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The objective of this paper is to establish an acceptable parameter for the 
internal energy of traffic flow so that further exploration of traffic dynamics 
can be pursued. Through a boundary condition analysis of traffic flows, it 
has been found that the currently suggested "acceleration noise" is not a 
good measure of the internal energy. Results of a theoretical analysis of 
analogous compressible fluid conditions indicate that, if the kinetic energy 
of a traffic stream is defined as wcu2, the principle of conservation of energy 
will not apply. This is because, when density is used instead of total 
number of vehicles, the system is not confined; thus energy will not be 
conserved. The compressible fluid analogy further suggests that a term 
P1 [ (k1/k0 ) - 1] may be used to represent the internal energy of traffic 
flows. Because the accuracy of this compressible fluid analogy is question
able, the term P 1 [ (k1/k0 ) - 1] is not directly applicable to traffic flows. 
Instead, an empirical approach is used in the search for a suitable internal 
energy parameter. Aerial photographic traffic data were used in this 
effort. Four vehicle-interaction-related parameters were analyzed. One 
of the parameters tested, the coefficient of variation of speed, not only has 
exhibited a variational pattern that agrees with that of the P1 [ (k1/k0

) - l] 
but also satisfies the boundary condition requirements. It is, therefore, 
proposed as a suitable measure of the internal energy of traffic flow. 

•AN UNDERSTANDING of the dynamics involved in traffic movement is no doubt a 
basis for design of an efficient and safe highway system. However, fundamentals of 
traffic dynamics have not been so fully developed as have other physical phenomena 
such as movement of discrete or continuous masses. One difficulty has been defining 
energy parameters in the involved macroscopic traffic dynamic system. In an attempt 
to provide a solution to this problem, a traffic parameter is discussed here that can be 
used to measure the internal energy of a traffic flow. 

Drew (1) introduced the energy concept into traffic flow analysis by considering the 
traffic stream to be analogous to the flow of a compressible fluid in a constant-area 
duct. He suggested that a kinetic energy term on the order wcu2 might be used to de
scribe certain properties of a traffic stream inasmuch as a similar term, ½ pV2

, is 
defined in fluid mechanics as the kinetic energy of a compressible fluid. In the traffic 
case, a is a dimensionless constant, k is the density of the traffic stream, and u is the 
average speed of the stream. Then, by applying the well-known principle of conserva
tion of energy, Drew further suggested that an internal energy term be added to the 
system to yield an expression for total traffic energy. The proposed relationship may 
be written as 

T E + I (1) 

where 

T total energy of a traffic stream (constant), 
E kinetic energy of the traffic stream (a.ku2

), and 
I internal energy of the traffic stream. 
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In most cases, the kinetic energy of a traffic stream can be easily obtained by mea
suring the density and average velocity of the stream. The internal energy, however, 
is thought to be related to the interactions among vehicles in the stream, and it is very 
difficult to define. Drew has proposed that the parameter "acceleration noise" (3) be 
used as a measure of internal energy. His proposal was based on two observations. 
First, the acceleration noise obtained by finding the standard deviation of the accelera
tion distribution of one vehicle traveling along a stretch of roadway has the same di
mensions as kinetic energy. Second, a plot of acceleration noise and aku2 versus density 
revealed that the acceleration noise values are generally low when the kinetic energy 
values are high, thus yielding a near constant value for total energy. 

Using acceleration noise as a measure of internal energy, we can rewrite Eq. 1 

T = aku2 + CTt = constant (2) 

where CTt is the derived acceleration noise parameter. 
Although this expression :represents a significant concept for studying traffic char

acteristics, it appears to have certain shortcomings. 
Uthe expressionalcu2 + at = constant is applied at the boundary conditions of a traffic 

stream, certain discrepancies become apparent. Consider first the internal energy 
term O't, According to Drew, <Tt is derived from a - a. where a is the measured ac
celeration noise of a vehicle and C1n is the natural acceleration noise displayed by the 
same vehicle subjected to no traffic interference. 

