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A method programmed for a high-speed computer is developed for deter
mining the stresses and strains in viscoelastic multilayer systems sub
jected to moving loads. The method, which can be applied to systems 
consisting of any number of layers and any type of linear viscoelastic ma
terials, is based on the principle of elastic-viscoelastic correspondence 
and an approximate procedure of collocation. Numerical solutions, which 
do not consider the inertia effect, are presented for the stresses and 
strains in a four-layer system. Of particular interest are the compressive 
stresses and strains on the surface of the subgrade, layer 4, and the ten
sile strains at the bottom of the asphalt-bound layer, layer 1, because 
these stresses and strains have been suggested as criteria for pavement 
design and evaluation. A study of these critical stresses and strains shows 
that they all decrease with the increase in speed of the moving load. If the 
compressive stress on the subgrade is considered as a criterion, either 
the vertical or the principal stress can be used with little difference. How
ever, if the compressive strain on the subgrade or the tensile strain in the 
asphalt-bound layer is considered, a criterion based on the vertical or the 
radial strain will be certainly quite different from that based on the prin
cipal strain because of the significant effect of the shear strain. 

eBECAUSE of the time-dependent behavior of paving materials, there has been a grow
ing belief that pavement design and evaluation should be based on viscoelastic theory 
rather than the conventional elastic theory. Although elastic theory has been used suc
cessfully for determining the stresses and strains in flexible pavements under moving 
loads, its successful application requires the judicious selection of a Young's modulus 
and a Poisson's ratio for each of the component layers. An alternative, which is more 
direct and not so arbitrary, is first to determine the viscoelastic properties of the ma
terials forming the component parts of the pavement and then apply the viscoelastic 
theory for computing the stresses and strains in the pavement under actual moving 
loads. This approach was employed by Perloff and Moavenzadeh (_!_) for determining 
the surface deflection of a viscoelastic half-space, by Chou and Larew (2) for the 
stresses and displacements in a viscoelastic two-layer system, and by Elliot and 
Moavenzadeh (3) for those in a three-layer system. For viscoelastic systems of 
more than three layers, very little work has been done in the case of moving loads, 
although a method based on the Duhamel superposition integral was presented by Barks
dale and Leonards ( 4) for analyzing four-layer viscoelastic systems under repeated 
loads, which was later employed by Elliot and Moavenzadeh (3) for analyzing both the 
repeated and the moving loads. Because actual flexible pavements are generally com
posed of multiple layers, an analysis of viscoelastic multilayer systems subjected to 
moving loads is of practical significance. 

The purpose herein is to present a new and more effective method, programmed for 
a high-speed computer, for determining the stresses and strains in a viscoelastic 
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multilayer system due to a circular load moving at a constant speed on the surface. 
Although the example given is limited to a four-layer system with each layer charac
terized by a constant Poisson's ratio and a simple mechanical model, the method can 
be applied to systems consisting of any number of layers and any type of linear visco
elastic materials. In view of the general belief that the fatigue cracking of asphalt 
pavements is caused by the repeated application of excessive tensile strains at the bot
tom of the asphalt-bound ·1ayer and that the rutting of pavement surfaces is caused by 
excessive compressive stresses or strains at the surface of the subgrade (5, 6), nu
merical results on the strains at the bottom of the first layer and the stresses and 
strains at the top of the fourth layer are presented to illustrate the effect of time and 
speed on these critical stresses and strains. In line with all previous studies, inertia 
forces are not considered in the analysis. 

STATEMENT OF PROBLEM 

Figure 1 shows an n-layer system, the Young's modulus and the Poisson's ratio of 
the j th layer being (E)J and (v)l respectively. For a linear elastic system, both (E) J 

and (v)J are constants independent of time; for a linear viscoelastic system, they are 
linear time operators. A uniform load of intensity q is applied on the surface over a 
circular area of radius a and moves with a constant velocity, v, from a distant point 
toward a point 0 on the surface along a straight path. It is convenient to consider the 
time as zero, i.e., t = 0, when the center of the load just arrives at point 0, as nega
tive before the load reaches point 0, and as positive after the load passes point 0. The 
distance, r, between the load and point Oat any given time, t, is r = v JtJ. The prob
lem now on hand is to determine the stresses and strains at any point directly beneath 
point 0 as a function of time. The restriction that the load moves toward point 0 along 
a straight path is a practical way to simplify the problem because experience indicates 
that most pavement distress is along the wheelpath; so point 0 may be considered as a 
given point in the wheelpath. 

