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This paper presents a computer program for a common type of analysis of 
the slope stability problem: the possibility of slope failure by translation 
of a massive block along a weak layer of soil. The problem, which can 
occur in either natural or man-made slopes, is most generally referred to 
as the sliding block problem. Variation in the water surface position re
quires three subroutines or cases. The program automatically sequences 
selected potential sliding surfaces one by one, then selects the desired 
water surface case, and finally computes the factor of safety against slid
ing along the base of the central block. The analysis is based on total unit 
weights and boundary forces. It is possible to consider 10 different soil 
types having very different soil parameters, such as unit weight, Mohr
Coulomb cohesion intercept, and Mohr-Coulomb angle of friction. A max
imum of 12 continuous soil layers at any inclination can be considered in 
the present program. A total of 10 vertical strip loads of different inten
sities can be placed on the ground surface anywhere below the toe and above 
the crest. Finally, with all this information, 10 sliding surfaces can be 
concurrently analyzed for the factor of safety. This factor is applied to the 
strength of the soil at the base of the central block, assuming that there is 
limiting equilibrium for the active and passive earth pressure forces at the 
ends of the central block. 

•THE stability of man-made and natural slopes has always been an important topic of 
discussion in the field of civil engineering. Yet, failure of man-made fills and cuts 
probably occurs more frequently than all other failures of civil engineering structures 
combined. Although an understanding of the major factors that contribute to failure of 
slopes has improved considerably, our predictive ability remains less than satisfactory. 

This paper addresses the problem of the sliding block, i.e., an essentially rigid 
mass sliding in a weak layer. At first glance, this seems to be a rather simple prob
lem; however, when practical variations in soil profile are considered, as well as water 
levels, boundary geometries and loadings, and uncertainties of position and shape of 
the most critical sliding surface, the solutions require reasonably large computer 
systems. 

When a slope is underlain by one or more strata of very soft or loose materials, 
the most critical sliding surface may not be even approximately circular, as shown in 
Figure 1. Rather there is a three-plane surface of potential sliding in which a maxi
mum amount of the surface lies within the weak material. 

An initial programmed solution (11) was quite general with respect to the shape of 
the three-plane surface, but to accommodate this feature the profile was simplified to 
two soil layers, i.e., a strong soil over a weak one. A second program, reported in 
this paper, makes simplifying assumptions with respect to the shape of the sliding sur
face but is quite versatile with respect to the profile and boundaries. This second 
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program seems to better meet the analytical requirements of the Indiana State Highway 
r,n.l'Y'ln--,;ooinn~ 

SLOPE FAILURE BY SLIDING 

The type of failure usually assumed in slope stability analysis is the one-piece slide 
(10). The failure is one in which the moving body is essentially rigid and the failing 
mass is separated from the unmoved one by a surface of assumed shape. Where the 
soil is grossly homogeneous, it seems logical that the failure surface would be roughly 
circular, and, in the interest of simplicity, it is usually made exactly so. A recent 
overview of the circular analysis, involving the well-known methods of slices, is given 
elsewhere (4). 

Where there is evidence of definite differences in shearing resistance in the soil 
profile, it is well to consider potential failure surfaces that follow the surfaces of 
wealmess. Several methods of handling irregular surfaces are reported elsewhere 
(4, 12, 14). 
- The irregular sliding surface is shown in Figure 1, where the potential failure planes 

have a maximum length in the weaker materials. The potential failing block is actually 
a combination of active and passive wedges, with a central trapezoidal block based in 
a weak layer. Examples of simplified solutions to this problem are given elsewhere 
(~, .§_, !!). 

GENERAL SOLUTION TO THE SLIDING BLOCK PROBLEM 

Figure 2 shows the free body diagram with a full quota of complexities in boundary 
geometries and forces; i.e., these could be simpler in a given instance. Incorporation 
of a water surface and associated water forces into the problem makes it convenient to 
consider three cases, each with its appropriate subroutine in the computer solution. 
The upper boundary slopes reading left to right in Figure 2 are referred to as the down 
slope and the middle slope or simply the slope and the upper slope. The cases are as 
follows: 

1. Case 1-when the water surface is below the trial sliding surface, 
2. Case 2-when the water surface is partly above and below the ground surface but 