For the boundary condition where the density is zero (k = 0), the acceleration noise 
value o has to equal a. by definition. Therefore, at = a - a. would reduce to a. - a. or 
zero. Because there are no vehicles on the road at zero density, the kinetic energy at 
this point would also be equal to zero. Consequently, the total energy of the traffic 
stream when k = 0 would be T = E + I= 0. At the other end of the density domain, jam 
density (k = kJ), all vehicles on the roadway are stopped. Because there is no move
ment, a would necessarily be zero. Also, because the idea of a natural acceleration 
noise makes no sense for such extremely high-density conditions, a. is undefined at kJ. 
Thus, no meaningful value for total energy can be found for the jammed condition by 
using the proposed definition of internal energy. If the principle of conservation of 
energy holds true for a traffic stream using the parameters suggested by Drew, at does 
not seem to represent a good measure of internal energy. 

Intuitively, the internal energy of a traffic stream should express the degree to which 
vehicle interactions exist in the stream. From this point of view, the internal energy 
should be equal to zero when there are no vehicles on the road and should reach its 
maximum value when the density is maximum inasmuch as the greatest amount of ve
hicle interaction can be expected to occur at this point. A parameter that fulfills these 
boundary conditions is required. If it is assumed that such a parameter, call it I, exists, 
then the condition for the conservation of energy would be written as 

T = aku2 + I = constant (3) 

where I = 0 at k = 0 and I = I ... at k = kJ. 
To this point in the analysis, it has been assumed that the principle of conservation 

of energy can be applied to a traffic stream with the suggested parameters. If Eq. 3 is 
evaluated at the appropriate boundary conditions, however, the following results are 
obtained: 

k = 0 ... E = aku2 = 0 and I = 0 

.".T=E+I=O 

aku2 = 0 since u = 0 and I I,ax 

:. T = E + I = L...x 

Because I.ax must be greater than 0, the conservation of energy (Eq. 3) does not hold. 
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From the analysis documented above, two general conclusions can be drawn. First, 
acceleration noise is not an adequate parameter for representing the internal energy of 
a traffic stream if the internal energy is defined in terms of vehicular interaction; and, 
second, if the kinetic energy of the traffic stream is defined as cxku2 and the internal 
energy is defined in terms of vehicular interaction, which is zero at zero density and 
a maximum at jam density, the principle of conservation of energy does not apply. 

From these conclusions, it is apparent that some modifications must be made in the 
energy concept if it is to be used in traffic flow conditions. 

THEORETICAL INVESTIGATIONS 

Energy System of a Traffic Stream 

Consider a platoon of n vehicles. At time t 0 , assume that these vehicles are spread 
along a section of roadway at a low density ko and are moving at an average speed u0 • 

Due to a disturbance of some sort, the first vehicle slows down and the vehicles start 
backing up. At time t1 the average speed has dropped to u1 and the density has increased 
to k1 • If the cause of the disturbance continues to prevail, a complete stoppage of the 
platoon will eventually occur. At this time a bumper-to-bumper situation will exist, 
and the density will have reached its maximum value of kJ. This sequence of occur
rences is shown in Figure 1. 

These conditions can be considered analogous to the system shown in Figure 2. In 
this system, a bulk of compressible fluid with mass m is moving through a frictionless 
pipe with unit cross section. The initial conditions are that at time t 0 this bulk of fluid 
is moving at a velocity v0 with density p 0 and has length 10 • A varying resistant force 
is introduced into the system. Because of the resistance, the movement of the fluid 
mass is retarded and the fluid slows, eventually coming to a stop. At the same time, 
because of the compressive action of the variable force and the inertia of the fluid, the 
density of the fluid increases and reaches a maximum density PJ when the stoppage oc
curs. 

Now suppose that the fluid mass was completely stopped at time tJ and that the aver
age resistant force from time t 0 to tJ was measured as PJ. Also assume that the length 
of the mass at tl was ll. In the intermediate condition at time t 1 (Fig. 2b), the mass is 
moving at a velocity V;, the density is p1, the length of the mass has been reduced from 
10 by an amount Al1 to 11, and the average resistant force from time t 0 to t 1 is repre
sented as P 1 • 