It is further assumed tha( the layers are in continuous contact as indicated by the 
continuity in vertical stress, shear stress, vertical displacement, and radial displace
ment and that the surface is free of shear stress. 

ELASTIC SOLUTION 

Before viscoelastic solutions can be developed, elastic solutions must be obtained. 
The stresses in an elastic multilayer system under a circular loaded area can be ex
pressed as (1) 

Cl) 

O'z = qa / J1(ma)Jo(mp)¢(m)dm (la) 
0 

O'r = qa f J1(ma){ [Jo(mp) - Ji:p)] ¢1(m) + Jo(mp)¢2(m)} dm 
0 

(lb) 

(le) 

Cl) 

Trz = qaf J1(ma)J1(mp}¢3 (m)dm (ld) 
0 

in which a., O'r, a8 , and Trz = vertical, radial, tangential, and shear stresses respec
tively; q = intensity of the uniformly applied load; a= a/H; a = radius of loaded area; 
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H = depth from surface to the upper boundary of the lowest layer; Jo and J 1 = Bessel 
functions of the first kind and order, 0 and 1 respectively; p = r /H; r = radial distance 
from the center of loaded area to the point at which stresses are to be determined; 
m = a parameter of integration; and ¢, ¢1, ¢2, and ¢3 = functions of elastic constants, 
layer thicknesses, the vertical coordinate of the point in question, as well as the 
parameter of integration, m. Once the stresses are known, the strains can be de
termined by 

(e:,)J = (i)J [a. - (v)J(ar + a9 )] 

(e:,), = (iL [or - (v), (0"9 + a,)] 

(e:6)J = (i°)J [a8 - (vUa. + O'r~ 

(2a) 

(2b) 

(2c) 

(2d) 

in which E:" e:,, e:6, and Yrz = vertical, radial, tangential, and shear strains respec
tively; E = Young's modulus; v= Poisson's ratio; and the subscript j outside the paren
theses indicates the j th layer. 

VISCOELASTIC SOLUTION 

In presenting numerical results, it is desirable to use a dimensionless velocity, V, 
and a dimensionless time, T, defined as 

t 
T=T"' 

in which T"' is one of the retardation times used for describing material properties. 
Note that p = V \TI-

(3) 

(4) 

For brevity, only the vertical stress, a., will be used for illustration. It must be 
borne in mind that the same procedure can be employed for determining other stresses 
and strains as well. 

The viscoelastic solution can be obtained by applying the elastic-viscoelastic cor
respondence principle originally developed by Lee (8). Instead of considering directly 
the stress, strain, and load, the Laplace transform-of stress, the Laplace transform 
of strain, and the Laplace transform of load are considered. Application of the cor
respondence principle involves the following steps: 

1. Taking the Laplace transform of the time-dependent boundary conditions; 
2. Changing the elastic field equations by replacing E, which is a ratio between 

stress and st).•ain, with E(p), which ls a ratio between the Laplace transform of stress 
and the Laplace transform of strain, and also replacing vwith jj(p); 

3. Solving the resulting problem in terms of the transformed variable p; and 
4. Inverting the solution involving the transformed variables into time variable. 

Based on the preceding principle, Eq. la, which is based on elasticity, can still be 
applied for viscoelastic media, if the stress, a., is replaced by the Laplace transform 
of stress, cr,, the time-dependent boundary or the moving load qJ o(mV \T \) by qJ0 

(mV IT j), as indicated in step 1, and ¢(m) , whi ch involves E and v, by J(m,p) , as 
indicated in step 2. Note that J (m,p) is obtained by 1·eplacing E and v in the expres
sion for ¢(m) by E(p) and V(p) . Consequently, the resulting problem in terms of p, as 
indicated in step 3, can be written as 
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"' a. = q~ f J1(m01)Jo(mV IT 1)¢'(p, m)dm (5) 
0 

The bar on top of a., Jo, and ¢ denotes the Laplace transform and implies that they are 
functions of the transformed variable p. Note that J O is a function of load, and ¢ is a 
function of material properties. The determination of 'qi from material properties was 
described elsewhere (9). To complete step 4, Eq. 5 can be inverted by the convolution 
theory as -

(6) 

The same procedure can be used for determining other stresses. The radial stress 
has three terms involving Bessel functions J .(mV Ir I) and J1(mV Ir I); each must be 
evaluated independently and then combined. The same is true for the tangential stress, 
which involves two terms to be evaluated. 