_t....,...., ......... '-1..- 4-_.:_1 -.1.:-1.:-- ---~--~- -- --..1 
a....,VV'-' u.J...::; 1,.1..1.ct..1. .::,..1...1.u.a..u.5 ~u..1..1.a..""'c, a .. uu 

3. Case 3-when the water surface is anywhere below the ground surface but above 
the trial sliding surface. 

It is assumed that the right-hand wedges are in a state of limiting active earth pres
sure, and the left-hand wedges are in a state of limiting passive earth pressures. 
Simplifying assumptions are employed with respect to the inclinations of the wedge 
surfaces and the directions of the earth pressure forces. Although the right-hand and 
left-hand wedges are assumed to be on the verge of sliding, there is in general an in
complete mobilization of the shearing resistance along the base of the block; i.e., the 
factor of safety is defined with respect to the shearing resistance-shearing force ratio 
along this surface. 

The wedge inclination and earth pressure force direction assumptions are those that 
apply for a simple Rankine case. They are employed by others (5) and have been shown 
to be good approximations of the most critical values for a number of cases tested by 
Mendez (11). 

To be certain that all assumptions inherent in the solution are understood, we are 
listing them as follows: 

1. Problem is two-dimensional; 
2. The ground surface is defined by three slopes and a well-defined toe and crest; 
3. Soil strata are laterally continuous; 
4. Soil properties in layers are defined by y, c, and ¢ (where c or ¢ can be equal 

to zero); 
5. Sliding surface is at the base of the block, and between the slide wedges is a 

plane; 
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6. All lateral forces on vertical wedge boundaries are normal to these boundaries 
(i.e., there are no shear forces on these boundaries) ; 

7. The factor of safety is figured for the base of the sliding block only, and the 
movement required to mobilize limiting active and passive pressures is smaller than 
the movement required to mobilize the shearing strength of the weak soil strata; 

8. The wedge slip surfaces are at 45 + ¢/ 2 and 45 - ¢/ 2 with the horizontal for 
active and passive wedges respectively; 

9. The active and passive forces are computed by satisfying static equilibrium 
(after verifying assumptions 6 and 8); and 

10. Seepage, if any, is in a steady state ; however, water pressures are calculated 
at any point as if they were hydrostatic. 

The analysis of forces is shown in Figures 2, 3, and 4. The analysis is divided into 
three parts: calculation of forces on central block due to active wedge, calculation of 
forces on central block due to passive wedge, and calculation of base forces on central 
block and of the factor of safety against sliding along this base. 

The analysis of forces is illustrated for water surface case 2, but the other cases 
follow directly. 

Figure 2 shows a rather complex problem space section, with multiple soil layers 
at variable inclinations and with very different soil properties. 

Analysis of Active Forces on Central Block 

Figure 3 shows the active wedge (Fig. 2) divided into small wedges governed by the 
intersection of the assumed slip surface and soil boundaries. 

Let us consider a typical polygon of forces for any (nth) wedge shown in Figure 3. 
Summing all the forces in the x- and y-directions and equating to zero yield the follow
ing equations: 

For EFx = 0, 

PAn = UARn - UALn - UAn cos (45 - ¢n/ 2) + NA'n cos (45 + ¢n/ 2) 
- CAn cos (45 + ¢n/2) (1) 

and for I:Fy = 0, 

WAn = CAn sin (45 + ¢n/ 2) + UAn sin (45- ¢n/2) + NA'n sin (45 + ¢n/2) (2) 

Elimination of NA'n from Eqs . 1 and 2 yields an expression for the incremental 
active force for then th wedge, 

PAn = WAn tan (45 - ¢n/ 2) - 2 CAn cos (45 + ¢n/2) 
+ (UARn - UALn) + UAn [cos (45 - ¢n/ 2) 
- tan (45 - ¢n/ 2) sin (45 - ¢n/ 2)] 

Analysis of Passive Forces on Central Block 

(3) 

Figure 4 shows the forces acting on the passive wedge shown in Figure 2. Consider 
a typical polygon of forces acting for an nth passive wedge in Figure 4. Forces in the 
x- and y-directions are summed, and equilibrium is equated to zero. 