Consider the condition shown in Figure 2a. There is no external force in the sys
tem, and the total energy involved is simply equal to the kinetic energy of the moving 
mass, ½mv~. After the resistance is applied to the system, the speed of the mass is 
reduced, and part of the kinetic energy is lost and is transferred to another form of 
energy. In this confined system the only other form of energy possible is that stored 
in the fluid itself due to the work done by the compressive action of the resistant force 
and the inertia of the fluid itself. At time t 1 the kinetic energy of the fluid has been 
reduced to ½mv~. The work done to this time by the resistance is equal to the average 
compressive force P 1 times the distance by which the fluid was compressed oll.1 1 • The 
total energy at time t1 is then 

(4) 

When the fluid mass is stopped at time tJ, there is no kinetic energy in the system. 
The stored energy at this time is equal to PJAlJ where All= 10 - ll. Hence, the total 
energy would be 

With the system confined and no other forces or energy involved, the principle of 
conservation of energy states that the total energy of the fluid for all three points in 
time must be equal. 

(5) 
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(6) 

Now, if the intermediate condition is taken as a reference, the following general ex
pression can be written: 

(7) 

Dividing both sides of Eq. 7 by 11 gives Eq. 8. 

(8) 

Now, m/11 is the density of the fluid mass at time t 1 (pi) and the term (P1Ali)/11 is 
simply the energy stored in a unit section (I1). Thus another form of Eq. 8 is 

(9) 

Inasmuch as C/11 is not a constant but is a function of li, the conclusion extracted 
from this analysis is that, if the kinetic energy of a compressible fluid is expressed a s 
½p1v; and the internal energy is expressed as the energy stored in a unit section of the 
fluid, then the principle of conservation of energy does not hold because the system is 
no longer confined; we are not dealing with a certain amount of mass but, instead, the 
variable mass in a unit volume. From the analogous point of view, if the kinetic energy 
of a traffic stream is expressed as aku2

, then the energy of the stream will not be con
served, no matter how the internal energy is defined, because the system is no longer 
confined. This conclusion agrees with the observation made in the previous section 
from examination of the traffic stream boundary conditions. 

Internal Energy of a Traffic Stream 

Although it has been demonstrated that the principle of conservation of energy does 
not hold for a traffic stream when kinetic energy is defined as aku2, it is thought never
theless that the concepts of kinetic and internal traffic stream energy are valuable 
contributions to the understanding of the dynamics of traffic flow. To apply these con
cepts, however, we must find a parameter that accurately reflects internal energy. 
This parameter must satisfy the boundary conditions for internal energy, which were 
discussed previously, and should in general exhibit a compensatory pattern with cor
responding kinetic energy. 

Consider the compressible fluid discussed previously. The internal energy in gen
eral can be expressed as (P1Al 1)/1 1 • Because Al1 = 10 - 11 and m = p 0 l 0 = p1 11, then 
Al1 can be written as m/p 0 - m/p1 = m(l/p 0 - l/p1). Thus, the internal energy term 
becomes P 1p1 (1/p 0 - lp1). The traffic stream analogy of this term would be P 1k1 (1/k0 -

l/k1) where P 1 is the average of an imaginary resistant force acting on the traffic 
stream from time to to time t 1 • 

If this resistant force were constant (call it Pc), then the term P 1k1 (1/k 0 - l/k1 ) could 
be written as a linear function of k1, that is, as Pc (ki/k0 - 1). A graphical presentation 
of this force is shown in Figure 3. It can be seen that the greater the density k1 be
comes, the greater the internal energy becomes, and when k1 -+ k 0 -+ 0 the internal energy 
also approaches zero. This behavior satisfies the boundary conditions previously pos
tulated for the internal energy of a traffic stream. 

The relationship shown in Figure 3 was based on the assumption that the resistant 
force was constant. When a traffic stream is considered, however, this force is in
visible and might be imagined to be a function of the internal friction inherent in traffic 
flow. From our general knowledge of traffic behavior, it seems more logical to assume 
a variable force in these circumstances than a constant force. In mechanics a force F 
is related to the mass of an object m and its acceleration a by Newton's second law of 
motion, F = ma. Because mis a constant, the force can be written simply as a function 
of acceleration: F = f(a). This argument suggests that the imaginary force that acts 
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Figure 1. Traffic queue-forming condition. 
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on a vehicular platoon is a function of the acceleration distribution of the stream with 
mean value u. It is generally accepted that the velocity of traffic flow is a function of 
traffic density: u = f(k). If we differentiate this expression with respect to time, the 
following relationship is obtained: 

