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Many current approaches to freeway control use deterministic models of 
traffic flow based on the continuous flow-density curve. This paper pro
poses a control strategy based on a two-state traffic flow pattern with the 
primary control parameter being the probability of transition from uncon
gested flow to congested flow. The objective of the control is to maximize 
the reward associated with free flow. Trial solutions indicate that feasible 
numerical values for optimum control can be easily obtained, and these 
will be dependent on the length of the peak period. The approach should 
have direct applicability to existing surveillance and control hardware. 

•BOTTLENECK, which is the primary cause of congestion on a limited-access highway, 
is a term defining some operational constriction. It is usually identified with a local 
area rather than a precise point of the highway. Physical bottlenecks are related to 
the design features of the highway and are fixed in space, and dynamic bottlenecks are 
related to traffic incidents and can occur at any location. Regardless of the type, all 
bottlenecks have a disruptive effect on traffic, which will be some combination of in
creased accident potential, reduced traffic volume, and detrimental environmental ef
fects. Bottleneck control, simplistically overstated, contends that more traffic can be 
served at a higher level of service if congestion is eliminated. The control concept is 
to sustain the best operational level and, by preventing congestion, to yield benefits in 
increased safety and reduced delay. 

Many control methodologies, theoretical and applied, have been based on the tradi
tional flow-density relationship (1), which suggests a point of maximum flow (capacity). 
Initial controls in the Lincoln Tunnel in New York (2) and the Eisenhower Expressway 
experiments in Chicago (3) were based on the assumption that traffic could be controlied 
to this maximum flow condition. This maximum flow point, however, turned out to be 
very sensitive to breakdown, and it could not be maintained in practice without the rapid 
onset of congestion. Accordingly, most strategies have backed off from the theoretical 
ideal of maximum flow, and the emphasis is now on delaying or preventing congestion. 

New York used density as the control parameter, whereas Chicago used the directly 
measurable equivalent, occupancy (4). Experimental work on the Gulf Freeway in 
Houston (5) combined parameters in various functions of volume, speed, and density. 
The deterministic approaches to these systems required ongoing empirical refinement 
of their control functions to balance the risk of congestion against higher allowable flows. 

PEAK-PERIOD BOTTLENECK CONTROL 

Early literature on freeway characteristics alludes to traffic operation as a two
state process. Mika, Kreer, and Yuan (5) identified two modes of operation correspond
ing to congested and uncongested flow on a freeway. Refined measurements of flow and 
density indicate that the q-k curve masks the underlying traffic process. The curve is 
a regression fitted to historical data and, as such, does not necessarily provide a suitable 
model for real-time control. In particular, the curve does not model operating dif
ferences from day to day caused by weather or short-term variations caused by in
dividual driver characteristics. 

A pilot control scheme that has been tested in Chicago (6) modifies some of the pre
vious approaches. The control is aimed at peak-period flow, and its primary objective 
is to delay the onset of congestion by limiting bottleneck flow. During any time period, 
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which in this case is 1 min, the probability of congestion setting in, i.e., the probability 
of breakdown, is assumed to be a function of flow and density in the bottleneck. Given 
a suitable probability and the bottleneck density, the controller sets the desired bottle
neck flow for each time period. The ramps upstream of the bottleneck are then metered 
to achieve the appropriate bottleneck flow. In the Chicago experiment the probability 
of breakdown and its functional relationships were heuristically determined and then 
empirically refined from freeway data. 

In the following sections, a more analytical approach is suggested. This approach 
involves techniques that should be within the capability of current controllers and uses 
functions that, although not yet empirically validated, will require only currently avail
able freeway data for their estimation. 

PROBLEM FORMULATION 

Bottleneck operation is formulated as a process in which finite probabilities of 
breakdown are associated with each level of operation. The control stragegy considers 
the peak period as a series of successive time intervals where the probability of break
down is set to optimize overall performance. It is assumed that, once congestion has 
set in, recovery during the peak period cannot be effected, a characteristic common in 
many practical situations. 

The peak-period operation of the bottleneck consists of an uncongested period of 
some length followed by a congested period. If some reward is associated with the 
uncongested period, then the control objective would be to maximize the expected re
ward of the system. The reward, which can be some combination of increased flow, 
reduced accident risk, reduced emissions, and the like, will be some function of the 
probability of breakdown and the length of the uncongested period. 

The reward function considered here will be in terms of traffic flow, and the objec
tive considered for this problem is that of maximizing the expected value of the uncon
gested peak-period flow. The exact form of the reward function will require field testing 
and estimation. Its general characteristics, however, can be deduced from operational 
bottleneck experience and should follow the approximate form shown in Figure 1. Ini
tially the function will rise rapidly to a substantial traffic flow before the probability of 
breakdown becomes significant, but then the rate of flow increase will decline . Because 
only uncongested traffic flow is being considered, the function will be continuous and 
for this particular problem only the left region (p < 0.25) is significant. This will 
simplify empirical validation. 