For I:F, = O, 

PPn = U/3 • sin {31 + CP. cos (45 - ¢n/2) + ULn + UPn cos (45 + ¢n/2) 
- URn + NP'n cos (45 - ¢n/ 2) (4) 

and for I:Fy = 0 

WPn = NP'n sin (45 - ¢n/ 2) - U/3n cos /31 - CPn sin (45 - ¢n/ 2) 
+ UPn sin (45 + ¢n/ 2) (5) 
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Figure 1. Slope in stratified soil profile. 
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Figure 2. General problem of sliding block with submerged water (case 2). 
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V = 196.25 metric tons = 196,250 kg. The influence values S form = 3.00 are taken 
from Figures 1 and 2 and are given in column 6 of Table 1. The settlements as suc
cessive displacement differences, 

as. = (E ; R;) (s. - s.-1) ( 15) 

for each layer are given in column 9 of Table 1. By stepwise calculations, the total 
settlement s of this soil-foundation-load system is found as the sum of the settlements 
of each individual layer: 

Method of Equivalent Layers 

4 

s = L (As.) = 2.41 cm 

1 

Because in the multilayered soil system each layer may be of different homogeneity 
with large differences in elastic characteristics, use of these charts (Figs. 1, 2, and 
3), which are prepared for a homogeneous monolayer, to make o-, stress and settle
ment s calculations necessitates that the stratified, multilayered soil system be con
verted or homogenized into an equivalent (fictitious), homogeneous hemispace. The 
homogenization is accomplished by the so-called method of equivalent layers h.,. This 
method works with fictitious substitute heights h., for each thickness h1, h2, h3, ... , hn 
of the real strata. The principle involved in this method is to determine an ideal, 
equivalent thickness h. of a uniform, homogeneous soil column (or beam) that, upon 
loading, will bring about a deflection equal to the sum of the deflections (viz., settle
ments) of each of the strata in the multilayered system. Thus, the charts here de
veloped are directly applicable to such an equivalent, homogeneous hemispace, or, 
in other words, the charts are also indirectly applicable as an approximation of multi
layered soil systems. 

The homogenization of multiple layers into a single, ideal, equivalent homogeneous 
monolayer is based on the principle that two layers of various thickness with differing 
moduli of elasticity are equivalent when these two layers are of the same stiffness, i.e., 
when 

or 

E1 x ht E2 x h~ 

( 12) (m ~~ 7 = ( 12) m~~/) 
where 

h1 and h2 = heights of a column of soil, namely, thickness of soil layers, and 
m 1 and m2 = Poisson's numbers for layer one and layer two respectively. 

(16) 

( 17) 

If it can be assumed that m1 ,,,,, m 2 for all courses , then the equivalent height h., for a 
two-layered system calculates as 

( 18) 

Thus, it is here assumed that the rigid circular foundation and the individual layers 
form a compound unit. Upon deformation, a two-layered soil system, it is assumed, 
would deflect uniformly and retain its unity. When QE1/E2 = 1, we have a uniform 
mass-a monolayer. 



Figure 4. Self-settlement influence values (SO) for rigid circular foundation. 
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Table 1. Calculation of settlement. 

Thick- Depth Modulus 
ness to ol 
of Bottom Elasticity 

Number Soll Each of Each of Each 
of Mate- Layer Layer Layer 
Layers rial (m) (m) Relative Depth Influence Value (kg/cm') 
(1) (2) (3) (4) (5) (6) (7) 

Sand 3.0 3.0 z,/R, = 3/2.50 = 1.20 s, = 0.14351 E, = 150 

Silt 2.0 5.0 z,/R, = 5/2.50 = 2.00 0 22838 °·14361 
s, = . " o.l)l!i111'f E, = 120 

