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FOREWORD 
The six papers in this RECORD report on research designed to improve our basic 
understanding of the theory of different traffic flow situations. They will be of interest 
primarily to researchers and flow theorists and, to a lesser extent, traffic control 
specialists. 

In the first paper, Garner and Parsons describe their work in England, which com
pared three methods of measuring journey speeds and flows: license matching, moving 
observer, and arrival output. The authors conclude that the arrival-output method 
gives more consistent and accurate results than the moving-observer method, is less 
costly than the license-matching method, and permits measurement of variations in 
flow over relatively short time intervals. They suggest that it should be much more 
widely used. 

The work by Munjal and Hsu focuses on tests of the validity of three mathematical 
models developed as a means of describing lane-changing behavior. They use data 
from aerial photographs to evaluate a linear model proposed by Gazis, Herman, and 
Weiss, a nonlinear model by Oliver and Lam, and a stochastic model by Worrall, 
Bullen, and Gur. Validity measurements were made by statistical analysis. 

Haefner and Warner present a technique for comparing traffic control alternatives 
and for measuring changes in performance of a complex traffic system. They analyze 
the traffic situation as a stochastic process and then present the elements of Markovian 
decision theory as a control evaluation format. Limited field examples from the merg
ing section of the Baltimore Harbor Tunnel are also presented. 

Flow on a two-lane hill was studied by Soyster and Wilson who extended the determi
nistic model by allowing a probabilistic distribution of concentrations for a given mean 
value of flow. Hence, instead of two concentrations corresponding to a mean flow rate, 
they generate a probability distribution that varies with time for a whole range of con
centrations. 

Seeking ways to further explore traffic dynamics , Lee and Yu set out to establish an 
acceptable parameter for the internal energy of traffic flow. They analyzed four vehicle
interaction related parameters by using data from aerial photographs and concluded that 
one of them, the coefficient of variation of speed, is a suitable measure of internal 
energy. 

In the final paper, Athol and Bullen propose a freeway control strategy based on a 
two-state traffic flow pattern with the primary control parameter being the probability 
of transition from uncongested flow to congested flow. Their trials of the proposal 
suggest that it could have direct applicability to existing surveillance and control 
hardware. 

iv 



MEASURING JOURNEY SPEEDS AND FLOWS 
J. B. Garner, University of Leeds, England; and 
D. R. Parsons, Durham County Council, England 

The paper sets out to compare three methods of measuring journey speeds 
and flows. The methods studied are license matching, moving observer, 
and arrival output. In particular, 'the results obtained from the moving
observer and arrival-output methods were compared directly with those 
obtained from the license-matching method, which was taken as the stan
dard method. Observations were taken simultaneously for each of the three 
methods at five locations. The locations chosen covered highways in urban, 
suburban, and rural areas and involved highways of varying design stan
dards. A statistical analysis of the results showed that the arrival-output 
method, which is seldom if ever used, gives far more consistent and accu
rate results than the more conventional moving-observer method. More
over, the arrival-output method can measure variations in flow over rela
tively short time intervals in addition to the usual hourly flows. The paper 
also shows that the moving-observer method and the arrival-output method 
involve almost identical cost, whereas the license-matching method is con
siderably more expensive. It concludes that there is no logical reason why 
the simple arrival-output method should not be used in preference to the 
moving-observer method. 

•QUANTITATIVE information about road traffic is necessary in order to deal with 
problems of traffic congestion. For example, vehicle speeds and flows should be 
known so that an economic assessment of road improvement schemes can be made. 
Methods must therefore be available whereby these speeds and flows can be determined 
quickly and accurately on various types of roads for different traffic flow conditions. 

The object of this paper is to examine in some detail the relative merits of three 
methods of measuring journey times (and hence speeds) and volumes over a given 
length of road. The three methods considered are the (standard) license-matching 
method, the moving-observer method, and the arrival-output method. 

In particular, the paper is concerned with the effectiveness of the arrival-output 
method, which, as far as the authors are aware, has not previously been compared 
with the more conventional license-matching and moving-observer methods. 

TEST SITES 

Four sections of road were chosen for the study so that information could be col
lected and a comparison made of roads of varying lengths and types. The sites chosen 
were as follows: 

1. City center route-part of the Headrow in the center of Leeds and 330 m in length 
(Fig. la); 

2. Radial route-a section of Meanwood Road, Leeds, a little more than 1.5 km in 
length (Fig. lb); 

3. Ring road route-part of the Leeds Ring Road, 1.41 km in length (Fig. le); and 
4. Rural route-a section of the Ml motorway from intersection 41 to intersection 

43 (at the time of the study, intersection 42 was not open) (Fig. ld). 

1 



2 

MEASUREMENT METHODS 

License-Matching Method 

Table 1 gives the reported number of license matchings (as recommended by Sawhill 
and Berry) that have to be made on various types of facilities in order that the mean 
journey time and speed can be determined with an error of less than 5 percent with a 
95 percent degree of confidence. 

Because the heavy volumes of traffic at all sites in this study made it impracticable 
to record all licence numbers, samples were instead selected in accordance with the 
requirements given in Table 1. To be truly representative, a sample has to be dis
tributed systematically throughout the periods of observation, during which time there 
is little change in traffic volumes. In this study, the method selected to ensure a sys
tematic distribution was to record all vehicles whose registration number ended with 
an even digit. 

Moving-Observer Method 

Flows and speeds are obtained from the following formulas, which were derived by 
Wardrop and Charlesworth (!): 

q = ~ 
t,, + t.. 

and 

t t. _I 
q 

where 

q = flow in vehicles per unit time, 
t = mean journey time, 
x = number of vehicles met in the section when observer is traveling against the 

stream, 
y = number of vehicles that overtake the observer minus the number of vehicles 

that he overtakes when traveling with the stream, 
t. = journey time of the observer when traveling with the stream, and 
t. = journey time of the observer when traveling against the stream. 

The mean journey time and, hence, the mean journey speed were first determined 
for each run of the test car; the overall mean journey speed was then determined. 

Arrival -Output Method 

This method of gathering speed-flow data is not at all well-known and so will be 
described here in some detail. It is somewhat similar to the moving-observer method 
in that a test car carrying an observer with a stopwatch is fed into the stream of traffic; 
roadside observers with stopwatches are also posted at the start and finish of the test 
section. The observers with stopwatches are also posted at the start and finish of the 
test section. The observer in the test car, observer A, records the time taken for the 
test car to cover the test section. Meanwhile, when the test vehicle enters the test 
section, the first roadside observer, observe r B (Fig . 2), pr oceeds to count the num
ber of vehicles that pass the starting point during each successive, say, 1-min interval. 
Immediately after the test vehicle passes the finishing point, the second roadside ob
server, observer C, proceeds to count the number of vehicles passing that point in each 
successive 1-min interval. 

When the test vehicle has completed the test section, it makes its way back to the 
starting point. As it passes the beginning of the test section for the second time, 
traveling in the same direction as for the first run, observer B completes his first run 



Figure 1. Test sites: (a) cenu .. i city route, (b) radial route, (c) ring road route, and (d) rural route. 
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Table 1. Number of license matchings required for 
various facility types W-

Location 

Urban 

Rural 

Type ol Facility 

Signalized, two lane, uncongested 
Signalized, two lane, congested 
Multilane, uncongested 
Multilane, congested 

Two lane, up to 1,130 vph 
Two lane, up to 1,440 vph 
Four lane, uncongested 

Number of 
Matchings 
Required 

32 
36 
80 

102 

25 
41 
30 

Pedestrian crossing 
bt,gjns section 

Figure 2. Positioning of cars and observers for moving-observer 
method. 
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measurements and proceeds to record data for the second run. Observer A simply 
records the time taken for each test run, i.e., the time taken for the test vehicle to 
travel from the starting point to the finishing point of the test section. This he does 
for each run of the test vehicle. This procedure is repeated until the required number 
of runs has been completed. 

The theory behind the method is as follows. Assume that xis the test vehicle and 
y and z are two following vehicles and that x1, Yi, and z1 in Figure 2a are their relative 
positions as they pass observer B and X:!, Ya, and z2. are their positions as they pass 
observer C (Fig. 2b). Let ty1 and tz1 be the headway between the time that the test 
vehicle crosses the starting point and the time that vehicles y and z cross the same 
point. Similarly, tyz and tZa are the corresponding headway times at the finishing 
point. Let T be the time taken for the test vehicle to cover the test section. Then the 
time taken for y to cover the test section is T + tya - ty1 and the time taken for z to 
cover the test section is T + tzz - tz1. Therefore, the mean time taken by y and z is 
½(T + tya - ty1 + T + tZQ - tz1). 

This may be extended to show that, when there is a continuous stream of n vehicles 
following the test vehicle, the mean time (T.) for them to cover the test section is given 
by 

1 1 
T = T + - E ta - - !: t1 • n n 

Timing every individual vehicle as it passed the roadside observers would be a very 
difficult operation, particularly when the traffic flow was heavy. Hence, vehicles are 
considered in groups that pass the observers in each successive 1-min time interval 
after the test vehicle. The distribution of these vehicles through the 1-min interval is 
assumed to be uniform, and hence they are all assumed to pass the observer midway 
through the 1-min time interval, i.e., the first group of vehicles is assumed to be 30 
sec behind the test vehicle, the second group 1.5 min behind the test vehicle, and so on. 

If a shorter time interval is chosen for recording the following vehicles, then it is 
reasonable to assume that more accurate results would be obtained. It would, however, 
lead to more work in the field and also to more computation in the office. A time inter
val of 1 min was chosen arbitrarily for this particular study and was found to give 
satisfactory results. Where there are moderate to heavy flows of traffic, the rate of 
flow over a short time period will tend to become more constant and any errors intro
duced will be of a compensating nature. 

The mean journey time for the traffic stream is then determined, and, from this, 
the mean journey speed is easily calculated. In addition to this information, flows and 
variations in flows over the test period may be determined, inasmuch as the roadside 
observers are recording the numbers of vehicles passing them during the short time 
intervals. 

DATA COLLECTED 

In this study, data were collected simultaneously by each of the three methods to 
enable a direct comparison of vehicle speeds. In fact, the same test vehicle and test 
runs were used to gather the moving-observer and arrival-output data, and separate 
sets of results were recorded for the license-matching method to coincide with each 
run of the test vehicle. 

DISCUSSION OF TESTS 

If the license-matching speeds are considered as "standards" (they meet the statis
tical requirements specified in Table 1 ), it is interesting to compare them with the 
speeds determined by the moving-observer and arrival-output methods. 

Accuracy 

The mean speeds given in Tables 2 and 3 indicate that there is relatively little dif
ference between the values obtained by the three methods. The arrival-output method 
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gives slightly better results than the moving-observer method, the averages of the dif
ferences between the mean speeds obtained from the license-matching method and the 
moving-observer and arrival-output methods being 2.22 km/h and 1.83 km/h respec
tively. 

There is, however, a much more significant difference between the two sets of 
results when the individual runs are considered. 

Data given in Table 4 show that there is a great reduction in the standard deviations 
of the differences between the speeds obtained from the individual runs on the license
matching and arrival-output methods as compared with those obtained by considering 
the license-matching and moving-observer methods. 

It is possible to apply an "F-test" to these results and to determine the level of 
significance of the difference between the two sets of results. The results of the F-test, 
given in Table 5, show quite clearly that the arrival-output method gives results that 
are far more consistent than those from the moving-observer method. 

Costs 

A comparison was also made of the costs incurred in gathering the data by each of 
the three methods. It was found that the collection and analysis of data from the 
moving-observer and arrival-output methods involved almost exactly the same amount 
of work and the same cost. 

In contrast, the license-matching method was more than twice as expensive in terms 
of man-hours of work to gather and analyze the data. It should be noted that this latter 
method only provides information about journey times and vehicle speeds, whereas the 
arrival-output and moving-observer methods can also be used to provide information 
about flows. 

Each of the methods investigated measured journey times and vehicle speeds in one 
direction only. If speeds had been required in both directions on a particular stretch 
of road, the license-matching method necessarily would have involved a second com
pletely independent survey. The moving-observer method would have required one 
extra observer in the test vehicle, and the arrival-output method would have required 
two extra roadside observers. Hence it is clear that, where vehicle speeds are re
quired in both directions, the moving-observer and arrival-output methods involve 
only a relatively small increase in cost to obtain the information in the field, whereas 
the cost of collecting the same information using the license-matching method would 
be doubled. 

roME OTHER COMPARiroNS 

The arrival-output and moving-observer methods each facilitate measurement of 
flows as well as mean vehicle speeds. The moving-observer method, however, only 
gives a series of "spot" flows measured for the duration of each individual run. In the 
arrival-output method, the number of vehicles passing the roadside observers in suc
cessive short intervals of time is recorded; hence, not only is it possible to get a more 
accurate value of the mean flow over the period of the survey, but also any fluctuations 
that occur in that flow may be detected. 

In a recent paper evaluating the moving-observer method of measuring traffic speeds 
and flows (3), it was concluded that the method was sensitive to minute-by-minute vari
ations in the traffic stream. It was suggested that these variations would need to be 
overcome by increasing the length of the test run or by utilizing a greater number of 
test runs or both. In contrast, not only is the arrival-output method independent on the 
minute-by-minute variations in the traffic stream, but also it actually detects and mea
sures them. 

It was also concluded (3) that, where traffic volumes were low, the number of test 
runs required by the moving-observer method in order to achieve a given degree of 
accuracy might be so great as to render the method uneconomical and impractical to 
use. This is not the case with the arrival-output method: The time-intervals into 
which observed vehicles are classified need only be reduced in order to maintain the 
required degree of accuracy. If the volumes are exceptionally low, e.g., less than 



Table 2. Speeds, in km/h, on the central city route. 

Briggate to Vicar Lane Vicar Lane to Eastgate Roundabout 

Run Moving- Arrival- License- Moving- Arrival- License-
No. Observer Output Matching• Observer Output Matching• 

1 16.09 15.08 16.87 (40) 21.28 27.00 26.7.0 (36) 
2 12.07 15,56 (44) 13.79 18.97 24.46 (45) 
3 8.01 12.38 14.85 (54) 9.64 17.56 18.96 (50) 
4 7.44 7.10 10.91 (38) 27.00 25.07 26.04 (43) 
5 10.36 13.41 13.55 (63) 26.20 19.51 25.83 (79) 
6 11.02 10.06 11. 54 (68) 29.02 8.16 12.42 (92) 
7 7.68 7.10 9. 72 (85) 4.02 5.94 7.31 (99) 

Mean 10.10 11.03 13.29 18.71 17.46 20.25 

'Figures in parentheses refer to the number of license matchings madd'on that particular run. 

Table 3. Speeds, in km/h, on radial, ring road, and motorway routes. 

Radial Route 

Run 
No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Moving-
Observer 

36.39 
45.27 
49.99 
49.55 
54.75 
35.26 
43 .55 
48 .71 

Mean 45.43 

Arrival-
Output 

44.56 
47 .12 
43.89 
42 ,58 
40.20 
43.39 
49.55 
50.42 

45.21 

Ring Road Route 

License- Moving- Arrival-
Matching• Observer Output 

43.76 (40) 71.39 73.47 
45.67 (45) 73.47 68.49 
43.05 (67) 59.63 64.99 
45 .03 (48) 63.36 73.47 
42.91 (41) 74.54 81. 75 
46.35 (43) 74.54 56.33 
48.46 (43) 42.60 60 .35 
47 .48 (39) 61.81 57.60 

75.08 58.26 
74.54 59.63 
69.44 80.47 
74.54 55.70 

45.34 67.91 65.88 

'Figures in parentheses refer to the number of license matchings for that particular run. 

Table 4. Standard deviations of the differences between speeds 
obtained on individual runs. 

