-state probabilities; the probabil
ity of being in state (0,0) in the long run is 0.120 regardless of the starting state. The 
time to reach steady state is determined largely by the number of states possible, and 
in this example the number is only 15. In a later section a field study is described 
where the time to reach steady state is nearly 2 hours. 

The steady-state probabilities of the various concentrations shown in Figure 2b rep
resent a significant departure from the deterministic information given by an ordinary 
flow-concentration diagram. Instead of assigning a fixed value of concentration for a 
fixed flow, the stochastic model assigns a certain probability of various concentrations 
corresponding to a certain fixed mean flow of vehicles. Of course an average concen
tration could be computed, but the knowledge of probabilities of certain extreme condi
tions is available with this model, along with the time-varying behavior of these concen
trations. 

MEAN FIRST PASSAGE TIMES 

The dynamic properties of the multiple birth and death model are in some ways 
illustrated in the previous section wherein it was shown that the probability distribution 
of concentrations changed with time until a steady state was reached. In this section a 
more natural and useful dynamic property is described: How long does it take for a road 
jam to dissipate to ordinary conditions, or, put another way, how long does it take to 
move from a high concentration state to a low state or vice versa? How quickly a hill 
can become clogged with vehicles is a measure of its relative stability. 

The stability of traffic concentration on a hill can be analyzed by finding what is 
called the mean first passage time. The mean first passage time is simply the average 
number of minutes required to pass from a particular state to some other state. If the 
mean first passage time from state (0, 0) to state (20, 10) is relatively short, then the 
hill can become clogged in a very short span of time. 

The mean first passage time from state j to state k mJk is calculated from the follow
ing system of linear equations (i): 

mJk = 1 + ~ PJ1 m1k j -I= k 
i-/=k 

Pa is the probability of a single transition from state j to some intermediate state i. 
But in our continuous-time Markov process, PJ 1(t) involves an unknown number of inter
mediate transitions before state i is reached. However, if we consider a sufficiently 
small t, the number of transitions between j and i approaches 1, and we can use the 
above system of equations in a valid fashion to get a good approximation of the transi
tions from state i to state k. If we multiply the number of transitions, mJk by the time 
one transition on the average occurs, we get a valid approximation of the mean first 
passage times. In the interest of brevity, the mathematical development supporting 
these comments is omitted (Fig. 3). 

Figure 3 shows the mean first passage times for the illustrative example when the 
time interval used in discretizing the Markov process was ~t = 0.0001. (It should be 
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noted that we found negligible differences for tu as large as 0.05.) The mean first 
passage time from state (O,O) to state (4,2) was 2.09 min, whereas the mean first 
passage time from (2,1) to (0,0) was 2.00 min. Of course, with a larger number of 
states, the mean first passage times between the extreme pairs of state would be 
larger. 

FIELD STUDY 

In this section we shall describe some results of field studies where the feasibility 
and the validity of the assumptions for the stochastic model were tested. 

The crucial mathematical assumption is that platoons of vehicles arrive at both the 
bottom and top of the hill in a Poisson fashion (8, 9 ); nonetheless data were collected 
from four hills in Centre and Blair Counties in centr al Pennsylvania. In all cases the 
hypothesis that platoons of vehicles follow a Poisson flow cannot be rejected at the 0.05 
significance level when the classical chi-square goodness-of-fit test is used. It should 
be noted though that these tests were carried out during daylight hours wherein intercity 
traffic was only moderate; certain peak periods, such as the 5: 00 p. m. rush hour, were 
not tested. 

Oneparticulartwo-lanehill in Centre County was chosen to be studied extensively. 
Here we collected data to estimate>.., µ,, (A13 }, and (f1 J}. The particular hill was 
Penn-144 between the towns of Centre Hall and Pleasant Gap; this hill is about ½ mile 
long, and the bottom of the hill is in Centre Hall. The data were always collected dur
ing clear dry weather and between the hours of 9: 00 and 11: 30 a. m. Our estimates of 
the necessary parameters are given in Table 1 and are based on five observations dur
ing the months of July and August 1972. The tactical procedures used to collect, trans
cribe, and analyze the data can be found elsewhere (13). There were some difficult 
problems such as determining whether vehicles were platooned, and in many instances 
it was not entirely clear whether a vehicle should be classified as passenger or trans
port. 