3 Silty 4.0 9.0 z,/R. = 9/2.50 = 3.60 ., = 0.31306 _ ~:m:: E, = 100 
clay 

4 Clay 5.0 14.0 z,/R. = 14/2.50 = 5.60 •• = 0.35772 _ ~ :m~~ E, = 80 

Gravel E5 =ex> 

Load Successive Settlement 
Factor Difference for 
(cm) Each Layer, "8. = (8) (S. - S.-d 
(8) (9) 

i:~ = 5.233 As,= (5.233)(0.14351) = 0.75 

~ = 6.542 As, = (6.541)(0.22838 - 0.14351) 
= (6.541)(0.08487) = 0.56 

~ = 7.8500 As, = (7.850)(0.31306 - 0.22838) 
= (7 .850)(0.08468) = 0.66 

~ = 9.8125 As, = (9.8126)(0.35772 - 0.31306) 
= (U.Hl3)(U.U4466) = 0.44 
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Settlement s may be obtained by multiplying the corresponding settlement influence 
v:ihrn Shy the far.tor V /(E X RJ: 

s = (S) (E ;' R~) (Ro) = (S) (E ;' R;) (12) 

Settlement Influence-Value Charts 

The dimensionless influence values were programmed for computer calculations and 
compiled in tabular form for various Poisson's numbers (13). By means of such tables, 
the settlement influence-value charts (Figs. 1, 2, and 3) were prepared for quick, ef
fective, and practical use. Figure 3 is an enlargement of Figure 2 for z/R 0 ratios from 
0 to 1.80 (for settlement influence values from S = 0.00 to S = 0.20). For the purpose 
of comparison, in Figure 1 there is also shown for m = 2 the vertical a, stress influence
value curve i, = a,/a0 for limply arranged single uniform stresses (00 ) over a circular 
area on a homogeneous, hemispatial medium. 

For a hemispace of infinite extent, z =CO and 0t = O; thus the total settlement [elastic 
settlement according to Boussinesq's theory of elasticity(~, _!!-16)] is 

So= Wo =(½)(m~2 1) (E ;' R;) (13) 

or, in terms of influence value, 

;: = (½) (m ~2 
1)(E ;' Rt) = (SO) (E ;' Rt) (14) 

Here (SO) is the influence value of the so-called self-settlement s 0 = w0 of the circular 
rigid foundation (Fig. 4). If, for example, m = 3.0, E = 120 kg/cm2, V = 196,250 kg, 
and R 0 = 2.50 m, then the self-settlement So = w0 of the rigid circular foundation (which 
is the total vertical displacement in the z = 0 plane) calculates (Fig. 4) as 

_ _ (____:!__) _ r 19s,2 50 1 _ _ 
So - Wo - (SO) 1" v O - (0.444) I , 1 ,Hn 7.., i:; ,nl- (0.444) (6.541) - 2.90 cm 

,~ "~•01 L'~-U/ ,-uu~ 

MULTILAYERED SOIL SYSTEM 

Stress distribution and settlement in a multilayered soil system differ cons"iderably 
from those in a uniform, massive (infinitely thick), homogeneous monolayer only in 
cases where there exists a sharp difference in elasticity characteristics of the various 
individual deformable component layers in the multilayered soil. If the differences are 
small, then the influence-value chart renders a reasonably satisfactory approximation 
for determining settlement of such multilayered soil systems. 

Example for Use of the Settlement-Influence Chart 

The influence chart may also be used for calculating approximative total elastic set
tlement of a multilayered soil system. There exist two principal methods for doing 
this, namely, 

1. The method of successive displacement-difference steps where the total settle
ment is obtained by adding the so-called partial settlements (i.e., settlements of each 
layer in the multilayered soil system), and 

2. The method of equivalent layers. 

Successive Settlement-Difference Step Method 

A multilayered soil system consisting of four layers of compressible soil over a 
gravel (Table 1) is given here. The radius of the rigid circular foundation is R 0 = 2. 50 
and m = 2.50 cm. The magnitude of the central-symmetrical load is given here as 



Figure 1. Vertical stress and settlement influence-value charts. 
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m = 1/µ = Poisson's number; 
II • nn;atc:1nntA 1"ntin• ,- --------- -·· .. -- , 

a, = spatial ( triaxial) vertical stress (Eqs. 8-14); 
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a = arc cot (z/R 0 ) = one-half of the central angle at point M on the vertical center
line beneath the center of the circle (Fig. 1); and 

z = depth coordinate. 