License-
Matching' 

69. 77 (23) 
69 .39 (21) 
69. 72 (23) 
72.34 (24) 
75 .83 (19) 
56.81 (45) 
61.86 (35) 
55.65 (47) 
57.32 (30) 
58.02 (38) 
75.22 (27) 
53.17 (29) 

64.59 

Site 

License-Matching 
Versus 
Arrival-Output 
Method (km/h) 

License-Matching 
Versus 
Moving-Observer 
Method (km/ h) 

Central city 
(Briggate-Vicar Lane) 

Central city 
(Vicar Lane-Eastgate) 

Central city 
(Briggate-Eastgate) 

Radial route 
(Meanwood Road) 

Ring road route (A6120) 
Motorway route (Ml) 

1.24 

2.54 

1.58 

2.27 
3. 04 
1. 76 

2.32 

9.14 

5.20 

7.68 
12.89 

8.40 

Table 5. Results of F-test evaluation of arrival-output 
and moving-observer methods. 

Site 

Central city 
Central city 
Central city 
Radial route 
Ring road route 
Motorway route 

Location 

Briggate lo Vicar Lane 
Vicar Lane to Eastgate 
Briggate to Eastgate 
Meanwood Road 
A6120 
Ml 

F-Test 
(percent) 

90 ,0 
99 .5 
99.0 
99 .5 
99 ,9 
90 .0 

Briggate to Eastgate Roundabout 

Moving- Arrival- License-
Observer Output Matching' 

17.38 18.12 19,83 (36) 
7.56 15.06 18.51 (38) 
9.29 15.26 16.90 (39) 

13.60 12. 76 13.20 (39) 
16. 77 17 .12 17.40 (55) 
17.98 8.63 13.24 (66) 

5.17 6.65 8.14 (55) 

12.54 13.37 15.32 

Motorway Route 

Moving- Arrival- License-
Observer Output Matching• 

94.18 94.65 89. 72 (44) 
74.67 88.10 89.80 (30) 
86.12 81.35 87.64 (38) 

102.79 84.22 92.26 (38) 
92.36 96.56 99.47 (36) 
93 .71 93.71 100.76 (35) 
95.56 91.48 99 .88 (30) 

91.34 90.01 94.22 



about 100 vph in a given direction of travel, the actual times of individual vehicles 
behind the test vehicle may be recorded (rather than the numbers passing in a given 
time interval). 

7 

A final conclusion (3) was that the moving-observer method was best suited to me
dium and heavy traffic- volumes, in which case the number of test runs required to 
achieve a given degree of accuracy can be relatively small. The tests described here 
suggest, however, that, even under such traffic conditions, the results obtained from 
the arrival-output method are far more consistent than those from the moving-observer 
method, and, hence, even fewer runs of the test vehicle are required to give the same 
degree of accuracy. 
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EXPERIMENTAL VALIDATION OF 
LANE-CHANGING HYPOTHESES FROM AERIAL DATA 
P. K. Munjal and Y. S. Hsu, System Development Corporation, Santa Monica 

Lane changing is a very important component in highway traffic flow. Many 
researchers have recently presented mathematical models to describe 
lane-changing behavior. This paper focuses on the linear model by Gazis, 
Herman, and Weiss, the nonlinear model by Oliver and Lam, and the sto
chastic model by Worrall, Bullen, and Gur. Our objective is to evaluate 
the validity of these models by using aerial photographic data. Unknown 
parameters of the linear and nonlinear models, as well as the probability 
transition matrix of the stochastic model, are estimated by using the ex
perimental data. Some statistical analyses are carried out to measure 
their validity. 

•LANE CHANGING is a very common and complex phenomenon in highway travel. There 
may be a variety of reasons why a driver changes lanes: driver's lane preference, local 
traffic concentration, and average speed, to name just a few. It is impossible to model 
lane changing in mathematical forms that would take into account all causes for a lane 
change. Even if we could do that, the model would be too complex to have any practical 
value. This is one of the reasons why we want to study the lane-changing phenomenon 
in a macroscopic fashion. Another reason is that, even though traffic is a nondeter
ministic process, we cannot identify each individual driver's behavior. Thus, the best 
we can do is to study their average behavior. 

The objective of this study is to validate and compare the available lane-changing 
models. There is a definite need to understand the relation between lane-change ma
neuvers and traffic flow conditions. The results we found may be directly applicable to 
the development of freeway traffic control strategies. 

Several lane-changing studies have been made before. Oliver (7) proposed a theoret
ical model for lane changing on a two-lane, unidirectional roadway-:- In his paper, traf
fic was assumed to behave as a compressible fluid, obeying the equation of continuity. 

where 

~l oq1 ( ) ( ) at+ ax = P21 x, t - P12 x, t 

~2 oq2 _ ( ) ( ) at+ ax - P12 x, t - P21 x, t 

k1 = concentration of lane i, i = 1, 2; 
q1 = flow of lane i, i = 1, 2; 

(1) 

P12(x, t) = lane-change function that describes transfer of vehicles from lane 1 to lane 
2; and 

P21(x, t) = lane-change function that describes transfer of vehicles from lane 2 to 
lane 1. 

Furthermore, the lane-changing functions were assumed to satisfy 

8 



P12(x, t) = akHx, t)[k23 - k2(x, t)] 

P21(x, t) = ,BkHx, t)[k13 - k1(x, t)] 

9 

(2) 

where a and ,8 are unknown constants to be estimated from experimental data, and k13 
and k23 are jam concentrations of lanes 1 and 2 respectively. Experimental results 
were given in a later paper by Oliver and Lam (8). 

A different approach was given by Worrall, Bullen, and Gur (12) where an elementary 
stochastic model was hypothesized. They made the following assumptions: 

1. Lane changes were independent with an equal probability of occurrence for all 
vehicles; and 

2. xn :i: o, if IHI = 1; xn = 0, if Ji-j I -/ 1 where X~l = number of lane changes ob
served between lanes i and j within subsection m during time t, and 

Pr(xrJ = N) = exp(->..iJ X tH>..:1 x tr 
N! 

(3) 

(N = 0, 1, 2, .. . ) as a Poisson process where Xi3 equals average number of lane changes 
between lanes i and j within subsection m during unit time and may depend on the flow 
or density. 

It is assumed that the probability of a vehicle changing lanes in section m is a func
tion only of its position in section m-1 and of the lane into which the change is made. 
The position of the vehicle is proposed as an outcome of a finite Markov process that 
defines a probability transition matrix T within section m. Specifically, 

t21(m), b(m) ... , t2,(m) 
T(m) = 

for an r-lane highway, where t 13 (m) is the probability that a vehicle in lane i in section 
m-1 will make a lane change to lane j in section m. For simplicity, T(m) is further 
assumed to be independent of m. The probability transition matrix is to be estimated 
from experimental data. 

The compressible fluid approach was also applied by Gazis, Herman, and Weiss (1) 
and later extended by Munjal and Pipes (5) to multilane freeway on-ramp perturbation 
studies. In these studies, the rate of lane changes was hypothesized as 

oq1 0K1 _ (v- K ) -+--a,~ - l 
ax ot 

for a two-lane uniform unidirectional freeway and as 

~ 0K1 = V - bK ox + at a,~ 1 

(4) 

(5) 
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for a two-lane non-uniform unidirectional freeway, where K1 is the deviation from the 
equilibrium concentration in lane i, i = 1, 2. No experimental studies were made for 
these on- and off-ramp models. However, a similar study was carried out for a free
way lane drop by Munjal and Pipes (6) in which aerial photographic data were used for 
experimental validation and gave encouraging results. 

The work by Levin (3) is concerned with the mathematical modeling of the delay and 
distance experienced by a vehicle making a lane change by using gap-acceptance con
cepts. 

Although we have mentioned four lane-changing hypotheses, Levin's work (3) is not 
considered further here because of the complexity of his delay and distance models and 
th e excessive data r equi red for validation. Therefore, we have reduced our study to 
three models, the linear lane-changing model (Eq. 5), the nonlinear lane-changing model 
(Eqs . 1 and 2), and the stochastic model (Eq. 3). 

The aerial photographic data available from the Federal Highway Administration are 
of the three-lane Long Island Expressway. Our first task is to extend the two-lane 
linear and nonlinear models to three-lane models. The unknown parameters of the 
linear and nonlinear models, as well as the probability transition matrix of the sto
chastic model, are estimated by using the aerial data. Some statistical analysis is also 
carried out to provide a quantitative measure of the validity of each model. 

DATA ACQUISITION AND REDUCTION 

Data were supplied from two sites that were selected to study the traffic flow on 
grade- and curvature-free multilane freeway sections with no nearby on- and off-ramps. 
These were the Long Island Expressway (three lanes wide) in New York and the Pali
sades Interstate Parkway (two lanes wide) in New Jersey. Traffic count studies showed 
both sites to carry a medium-to-high flow of traffic. The present analysis is carried 
out for the Long Island Expressway only because it provides more accurately reduced 
data. Daily 5-min traffic counts were taken for a week to determine a reasonable esti
mate of different time periods for various constant traffic-flow levels. The Long Island 
Expressway site is free of access for a distance of 3.2 miles; the westbound direction 
was chosen for data collection. This section is between the interchanges at Guinea 
Woods Road and Jericho Turnpike (Fig. 1). 

The data wer e collected by aerial photography. A sequence of 70-mm color photo
graphs was taken at 2-sec intervals with a Maurer 220 pulsed-sequence camera, a light
weight camera designed for aerial reconaissance. A 38-mm Zeiss Biogen wide-angle 
lens with a relative aperture of f/4.5 was used, allowing filming of about 1 mile of free
way from the helicopter, a Bell 47G3Bl, hovering at a constant altitude of 4,000 ft. 
Magazines of 225 ft were used, which allowed continuous filming of about 30 min of 
traffic by using the 2-sec frame. Photographs obtained in this manner were projected 
on a film reader on-line with a computer, and this system permitted an accurate mea
sure of the coordinates of vehicles in the photographic image. 

The Benson-Lehner 29E film-reading system containing two crosswires and l0x 
magnification optics was used to read the x-y coordinates of the vehicles. This informa
tion was stored in electronic accumulators in the 282E Telecordex, which was connected 
to an IBM 1800 computer through a special interface. The data-reduction processing 
immediately followed the reading of data. There was a real-time feedback to the opera
tor if any rereading of data was required. 

Details of the film-reading technique and the associated computer software to develop 
trajectories of vehicles relative to an actual ground-based coordinate are given by 
Tashjian and Knobel (9 ). 

Some of the important features are 

1. All photographic image points of interest corrected for the optical distortion 
produced by the combined effect of the aerial camera lens and film magazine, 

2. Position and orientation of the aerial camera in ground coordinates determined 
from camera and ground reference points, 

3. Reference points transformed from film coordinates to ground coordinates, 
4. Automobile coordinates transformed from film coordinates to ground coordinates, 
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5. Automobile coordinate points translated into distance and lane position relative 
to a prespecified ground point, 

6. Position and speed of a car in its previous frame predicted from the position and 
speed of that car in any subsequent frame, 

7. Automobile position matched in previous frame to the trajectory (i.e., the pre
dicted position computed during processing of every frame), 

8. Car trajectories smoothed for improved estimate of position and speeds, and 
9. Data tape generated that contains a car number, associated distances along the 

road, and corresponding times, speeds, and lane numbers of the car. 

The concentration k and the number of lane changes P 1 J from lane i to lane j are 
needed for model validations. For reasons to be explained in the next section, we sub
divide the film into 3-min time periods. Within each time period, we calculate the flow 
q, space-mean speed v, and concentration k. Because the aerial data were taken at an 
interval of 2 sec, these parameters can be obtained from the following procedures. 

Let R1, R2, ... Rk denote a set of points along the roadway. For each point RJ that 
a car passes during the filmed period, we will have the following situation. We observe 
that the car at time to is at a distance Xo and at time to + At is at a distance x1; RJ is 
between Xo and x1. At is the time interval of the photograph taken, say 2 sec. The rela
tion is shown in Figure 2. Then the time that the vehicle passes RJ is, by linear inter
polation, given by 

R - x., t = I At + to sec 
X1 - X., 

(6) 

The velocity at RJ is estimated by 

V = (RI - Xo) V1 + (Xi -RJ) Vo 
X1 - Xo X1 - Xo 

(7) 

where v1 and v0 are the velocities at x1 and Xo respectively. Thus, when RJ tends to Xo, 
v would tend to Vo• 

If the number of cars passing RJ in the photographed time period (3 min) is n, then 
the average velocity (space-mean speed) is 

n 
V=--

n 1 
L -
i=l V1 

and the density is 

k = q/v 

where q = n x 20 is the hourly flow. 
We shall make use of these statistics in the next section. 

MODEL VALIDATIONS 

(8) 

(9) 

Because the aerial data were taken from a three-lane site, we need first to extend 
the two-lane model to three lanes for a non-uniform roadway. The non-uniformity 
means that the three lanes have different q-k relations. The model as extended by 
Munjal and Pipes ~) is 

(10) 
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The time interval of 3 min is chosen for calculating concentrations because 

1. It is long enough to average out fluctuations over a constant flow period, 
2. It contains enough cars to be statistically meaningful, and 
3. It is short enough that a sufficient number of intervals are available from the 

constant flow period. 

The first algorithm is used to estimate a, b, and c in Eq. 10 and is as follows: 

1. Find k1(i), k2(i), ki(i) for each 3-min interval i, i = 1, 2, ... , n by using Eqs. 8 
and 9, where the subscripts stand for the lane number. Next, compute K1(i) = k1(i) -k1, 
where k1 is the mean of k1(i). K:!(i) and Ka(i) are similarly computed. 

2. Find the number of net lane changes for each lane and for each time period i, 
over a 3,200-ft stretch of road section and denote them as .t1(i), .t2(i), and .t3 (i). 

3. Use a least squares procedure to obtain estimates of a, b, and c. That is, we 
find a, b, and c that minimize 

n 
f = L ([aK2(i) - bK1(i) - .t1(i)]2 + [bK1(i) - aK:!(i) + cKa(i) 

i=l 

The minimizing values of a, b, and c are denoted by ao, bo, and· Co respectively. 
The aerial data used are from two films, the first of 849 frames, starting at 9: 50 

a. m. on August 21, 1969, and the second of 821 frames starting at 5: 55 p. m. on August 
22, 1969. The numbers of car trajectories are 271 for lane 1, 538 for lane 2, and 584 
for lane 3 on the first film and 249 for lane 1, 496 for lane 2, and 562 for lane 3 on the 
second film. The flow and space-mean speed are 2,953 cars/hour and 84.8 ft/sec for 
the first period and 2,852 cars/hour and 86. 7 ft/sec for the second period. We feel that 
these two films can be considered to have the same constant flow rate. They both belong 
to service level B [according to the Highway Capacity Manual (2)]. Net lane changes 
for lanes 1, 2, and 3 are obtained and are given in Table 1 under the "experimental" 
columns. Estimates of a, b, and c by using the above data are ao = 15.04, bo = -15.84, 
and c 0 = -0.39. These parameters are used in the linear model, and the theoretical 
net lane changes are computed by 

L1 = aoK:!(i) - boK1(i) 

L2 = boK1(i) - aoK:!(i) + CoKa(i) - aoK:!(i) 

L3 = a0 K:!(i) - c 0 Ka(i), i = 1, 2, ... , n (11) 

The theoretical values of L/j = 1, 2, 3) are those under the "model" columns in Table 1. 
The two-lane model by Oliver and Lam (8) is now extended to a three-lane model re-

sulting in the following form -

with 

P12(i) = crlc~(i)[k2J - k2(i)J 

P21(i) = ,Bk~(i)[k1J - k1(i)] 

(12) 



Figure 1. Long Island Expressway test site. 
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Figure 2. Relation between vehicle position and time. 
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Table 1. Net lane changes from linear model. 