By the correspondence principle, Eq. 2a can be written as 

a, Cv) J <ii> J 

(f.)j =-- - -- ar - - ao 
{E) J {E) J (E)J 

(7) 

o',/(E) j can be inverted in the same way as a., except that ¢ is replaced by ¢'/(E) j. The 
same procedure can be applied to -(v) Jor/(E)J and -(v)Jcro/(E)J; their summation gives 
the vertical strain (£.)J, 

LAPLACE INVERSION 

The major difficulty of the preceding procedure lies in the Laplace inversion of 
¢(p, m) to ¢(T, m) . Because exact inversion is difficult, if not impossible, for a multi
layer system, an approximate method of coUocation is employed. 

The function of ¢(p, m) is a ratio of two polynomials in p. Depending on the stress 
or strain to be determined and the models used to characterize the materials, the de
gree of the polynomial in the denominator may be equal to or greater than that in the 
numerator. If bo_!!1 have the same degree, ¢{p, m) must be separated into a constant, 
s 0 , plus a ratio, '1'{p, m), the denominator of which has degrees higher than the numer
ator. 

1(p, m) = So+ ~P, m) (8) 

The value of s 0 can be determined from ¢{p, m) by assigning a very large value, e.g., 
1010

, top. 

If the denominator of ¢{p, m) has a higher degree, s 0 automatically approaches zero 
when a large p is assigned. Substituting Eq. 8 into Eq. 5 gives 

a, 

(9) 

a.= q01 / J1(m01) J'.(mV IT i) Is.+ i(p,m)Jdm (10) 
0 

The inversion of Eq. 10 is 
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In the collocation method, it is assumed that '1t(T, m) can be expressed approximately 
by a Dirichlet series of decaying exponentials 

n 

'1t(T,m) = L s 1exp(-p1T) 

i=l 

(12) 

in which s 1 and p 1 = constants and n = number of terms. This approximation is possible 
because '1t(T, m) is a monotonic increasing or decreasing function of T. The collocation 
method cannot be applied directly to the stresses and strains, as in the case of sta
tionary loads, because under moving loads they are not monotonic functions of T. 
Take the Laplace transforms of Eq. 12 and then multiply by p: 

n 
p'1t(p, m) = L __ s 1_ 

. 1 + £! 
l=l p 

(13) 

In this study, eight exponential terms are used to approximate '1t(T, m). The as
sumed values of p 1 are 0.02, 0.05, 0.1, 0.2, 0.5, 1, 10, and 100. Theoretically, the 
values of p selected depend on the time range within which the stresses and strains 
are to be analyzed. Schapery (10) suggested the relation between p and T asp = ½T, 
so a range of p from 0.02 to 100 is equivalent to a range of T from 25 to 0.005. By 
successively assigning p in Eq. 13 to each of the preceding values, eight simultaneous 
equations are obtained that will give a solution to the unknowns, S1 through sa. 

1 

1 0.02 
+ 0.02 

1 

1 0.02 
+ 0.05 

1 

1 0.02 
+ 100 

1 

1 
0.05. 

+ 0.02 

1 
· 100 

l + 0.02 

1 1 
- -o~.o-5 · · · 100 
1 + 0.05 l • - 0 .05 

1 

1 
0.05 . 

+100 

1 
100 

1 + 1.00 

= P [¢(p, m) - So]P=o.os 

Sa p [¢(p,m) - So]P=lOO 

Once s 1 is known, '1t(T , m) can be determined from Eq. 12 and er, from Eq . 11. 