The derivation of the settlement influence values S can be developed using the cylin
drical coordinate system: Boussinesq's contact pressure distribution under a central 
symmetrically loaded rigid circular foundation with a smooth base, laying of the foun
dation on the ground surface, and use of the following system of equations (especially 
Eqs. 8 through 14): 

V 
C1 - - ----~ 

•• - 211R0(R~ - x 2) 1fa 

V = '7TR; X C1o 

E - 2 E:, x = cr, = cr, - m x cr, 

1 . 2 a, = 2 x a0 x sin a 

1 .2/m+2 2 2~ a, = 4 x a. x sm a \---in- - cos ~ 

_ 1 . 2 /m + 1\ /m - 2 2 2 ~ 
a, = 2 x a0 x sm a \---in-/ \---in-+ cos a./ 

1 
s = ~ 

E 

z ,. 
J O, X ct_ 

0 

z/R 0 = cot OI, or a. = arc cot (z/R.) 

The settlement s calculated as 

(Eqs. 8-14) 

Settlement Influence-Value Equation 

The settlement equation (Eq. 9) can be rewritten in a dimensionless form as 

s 
or 

:. = (S) (E ;' RV 

( 1) 

(2) 

(3) 

(3a) 

(4) 

(5) 

(6) 

( '{) 

(8) 

(9) 

(10) 

(11) 

where S is the elastic settlement influence value for a homogeneous, elastic hemispace 
of infinite depth (a monolayer). 
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1. Boussinesq's theory of elasticity is applicable. 
2. Particularly, the foundation-supporting monolayer of soil is an elastic, homo

geneous, isotropic, weightless, linearly deformable solid of semi-infinite extent. It 
obeys Hooke's law of proportionality between stress and strain. Hence, stresses are 
compatible with strains. 

3. The modulus of elasticity E of the he mi spatial material is constant throughout. 
4. Originally, before loading, the soil is free of stress caused by force fields or 

thermal effects. 
5. The circular footing laid on the ground surface is assumed to be a completely 

rigid, nondeformable body as compared with the rigidity of the soil-a situation that 
is frequently encountered in practice. 

6. Cohesive and frictional forces between soil and foundation are disregarded in the 
development of this chart although slips or horizontal displacements can occur along 
the contact surface between the base of the footing and the soil. Only vertical displace
ments are reckoned with. In practice, these assumptions are used in the case of many 
uniform soils and many stress-strain problems in soil mechanics. Hence, they can 
also be used for elastic settlement calculations. 

Relative to theoretical settlement calculations in multilayered soil systems, the 
following further assumptions are made: 

1. The individual, horizontal soil layers are weightless and of infinite lateral 
extent. 

2. Each individual soil layer in the multilayered system has its own elastic prop
erties and is of perfect homogeneity and isotropy. 

3. The stress distribution used is that predicted by Boussinesq's theory for a homo
geneous half-space; the varying moduli of each layer are assumed not to influence the 
stress distribution. 

4. Also, in this study, no consideration is given to the drainage (filtration) and 
rate problems as in a consolidating soil. Only total, elastic settlements are dealt with. 

5. These charts do not apply to eccentrically loaded, rigid circular footings. 
6. In these elastic settlement calculations of rigid circular foundations loaded only 

vertically and centrally and shallowly laid on the ground surface, only the vertical re
active soil resistance at the base of the foundation is considered. Hence, soil lateral 
resistance against the walls of the foundation does not enter into these calculations. 
Even if the footing were laid below the ground surface, a shallow embedment would 
mobilize a soil lateral resistance that would be relatively small as compared with the 
relative resistance vertically induced by a structural load. Also , if in the future there 
should arise a need for excavating a part of the embedded foundation and hence loosen
ing the soil around it (for the purpose of repairs, utility installations, or laying of new 
foundations adjacent to a structure already in service, for example), then the soil lat
eral surcharge would be removed, and the stability of the soil-foundation system may 
become impaired. 

SETTLEMENT EQUATION 

The following notation is used in this paper: 

a. 0 = Boussinesq's general vertical contact pressure at the base of a rigid circu
lar die; 

V = externally applied single, vertical , concentrated load on a rigid circular 
foundation; 

R 0 = radius of circle; 
x = a coordinate; 
a0 = V / ( 11 x R~) = average calculated vertical stress from applied load V; 
(, = elastic, vertical relative deformation (stress) of an element at depth z under 

a triaxial (spatial) stress condition; 
E = modulus of elasticity of soil; 

a., a, = orthogonal stress components; 