Number of Net Lane Changes 

Lane 1 Lane 2 Lane 3 

Experi- EJ<Perl- Experi-
Interval Model mental Model mental Model mental 

1 -0.2 5 0.3 -4 -0.1 -1 
2 1.5 0 -0.8 -1 -0.7 1 
3 0.7 -1 -0.8 6 0.1 -5 
4 -2.2 -4 3.5 5 -1.3 -1 
5 -0.1 6 0.1 -5 0 -1 
6 -0.4 4 0.2 -7 0.2 3 
7 -3.1 4 1.1 2 2.0 -6 
8 0.4 4 -0.3 -6 -0.1 2 
9 0.4 0 -0.7 1 0.3 -1 

10 1.1 0 -2.8 -9 1.7 9 
11 1.9 3 -3.5 3 1.6 -6 
12 -1.8 -1 3.2 3 -1.4 -2 
13 1.4 2 -3.9 -2 2.5 0 
14 -0.7 1 2.3 5 -1.6 -6 
15 1.5 1 -1.B 3 0.3 -4 
16 2.0 9 -3.3 -8 1.3 -1 
17 0.9 2 -1.2 -4 0.3 2 
18 -0.2 5 1.1 4 -0.9 -9 

Mean 0.173 2 ,28 -0.406 -0,83 0.233 -1 .45 

X 

t 
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Table 2. Results of nonlinear model. 

Number of Lane Changes From Lane i to j Net Gain (Cars) of Lane I 

p., P21 p,, p., L, L, L, 

Experi- Expert- Experi- E:•perl- Experl- Experl- Experl-
Interval Model mental Model mental Model mental Model mental Model mental Model mental Model mental 

1 7.6 7 9.9 12 8.6 10 13.7 11 2.3 s 2.8 -4 -5.1 -1 
2 5.8 9 8.7 9 7.6 10 10.4 9 2.9 0 -0.1 -1 -2.8 1 
3 9.9 12 10.4 12 9.2 5 9,9 10 0.5 0 0.2 5 -0.7 -5 
4 5.3 12 7.7 8 6.7 8 9.6 9 2.4 -1 0.5 5 -2.9 -1 
5 7.5 4 10.3 10 9.0 10 10.6 11 2.8 6 -1.2 -5 -1.6 -1 
6 6.3 6 10.8 10 9.5 13 8.3 10 4.5 4 -5.7 -7 1.2 3 
7 4.9 3 6.4 7 5. 7 8 7,5 14 1.5 4 0.3 2 -1.8 -6 
8 9.6 9 9.8 13 8.6 10 12.7 8 0.2 4 3.9 -6 -4.1 2 
9 8.2 11 11.0 11 9.7 11 10.3 12 2.8 0 -2.2 1 -0.6 -1 

10 6.1 10 14.6 10 12. 7 19 10.6 10 8.5 0 -10.6 -9 2.1 9 
11 8.9 9 14.0 12 12.2 10 13.8 16 5.1 3 -3.5 3 -1.6 -6 
12 6.7 10 7.4 9 6.6 9 7.7 11 0.7 - 1 0.4 3 -1.1 -2 
13 4.8 11 16.8 13 14.5 11 12.4 11 12.0 2 -14.1 -2 2.1 0 
14 10.5 5 7.1 6 6.4 4 7,.4 10 -3.4 I 4.4 5 -1.0 -6 
15 11.7 6 10.8 7 9.8 8 8.4 12 -0.9 I -0.5 3 1.4 -4 
16 9,9 9 13.3 18 11.7 7 11.4 8 3.4 9 -3.7 -8 0.3 -1 
17 9,8 11 10.8 13 9.5 9 12.0 7 1.0 2 1.5 -4 -2.5 2 
18 10.3 10 8.1 15 7.2 7 11.6 16 -2.2 5 6.6 4 -4.4 -9 

Mean 7.88 8,55 10.44 10.83 9.18 9.38 10.46 10.83 2.56 2.28 -1.28 -0.83 -1.28 -1 .45 

Figure 3. Lane-change frequencies (nonlinear model). 
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P2s(i) = yk~(i)[ksJ - ks(i)J 

Ps2(i) = 6J.<l(i)[k2J - k2(i)] (13) 

(i = 1, 2, ... , n) where 

Pq = number of lane changes from lane i to lane j, 
klJ = jam concentration, and 

a, fj, y, and 6 = parameters to be estimated. 

The second algorithm that is used in this paper estimates a, {3, 'Y, and 6 of Eq. 13 
and compares the theoretical and experimental statistics in the following manner: 

1. Use the values k1(i), ~(i), and ks(i) calculated from the first algorithm; 
2. Find ex, {3, 'Y, and 6 such that all of the following 

n 
S1 = ~ [P12(i) - akHi)[k2J - k2(i)J }2 

i=1 

n 
S2 = ~ [P21(i) - /jk~(i)[k1J - k1(i)] }2 

i=1 

n 
Ss = ~ [P23(i) - yk~(i)[ksJ - ks(i)] }2 

i=1 

n 
S4 = ~ [Ps2(i) - 6J.<l(i)[k2J - k2(i)] }2 

i=1 
(14) 

are minimized, and let ao, /3o, 'Yo, and lio be the minimizing values of a, {3, 'Y, and 6 
respectively; and 

3. Find theoretical values of Pq by using ao, /3o, 'Yo, and 60 in Eq. 13, and compare 
the differences 

L1(i) = P21(i) - P12(i) 

L2(i) = P32(i) - P2s(i) + Pdi) - P21(i) 

(15) 

for i = 1, 2, ... , n, which are net gains or losses for each lane due to lane changes. 

Using the same data as used for the linear model, we summarized the experimental 
and computed results by using the nonlinear model as given in Table 2 and shown in 
Figure 3. More information is provided by Table 2 than by Table 1 in that not only is 
the net gain for each lane due to lane changes recorded (L1, L2, Ls) but also each in
dividual lane-changing flow is recorded (P12, P2s, P32). If we consider the average be
havior of lane changers, i.e., if we look at the mean values of the samples we collected, 
the nonlinear lane-changing hypothesis seems to be superior to the linear lane-changing 
hypothesis. This is not surprising because the nonlinear model has more mechanisms 
than the linear model. 

To validate the stochastic model, we divide the road stretch into 16 sections of 200 
ft each and calculate the probability distribution of cars in each lane of each road section 
for the entire filmed period (821 + 849 = 1,670 frames). The probability transition 
matrix T for sections 1 and 16 is also calculated: 
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[

Tu T12 Tu] 
T = T u T 22 T~ 

T 31 T 32 Tss 

where T1 i is the ratio of the number of lane changes from lane i to lane j to the total 
flow in lane i. The 200-ft road section is chosen mainly to ensure that T1 J = 0 for 
li-j\ >t. 

The algoritpm proposed by Worrall and Bullen (to t was used to calcul ate the approx
imate T, say T, for the entire road stretch. This T is employed for each 3-min 
interval to obtain the theoretical value of lane changes. That is, we want to find 1' such 
that 

is as close to the experimental value of a1e as possible, where a1 and a1e are the dis
tributions of vehicles by lane in section 1 and section 16 respectively, and a1e is the dis
tribution, by lane, of vehicles in section 16 estimated by using the transition matrix T. 
Therefor~, the probability transition matrix of the entire road stretch (16 sections) is 
just R = T 15 . The estimated R from the algorithm is 

[

o. 7235 o.2478 o.0287] 

R = 0.1513 0. 7038 0.1449 

0.0211 0.1398 0.8391 

This transition matrix, R, is used for each 3-min time period for estimating the num
ber of lane changes. Results are given in Table 3 and shown in Figure 4. 

STATISTICAL COMPARISONS 

A better comparison can be made if we employ some quantitative measure of the 
validity of each model. The approximate normal statistic u can provide such a measure. 
We outline the procedure in the following. 

1. Calculate 

ei (i) = Li (i) - Li{i), j = 1, 2, 3, i = 1, 2, ... , n (16) 

where j is the lane number, n is the total sample size, and Li (i) and Li (i) indicate the 
number of net lane changes for lane j in sample i from the experimental data and com
puted data, in turn. 

2. Obtain 

(17) 

3. Compute 

(18) 

4. The approximate u-statistic is 



Table 3. Results of stochastic model. 

Number of Lane Changes From Lane 1 to J Net Gain (Cars) of Lane I 

p,, Pu p., P., L, 

E:xperl- Expert- E:xperl- E:xperl- Experi-
Interval Model mental Model mental Model mental Model mental Model mental 

1 7.8 7 9.8 12 9.2 10 11.2 11 2.0 6 
2 6.7 9 9.3 9 8.8 10 10.1 9 2.6 0 
3 9.0 12 9.9 12 9.7 5 9.6 10 0.9 0 
4 6.4 12 8.5 8 7.8 8 9.4 9 2.1 -4 
5 8.1 4 0.0 10 9.4 10 10.2 11 0.7 6 
6 8.0 6 9.7 10 8.8 13 9.1 10 1.7 4 
7 6.4 3 8.o 7 7.6 8 8.6 14 1.6 4 
8 9.0 9 9.8 13 9.4 10 10.9 8 0.8 4 
9 8.1 11 9.9 11 9.7 11 9.9 12 1.8 0 

10 6.4 10 11.0 10 10.4 19 9.8 10 4.6 0 
11 8.1 9 11.0 12 10.5 10 11.4 16 2.9 3 
12 7.0 10 8.1 9 7.8 9 8.5 11 1.1 -1 
13 6.2 11 11.7 13 11.0 11 10.9 11 5.5 2 
14 9.0 5 8.1 6 8.o 4 8.5 10 -0.9 1 
15 9.5 6 9.5 7 1l.4 8 8.6 12 0 1 
16 9.0 9 10.5 18 10.3 7 10.3 8 1.5 9 
17 8.7 11 9.9 13 9.5 9 10.8 7 1.2 2 
18 8.7 10 8.8 15 8.4 7 10.3 16 0.1 5 

Mean 7.02 8.56 9.6 10.83 9.25 9.38 10.07 10.83 1.68 2.28 

Figure 4. Lane-change frequencies (stochastic model). 
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Table 4. u-statistic of lane-changing models. 

Lane 1 Lane 2 Lane 3 

Model lul c1' lul c1' lul c1' 

Linear 3.09 0.002 0.36 0.719 1.79 0.073 
Nonlinear 0.168 0.867 0.295 0.768 0.182 0.856 
stochastic 0.677 0.498 0.147 0.883 0.807 0.420 

'Represents the exceedence {tail) probabllitv given by the formula a= prob (I u I ) u,.] . 
bUslng Fisher's Comblnetlon•of-Tests Statistic (11) 

k 
A • -2 I: lln a-1 "' chi-square {2k) 

1 

where k is the degree of freedom. 

Composite 
Tail 
Statisticb 

14.325 
1.124 
3.378 

L, I., 

Expert-
Model mental Model 

0 -4 -2 .0 
-1.3 -1 1.3 
-LO 5 0.1 
-0.5 5 -1 .6 
0.1 -5 -0.8 

-1.4 -7 -0.3 
-0.6 2 -1.0 
0.7 -6 -1. 5 

-1.6 1 -0. 2 
-5.2 -9 0.6 
-2.0 3 -0.9 
-0.4 3 -0. 7 
-5.6 -2 0. 1 
1.4 5 -0. 5 

-0.0 3 0.8 
-1.5 -8 0 
0.1 -4 -1.3 
1.8 4 -1.9 

-0.99 -0.83 -0.69 

• Model 

• Experimental 

• 

10 15 

• . 

10 15 
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mental 

-1 
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-6 
-1 
-1 
3 

-6 
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-1 
9 

-6 
-2 
0 

-6 
-4 
-1 
2 

-9 

-1.45 
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(19) 

The summary of the u-statistics for both models is given in Table 4. 

The entries in the last column of Table 4 obey the chi-square distribution with 6 
degrees of freedom in accordance with Fisher's Combination-of-Tests Statistic where 
we have combined the results over all three lanes for each model. Referring to the 
tabulation of chi-square values, it is seen that an observed value of A or greater for 
the linear model has occurrence probability of less than 0.05, whereas the correspond
ing values for the nonlinear and stochastic models are approximately 0.98 and 0. 75. 
These results are only approximate, but they do indicate relative ranking. On this 
basis we rank the three models as the nonlinear model, the stochastic model, and the 
linear model in this order according to the u-statistics. 

The superiority of a model over others can also be viewed by the complexity of the 
model or the amount of information used in parameter estimation. The nonlinear model 
clearly has more mechanisms than the linear model. Moreover, the value of jam con
centration is used in the nonlinear model, whereas it is not used in the linear model. 
The stochastic model is a completely different approach and does not hypothesize a 
density oscillation between lanes. It estimates the frequency of lane changes by fixing 
the boundary conditions at both ends of the road stretch. Because of this complexity, 
it is very difficult to evaluate this model against the other two models. However, the 
extensiveness of data preparation is about the same for all three models. 

One shortcoming of the stochastic model is that the algorithm suggested by Worrall 
and Bullen only gives an approximate solution of the probability transition matrix. This 
probably explains why, with more parameters to estimate (six for a three-lane highway), 
it is still not better than the nonlinear model according to the validation results. (It is 
noted that, although T has nine unknowns, the constraints 

reduce the unknowns to six.) 

3 
I; tw i = 1, 2, 3 
j=l 

We should be more careful here to interpret the u-statistics given in Table 4. Any 
deviation from the assumptions in which the u-statistic is derived can result in a large 
value of u, e.g., the non-zero mean of eJ in Eq. 17, the mutual dependence of the sam
ples. If corrections can be made, the u-statistics will, in general, be improved. 

Both models assume the unknown parameters to be independent of concentration. 
These parameters have been estimated by first fitting the experimental data by using a 
constant flow of traffic. How valid this assumption is can be tested by using data from 
a different constant flow level of traffic and computing the lane changes by using the 
same parametric values. Available aerial data do not provide enough samples for this 
kind of study. However, some preliminary inspection suggests that the unknown param -
eters are concentration-dependent. 

CONCLUSIONS 

Three lane-changing models, the linear lane-changing model by Gazis, Herman, and 
Weiss, the nonlinear model by Oliver and Lam as extended here, and the stochastic model 
by Worrall and Bullen, were selected for experimental validation with aerial photographic 
data supplied by the Federal Highway Administration. The unknown parameters of the 
linear and nonlinear models, as well as the probability transition matrix of the stochastic 
model, were estimated from the data. The number of lane changes was then calculated 
by using models with estimated parameters. It was found, statistically, that the non
linear model gave excellent validation results for every lane of the three-lane Long 
Island Expressway, and the linear and stochastic models gave excellent results only for 
lane 2. Generally speaking, the three models are ranked as the nonlinear model, the 
stochastic model, and the linear model. 
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TOWARD A MARKOVIAN TRAFFIC CONTROL 
EVALUATION SYSTEM 
Lonnie E. Haefner*, Washington University; and 
John A. Warner III*, R. L. Banks and Associates 

The objective of this paper is to present a technique for evaluating traffic 
control alternatives and resultant performance changes in a complex traffic 
system. The system can be described as existing in a finite number of 
states, with some known probability of transition from one state to another 
in a given time period. Limited field examples from the merging section 
of the Baltimore Harbor Tunnel are presented and analyzed through a mul
tistage optimization process, termed Markovian decision theory. The 
technique prescribes an optimal traffic control alternative for each pos
sible state of the system. Changes in flow-density relationships, employ
ment of traffic cones, and a hypothesized metering example are discussed 
as preliminary tests of the technique. 