NUMERICAL INTEGRATION 

(14) 

Most of the computer time used in the viscoelastic analysis is for the evaluation of 
two infinite integrals, one with respect to time and the other to m. Without involving 
excessive computer times, accuracy can be ensured by selecting the proper increments 
in performing the numerical integration. 

The i1U1er integral in Eq. 11 is evaluated by a five-point Gaussian quadrature form
ula. The zeros of Bessel functions, Jo and J 1, and the values of the functions at the five 
points between 2 zeros are stored in the computer and used repeatedly to save computer 
time. 
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When T :;; 0, let x = -mVT; the inner integral in Eq. 11 becomes 

1 Joo X 
I= mV Jo( Ix I )'¼'(T + mV m) dx 

• VI T I 
(15) 

Equation 15 is integrated numerically from mV IT I to a large value until the integral 
converges. It is found that integration up to 40 cycles of the Bessel functions is suffi
cient, so a limit of 40 cycles is imposed to save computer times. A five-point Gaussian 
quadrature formula is used to evaluate the integral between 2 zeros of the Bessel func
tion and between the starting point and the next nearest zero. 

When T > 0, the inner integral in Eq. 11 can be divided into two parts: 

0 

I= / Jo(mVITl)'ll(T - T,m)dT+ Jr Jo(mVITl),v(T - -r,m)dT (16) 
-oo 0 

Because the shear stress and strain change signs when passing point 0, a negative sign 
should be used for the integral from O to T. 

Let x = -mV T for the first integral and x = mV T for the second; Eq. 16 becomes 

1 a, 1 •VT 

I= mV J Jo(lx l)'¼'(T + ;V' m)dx + mV J Jo( Ix l)w(T - ;y, m) dx (17) 
0 0 

The outer integral in Eq. 11 is evaluated by Simpson's one-third rule. The values 
of mused are 0, 0.01, 0.02, 0.21, 0.4, 0.7, 1.0, and then every 0.5 until the integral 
converges. Because the increments of integration used in Simpson's rule are 0.005 
form< 0.02, 0 .085 for 0.02 < m < 0.4, and 0.1 form> 0.4, a three-point parabolic 
interpolation formula is used to determine the values of the integrand at the interme
diate points. 

The analysis of viscoelastic multilayer systems can be summarized as follows: 

1. Assign successive values of m starting from zero to a rather large positive value 
until a, converges; 

2. For each m, determine s0 from Eq. 9, s 1 through s 8 from Eq. 14, and the values 
of the integrand at various times, T, from Eq. 11; and 

3. Integrate Eq. 11 by fimpson's rule and parabolic interpolation. 

COMPARISON WITH EXISTING METHODS 

The method developed in this study is very effective for analyzing multilayer systems 
and differs significantly from the existing methods by Chou and Larew for two-layer 
systems and Elliot and Moavenzadeh for three-layer systems (2, 3). 

Chou and Larew (2) considered a concentrated moving load instead of a circular load. 
Because they assumed that the load started from a fixed point at a given distance, R 0 , 

from point 0, they had difficulty in integrating Eq. 6. To obtain correct solutions, 
they had to exchange the order of integration, i.e., integrating first with respect tom 
and then with respect to T. This is a very cumbersome process. First, they divided 
the time into small increments. At the end of each time increment, a series of m 
values, e.g., 25, was assumed, and integration was performed with respect to m. If 
there are 200 time increments, as is usually the case when the load starts from -=, 
the collocation method will be applied 200 x 25 or 5,000 times. Therefore, because the 
computer time for the double integration was just too excessive, they could not obtain 
numerical results for systems with more than two layers. 

The result of this study shows that, by changing the starting point of the load from 
-=, instead of from a fixed distance R 0 , Eq. 6 could be integrated first with respect to 
T and then with respect to m. This means that, for each m, only one collocation is 
necessary, or a total of only 25 collocations instead of 5,000. The reason that Eq. 6 
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does not yield correct solutions when the load starts from a fixed distance R 0 instead of 
from -co is that the load Jo (m VI,,. I) at the starting time is not negligible when m is 
small, and the system cannot be considered initially undisturbed as assumed in the 
Laplace transform of the field equations. However, if the order of integration is ex
changed, the problem becomes the determination of stress at various times. Unless 
R 0 is very small, the stress at point O when the load starts will be very small, and the 
system can be considered initially undisturbed. 