The estimates for >.. and µ were 1.80 platoons/min and 1.28 platoons/min for this hill. 
The conditional distribution of platoon sizes is given in Table 1. The upper limits N 
and M were eventually set at 18 and 5 respectively; this permitted a total of 114 states 
(19 x 6). These limits do not represent upper bounds on the capacity of the hill; with a 
½-mile hill, these limits should be four or five times as large. The difficulty encount
ered was that, with matrices of the size 500 x 500, certain computational procedures 
become prohibitively costly; hence, practical limits of 13 cars and five trucks were 
used initially. Later a simple procedure for avoiding the dimensionality difficulty is 
discussed. 

The probability transition matrix for the 114-state model was computed for increas
ing values oft. The steady-state distribution was reached fort = 2 hours (Table 2). 
This compares with the illustrative example where after 6 min the steady state was 
reached. Note that Table 2 shows that, as the number of trucks increases, correspond
ingly the number of cars increases. For example, the probability that there are no trucks 
and 18 cars on the hill at any one time is 0.001; however, the probability of five trucks 
and 18 cars is much larger at 0.070. The conditional probability of 18 cars given that 
there are five trucks would be 0.070/0.288 = 0.240. 

Table 3 gives a sample of the mean first passage times. Note that the mean first 
passage time from state (0,0) to (18,5) is 63.84 min but from (18.5) to (0,0) the time is 
109.47 min. Hence on the average the time to reach saturation from zero concentration 
is over twice as long as to go from saturation to zero concentration. 

This type of information is, of course, not available from the classical flow
concentration diagram, which specifies the flow rate for a given concentration. Con
versely a given flow rate would correspond to two distinct concentrations. If the flow 
rate were x, then concentrations y and z could generate the flow shown in Figure 4. 
The stochastic flow-concentration model generates a probability distribution for the 
various concentrations rather than just two points y and z corresponding to a particular 
flow x. One might expect that this probability distribution should be some type of 
bimodal distribution with modes at y and z. To some degree this was in fact found to 
be true. 
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Figure 3. Mean first passage times for illustrative example. 

o,o 1,0 2,0 3,0 4,0 0,1 1,1 2,1 3,1 4,1 o·, 2 1 , 2 2 , 2 3 ,2 4 , 2 

o,o 1.08 2. 71 6.01 12. 7 2.64 1.77 1.35 2 . 27 3, 41 14.1 6 . 07 3.05 2 , 31 2.09 

1,0 1.43 2.02 5 . 45 12 . 2 3.50 1.87 1.27 2.01 3 . 09 15 . 0 6 . 48 3.22 2.29 1.93 

2,0 2. 18 1.32 3.91 10.8 4.14 2.49 1.18 1.75 2.48 15. 7 7 . 12 3.49 2.32 1.69 

3,0 2.64 1.94 1.62 7 .54 4.58 2,88 1.39 1.52 1.74 16.3 7 , 57 3.80 2.38 1.44 

4,0 2. 78 2.20 2 . 24 3,34 4, 67 2 . 98 1.37 1.76 0.77 16.3 7.62 3,82 2 , 37 1.08 

0,1 1.36 1.75 3.10 6.31 13.0 1.36 1.38 2 .36 3 .50 11.6 4 . 78 2.39 2.01 1.99 

1,1 1.82 1.73 2.97 6.14 12.8 3.09 1.01 2.09 3. 27 14.2 5.22 2.45 1.32 1.76 

2,1 2.00 1. 79 2.71 5.81 12.4 3.82 2, 25 1.52 2.84 15.3 6.77 2. 79 1.81 1.49 

3,1 2.48 1.84 2.51 5.31 11.8 4.37 2,64 1.22 1.94 16.0 7 .31 3.56 1.86 1.16 

4,1 2.66 2.16 2.41 5.15 11.2 4 , 52 2 . 85 1.16 1.70 16 . 1 7 .45 3.63 2 . 17 0. 67 

0,2 2.03 2.16 3.35 6 . 50 13.1 1.90 1. 76 1.48 2 . 42 3.54 1.92 1.60 1.71 1.87 

1,2 2.24 2. 21 3.31 6.42 13.0 2.85 1.80 1.34 2. 27 3.38 12.5 .093 1.32 1.60 

2,2 2. 34 2.20 3 . 20 6.28 12.9 3.36 2.06 1.17 2.05 3.14 14. 7 6 . 11 0.81 1.24 

3,2 2 .52 2. 23 3.10 6.11 12. 7 4.19 2,28 1.02 1.79 2.83 15 , 6 6 , 95 3,13 0 . 70 

4,2 2. 61 2.26 3.02 6.00 12.5 4.43 2. 75 0.89 1.67 2. 55 16,0 7 . 34 3.45 1.91 

Table 1. Field study parameters. Table 2. Steady-state probabilities for field study. 