•MANY TRAFFIC SITUATIONS exist as very complex entities, and there are several 
ways to improve operation. Control alternatives may be of a permanent type (striping, 
pretimed versus actuated signalization) or an immediate option within a given control 
system (metering rate). Such a choice is often based on the criterion of change of flow 
rate and related to long-term gains of the system and society through amelioration of 
congestion. The ability to relate an alternative to recognizable long-term gains can be 
difficult, particularly if the traffic system can operate in a variety of ways at different 
times. 

The objective of this paper is to illustrate preliminary application of a decision al
gorithm designed to account for these aspects of a complex traffic system by using ex
amples from the merging area of the Baltimore Harbor Tunnel. Through a multistage 
optimization process over a finite number of recognizable states of the system, the 
technique prescribes an optimal traffic control alternative for each state. The collec
tion of such optimal alternatives, termed the optimal strategy, maximizes long-run 
gains to the system through induced changes in the flow-density relationship. 

CONCEPTUAL FORM OF THE MODEL 

Consider an area of controlled-access highway that requires vehicular traffic to ex
ecute merging maneuvers. The state i of the merging area is defined by the level of 
vehicular density k. There is a probability PtJ that can be associated with the transition 
from one state i to another j. The set of all possible transition probabilities (transi tion 
matrix) then describes the behavior of the system. For example, in the four-state 
(i = 4) case, the transition matrix might be 

0.3 
0.6 
0.1 
0.1 

0.1 
0.2 
0.4 
0.3 
J ~Jj 

*This work was performed while the authors were with the Civil Engineering Department, University of Maryland. 
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Gain of an Ergodic Process 

The gain g of an ergodic process can be found from 

where q
1 

is the expected immediate return in state i and 11' 1 is the s teady-s tate probability 
of state i. The gain can be visualized as the return per tr ansition of the process . 

For the Baltimore Harbor Tunnel case, we get 1T = (0.33, 0.67) and the gain of the 
process 

which equals 13.55 vehicles/stage. This result yields total rewards through use of the 
formula 

v/n) = ng + v
1 

that are in close accordance with those obtained from the recurrence relationship. 
It has been demonstrated how the behavior of the merging area (in its present con

figuration) can be analyzed. A methodology will now be explored for determining the 
relative worth of alternate configurations. 

ALTERNATE MERGING AREA CONFIGURATIONS 

Consider, as an example, the addition of a cone line between lanes 2 and 3 (Fig. 3). 
Assume that, for this alternative, the area's descriptive parameters become 

which yields 

= lo.55 0.45] 
P1J IQ.25 0.7..21 

= [22.55' 
q l!L7j 

and 1r = (0.357, 0.643), which gives 

which equals 15.61 vehicles/stage. In this example, we have shown that the hypothetical 
alternative cone placement would allow a higher rate of vehicular flow . 

Up to this point the analysis of permanent changes in the operation of the merging 
area has been discussed. A methodology for optimizing area traffic behavior through 
a real-time control procedure is now developed. 

ALTERNATE REAL-TTh1E OPERATING PROCEDURES 

Consider, again, the geometric alignment of the area described for the Baltimore 
Harbor Tunnel. Assume that, in addition to operating the system in this "uncontrolled" 
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Figure 1. General flow-density relationship. 
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Figure 2. Existing layout of Baltimore Harbor Tunnel merging 
area. 
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Figure 3. Hypothetical alternative layout of Baltimore Harbor 
Tunnel merging area. 
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These transitions may be defined in discrete time (e.g., 15 sec, 30 sec, or 1 min) in
tervals or as a continuous process (in which case they become transition rates). 

Associated with each transition there is a "reward." For purposes of study, the 
reward is defined as the vehicular flow q measured at the outlet of the merging area. 
Then a reward matrix (similar in form to the transition matrix) can be constructed, as 
shown below, in which the elements are changes in q resulting from the system transi
tions from i to j . 

15 
20 
12 
8 

6 
8 
5 
4 

The general relationship between density and flow is shown in Figure 1 (1, 2). 
An objective is to analyze the behavior of this system over time, measured by the 

number of stages, or state transitions n, that occur. If we assume that the transition 
matrix is dependent only on the present state of the system, it can be analyzed as a 
Markov process (~): 

N 

~PIJ = 1 
j==-1 

and O,;: p
1 

,;: 1. 
Using l\lJ:arkovian decision theory, we can compute various characteristics of the 

process (4). One characteristic of particular interest is the expected reward from a 
set of staged decisions, given a starting point in time. In a more sophisticated analysis, 
it is possible to change both the transition and reward matrices by specifying a set of 
traffic control alternatives. Then each control alternative has transition and reward 
matrices associated with it. Given a performance objective (e.g., maximize flow over 
a period of time), it is possible to define an optimum policy, i.e., the set of optimal 
traffic control decisions at each stage of the process for each possible state of the 
system. 

If one further assumes that the process is completely ergodic (i.e., after it has 
been operational for a long time, the probability of the system being in any given state 
is independent of its starting state), then the long-term average earnings per unit time, 
defined as the gain, can be found. The optimum policy (set of decisions) is that that 
maximizes gain. 

Application of this optimization technique to a real-time control system in other than 
the trivial case requires that a decision optimizing immediate return does not neces
sarily optimize long-range return. It is obvious, if this condition is not satisfied, that 
the stream of rewards from a series of decision stages could be optimized by simply 
selecting the decision that optimizes the return at each immediate stage (~). 

APPLICATION OF THE MODEL TO THE BALTIMORE HARBOR 
TUNNEL MERGING AREA 

The merging area of the Baltimore Harbor Tunnel (Fig. 2) requires cars to merge 
into two lanes within a distance of approximately 500 ft. Under present operating dis
cipline, vehicles entering the area in lanes 5, 6, and 7 are separated from those in 
lanes 1 through 4 by a cone line. 

Preliminary data indicate that the behavior of the area can be approximated by the 
relationship shown in Figure 1, where q is the traffic flow in vehicles per transition 
stage interval (taken to be 30 sec) and k is the vehicular density in vehicles/ft. 

For an elementary two-stage Markovian model, state one exists when k is less than 
k

0 
and state two exists when k is greater than or equal to k

0
, which results in the fol

lowing hypothetical matrices: 
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~.6 
PIJ = IQ_.2 

Expected Reward of a Policy 

0.41 
o._m 

The expected reward v1 (n) from a set of staged decisions (policy), given a starting 
point i, is defined by the recurrence relationship 

N 

v1 (n) = L p1J [r iJ + v/n-1)] 

j=l 

i = 1, 2, ... N, and n = 1, 2, ... 

By defining ~, the expected reward from the next stage transition, given the starting 
state i, 

N 

41 = L P1Jr13 
i=l,2, ... N 

j =1 

we can write the recurrence relationship in the form 

N 

v/n) = q1 + L p1JvJ (n - 1) 

j=l 

i = 1, 2, ... N, and n = 1, 2, ... 

As an example, suppose our problem contained two states, with matrices 

R = ~ _] 

Then, after we have computed 

P = p.5 o.51 
~4 oj 

the recurrence relationship can be used to derive the following values: 

!!. Vt (n) V2(n) 

0 0 0 
1 6 -3 
2 7.5 -2.4 
3 8.55 -1.44 
4 9.555 -0.444 
5 10.5555 0.5556 

Therefore, using this recurrence method for the Baltimore Harbor Tunnel case 
gives the following total expected reward: 

n v1(n) 

0 0 
1 22.8 
2 40.08 
3 55.15 
4 69.34 
5 83.17 
6 96.86 

V2(n) 

0 
9.0 

20.76 
33.63 
46.93 
60.41 
73.96 
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mode, the option exists at each transition point in time to control density by some traf
fic operations technique (e.g., metering of traffic input). The set of control decisions 
at each stage is desired. 

For example, assume that behavior under the "control" alternative (denoted by the 
superscript 2) is described by 

fo.9 o.1] 
P1 J = l.Q.6 0 . .1] 

The following table then summarizes the pertinent information: 

i a P~1 Pi2 R~1 R12 qi 
1 (k < k

0
) 1 0.6 0.4 24 21 22.8 

2 0.9 0.1 22 21 21.9 
2 (k > k) 1 0.2 0.8 21 6 9.0 

2 0.6 0.4 21 4 14.2 

By using the Markovian policy iteration method (see Appendix)~ we can determine the 
set of staged decisions that will maximize flow through the area (4). This computation 
is presented below. -

Step 1: Set V1 = V2 = 0 and enter the policy improvement routine. 
Step 2: It will choose the decision that maximizes immediate returns, giving 

ci = [~] 
P = [o.6 o.4] 

[.Q.6 o.!J 
Step 3: Entering the value determination routine gives 

g + V1 = 22.8 + 0.6v1 + 0.4v2 

g + V2 = 14.2 + 0.6v1 + 0.4v2 

By setting v2 = 0, we get g = 19.36, v1 = 8.6, and v2 = 0. 
Step 4: Now, applying the policy improvement routine gives 

i 

1 

2 

Step 5: This yields 

~ 

1 
2 
1 
2 

2 

q~ + L p~J VJ 

j=l 
22.8 + 0.6(8.6) + 0.4(0) = 27.96 
21.9 + 0.9(8.6) + 0.1(0) = 29.64* 

9.0 + 0.2(8.6) + 0.8(0) = 10.72 
14.2 + 0.6(8.6) + 0.4(0) = 19.36* 

Step 6: The value determinations are 

g + V1 = 21.9 + 0.9v1 + O.lv2 

g + V2 = 14.2 + 0.6V1 + 0.4V2 

1 The original manuscript included an appendix entitled Markov Policy Iteration Method available in Xerox form 
at the cost of reproduction. When ordering, refer to XS-46, Highway Research Record 456. 
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Step 7: This yields g = 20.8, V1 = 11.00, and V2 = 0. 
Step 8: Again, by applying policy improvement, we get 

i 

1 

2 

Step 9: This gives 

a 

1 
2 
1 
2 

2 

q~ + L p~J VJ 

j=l 

22.8 + 0.6(11.00) + 0.4(0.0) = 29.4 
21.9 + 0.9(11.00) + 0.1(0.0) = 31.8* 

9.0 + 0.2(11.00) + 0.8(0.0) = 11.2 
14.2 + 0.6(11.00) + 0.4(0.0) = 20.8* 

ct= rnJ 

for the second consecutive time, identifying it as the optimal decision. The optimal 
policy, then, is to choose alternative 2 (employ the control alternative) at each decision 
point in time. 

CONCLUSIONS 

Efficient use of this technique requires data sufficient to permit formation of the 
transition and reward matrices. Preliminary efforts with twin time-lapse cameras 
(one recording flow and the other density) indicate that this method will provide suit
able results. 

One shortcoming of the technique is the fundamental assumption that the system un
der study operates as an ergodic Markov process, with present-state operation purely 
a function of the state of the system immediately prior to it and long-run operation in
dependent of initial state. In addition, the appropriate definition of states is worthy of 
detailed study for each individual problem. An excessive number of states will yield a 
cumbersome and costly algorithm . Likewise, too few states will obscure the traffic 
flow phenomena at levels relevant for control considerations. Definition of states should 
be closely related to the sensitivity of the alternatives' ability to meaningfully alter the 
flow-density relationship. The choice of transition stage time is also an important con
sideration. Too lengthy a period might allow several important state changes to occur. 
Too short a period would result in increased cost of data acquisition and system opera
tion. Preliminary operation of the traffic system discussed indicates that a stage length 
roughly equal to the time required to travel through the merging area at periods of mod
erate flow, that of 30 sec, is best. In general, the transition stage time chosen for 
study should relate to realistic needs for monitoring the system and allow for stabili
zation of short-term perturbations resulting from employment of a control alternative. 

In any system where use of this evaluation approach is considered, the data collec
tion phase should include checking to see how closely the system under study operates 
as a Markov process. Once this assumption is met, a wide range of geometric and 
control alternatives can be tested for any traffic situation that can be characterized by 
a flow-density relationship. 
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A STOCHASTIC MODEL OF FLOW VERSUS 
CONCENTRATION APPLIED TO TRAFFIC ON HILLS 
A. L. Soyster and G. R. Wilson, Pennsylvania State University 

In the fundamental relationship between flow and concentration, flow (in 
vph) increases with concentration (in vehicles/mile) until a critical point 
is reacp.ed. After this critical point, flow decreases to zero as concentra
tion increases to saturation. This is a deterministic model relating flow 
rate q to concentration k. In this paper this deterministic model is ex
tended by allowing a probabilistic distribution of concentrations for a given 
mean value of flow. The specific application is to traffic proceeding up a 
two-lane hill. In this stochastic model, platoons arrive at the bottom of 
the hill in a Poisson fashion with parameter >,, and at the top of the hill in a 
Poisson fashion with parameter µ. Because the size of platoon at the top 
of the hill is generally considerably larger than that at the bottom, >,, > µ. 
The distributions of platoon sizes at both the bottom and the top of the hill 
are additional parameters in the formulation. Vehicles on a hill represent 
a birth and death process where arrival of vehicles at the bottom corre
sponds to births and arrival of vehicles at the top of the hill corresponds 
to deaths. Because the lower bound on the number of vehicles is zero and 
the upper bound is determined from the length of the hill and the length of 
vehicles, there are a finite number of possible states. These states are 
incorporated into a finite Markov chain with a transition matrix determined 
by >.., µ, and the distribution of platoon sizes at the bottom and top of the 
hill. The transition matrix generates the probability of various concentra
tions on the hill as a function of the input parameters and time t. Hence, 
instead of two concentrations corresponding to a mean flow rate, we gen
erate a probability distribution that varies with time for a whole range of 
concentrations. The Markov process also generates certain dynamic prop
erties of the system such as relative stability. These and other stochastic 
properties of the Markov process are included to provide an extension of 
the classical flow-concentration deterministic model. 

•ONE of the most complicating features in the analysis of traffic flow is its probabilistic 
nature. Two identical roadways may have an average flow of 500 vph, but the various 
parameters that measure the performance of the roadway could be significantly different 
in any given time interval. Some of these parameters are speed, concentration, number 
of passes completed and aborted, number of accidents, and percentage of slow-moving 
vehicles. The actual state of these traffic parameters fluctuates over time, so we must 
usually be satisfied with measuring an average value and perhaps some extreme values. 

Solomon (12) observed that variation in speed from the normal flow of traffic was a 
leading cause of accidents. Very slow or very fast vehicies are involved in an abnor
mally high percentage of accidents. This study emphasizes the role and need for a more 
detailed analysis of traffic flow, in particular the need for a probabilistic model that 
treats random fluctuations in traffic behavior as a function of time. 

It is the purpose of this paper to analyze the stochastic nature of one important traffic 
parameter, concentration. The classical relationship between flow and concentration 
is a deterministic one (6, 8): The flow rate increases with concentration until a critical 
point is reached, after which the flow rate decreases to zero. In this paper the deter
ministic model embodied in the fundamental diagram of flow and concentration is ex-
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tended by allowing a probabilistic distribution of concentrations for a given average 
value of flow, which is itself a random and changing quantity. Furthermore, the rela
tive stability of traffic flow will be measured by observing the rapidity with which a low 
concentration is transformed into a high concentration and vice versa. Hence, certain 
dynamic characteristics of traffic behavior will be presented. 

The model to be presented is a Markov birth and death process. Along with the 
requisite mathematical development, data and results of a field study that tested the 
feasibility and utility of the model are included. It should be noted, though, that the 
model developed in this paper is but a tool and not an end in itself. The model will pro
duce, with appropriate input, information about probabilities of various concentrations 
as a function of time and other factors. 