Elliot and Moavenzadeh (3) employed the Duhamel integral for determining the 
stresses and displacements under a circular moving load. Their method is different 
from the author's in that they applied the Duhamel integral, instead of the correspon
dence principle, in obtaining the viscoelastic solutions. Using the Duhamel integral, 
the vertical stress in a viscoelastic-layered system, corresponding to Eq. 6, can be 
written as 

(18) 

in which ¢ . is the response of the system to a static load and can be obtained by invert
ing ¢(p, m)/p. After differentiation, the equation becomes 

! "' fr J 1(mcx) 
'1z = -qet mV J 1(mV I 7" I) ¢,(T - r, m)d rdm 

0 -= 
(19) 

The reason that the Duhamel integral was not employed in this study is that the dif
ferentiation of one term of Bessel function such as J 1 for determining radial, tangential, 
and shear stresses may generate two terms of Bessel functions, and the evaluation of 
these additional Bessel functions requires additional computer times. This is par
ticularly significant when determining the strains due to the large number of terms 
involved. 

COMPUTER PROGRAM 

The method described in this paper was programmed in FORTRAN IV for an IBM 
360 computer available at the University of Kentucky. It is not the intention herein to 
describe in any detail the computer program. Nevertheless, the capability of the pro
gram will be pointed out, so that readers interested in using the program can obtain a 
complete listing of the program from the author. 

Theoretically, the method developed in this study is quite general and can be used 
to determine the stresses and strains at any point in a multilayer system consisting of 
any number of layers and any types of linear viscoelastic materials. However, a gen
eral program of this type requires considerable computer times and may not be de
sirable from a practical viewpoint. Consequently, the program was written in a more 
restrictive way to obtain useful information at a reasonable cost. It is hoped that these 
restrictions will promote the application of the program instead of limit its usefulness. 

The program can only provide solutions for the vertical displacement on the surface 
and the vertical, radial, tangential, and shear stresses or strains at both the bottom of 
layer 1 and the top of the lowest layer because these stresses and strains have been 
considered as important criteria for pavement design and evaluation. The user must 
specify whether the stresses or strains are to be computed. 

In computing the stresses, the transformed shear and bulk moduli of each layer are 
represented by the quotients of two polynomials, the degrees and coefficients of which 
must be specified by the user. In computing the strains, the transformed shear moduli 
and the Poisson's ratios of each layer must be specified. The latter are assumed to be 
elastic and independent of time. Because the Poisson's ratios have relatively small 
effect on the strains, this simplification will save a great deal of computer time without 
affecting the results significantly. 
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Computer storage is reduced by dimensioning to take care of up to six layers using 
a maximum of 12 values of the transformed variables for the collocation. The dis
pla.cement , stresses, or strains at 20 different times are computed s imultaneously. 
These restrictions can easily be removed by merely increasing the dimensions of the 
parameters involved. 

NUMERICAL RESULTS 

The applicability of the method is demonstrated by using a four-layer system (Fig. 2) 
to simulate a highway pavement. It is assumed that the surface course of the pavement 
is asphaltic concrete, the behavior of which under pure shear is characterized by a 
Burgers model; the base and subbase courses are granular materials, which are con
sidered as elastic; and the subgrade is a soft clay, which is represented by a Maxwell 
model. The Poisson's ratios of the layers from top down are assumed to be 0.4, 0 .3, 
0.3, and 0. 5 respectively. The total computer time for obtaining all the data presented 
in this paper by an IBM 360/65 was about 15 min. 