Figure 1. Flow at a bottleneck as a function of the probability of 
breakdown. 
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For a suitable function to fit this general shape we use here the incomplete beta 
function: 

where 

0 ~ p < 1, 
a and b> 0, and 

p 
R(p) = y(a + b} / ta-1(1 - t?-ldt 

y(a)y(b} 
0 

y(x) = the gamma function. 

AN INFINITE PEAK PERIOD 

(1) 

Consider a controlled bottleneck where the probability of breakdown is set equal to 
p for each time period during uncongested flow. Then the probability P(k} of an uncon
gested period of k time periods will be given by 

P(k} = (1 - p)k x p k = 0, 1, 2 . .. 

Because we are dealing with traffic at the macro level (1-min averages) and not the 
micro level of individual vehicles, the assumption of independence of trials is valid. 

The expected return E (R} will be 

= 
E(R) = r <1 - p)k p x R(k, p) 

k=0 

The optimal control strategy will be to choose p to maximize the return. 

dE(R) = _i. = r (1 - p)k p x R(k, p) = 0 
dp dp k- 0 

for optimum and 

d2E(R) d2 = 
--- = - r (1 - p)k p x R(k, p} < 0 

dp2 dp2 
k=0 

for maximum. 

(2) 

(3) 

(4) 

(5) 

To check the feasibility of the reward function developed in the previous section we 
assume a form 

p 

R(k, p) = k y(a + b} / ta- 1(1 - t)b-1dt 
y(a)y(b) 

0 

and the optimal strategy would be given by 

d 
dp 

r [(1 -p)k X p X k ~y_(a_+_b~} /p 
k=0 y(a)y(b} o 

(6) 

(7) 

For values of a= 2 and b = 9, this gave a numerical solution of p = 0 .12. Although this 
is a hypothetical example, the solution is in a practical range although perhaps rather 
high inasmuch as it gives an expected length of the uncongested period of only 7. 5 time 
periods. Values of p below 0.1 would give somewhat better results. 



Figure 2. Optimum probability of breakdown for a finite peak period. 
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A FINITE PEAK PERIOD 

Suppose now that the peak period has a finite length of n time periods. Then the 
probability of an uncongested period of k time periods is given by 

P(k) = (1 - p/ p k = O, 1, ... (n - 1) 

P(n) (1 - Pt 

The expected reward during the uncongested period will be 

n-1 
E(R) = L [ (1 - p/ pR(k, p)] + (1 - pt R(n, p) 

k=O 
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And, again, setting [dE(R)]/ dp = 0 will give the optimum control value for the probability 
of breakdown. In this case, however, this optimum value will be a function of n. 

This affects the bottleneck control strategy in at least two ways. First, if uncon
gested flow has been continuously maintained during the peak period, then the control 
stragegy at any time period is dependent only on the length of the peak period remaining. 
As the peak period progresses, therefore, the value of n steadily declines, and, ac
cordingly, the parameter values for the control may change. 

The second circumstance is when uncongested flow is recovered from the congested 
state during the peak period, which can occur, for example, when demand temporarily 
declines because of an incident upstream. The control strategy for rmcongested flow 
will then depend on the length of the peak period remaining . 

To indicate the possible magnitude of this dependence, we used the same reward 
function used as an example in the previous section as a numerical example of the finite 
length case. The optimum values for p are shown in Figure 2, which clearly indicates 
the effect of the peak period length n. 

CONCLUSION 

This paper offers a different analytical approach to freeway control. Inasmuch as 
it provides a limited theoretical supplement to the empirical control algorithms already 
in operation, it should be suitable for practical implementation. The essential traffic 
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functions required, such as the probability of system breakdown, are not yet generally 
available; their estimation, however, will require only data that are a normal output of 
most current freeway surveillance systems. 

The methodology can be used on existing freeway control systems by changing the 
computer programming but without modification to the hardware. New operational 
parameters can be developed from the system itself based on a new datum of controlled 
bottleneck operations. Data from an uncontrolled bottleneck serve as the first approx
imation in developing the control strategy. 

To sustain congestion-free bottleneck operations for longer control periods requires 
that the optimal value of the probability of breakdown be maintained considerably below 
0.1 (assuming 1-min time periods). This finding is contrary to the control strategy of 
operating at maximal flow developed by most theoretical studies but agrees with oper
ational experience where "overcontrol" is necessary to prevent breakdown. The ex
planation lies with the q-k relationship, its probable discontinuous character, and its 
nonregular short-term behavior. 

For a normal peak period, the length of the peak period has little effect on the selec
tion of the optimum probability. Where the control is operating near the end of the 
peak period, however, the length of the peak period remaining should be taken into con
sideration. 
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