The two-lane hill is a frequently encountered configuration that causes disruption 
and turbulence in the normal flow on level roadways. It is a physical setting in which 
concentration of vehicles obviously and directly affects flow rate. Every driver has 
experienced the agony of heavy traffic proceeding uphill; the speed of the platoon is con
trolled by the slowest moving vehicle when passing is not permitted or is too risky. As 
the concentration increases, so does the probability of encountering a slow-moving 
truck. The two-lane hill will be the physical setting for the stochastic extension of the 
fundamental diagram of flow and concentration. 

BIRTH AND DEATH STOCHASTIC MODELS 

The birth and death process is one type of stochastic process in which the time 
parameter is continuous and state space is discrete. Usually a population of individuals 
(or things) is considered where the size of the population at time t is X(t). During the 
interval t to t + At, the population may increase (birth) or decrease (death). We will 
consider the number of vehicles on the hill as our population of individuals; when ave
hicle arrives at the bottom of the hill it is a birth, and as a vehicle reaches the crest of 
the hill it is a death. As t varies, vehicles will enter and depart the hill, i.e., births 
and deaths, and X(t) will then denote the number of vehicles on the hill at time t. If we 
then can obtain the probabilistic description of X(t) we have a probabilistic description 
of the number of vehicles on the hill for any time t. 

One of the simplest birth-death processes is the one used to derive the stochastic 
nature of a single-server queuing system with Poisson arrivals and an exponential ser
vice time. In this system the probability of a birth in a small interval At is assumed 
to be proportional to the length of At and likewise for a death. Usually >.. is the average 
birth rate, and µ is the average death rate. If we denote the probability of n individuals 
in the system at time t as P 0 (t), then the forward Kolmogorov difference equations are 
(making standard assumptions) 

P.(t + ti.t) = (1 - >..li.t - µli.t) Pn(t) + (1 - >..li.t) µli.t Pn+1(t) 

+ (1 - µli.t) >..li.t Pn_1(t) n ~ 1 

Po(t + ti.t) = (1 - >..ti.t) Po(t) + (1 - >..ti.t) µti.t P1(t) 

What this system means is that we can be in state n at time t + li.t in three possible 
ways: 

1. Be in state n at time t and have no births and no deaths in the interval li.t, 
2. Be in state n + 1 at time t and have no births but one death in the interval li.t, or 
3. Be in state n - 1 at time t and have no deaths but one birth in the interval li.t. 

The usual procedure is to let At become very small and obtain a system of differential
difference equations whose solution determines various properties of the process X(t). 
A closed-form solution for the time-varying X(t) is very difficult in this example, as in 
most other models, but the so-called steady-state solution is readily attained and widely 
known. The steady-state solution is appropriate for large values of t wherein initial 
transient influences become dampened. In this example the steady-state solution would 
be 

p[x = n] = (1 - >../µ) (>../µ)" 
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This steady-state distribution is very simple, and as such we can calculate important 
properties of the birth-death process in the steady state; e.g., the average number of 
individuals in the system is X/(µ - X), whereas the expected time in the system for each 
individual is 1/(µ - X). 

Modeling this single-server queuing system mathematically permits both analysis 
and synthesis of the system. For example, we can predict the change in system char
acteristics by varying the parameters X and µ, or we might have an optimization prob
lem in which we want to minimize the expected number of individuals in the system 
subject to constraints on X andµ. These same comments of course apply to a valid 
model of traffic proceeding up a hill. We would like to have a model with which we 
could perform the following operations (however, we do not deal with such applications 
specifically in this paper): 

1. Predict changes in system characteristics if the passenger or transport arrival 
rate or both change, 

2. Predict changes in system characteristics if physical changes in the roadway 
are made, and 

3. Optimize various objective functions subject to constraints on the parameters. 

For example, we might want to predict changes in the probability distribution of con
centrations of a hill if heavy transport vehicles increased in density by 25 percent or 
if the speed capabilities of trucks decreased 15 percent because of heavier loads. 

CHARACTERISTICS OF THE TRAFFIC MODEL 

In describing a multiple birth and death process that approximates the flow of traffic 
proceeding uphill on a two-lane highway, we should first see how this model differs 
from the single-server queuing model. In the single-server queuing model we assume 
that individuals arrive at a service station, form a waiting line, and wait their turn for 
service. Only one individual is served at a time. This is not the case in the traffic 
system, for as soon as a vehicle arrives at the foot of the hill it begins service, i.e., 
climbing the hill. The traffic model is then a self-service model; we let X(t) be the 
number of vehicles on the hill at time t. Another difference is that in the single-server 
queuing model we assume that all arriving customers are homogeneous in the sense 
that their service distributions are all the same. In the traffic model we have two types 
of customers or arrivals: transport vehicles and passenger vehicles. The performance 
of each type of vehicle on the hill is considerably different. A third crucial difference 
lies in the nature of the arrivals and services: In the queuing model we assumed that 
individuals arrive in a Poisson fashion and are serviced in an exponential fashion. In 
the traffic model that is simply not true, for vehicles do not flow freely or randomly on 
the highway, especially on hills where platoons are formed behind slow-moving vehicles .. 
What happens is vehicles arrive at the foot of the hill in bulk and leave the hill in bulk. 

The multiple birth and death process for traffic flow on hills includes features not 
present in the ordinary queuing model, i.e., self-service, nonhomogeneous vehicles, 
bulk arrivals, and bulk finishes. P1J (t) is defined as the probability of i cars and j 
trucks on the hill at time t; the possible states of our system will be pairs of nonnega
tive integers (i, j ). We make two assumptions. 

First, the distribution of times between platoon arrivals at both the bottom and the 
top of the hill is exponential with parameters 1/X and 1/µ. respectively. Equivalently, 
platoon arrivals at the bottom and the top of the hill can be shown to be Poisson with 
parameters X and µ, respectively. The measurement of time between platoon arrivals 
by our own convention shall be from the front of the lead car of a platoon to the front of 
the lead car of the next platoon. 

Second, given a platoon arrival, the change in the state of the hill can be by more 
than one vehicle. Thus, a discrete distribution A1J gives the probability of i cars and j 
trucks arriving in a platoon at the bottom of the hill for all combinations of i and j. 

I: A1J = 1 A1J ~ 0 
ij 

Similarly, a discrete distribution f1J gives the probability of i cars and j trucks arriving 
in a platoon at the top of the hill and departing the system for all combinations of i and j. 



For example we may have 

f10 = 0.1 

fo1 = 0.1 

fu = 0.2 

f2,1 = 0.3 

f3,1=0.3 
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f1J 2 0 

Given that a platoon arrives at the crest and that the state of the hill is (1, 1 ), we must 
use conditional probability to !'ind the correct probabilities of f10, fo1, fu; the modified 
distribution would be 

f10 = 0.1 + g:i + 0.2 = 0.25 

fo1 = 0.25 

fu = 0.50 

The aforementioned process should really not be called a birth and death process, 
for the standard terminology of a birth and death process requires that, in a small 
interval of time At, only a single birth or death has positive probability. (Rosenshine 
of Pennsylvania State University suggested the name multiple birth and death. ) Finally 
we must observe that in the queuing model presented earlier it was implicitly assumed 
that one could have any number of individuals in the system. Certainly this is not the 
case on the hill where there are physical limitations due to the actual length of the road
way and corresponding lengths of vehicles. Assume then that N and M are upper limits 
to the number of cars and trucks on the hill; if the state of the system is at some point 
N and M, then no more vehicles can enter the hill until some vehicles in the system 
leave. Hence the process under consideration will have two reflecting barriers: the 
state (0,0) and the state (N,M) where N + M = Q. Q is the maximum number of vehicles 
that can be physically present on the hill at any one time when we consider the average 
length of cars and trucks and make plausible assumptions about the proportion of each 
present. However, for the sake of illustration we simplify the problem by calling N and 
M the respective upper limits for cars and trucks present on the hill. 

MODEL FORMULATION 

We now consider the Kolmogorov differential-difference equations that describe this 
multiple birth-death process with reflecting barriers. Because the required notation is 
a bit abstruse for a general model let us first set N = 4 and M = 2. P 1J(t) is the proba
bility of i cars and j trucks on the hill at time t where of course for each t E (0, co) 

I: P1J(t) = 1 
(i,j) 

We shall also specify the conditional probability distribution of arrivals and finishes 
given that an arrival or finish has occurred. Let A1J be the conditional probabilities of 
i cars and j trucks arriving, given that an arrival has occurred, and f1J be the condi
tional probabilities of i cars and j trucks finishing the hill (i.e., reaching the crest), 
given that a finish has occurred. In our example set 

A10 = 0.5 

Ao1 = 0.3 

Au= 0.1 

A21 = 0.1 

f10 = 0.6 

fo1 = 0.17 

fu = 0.17 

b = 0.50 
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(The fact that the possible sets of bulk arrivals and bulk finishes are the same is only 
coincidental in this example.) 

The usual procedure in birth-death processes is to write P1J (t + At) where At is some 
very small interval in terms of P 1J (t). For example, we set i = 2 and j = 2 and consider 
P22(t + At); i.e., we want to write an expression for the probability of being in state (2,2) 
at time t + At. There are the three mutually exclusive and exhaustive ways of being in 
state (2,2) at time t + At: 

1. Be in state (2,2) at time t and have no arrivals or no finishes in At, 
2. Be in state (i,j) at time t and have (2-i, 2-j) arrivals and no finishes in At, or 
3. Be in state (i,j) at time t and have (i-2, j-2) finishes and no arrivals in At. 

When t is very small we cannot have both an arrival and a finish int time so that no 
other possibilities are available. Hence, when t is sufficiently small P22(t + At) is ap
proximately equal to the sum of the following three expressions: 

1. Prob-no arrivals or finishes in At and system in state (2,2) at time t, 
2. :E Prob-(2-i, 2-j) vehicles arrive and no finishes in At and the system is in 

(i,j) 
state (i, j) at time t, and 

3. :E Prob-(i-2, j-2) vehicles finish and no arrivals in At and the system is in 
(i,j) 

state (i,j) at time t. 

We can now write in more classical terminology the Kolmogorov equations where we 
have utilized the independence of the probability of being in a given state and the event 
of arrivals and finishes (except at boundaries) plus the fact that the Prob [2-i, 2-j) ar
rivals J = Prob [(2-i, 2-j) arrivals\ an arrival] x Prob [an arrival]. Pdt + At) = (1 - >-.At) 
(1 - µAt) P22(t) + (1 - µAt) >-.At [A21 Po1(t) + A11 P11(t) + Aoi.Pu(t) + A10 x P12(t)] + (1 - >,,ll,t) µAt 
[f10P32(t)J. Rearranging terms, dividing by ll,t, andnegl ecting terms on the order (At)2 yield 

P 22 (t + ~/ - P 22 (t) = (->-. - u) Pdt) + >.. [A21 Po1(t) + Au P11(t) 

+ Ao1 P21(t) + A10 X P12(t)J + µf10 P32(t) 

Now we let At ... 0 and on the L.H.S. we have by definition P~2(t), i.e., the derivative of 
P~2(t). In this example we have 15 possible states so that employing the same limiting 
procedure to each of the 15 possible states would yield a linear system of 15 homo
geneous differential equations of the first degree; the system would have the following 
simple form: 

P' (t) = A P(t) 

where A is a 15 x 15 matrix and not a function of t. 
One of the easiest methods of obtaining the 15 forward Kolmogorov equations is to 

write the approximate probabilities of moving from state (i,j) at time t to state (i',j') 
at time t + ~t. This is shown in detail in Figure 1, where for brevity we have omitted 
the At associated with each>-. andµ and terms on the order (At)2. The first line in 
Figure 1 indicates that, if the process is in state (0, 0) at time t, it can conceivably be 
in states [(0,0), (1,0), (0,1), (1,1), (2,1)) at time t + At. In particular the probability 
that the process will be in one of these states is 1. The forward Kolmogorov equations 
for state (2,2) were obtained by setting P22(t + At) equal to the column entries below 
(2,2) multiplied by their respective states. In fact this is how all the forward Kolmo
gorov equations could be obtained. Note that in the row associated with state (3,0) at 
time t are the conditional probabilities with superscripts attached. If the process is in 
state (3,0) at time t and an arrival occurs, then it is impossible for the arrival to con
tain two cars and one truck; hence, the probabilities of the other three possibilities 
must be amended. In our example At~, Atl, and Ai31 are the conditional distributions of 
arrivals, given that an arrival occurs and that the arrival can be in only one of three 
states, (1, 0 ), (0, 1 ), or (1, 1 ). In this example 
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A(3l _ 0.5 
lO - 0.5 + 0.3 + 0.1 

A(3l _ 0.3 
01 - 0.5+0.3+0.1 

A(3l _ 0.1 
u - 0.5+ 0.3+ 0.1 

The Kolmogorov equations for this example produce a system of 15 linear differential, 
first-degree, and homogeneous equations of the form 

P'(t) = A P(t) 

At this juncture we can proceed in one of two directions: 

1. Find the solution of this system of linear differential equations with various 
initial boundary conditions, or 

2. Find the steady-state probabilities by making t very large, i.e., set P;J (t) = 0 
and solve the system of 15 linear equations, subject to :E P 1J = 1. 

ij 

The form of the solution to the linear system of differential equations in the first 
direction is 

P(t) = eAt P(0) 

Methods for obtaining this solution and solutions for the second direction are discussed 
in the next section. 

SOLUTION PROCEDURE 

For the example in the previous section we had 15 possible concentrations, i.e., 
N = 4 and M = 2. Suppose that the arrival of platoons at the bottom of the hill is 5/min 
and at the top of the hill is 3/min so that we set >.. = 5 and µ = 3 in Figure 1. The condi
tional distributions (A1J} and (f1J} will be the same as those given earlier. The average 
flow rate of platoons at the bottom of the hill is 5/min, but of course in some minutes 
there may be 0 platoons and in other minutes 10 platoons moving through the system in 
such a way that the limits N and M are not violated. 

Bw,o1(t) is a 15-component vector that represents the probability of being in each of 
the 15 states at time t given that at time 0 the state was (0,0). Of course, for different 
values of t these probabilities are different, but the sum of the 15 components is 1. To 
obtain B(o,oi(t)we must solve the following set of 15 linear differential equations: 

where A is the 15 x 15 matrix in Figure 1 with >.. = 5 andµ = 3. The general form of 
such systems is given by 

where B10,oi(0) is the boundary condition and represents a starting state of (0,0) at time 
0. The solution procedure is to obtain the matrix ,tA\ there are two well-known proce
dures for deriving this matrix (2, 10). The first relies on obtaining 15 distinct eigen
values of the matrix A so that A- can be diagonalized, and the second is simply a series 
expansion of the matrix ,tAt. We have chosen the second method for computational ex
pedience. 