u = f'(k~ 
dt 

(10) 

where f' (k) = df/ dk. This implies that the imaginary resistant force P is a function of 
f'(k}(dk/dt). In this expression, f'(k} would be a known function if the relationship be
tween speed and density were defined. The term dk/dt, which is the time rate of change 
of density, however, does not present a functional pattern according to existing knowl
edge. For this reason, no exact expression for the variation of internal energy as a 
result of the analysis of this section provides a valuable guide in the search for a suit
able internal energy parameter. 

EXPERIMENT AL INVESTIGATION 

Methodology 

From the previous analysis, it seems that, if a traffic flow could closely resemble 
the properties of a compressible fluid, the term Pi (k1/k0 - 1) would be used to indicate 
its internal energy. Because the fluid analogy is not strictly applicable throughout the 
density domain and because it has been shown that the imaginary resistance for a traf
fic flow does not take a specific functional pattern, the term Pi (ki/k0 - 1) cannot be used 
as a direct measure of internal energy in itself. It does seem to provide, however, a 
good approximation of the true internal energy pattern. 

A good internal energy parameter should satisfy the following requirements: 

1. It should be a measure of vehicular interaction, 
2. It should satisfy the boundary requirements of traffic conditions, and 
3. It should have a variational pattern that approximates the variational pattern of 

the fluid analogous term Pi(ki/k0 - 1). 

With these criteria in mind, an empirical approach is used in the search for an in
ternal energy parameter. This approach is dictated by our inability to establish a 
theoretical expression for the internal energy of a traffic system. The following activ
ities direct the empirical analysis: 

1. Establish the variational pattern of the term P1 (k1/k0 - 1) versus density from 
appropriate data; 

2. Choose vehicular interaction related parameters, and plot their variational pat
tern against density; 

3. Compare the plots obtained from procedures 1 and 2 to see whether they agree; 
and 

4. If they do, check the boundary requirements. 

The data used for this investigation were collected by an aerial photogrammetry 
technique (2). The selected platoon is displayed on the vehicle trajectories shown in 
Figure 4. -

Variations of the Imaginary Resistant Force for the Platoon Studied 

To calculate the imaginary resistant force, we treat the platoons as confined masses 
of compressible fluid. The arithmetic mean speed of the platoon is taken as the speed 
of the fluid mass, and the force is considered to be a function of the time rate of change 
of the average speed (acceleration). Figure 5 shows the relationships between average 
acceleration and density for the platoon. Disregarding scale differences, the average 
imaginary force would have the same variational pattern with density as does average 
acceleration. 
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Figure 4. Identification of platoon studied. 
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If we recall that the expression for internal energy of the traffic stream is P1 (k1/ k0 -

1) and that (k1/ k0 - 1) is an increasing linear function of density, then the variation of 
internal energy with density can be specified. The internal energy will be a generally 
increasing function of density with a hump at that value of density where the average 
resistance is at a maximum (Fig. 5). 

Alternative Internal Energy Parameters 

With the theoretical pattern for the variation of internal energy with density deter
mined for the selected platoon, it is now possible to investigate the applicability of sev
eral possible internal energy parameters. Four different parameters that are con
sidered to be vehicular interaction related have been analyzed. These are 

1. Standard deviation of the acceleration distribution of a platoon a. (this is in contrast 
to the acceleration noise value, discussed earlier, that considers only one vehicle), 

2 . Average of the absolute value of acceleration of the vehicles in a platoon I a I, 
3. Standard deviation of the platoon speed distribution a., and 
4. Coefficient of variation of the platoon speed distribution defined as the standard 

deviation of speed divided by the arithmetic mean speed (CVJ. 

Standard Deviation of Acceleration-The relationship between the standard deviation 
of acceleration and density for the selected platoon is shown in Figure 6. No recogniz
able pattern similar to the one desired for internal energy can be identified. In addi
tion, this parameter does not satisfy the boundary condition that requires that it be a 
maximum at maximum density. 