Bottom of Hill Top of Hill Cars 0 2 3 4 5 

Arrivals Value Arrivals Value 0 0.021 0.009 0.006 0.005 0.003 0.001 
1 0.016 0.010 0.007 0.006 0.004 0.002 

A,o 0.734 f10 0.635 2 0.013 0.010 0.008 0.007 0.005 0.003 
A;o 0.098 f,o 0.146 3 0.012 0.010 0.009 0.008 0.005 0.004 
A.o 0.016 f,o 0.018 4 0.010 0.010 0.009 0.008 0.007 0.005 
A.,, 0.009 f,o 0.018 5 0.009 0.009 0.009 0.009 0.008 0.006 
A,o 0.003 f,o 0.004 6 0.008 0.009 0.009 0.009 0.008 0.007 
Ao, 0.095 fo1 0.041 7 0.007 0.008 0.009 0.009 0.009 0.008 
A11 0.032 fa 0.055 8 0.006 0.008 0.008 0.009 0.010 0.009 
A21 0.006 f21 0.037 9 0.006 0.007 0.008 0.009 0.010 0.010 
A02 0.006 1,. 0.009 10 0.005 0.006 0.008 0.009 0.011 0.011 

f01 0.009 11 0.005 0.006 0.007 0.009 0.012 0.012 
f,, 0.014 12 0.004 0.005 0.007 0.009 0.012 0.013 
f2, 2 0.005 13 0.003 0.005 0.006 0.009 0.012 0.015 
fe12 0.005 14 0.003 0.004 0.005 0.008 0.013 0.018 
f12 ,2 0.004 15 0.002 0.003 0.005 0.008 0.013 0.021 

16 0.002 0.003 0.004 0.007 0.013 0.027 
Nole: ~ • 1,80, &rid 11 • 1,28. 17 0.001 0,002 0.003 0,006 0.013 0.036 

18 0.001 0.002 0.003 0.005 0.011 0.070 

Total 0.128 0.126 0.130 0.149 0.179 0.288 
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Table 3. Mean first passage times Figure 4. Flow-density diagram. 
for field study, in min. 

To 

From (0, 0) (6, 2) 

(O,O) 0.48 59.71 
(8, 0) 84.27 67.61 

(18, 0) 107.6 82.34 
(0, 1) 25.30 57.55 
(8, 1) 84.57 61.85 

(18, 1) 107.53 82.00 
(8, 2) 87.80 49.85 

(18, 2) 107.87 81.90 
(0, 3) 67.78 61.44 
(8, 3) 94.86 65 .61 

(18, 3) 108.52 82.25 
(0, 4) 70.60 65.07 
(8, 4) 96.70 72.93 

(18, 4) 109.1 82.88 
(O, 5) 79.06 69.56 
(8, 5) 99.84 77.87 

(18, 5) 109.47 83.51 

(18, 6) 

63.84 
53.80 
26.28 
63.51 
53.04 
22.86 
51.46 
18.37 
60.76 
46.77 
13.00 
60.57 
46.78 
07.05 
59.24 
44.26 
00.14 

y z 
Concentration (vehlclll/distancel 

Figure 6. Field study distribution of concentration for total vehicles . 
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As a demonstration of this phenomenon, the stochastic model used for the Centre 
Hall Mountain· field study was adapted so that cars and trucks were treated identically. 
Previously, the upper bounds on cars and trucks were 18 and five respectively, which 
allowed only 23 vehicles on the hill, but this set of bounds requires 114 states. If, in
stead, all vehicles are treated identically then the model could use 114 as an upper 
bound. The actual upper bound on the number of vehicles allowed was set at 150. Fig
ure 5 shows the steady-state probabilities in graphical form; the two modes are at state 
7 and state 150. 

FURTHER CONSIDERATIONS 

The stochastic model described in this paper appears to be a valuable tool in the 
analysis of traffic flow and concentration, although no attempt has been made in this 
study to apply the methodology to the design and control of roadways. But considera
tion is now under way for applications in passing safety and speeds and certain other 
theoretical extensions. 

One shortcoming of the model is that the parameters X and µ are time-homogeneous. 
Obviously over long enough time spans we should treat X and µ as functions of time, i.e., 
X(t) and µ(t). This extension is certainly feasible, for the only additional difficulty is 
that the linear differential equations now become time-dependent. The transition ma
trices should then become even more useful when time intervals over rush hours are 
included. Furthermore mean first passage times become very important. 
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