The series expansion for the matrix ,tAt is 

At (At) 2 (At)3 
L = I + At + 2! + 3! + ... 
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Figure 1. Transition matrix at t + ~t. 

o,o 

1,0 

2,0 

3,0 

4,0 

0,1 

1,1 

t 2,1 

3,1 

4,1 

0,2 

1,2 

2,2 

3,2 

4,2 

o,o 

1-;\ 

µ 

µf(3) 
11 

µf21 

1,0 

MlO 

1-;\-µ 

µ 

µf(3) 
01 

µfll 

µf21 

2,0 3,0 4,0 

MlO 

1-1'-µ AAlO 

µ 1-1'-µ M(3) 
10 

µ 1-1'-µ 

µfOl 

µfll µfOl 

µf21 µfll µfOl 

0,1 1,1 

½1 ½1 

MOl 

1-;\-µ MlO 

µf(3) 
10 

1-1'-µ 

µflO 

\J 

µf(3) 
11 

µf(3) 
01 

µf21 µfll 

µf21 

Figure 2. Transition matrix for illustrative example. 

lal 0 0 1 0 2 0 3 0 4 0 0 1 1 l 2 1 

o,o .158 .103 .060 .029 .012 .063 .077 .088 

1,0 .143 .099 .064 .034 .015 .ass .070 .090' 

2,0 .121 .093 .069 .041 .020 .043 .060 .092 

3,0 .101 .085 .072 ,046 .024 .033 .051 .094 

4,0 .091 .078 .068 .043 .023 .029 .047 .097 

0,1 .143 .093 .052 .024 .009 .065 .078 .090 

1,1 .135 .089 .054 .027 .011 .056 .071 .093 

2,1 .123 .087 .059 .031 .014 .047 .063 .096 

3,1 .107 .082 -062 .035 ,016 .039 .055 .098 

4,1 .097 .077 ,061 .035 .017 .033 ,051 .100 

0,2 .134 .082 .044 .020 .008 .066 ,078 .091 

1,2 .123 .079 . 046 .022 .009 .056 .071 .095 

2,2 .114 .078 .oso .025 .011 .047 .064 .098 

3,2 .104 .076 .053 .027 .012 .039 .056 .101 

4,2 .098 .on .055 .029 .013 .035 .052 .102 

(bl 

o,o 1,0 2,0 3,0 4,0 0,1 1,1 2,1 
.120 .086 .058 .031 .014 .046 .062 .096 

2,1 3,1 4,1 0,2 1,2 2 ,2 3,2 4,2 

M.21 

/..All M.21 

MOl /..All M.21 
M(3) 

01 
M(3) 

11 

1' 

MOl /..All M.21 

MlO MOl /..All M.21 

1-1'-µ MlO ~1 /..All M.21 

µflO 1-1'-µ M(3) 
10 

M(3) 
01 

M(3) 
11 

µflO l-1'-11 1' 

1-1'-µ 1' 

µf(3) 
10 

1-1'-µ 1' 

µfOl µflO 1-1'-µ A 

\Jfll µfOl µflO 1-1'-µ 1' 

µf21 µfll µfOl µflO 1-µ 

3 l " 1 
0 2 1 2 2 2 3 2 4 2 

,057 .040 .017 .034 .051 .062 .148 

.062 .047 .014 .029 .046 .06; .171 

.068 .058 .010 .022 .039 .059 .204 

.073 .068 .007 .016 .034 .058 .238 

.075 .070 .006 .014 .033 .060 .265 

.056 .037 .019 .038 .057 .069 .164 

.061 .043 .015 .032 .052 .069 .192 

.066 .051 .012 .023 .044 .065 .217 

,071 .059 .009 .019 .039 .063 .246 

.074 .062 .007 ,017 .037 .064 .270 

,055 .035 .021 .092 .064 .077 .184 

.061 .041 .016 .034 .057 .076 .214 

.066 .048 .013 .027 .049 .072 • 239 

.071 .054 .009 .021 .042 .069 .264 

.073 .058 .008 ,018 .039 .067 .278 

3,1 4,1 0,2 1,2 2 ,2 3,2 4,2 
.067 .052 .012 .025 .044 .065 .223 
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The number of terms required to approximate 1,At of course depends on the size of t; for 
large values of t a larger number of terms are required. 

When t = 1 min, the probabilities of being in each of the 15 states, given one starts 
in a particular state, are given in Figure 2. If at t = 0 the state of the hill is (0, 0), then 
the probability that the state of the hill is (0,0) at t = 1 min is 0.1589, whereas the prob
ability that the state of the hill is (4,2) at t = 1 is 0.1481. The probabilities of various 
concentrations at t = 1 depend quite naturally on the state of the hill at t = 0 (each row 
in Fig. 2 is different). The probability of being in state (0,0) at t = 1, given that the hill 
is in state (0,1) at t = 0, is 0.1433. If we want to know the probabilities of various con
centrations when t = 2, the matrix 1,At would be needed where t = 2. 

It might be expected that for large values of t the probabilities of various concentra
tions are independent of the starting states. This indeed is true and is a well-known fact 
about Markov processes. In this small illustrative example, this steady state was 
reached when t = 6 min. Figure 2b shows the steady-state probabilities; the probabil
ity of being in state (0,0) in the long run is 0.120 regardless of the starting state. The 
time to reach steady state is determined largely by the number of states possible, and 
in this example the number is only 15. In a later section a field study is described 
where the time to reach steady state is nearly 2 hours. 

The steady-state probabilities of the various concentrations shown in Figure 2b rep
resent a significant departure from the deterministic information given by an ordinary 
flow-concentration diagram. Instead of assigning a fixed value of concentration for a 
fixed flow, the stochastic model assigns a certain probability of various concentrations 
corresponding to a certain fixed mean flow of vehicles. Of course an average concen
tration could be computed, but the knowledge of probabilities of certain extreme condi
tions is available with this model, along with the time-varying behavior of these concen
trations. 

MEAN FIRST PASSAGE TIMES 

The dynamic properties of the multiple birth and death model are in some ways 
illustrated in the previous section wherein it was shown that the probability distribution 
of concentrations changed with time until a steady state was reached. In this section a 
more natural and useful dynamic property is described: How long does it take for a road 
jam to dissipate to ordinary conditions, or, put another way, how long does it take to 
move from a high concentration state to a low state or vice versa? How quickly a hill 
can become clogged with vehicles is a measure of its relative stability. 

The stability of traffic concentration on a hill can be analyzed by finding what is 
called the mean first passage time. The mean first passage time is simply the average 
number of minutes required to pass from a particular state to some other state. If the 
mean first passage time from state (0, 0) to state (20, 10) is relatively short, then the 
hill can become clogged in a very short span of time. 

The mean first passage time from state j to state k mJk is calculated from the follow
ing system of linear equations (i): 

mJk = 1 + ~ PJ1 m1k j -I= k 
i-/=k 

Pa is the probability of a single transition from state j to some intermediate state i. 
But in our continuous-time Markov process, PJ 1(t) involves an unknown number of inter
mediate transitions before state i is reached. However, if we consider a sufficiently 
small t, the number of transitions between j and i approaches 1, and we can use the 
above system of equations in a valid fashion to get a good approximation of the transi
tions from state i to state k. If we multiply the number of transitions, mJk by the time 
one transition on the average occurs, we get a valid approximation of the mean first 
passage times. In the interest of brevity, the mathematical development supporting 
these comments is omitted (Fig. 3). 

Figure 3 shows the mean first passage times for the illustrative example when the 
time interval used in discretizing the Markov process was ~t = 0.0001. (It should be 
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noted that we found negligible differences for tu as large as 0.05.) The mean first 
passage time from state (O,O) to state (4,2) was 2.09 min, whereas the mean first 
passage time from (2,1) to (0,0) was 2.00 min. Of course, with a larger number of 
states, the mean first passage times between the extreme pairs of state would be 
larger. 

FIELD STUDY 

In this section we shall describe some results of field studies where the feasibility 
and the validity of the assumptions for the stochastic model were tested. 

The crucial mathematical assumption is that platoons of vehicles arrive at both the 
bottom and top of the hill in a Poisson fashion (8, 9 ); nonetheless data were collected 
from four hills in Centre and Blair Counties in centr al Pennsylvania. In all cases the 
hypothesis that platoons of vehicles follow a Poisson flow cannot be rejected at the 0.05 
significance level when the classical chi-square goodness-of-fit test is used. It should 
be noted though that these tests were carried out during daylight hours wherein intercity 
traffic was only moderate; certain peak periods, such as the 5: 00 p. m. rush hour, were 
not tested. 

Oneparticulartwo-lanehill in Centre County was chosen to be studied extensively. 
Here we collected data to estimate>.., µ,, (A13 }, and (f1 J}. The particular hill was 
Penn-144 between the towns of Centre Hall and Pleasant Gap; this hill is about ½ mile 
long, and the bottom of the hill is in Centre Hall. The data were always collected dur
ing clear dry weather and between the hours of 9: 00 and 11: 30 a. m. Our estimates of 
the necessary parameters are given in Table 1 and are based on five observations dur
ing the months of July and August 1972. The tactical procedures used to collect, trans
cribe, and analyze the data can be found elsewhere (13). There were some difficult 
problems such as determining whether vehicles were platooned, and in many instances 
it was not entirely clear whether a vehicle should be classified as passenger or trans
port. 

The estimates for >.. and µ were 1.80 platoons/min and 1.28 platoons/min for this hill. 
The conditional distribution of platoon sizes is given in Table 1. The upper limits N 
and M were eventually set at 18 and 5 respectively; this permitted a total of 114 states 
(19 x 6). These limits do not represent upper bounds on the capacity of the hill; with a 
½-mile hill, these limits should be four or five times as large. The difficulty encount
ered was that, with matrices of the size 500 x 500, certain computational procedures 
become prohibitively costly; hence, practical limits of 13 cars and five trucks were 
used initially. Later a simple procedure for avoiding the dimensionality difficulty is 
discussed. 

The probability transition matrix for the 114-state model was computed for increas
ing values oft. The steady-state distribution was reached fort = 2 hours (Table 2). 
This compares with the illustrative example where after 6 min the steady state was 
reached. Note that Table 2 shows that, as the number of trucks increases, correspond
ingly the number of cars increases. For example, the probability that there are no trucks 
and 18 cars on the hill at any one time is 0.001; however, the probability of five trucks 
and 18 cars is much larger at 0.070. The conditional probability of 18 cars given that 
there are five trucks would be 0.070/0.288 = 0.240. 

Table 3 gives a sample of the mean first passage times. Note that the mean first 
passage time from state (0,0) to (18,5) is 63.84 min but from (18.5) to (0,0) the time is 
109.47 min. Hence on the average the time to reach saturation from zero concentration 
is over twice as long as to go from saturation to zero concentration. 

This type of information is, of course, not available from the classical flow
concentration diagram, which specifies the flow rate for a given concentration. Con
versely a given flow rate would correspond to two distinct concentrations. If the flow 
rate were x, then concentrations y and z could generate the flow shown in Figure 4. 
The stochastic flow-concentration model generates a probability distribution for the 
various concentrations rather than just two points y and z corresponding to a particular 
flow x. One might expect that this probability distribution should be some type of 
bimodal distribution with modes at y and z. To some degree this was in fact found to 
be true. 
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Figure 3. Mean first passage times for illustrative example. 

o,o 1,0 2,0 3,0 4,0 0,1 1,1 2,1 3,1 4,1 o·, 2 1 , 2 2 , 2 3 ,2 4 , 2 

o,o 1.08 2. 71 6.01 12. 7 2.64 1.77 1.35 2 . 27 3, 41 14.1 6 . 07 3.05 2 , 31 2.09 

1,0 1.43 2.02 5 . 45 12 . 2 3.50 1.87 1.27 2.01 3 . 09 15 . 0 6 . 48 3.22 2.29 1.93 

2,0 2. 18 1.32 3.91 10.8 4.14 2.49 1.18 1.75 2.48 15. 7 7 . 12 3.49 2.32 1.69 

3,0 2.64 1.94 1.62 7 .54 4.58 2,88 1.39 1.52 1.74 16.3 7 , 57 3.80 2.38 1.44 

4,0 2. 78 2.20 2 . 24 3,34 4, 67 2 . 98 1.37 1.76 0.77 16.3 7.62 3,82 2 , 37 1.08 

0,1 1.36 1.75 3.10 6.31 13.0 1.36 1.38 2 .36 3 .50 11.6 4 . 78 2.39 2.01 1.99 

1,1 1.82 1.73 2.97 6.14 12.8 3.09 1.01 2.09 3. 27 14.2 5.22 2.45 1.32 1.76 

2,1 2.00 1. 79 2.71 5.81 12.4 3.82 2, 25 1.52 2.84 15.3 6.77 2. 79 1.81 1.49 

3,1 2.48 1.84 2.51 5.31 11.8 4.37 2,64 1.22 1.94 16.0 7 .31 3.56 1.86 1.16 

4,1 2.66 2.16 2.41 5.15 11.2 4 , 52 2 . 85 1.16 1.70 16 . 1 7 .45 3.63 2 . 17 0. 67 

0,2 2.03 2.16 3.35 6 . 50 13.1 1.90 1. 76 1.48 2 . 42 3.54 1.92 1.60 1.71 1.87 

1,2 2.24 2. 21 3.31 6.42 13.0 2.85 1.80 1.34 2. 27 3.38 12.5 .093 1.32 1.60 

2,2 2. 34 2.20 3 . 20 6.28 12.9 3.36 2.06 1.17 2.05 3.14 14. 7 6 . 11 0.81 1.24 

3,2 2 .52 2. 23 3.10 6.11 12. 7 4.19 2,28 1.02 1.79 2.83 15 , 6 6 , 95 3,13 0 . 70 

4,2 2. 61 2.26 3.02 6.00 12.5 4.43 2. 75 0.89 1.67 2. 55 16,0 7 . 34 3.45 1.91 

Table 1. Field study parameters. Table 2. Steady-state probabilities for field study. 

Bottom of Hill Top of Hill Cars 0 2 3 4 5 

Arrivals Value Arrivals Value 0 0.021 0.009 0.006 0.005 0.003 0.001 
1 0.016 0.010 0.007 0.006 0.004 0.002 

A,o 0.734 f10 0.635 2 0.013 0.010 0.008 0.007 0.005 0.003 
A;o 0.098 f,o 0.146 3 0.012 0.010 0.009 0.008 0.005 0.004 
A.o 0.016 f,o 0.018 4 0.010 0.010 0.009 0.008 0.007 0.005 
A.,, 0.009 f,o 0.018 5 0.009 0.009 0.009 0.009 0.008 0.006 
A,o 0.003 f,o 0.004 6 0.008 0.009 0.009 0.009 0.008 0.007 
Ao, 0.095 fo1 0.041 7 0.007 0.008 0.009 0.009 0.009 0.008 
A11 0.032 fa 0.055 8 0.006 0.008 0.008 0.009 0.010 0.009 
A21 0.006 f21 0.037 9 0.006 0.007 0.008 0.009 0.010 0.010 
A02 0.006 1,. 0.009 10 0.005 0.006 0.008 0.009 0.011 0.011 

f01 0.009 11 0.005 0.006 0.007 0.009 0.012 0.012 
f,, 0.014 12 0.004 0.005 0.007 0.009 0.012 0.013 
f2, 2 0.005 13 0.003 0.005 0.006 0.009 0.012 0.015 
fe12 0.005 14 0.003 0.004 0.005 0.008 0.013 0.018 
f12 ,2 0.004 15 0.002 0.003 0.005 0.008 0.013 0.021 

16 0.002 0.003 0.004 0.007 0.013 0.027 
Nole: ~ • 1,80, &rid 11 • 1,28. 17 0.001 0,002 0.003 0,006 0.013 0.036 

18 0.001 0.002 0.003 0.005 0.011 0.070 

Total 0.128 0.126 0.130 0.149 0.179 0.288 
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Table 3. Mean first passage times Figure 4. Flow-density diagram. 
for field study, in min. 

To 

From (0, 0) (6, 2) 

(O,O) 0.48 59.71 
(8, 0) 84.27 67.61 

(18, 0) 107.6 82.34 
(0, 1) 25.30 57.55 
(8, 1) 84.57 61.85 

(18, 1) 107.53 82.00 
(8, 2) 87.80 49.85 

(18, 2) 107.87 81.90 
(0, 3) 67.78 61.44 
(8, 3) 94.86 65 .61 

(18, 3) 108.52 82.25 
(0, 4) 70.60 65.07 
(8, 4) 96.70 72.93 

(18, 4) 109.1 82.88 
(O, 5) 79.06 69.56 
(8, 5) 99.84 77.87 

(18, 5) 109.47 83.51 

(18, 6) 

63.84 
53.80 
26.28 
63.51 
53.04 
22.86 
51.46 
18.37 
60.76 
46.77 
13.00 
60.57 
46.78 
07.05 
59.24 
44.26 
00.14 

y z 
Concentration (vehlclll/distancel 

Figure 6. Field study distribution of concentration for total vehicles . 
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As a demonstration of this phenomenon, the stochastic model used for the Centre 
Hall Mountain· field study was adapted so that cars and trucks were treated identically. 
Previously, the upper bounds on cars and trucks were 18 and five respectively, which 
allowed only 23 vehicles on the hill, but this set of bounds requires 114 states. If, in
stead, all vehicles are treated identically then the model could use 114 as an upper 
bound. The actual upper bound on the number of vehicles allowed was set at 150. Fig
ure 5 shows the steady-state probabilities in graphical form; the two modes are at state 
7 and state 150. 