Average Absolute Acceleration-Figure 7 shows a plot of the average absolute ac
celeration versus density for the selected platoon. The pattern is similar to that ob
tained for the standard deviation of acceleration and has no value as a representative 
of internal energy. 

Standard Deviation of Speed-Investigation of the standard deviation of the platoon 
speed distributions yielded much more encouraging results than the acceleration
oriented studies. Figure 8 shows the variation of the standard deviation of speed with 
density for the selected platoon. A functional variational pattern is presented: The 
dispersion of speed decreases as density increases until a region is reached where 
almost all the vehicles in the platoon are moving at about the same speed. As density 
continues to increase, the dispersion of speeds begins to increase as well. This phe
nomenon can be explained by the fact that traffic flow at high densities tends to be un
stable, and there can exist a large variance among the speeds of the individual vehicles 
in such a disturbed flow situation. With still further increases in density, the dispersion 
of speed once again drops because the space available to each vehicle for maneuvering 
has become severely limited. Finally, when jam density is reached, a. falls to zero, 
for all movement on the roadway has ceased. 

This parameter appears to be a good indicator of internal energy in that it is rep
resentative of prevailing vehicle interactions. It presents a consistent and recogniz
able pattern with density and is simple to calculate. It does not, however, satisfy the 
boundary condition that internal energy be a maximum at jam density. 

Coefficient of Variation of Speed-To correct the boundary condition shortcoming 
displayed by o, requires that a modified parameter be formed by dividing the standard 
deviation of the speed distribution by the arithmetic mean speed at each density level. 
This parameter, CVu, is referred to in statistical terms as the coefficient of variation 
of speed and provides a measure of the relative dispersion of the speed values as a 
percentage of the mean speed. A plot of CVu versus density is shown in Figure 9 for 
the selected platoon. Comparing the exhibited patterns with Figure 5, which were 
derived earlier, evidences a superb agreement. 

Now we check the boundary conditions. According to the definition of the coefficient 
of variation of speed, we have 

CVu = 
[~ it(µ! - µ)2] 1/2 

µ 



Figure 6. Standard deviation of acceleration versus density for platoon studied. 
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where 

n 
µ = L /,tt/n = average speed, 

i=l 
ILt = speed of i th vehicle in a traffic stream, and 
n = number of vehicles. 
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We can see that, when (a) k = o, ILt ... µ., andµ ... µ.,, and thus CVu approaches zero; and 
that when (b) k = kJ, µ.1 ... 0, andµ ... O, and thus CV. approaches maximum when k ... k3• 

From this analysis, it is evident that the boundary conditions have been satisfied. An 
interesting point to be noted here is that, when every vehicle is moving at the same 
speed u1 (in this case µ. 1 = µ), CV. approaches zero also. 

From the evidence presented, it seems that the coefficient of variation of speed is 
an excellent choice for measuring the internal energy of traffic flows. 

CONCLUSIONS 

From the analyses relating to traffic energy presented in this paper the following 
general conclusions may be drawn: 

1. If the kinetic energy of a traffic stream is defined as oocu2 and the internal energy 
is defined in terms of vehicular interactions, the principle of conservation of energy 
does not hold. In fact, it will not hold regardless of how internal energy is defined so 
long as kinetic energy is taken to be aku2 because we are not dealing with a confined 
system, 

2. Acceleration noise does not represent a good indication of internal energythrough
out the entire density domain. 

3. If traffic flow is taken to be exactly analogous to compressible fluid flow, internal 
energy can be expressed as P1 (k1/k0 - 1) for the i th traffic state. ff the analogy is 
only approximately correct, as seems logical, the term P1 (k1/k0 - 1) serves as an ap
proximation of the true internal energy. 

4. Of the four alternative internal energy parameters studied, only the coefficient of 
variation of speed fulfilled all the requirements postulated for the desired parameter. 
It is, therefore, proposed as a suitable measure of the internal energy of a traffic 
stream. 

It is thought that the material contained in this paper represents a further step 
toward the attainment of an understanding of the dynamics involved in traffic movement. 
Such an understanding is a necessary prerequisite to the establishment of a safe and 
efficient highway system and forms a basis for determining control strategies for that 
system. 
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