FURTHER CONSIDERATIONS 

The stochastic model described in this paper appears to be a valuable tool in the 
analysis of traffic flow and concentration, although no attempt has been made in this 
study to apply the methodology to the design and control of roadways. But considera
tion is now under way for applications in passing safety and speeds and certain other 
theoretical extensions. 

One shortcoming of the model is that the parameters X and µ are time-homogeneous. 
Obviously over long enough time spans we should treat X and µ as functions of time, i.e., 
X(t) and µ(t). This extension is certainly feasible, for the only additional difficulty is 
that the linear differential equations now become time-dependent. The transition ma
trices should then become even more useful when time intervals over rush hours are 
included. Furthermore mean first passage times become very important. 
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INTERNAL ENERGY OF TRAFFIC FLOWS 
Joe Lee, University of Kansas; and 
Jason C. Yu, Virginia Polytechnic Institute and state University 

The objective of this paper is to establish an acceptable parameter for the 
internal energy of traffic flow so that further exploration of traffic dynamics 
can be pursued. Through a boundary condition analysis of traffic flows, it 
has been found that the currently suggested "acceleration noise" is not a 
good measure of the internal energy. Results of a theoretical analysis of 
analogous compressible fluid conditions indicate that, if the kinetic energy 
of a traffic stream is defined as wcu2, the principle of conservation of energy 
will not apply. This is because, when density is used instead of total 
number of vehicles, the system is not confined; thus energy will not be 
conserved. The compressible fluid analogy further suggests that a term 
P1 [ (k1/k0 ) - 1] may be used to represent the internal energy of traffic 
flows. Because the accuracy of this compressible fluid analogy is question
able, the term P 1 [ (k1/k0 ) - 1] is not directly applicable to traffic flows. 
Instead, an empirical approach is used in the search for a suitable internal 
energy parameter. Aerial photographic traffic data were used in this 
effort. Four vehicle-interaction-related parameters were analyzed. One 
of the parameters tested, the coefficient of variation of speed, not only has 
exhibited a variational pattern that agrees with that of the P1 [ (k1/k0

) - l] 
but also satisfies the boundary condition requirements. It is, therefore, 
proposed as a suitable measure of the internal energy of traffic flow. 

•AN UNDERSTANDING of the dynamics involved in traffic movement is no doubt a 
basis for design of an efficient and safe highway system. However, fundamentals of 
traffic dynamics have not been so fully developed as have other physical phenomena 
such as movement of discrete or continuous masses. One difficulty has been defining 
energy parameters in the involved macroscopic traffic dynamic system. In an attempt 
to provide a solution to this problem, a traffic parameter is discussed here that can be 
used to measure the internal energy of a traffic flow. 

Drew (1) introduced the energy concept into traffic flow analysis by considering the 
traffic stream to be analogous to the flow of a compressible fluid in a constant-area 
duct. He suggested that a kinetic energy term on the order wcu2 might be used to de
scribe certain properties of a traffic stream inasmuch as a similar term, ½ pV2

, is 
defined in fluid mechanics as the kinetic energy of a compressible fluid. In the traffic 
case, a is a dimensionless constant, k is the density of the traffic stream, and u is the 
average speed of the stream. Then, by applying the well-known principle of conserva
tion of energy, Drew further suggested that an internal energy term be added to the 
system to yield an expression for total traffic energy. The proposed relationship may 
be written as 

T E + I (1) 

where 

T total energy of a traffic stream (constant), 
E kinetic energy of the traffic stream (a.ku2

), and 
I internal energy of the traffic stream. 
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In most cases, the kinetic energy of a traffic stream can be easily obtained by mea
suring the density and average velocity of the stream. The internal energy, however, 
is thought to be related to the interactions among vehicles in the stream, and it is very 
difficult to define. Drew has proposed that the parameter "acceleration noise" (3) be 
used as a measure of internal energy. His proposal was based on two observations. 
First, the acceleration noise obtained by finding the standard deviation of the accelera
tion distribution of one vehicle traveling along a stretch of roadway has the same di
mensions as kinetic energy. Second, a plot of acceleration noise and aku2 versus density 
revealed that the acceleration noise values are generally low when the kinetic energy 
values are high, thus yielding a near constant value for total energy. 

Using acceleration noise as a measure of internal energy, we can rewrite Eq. 1 

T = aku2 + CTt = constant (2) 

where CTt is the derived acceleration noise parameter. 
Although this expression :represents a significant concept for studying traffic char

acteristics, it appears to have certain shortcomings. 
Uthe expressionalcu2 + at = constant is applied at the boundary conditions of a traffic 

stream, certain discrepancies become apparent. Consider first the internal energy 
term O't, According to Drew, <Tt is derived from a - a. where a is the measured ac
celeration noise of a vehicle and C1n is the natural acceleration noise displayed by the 
same vehicle subjected to no traffic interference. 

For the boundary condition where the density is zero (k = 0), the acceleration noise 
value o has to equal a. by definition. Therefore, at = a - a. would reduce to a. - a. or 
zero. Because there are no vehicles on the road at zero density, the kinetic energy at 
this point would also be equal to zero. Consequently, the total energy of the traffic 
stream when k = 0 would be T = E + I= 0. At the other end of the density domain, jam 
density (k = kJ), all vehicles on the roadway are stopped. Because there is no move
ment, a would necessarily be zero. Also, because the idea of a natural acceleration 
noise makes no sense for such extremely high-density conditions, a. is undefined at kJ. 
Thus, no meaningful value for total energy can be found for the jammed condition by 
using the proposed definition of internal energy. If the principle of conservation of 
energy holds true for a traffic stream using the parameters suggested by Drew, at does 
not seem to represent a good measure of internal energy. 

Intuitively, the internal energy of a traffic stream should express the degree to which 
vehicle interactions exist in the stream. From this point of view, the internal energy 
should be equal to zero when there are no vehicles on the road and should reach its 
maximum value when the density is maximum inasmuch as the greatest amount of ve
hicle interaction can be expected to occur at this point. A parameter that fulfills these 
boundary conditions is required. If it is assumed that such a parameter, call it I, exists, 
then the condition for the conservation of energy would be written as 

T = aku2 + I = constant (3) 

where I = 0 at k = 0 and I = I ... at k = kJ. 
To this point in the analysis, it has been assumed that the principle of conservation 

of energy can be applied to a traffic stream with the suggested parameters. If Eq. 3 is 
evaluated at the appropriate boundary conditions, however, the following results are 
obtained: 

k = 0 ... E = aku2 = 0 and I = 0 

.".T=E+I=O 

aku2 = 0 since u = 0 and I I,ax 

:. T = E + I = L...x 

Because I.ax must be greater than 0, the conservation of energy (Eq. 3) does not hold. 
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From the analysis documented above, two general conclusions can be drawn. First, 
acceleration noise is not an adequate parameter for representing the internal energy of 
a traffic stream if the internal energy is defined in terms of vehicular interaction; and, 
second, if the kinetic energy of the traffic stream is defined as cxku2 and the internal 
energy is defined in terms of vehicular interaction, which is zero at zero density and 
a maximum at jam density, the principle of conservation of energy does not apply. 

From these conclusions, it is apparent that some modifications must be made in the 
energy concept if it is to be used in traffic flow conditions. 

THEORETICAL INVESTIGATIONS 

Energy System of a Traffic Stream 

Consider a platoon of n vehicles. At time t 0 , assume that these vehicles are spread 
along a section of roadway at a low density ko and are moving at an average speed u0 • 

Due to a disturbance of some sort, the first vehicle slows down and the vehicles start 
backing up. At time t1 the average speed has dropped to u1 and the density has increased 
to k1 • If the cause of the disturbance continues to prevail, a complete stoppage of the 
platoon will eventually occur. At this time a bumper-to-bumper situation will exist, 
and the density will have reached its maximum value of kJ. This sequence of occur
rences is shown in Figure 1. 

These conditions can be considered analogous to the system shown in Figure 2. In 
this system, a bulk of compressible fluid with mass m is moving through a frictionless 
pipe with unit cross section. The initial conditions are that at time t 0 this bulk of fluid 
is moving at a velocity v0 with density p 0 and has length 10 • A varying resistant force 
is introduced into the system. Because of the resistance, the movement of the fluid 
mass is retarded and the fluid slows, eventually coming to a stop. At the same time, 
because of the compressive action of the variable force and the inertia of the fluid, the 
density of the fluid increases and reaches a maximum density PJ when the stoppage oc
curs. 

Now suppose that the fluid mass was completely stopped at time tJ and that the aver
age resistant force from time t 0 to tJ was measured as PJ. Also assume that the length 
of the mass at tl was ll. In the intermediate condition at time t 1 (Fig. 2b), the mass is 
moving at a velocity V;, the density is p1, the length of the mass has been reduced from 
10 by an amount Al1 to 11, and the average resistant force from time t 0 to t 1 is repre
sented as P 1 • 

Consider the condition shown in Figure 2a. There is no external force in the sys
tem, and the total energy involved is simply equal to the kinetic energy of the moving 
mass, ½mv~. After the resistance is applied to the system, the speed of the mass is 
reduced, and part of the kinetic energy is lost and is transferred to another form of 
energy. In this confined system the only other form of energy possible is that stored 
in the fluid itself due to the work done by the compressive action of the resistant force 
and the inertia of the fluid itself. At time t 1 the kinetic energy of the fluid has been 
reduced to ½mv~. The work done to this time by the resistance is equal to the average 
compressive force P 1 times the distance by which the fluid was compressed oll.1 1 • The 
total energy at time t1 is then 

(4) 

When the fluid mass is stopped at time tJ, there is no kinetic energy in the system. 
The stored energy at this time is equal to PJAlJ where All= 10 - ll. Hence, the total 
energy would be 

With the system confined and no other forces or energy involved, the principle of 
conservation of energy states that the total energy of the fluid for all three points in 
time must be equal. 

(5) 
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(6) 

Now, if the intermediate condition is taken as a reference, the following general ex
pression can be written: 

(7) 

Dividing both sides of Eq. 7 by 11 gives Eq. 8. 

(8) 

Now, m/11 is the density of the fluid mass at time t 1 (pi) and the term (P1Ali)/11 is 
simply the energy stored in a unit section (I1). Thus another form of Eq. 8 is 

(9) 

Inasmuch as C/11 is not a constant but is a function of li, the conclusion extracted 
from this analysis is that, if the kinetic energy of a compressible fluid is expressed a s 
½p1v; and the internal energy is expressed as the energy stored in a unit section of the 
fluid, then the principle of conservation of energy does not hold because the system is 
no longer confined; we are not dealing with a certain amount of mass but, instead, the 
variable mass in a unit volume. From the analogous point of view, if the kinetic energy 
of a traffic stream is expressed as aku2

, then the energy of the stream will not be con
served, no matter how the internal energy is defined, because the system is no longer 
confined. This conclusion agrees with the observation made in the previous section 
from examination of the traffic stream boundary conditions. 

Internal Energy of a Traffic Stream 

Although it has been demonstrated that the principle of conservation of energy does 
not hold for a traffic stream when kinetic energy is defined as aku2, it is thought never
theless that the concepts of kinetic and internal traffic stream energy are valuable 
contributions to the understanding of the dynamics of traffic flow. To apply these con
cepts, however, we must find a parameter that accurately reflects internal energy. 
This parameter must satisfy the boundary conditions for internal energy, which were 
discussed previously, and should in general exhibit a compensatory pattern with cor
responding kinetic energy. 

Consider the compressible fluid discussed previously. The internal energy in gen
eral can be expressed as (P1Al 1)/1 1 • Because Al1 = 10 - 11 and m = p 0 l 0 = p1 11, then 
Al1 can be written as m/p 0 - m/p1 = m(l/p 0 - l/p1). Thus, the internal energy term 
becomes P 1p1 (1/p 0 - lp1). The traffic stream analogy of this term would be P 1k1 (1/k0 -

l/k1) where P 1 is the average of an imaginary resistant force acting on the traffic 
stream from time to to time t 1 • 

If this resistant force were constant (call it Pc), then the term P 1k1 (1/k 0 - l/k1 ) could 
be written as a linear function of k1, that is, as Pc (ki/k0 - 1). A graphical presentation 
of this force is shown in Figure 3. It can be seen that the greater the density k1 be
comes, the greater the internal energy becomes, and when k1 -+ k 0 -+ 0 the internal energy 
also approaches zero. This behavior satisfies the boundary conditions previously pos
tulated for the internal energy of a traffic stream. 

The relationship shown in Figure 3 was based on the assumption that the resistant 
force was constant. When a traffic stream is considered, however, this force is in
visible and might be imagined to be a function of the internal friction inherent in traffic 
flow. From our general knowledge of traffic behavior, it seems more logical to assume 
a variable force in these circumstances than a constant force. In mechanics a force F 
is related to the mass of an object m and its acceleration a by Newton's second law of 
motion, F = ma. Because mis a constant, the force can be written simply as a function 
of acceleration: F = f(a). This argument suggests that the imaginary force that acts 
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Figure 1. Traffic queue-forming condition. 
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on a vehicular platoon is a function of the acceleration distribution of the stream with 
mean value u. It is generally accepted that the velocity of traffic flow is a function of 
traffic density: u = f(k). If we differentiate this expression with respect to time, the 
following relationship is obtained: 

u = f'(k~ 
dt 

(10) 

where f' (k) = df/ dk. This implies that the imaginary resistant force P is a function of 
f'(k}(dk/dt). In this expression, f'(k} would be a known function if the relationship be
tween speed and density were defined. The term dk/dt, which is the time rate of change 
of density, however, does not present a functional pattern according to existing knowl
edge. For this reason, no exact expression for the variation of internal energy as a 
result of the analysis of this section provides a valuable guide in the search for a suit
able internal energy parameter. 

EXPERIMENT AL INVESTIGATION 

Methodology 

From the previous analysis, it seems that, if a traffic flow could closely resemble 
the properties of a compressible fluid, the term Pi (k1/k0 - 1) would be used to indicate 
its internal energy. Because the fluid analogy is not strictly applicable throughout the 
density domain and because it has been shown that the imaginary resistance for a traf
fic flow does not take a specific functional pattern, the term Pi (ki/k0 - 1) cannot be used 
as a direct measure of internal energy in itself. It does seem to provide, however, a 
good approximation of the true internal energy pattern. 

A good internal energy parameter should satisfy the following requirements: 

1. It should be a measure of vehicular interaction, 
2. It should satisfy the boundary requirements of traffic conditions, and 
3. It should have a variational pattern that approximates the variational pattern of 

the fluid analogous term Pi(ki/k0 - 1). 

With these criteria in mind, an empirical approach is used in the search for an in
ternal energy parameter. This approach is dictated by our inability to establish a 
theoretical expression for the internal energy of a traffic system. The following activ
ities direct the empirical analysis: 

1. Establish the variational pattern of the term P1 (k1/k0 - 1) versus density from 
appropriate data; 

2. Choose vehicular interaction related parameters, and plot their variational pat
tern against density; 

3. Compare the plots obtained from procedures 1 and 2 to see whether they agree; 
and 

4. If they do, check the boundary requirements. 

The data used for this investigation were collected by an aerial photogrammetry 
technique (2). The selected platoon is displayed on the vehicle trajectories shown in 
Figure 4. -

Variations of the Imaginary Resistant Force for the Platoon Studied 

To calculate the imaginary resistant force, we treat the platoons as confined masses 
of compressible fluid. The arithmetic mean speed of the platoon is taken as the speed 
of the fluid mass, and the force is considered to be a function of the time rate of change 
of the average speed (acceleration). Figure 5 shows the relationships between average 
acceleration and density for the platoon. Disregarding scale differences, the average 
imaginary force would have the same variational pattern with density as does average 
acceleration. 
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Figure 4. Identification of platoon studied. 
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If we recall that the expression for internal energy of the traffic stream is P1 (k1/ k0 -

1) and that (k1/ k0 - 1) is an increasing linear function of density, then the variation of 
internal energy with density can be specified. The internal energy will be a generally 
increasing function of density with a hump at that value of density where the average 
resistance is at a maximum (Fig. 5). 

Alternative Internal Energy Parameters 

With the theoretical pattern for the variation of internal energy with density deter
mined for the selected platoon, it is now possible to investigate the applicability of sev
eral possible internal energy parameters. Four different parameters that are con
sidered to be vehicular interaction related have been analyzed. These are 

1. Standard deviation of the acceleration distribution of a platoon a. (this is in contrast 
to the acceleration noise value, discussed earlier, that considers only one vehicle), 

2 . Average of the absolute value of acceleration of the vehicles in a platoon I a I, 
3. Standard deviation of the platoon speed distribution a., and 
4. Coefficient of variation of the platoon speed distribution defined as the standard 

deviation of speed divided by the arithmetic mean speed (CVJ. 

Standard Deviation of Acceleration-The relationship between the standard deviation 
of acceleration and density for the selected platoon is shown in Figure 6. No recogniz
able pattern similar to the one desired for internal energy can be identified. In addi
tion, this parameter does not satisfy the boundary condition that requires that it be a 
maximum at maximum density. 

Average Absolute Acceleration-Figure 7 shows a plot of the average absolute ac
celeration versus density for the selected platoon. The pattern is similar to that ob
tained for the standard deviation of acceleration and has no value as a representative 
of internal energy. 

Standard Deviation of Speed-Investigation of the standard deviation of the platoon 
speed distributions yielded much more encouraging results than the acceleration
oriented studies. Figure 8 shows the variation of the standard deviation of speed with 
density for the selected platoon. A functional variational pattern is presented: The 
dispersion of speed decreases as density increases until a region is reached where 
almost all the vehicles in the platoon are moving at about the same speed. As density 
continues to increase, the dispersion of speeds begins to increase as well. This phe
nomenon can be explained by the fact that traffic flow at high densities tends to be un
stable, and there can exist a large variance among the speeds of the individual vehicles 
in such a disturbed flow situation. With still further increases in density, the dispersion 
of speed once again drops because the space available to each vehicle for maneuvering 
has become severely limited. Finally, when jam density is reached, a. falls to zero, 
for all movement on the roadway has ceased. 

This parameter appears to be a good indicator of internal energy in that it is rep
resentative of prevailing vehicle interactions. It presents a consistent and recogniz
able pattern with density and is simple to calculate. It does not, however, satisfy the 
boundary condition that internal energy be a maximum at jam density. 

Coefficient of Variation of Speed-To correct the boundary condition shortcoming 
displayed by o, requires that a modified parameter be formed by dividing the standard 
deviation of the speed distribution by the arithmetic mean speed at each density level. 
This parameter, CVu, is referred to in statistical terms as the coefficient of variation 
of speed and provides a measure of the relative dispersion of the speed values as a 
percentage of the mean speed. A plot of CVu versus density is shown in Figure 9 for 
the selected platoon. Comparing the exhibited patterns with Figure 5, which were 
derived earlier, evidences a superb agreement. 

Now we check the boundary conditions. According to the definition of the coefficient 
of variation of speed, we have 

CVu = 
[~ it(µ! - µ)2] 1/2 

µ 



Figure 6. Standard deviation of acceleration versus density for platoon studied. 
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where 

n 
µ = L /,tt/n = average speed, 

i=l 
ILt = speed of i th vehicle in a traffic stream, and 
n = number of vehicles. 
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We can see that, when (a) k = o, ILt ... µ., andµ ... µ.,, and thus CVu approaches zero; and 
that when (b) k = kJ, µ.1 ... 0, andµ ... O, and thus CV. approaches maximum when k ... k3• 

From this analysis, it is evident that the boundary conditions have been satisfied. An 
interesting point to be noted here is that, when every vehicle is moving at the same 
speed u1 (in this case µ. 1 = µ), CV. approaches zero also. 

From the evidence presented, it seems that the coefficient of variation of speed is 
an excellent choice for measuring the internal energy of traffic flows. 

CONCLUSIONS 

From the analyses relating to traffic energy presented in this paper the following 
general conclusions may be drawn: 

1. If the kinetic energy of a traffic stream is defined as oocu2 and the internal energy 
is defined in terms of vehicular interactions, the principle of conservation of energy 
does not hold. In fact, it will not hold regardless of how internal energy is defined so 
long as kinetic energy is taken to be aku2 because we are not dealing with a confined 
system, 

2. Acceleration noise does not represent a good indication of internal energythrough
out the entire density domain. 

3. If traffic flow is taken to be exactly analogous to compressible fluid flow, internal 
energy can be expressed as P1 (k1/k0 - 1) for the i th traffic state. ff the analogy is 
only approximately correct, as seems logical, the term P1 (k1/k0 - 1) serves as an ap
proximation of the true internal energy. 

4. Of the four alternative internal energy parameters studied, only the coefficient of 
variation of speed fulfilled all the requirements postulated for the desired parameter. 
It is, therefore, proposed as a suitable measure of the internal energy of a traffic 
stream. 

It is thought that the material contained in this paper represents a further step 
toward the attainment of an understanding of the dynamics involved in traffic movement. 
Such an understanding is a necessary prerequisite to the establishment of a safe and 
efficient highway system and forms a basis for determining control strategies for that 
system. 
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MULTIPLE RAMP CONTROL FOR A FREEWAY BOTTLENECK 
Patrick J. Athol and A. G. R. Bullen, University of Pittsburgh 

Many current approaches to freeway control use deterministic models of 
traffic flow based on the continuous flow-density curve. This paper pro
poses a control strategy based on a two-state traffic flow pattern with the 
primary control parameter being the probability of transition from uncon
gested flow to congested flow. The objective of the control is to maximize 
the reward associated with free flow. Trial solutions indicate that feasible 
numerical values for optimum control can be easily obtained, and these 
will be dependent on the length of the peak period. The approach should 
have direct applicability to existing surveillance and control hardware. 

•BOTTLENECK, which is the primary cause of congestion on a limited-access highway, 
is a term defining some operational constriction. It is usually identified with a local 
area rather than a precise point of the highway. Physical bottlenecks are related to 
the design features of the highway and are fixed in space, and dynamic bottlenecks are 
related to traffic incidents and can occur at any location. Regardless of the type, all 
bottlenecks have a disruptive effect on traffic, which will be some combination of in
creased accident potential, reduced traffic volume, and detrimental environmental ef
fects. Bottleneck control, simplistically overstated, contends that more traffic can be 
served at a higher level of service if congestion is eliminated. The control concept is 
to sustain the best operational level and, by preventing congestion, to yield benefits in 
increased safety and reduced delay. 

Many control methodologies, theoretical and applied, have been based on the tradi
tional flow-density relationship (1), which suggests a point of maximum flow (capacity). 
Initial controls in the Lincoln Tunnel in New York (2) and the Eisenhower Expressway 
experiments in Chicago (3) were based on the assumption that traffic could be controlied 
to this maximum flow condition. This maximum flow point, however, turned out to be 
very sensitive to breakdown, and it could not be maintained in practice without the rapid 
onset of congestion. Accordingly, most strategies have backed off from the theoretical 
ideal of maximum flow, and the emphasis is now on delaying or preventing congestion. 

New York used density as the control parameter, whereas Chicago used the directly 
measurable equivalent, occupancy (4). Experimental work on the Gulf Freeway in 
Houston (5) combined parameters in various functions of volume, speed, and density. 
The deterministic approaches to these systems required ongoing empirical refinement 
of their control functions to balance the risk of congestion against higher allowable flows. 

PEAK-PERIOD BOTTLENECK CONTROL 

Early literature on freeway characteristics alludes to traffic operation as a two
state process. Mika, Kreer, and Yuan (5) identified two modes of operation correspond
ing to congested and uncongested flow on a freeway. Refined measurements of flow and 
density indicate that the q-k curve masks the underlying traffic process. The curve is 
a regression fitted to historical data and, as such, does not necessarily provide a suitable 
model for real-time control. In particular, the curve does not model operating dif
ferences from day to day caused by weather or short-term variations caused by in
dividual driver characteristics. 

A pilot control scheme that has been tested in Chicago (6) modifies some of the pre
vious approaches. The control is aimed at peak-period flow, and its primary objective 
is to delay the onset of congestion by limiting bottleneck flow. During any time period, 
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which in this case is 1 min, the probability of congestion setting in, i.e., the probability 
of breakdown, is assumed to be a function of flow and density in the bottleneck. Given 
a suitable probability and the bottleneck density, the controller sets the desired bottle
neck flow for each time period. The ramps upstream of the bottleneck are then metered 
to achieve the appropriate bottleneck flow. In the Chicago experiment the probability 
of breakdown and its functional relationships were heuristically determined and then 
empirically refined from freeway data. 

In the following sections, a more analytical approach is suggested. This approach 
involves techniques that should be within the capability of current controllers and uses 
functions that, although not yet empirically validated, will require only currently avail
able freeway data for their estimation. 

PROBLEM FORMULATION 

Bottleneck operation is formulated as a process in which finite probabilities of 
breakdown are associated with each level of operation. The control stragegy considers 
the peak period as a series of successive time intervals where the probability of break
down is set to optimize overall performance. It is assumed that, once congestion has 
set in, recovery during the peak period cannot be effected, a characteristic common in 
many practical situations. 

The peak-period operation of the bottleneck consists of an uncongested period of 
some length followed by a congested period. If some reward is associated with the 
uncongested period, then the control objective would be to maximize the expected re
ward of the system. The reward, which can be some combination of increased flow, 
reduced accident risk, reduced emissions, and the like, will be some function of the 
probability of breakdown and the length of the uncongested period. 

The reward function considered here will be in terms of traffic flow, and the objec
tive considered for this problem is that of maximizing the expected value of the uncon
gested peak-period flow. The exact form of the reward function will require field testing 
and estimation. Its general characteristics, however, can be deduced from operational 
bottleneck experience and should follow the approximate form shown in Figure 1. Ini
tially the function will rise rapidly to a substantial traffic flow before the probability of 
breakdown becomes significant, but then the rate of flow increase will decline . Because 
only uncongested traffic flow is being considered, the function will be continuous and 
for this particular problem only the left region (p < 0.25) is significant. This will 
simplify empirical validation. 

Figure 1. Flow at a bottleneck as a function of the probability of 
breakdown. 
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For a suitable function to fit this general shape we use here the incomplete beta 
function: 

where 

0 ~ p < 1, 
a and b> 0, and 

p 
R(p) = y(a + b} / ta-1(1 - t?-ldt 

y(a)y(b} 
0 

y(x) = the gamma function. 

AN INFINITE PEAK PERIOD 

(1) 

Consider a controlled bottleneck where the probability of breakdown is set equal to 
p for each time period during uncongested flow. Then the probability P(k} of an uncon
gested period of k time periods will be given by 

P(k} = (1 - p)k x p k = 0, 1, 2 . .. 

Because we are dealing with traffic at the macro level (1-min averages) and not the 
micro level of individual vehicles, the assumption of independence of trials is valid. 

The expected return E (R} will be 

= 
E(R) = r <1 - p)k p x R(k, p) 

k=0 

The optimal control strategy will be to choose p to maximize the return. 

dE(R) = _i. = r (1 - p)k p x R(k, p) = 0 
dp dp k- 0 

for optimum and 

d2E(R) d2 = 
--- = - r (1 - p)k p x R(k, p} < 0 

dp2 dp2 
k=0 

for maximum. 

(2) 

(3) 

(4) 

(5) 

To check the feasibility of the reward function developed in the previous section we 
assume a form 

p 

R(k, p) = k y(a + b} / ta- 1(1 - t)b-1dt 
y(a)y(b) 

0 

and the optimal strategy would be given by 

d 
dp 

r [(1 -p)k X p X k ~y_(a_+_b~} /p 
k=0 y(a)y(b} o 

(6) 

(7) 

For values of a= 2 and b = 9, this gave a numerical solution of p = 0 .12. Although this 
is a hypothetical example, the solution is in a practical range although perhaps rather 
high inasmuch as it gives an expected length of the uncongested period of only 7. 5 time 
periods. Values of p below 0.1 would give somewhat better results. 



Figure 2. Optimum probability of breakdown for a finite peak period. 
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A FINITE PEAK PERIOD 

Suppose now that the peak period has a finite length of n time periods. Then the 
probability of an uncongested period of k time periods is given by 

P(k) = (1 - p/ p k = O, 1, ... (n - 1) 

P(n) (1 - Pt 

The expected reward during the uncongested period will be 

n-1 
E(R) = L [ (1 - p/ pR(k, p)] + (1 - pt R(n, p) 

k=O 
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And, again, setting [dE(R)]/ dp = 0 will give the optimum control value for the probability 
of breakdown. In this case, however, this optimum value will be a function of n. 

This affects the bottleneck control strategy in at least two ways. First, if uncon
gested flow has been continuously maintained during the peak period, then the control 
stragegy at any time period is dependent only on the length of the peak period remaining. 
As the peak period progresses, therefore, the value of n steadily declines, and, ac
cordingly, the parameter values for the control may change. 

The second circumstance is when uncongested flow is recovered from the congested 
state during the peak period, which can occur, for example, when demand temporarily 
declines because of an incident upstream. The control strategy for rmcongested flow 
will then depend on the length of the peak period remaining . 

To indicate the possible magnitude of this dependence, we used the same reward 
function used as an example in the previous section as a numerical example of the finite 
length case. The optimum values for p are shown in Figure 2, which clearly indicates 
the effect of the peak period length n. 

CONCLUSION 

This paper offers a different analytical approach to freeway control. Inasmuch as 
it provides a limited theoretical supplement to the empirical control algorithms already 
in operation, it should be suitable for practical implementation. The essential traffic 
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functions required, such as the probability of system breakdown, are not yet generally 
available; their estimation, however, will require only data that are a normal output of 
most current freeway surveillance systems. 

The methodology can be used on existing freeway control systems by changing the 
computer programming but without modification to the hardware. New operational 
parameters can be developed from the system itself based on a new datum of controlled 
bottleneck operations. Data from an uncontrolled bottleneck serve as the first approx
imation in developing the control strategy. 

To sustain congestion-free bottleneck operations for longer control periods requires 
that the optimal value of the probability of breakdown be maintained considerably below 
0.1 (assuming 1-min time periods). This finding is contrary to the control strategy of 
operating at maximal flow developed by most theoretical studies but agrees with oper
ational experience where "overcontrol" is necessary to prevent breakdown. The ex
planation lies with the q-k relationship, its probable discontinuous character, and its 
nonregular short-term behavior. 

For a normal peak period, the length of the peak period has little effect on the selec
tion of the optimum probability. Where the control is operating near the end of the 
peak period, however, the length of the peak period remaining should be taken into con
sideration. 
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