Let ( G1) 1 be the shear spring constant and ( T1) 1 be the shear retardation time of the 
Kelvin element in layer 1. Because (G1)1 and (T1)1 are assumed unity in Figure 2, the 
spring constants and relaxation times shown in the various models are not their actual 
values but ar e their ratios to ( G1) 1 and ( rih respectively. If T = t/( n)1 and the trans -
formed variable of T is p, the transformed shear moduli of the materials a.re (G) 1 == 
[20p(p + l)(G1hJ/~p + 1)(2p + 1) + 20p], (G)2 = 2(G1h, (Gh = (G1h, and (G)4 = 5p(G1)1/ 
(l0p + 1). Because the Poisson's ratios are assumed time-independent, the trans
formed Poisson's ratio and the original Poisson's ratio are the same, so 

(20) 

Once the transformed moduli of elasticity and Poisson's ratios are known, ¢(p, m) 
can be evaluated and the stresses and strains determined by the method presented. 

Figures 3, 4, and 5 show the stresses and strains in the four-layer system at nine 
different dimensionless times, T, i.e., -1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, and 
1. The narrow range of times from -1 to 1 is used because the most critical stresses 
and st r ains generally occur within this range, especially when the velocity is high. Two 
different dimensionless velocit ies are used: V = 0.25, as indicated by the small circles, 
and V = 1 by the small triangles. Integration is carried out tom = 10. 

In the figures, compressive stresses and strains are considered positive and tensile 
stresses and strains negative. In addition to the tangential stress or strain, which is 
one of the principal stresses or strains, two other principal stresses or strains are 
also shown, the major and minor principal stress or strain. These are the major and 
minor principal stresses or strains in the rz plane only and may not always be the 
largest or the smallest of the three principal stresses or strains. 

Figure 3 shows the vertical, radial, tangential, shear, and principal stresses at the 
top of layer 4. The vertical, tangential, and major principal stresses decrease with 
the increase in speed and become maximum sometime after the load passes point 0. 
The fact that all three principal stresses are positive implies the nonexistence of ten
sile stresses. The nearly equal magnitude of vertical and major principal stresses in 
this critical range indicates that, if rutting is caused by excessive stress in the sub
grade, either vertical or major principal stress can be used as a criterion with no 
significant difference. 

Figure 4 shows the vertical, radial, tangential, shear, and principal strains at the 
top of layer 4. Although both the vertical and the major principal strains decrease 
with increasing speed, the maximum vertical strain occurs after the load passes point 
0, whereas the maximum major principal strain, because of the large component of the 
shear strain, occurs before the load reaches point 0. In this particular case, where 
shear strains are large and contribute to a significant portion of the principal strains, 
a criterion based on the vertical compressive strain will certainly be different from 
that based on the major principal strain. Note that part of the radial strains and all of 
the tangential and minor principal strains are negative, even though all stresses are 
positive at the top of layer 4.' 



Figure 1. A multilayer system subjected to a moving load. 
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Figure 2. Models characterizing a four-layer system. 
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Figure 3. Stresses at top of layer 4. 
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Figure 4. Strains at top of layer 4. 
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Figure 5. Strains at bottom of layer 1. 
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Figure 5 shows the vertical, radial, tangential, shear, and principal strains at the 
bottom of layer 1. The general trend for the change of strain with time is quite similar 
to that at the top of layer 4. Because fatigue is caused by excessive tensile strains at 
the bottom of the asphalt-bound layer, the minor principal strains are of particular 
interest. The principal tensile strains also decrease appreciably with the increase in 
speed and arrive at a maximum value before point O is reached. 

CONCLUSIONS 

A method programmed for a high-speed computer is presented for determining the 
stresses and strains in viscoelastic multilayer systems subjected to moving loads. 
The elastic solution is briefly described, and the application of the elastic-viscoelastic 
correspondence principle to change the viscoelastic problem to an associated elastic 
problem is illustrated. The inversion of the associated elastic problem to the visco
elastic problem is facilitated by using the convolution theory and an approximate method 
of collocation. 

Numerical results are presented for the stresses and strains in a four-layer system 
consisting of an asphalt-bound surface course, granular base course, granular subbase 
course, and soil subgrade. Of particular interest are the vertical and principal com
pressive stresses and strains on the surface of the subgrade, layer 4, and the princi
pal tensile strains at the bottom of the asphalt-bound layer, layer 1, because these 
stresses and strains have been suggested as criteria for pavement design and evalu
ation . A study of these critical stresses and strains in the four-layer system subjected 
to moving loads reveals the following facts: 

1. Both the vertical compressive stresses and the major principal stresses at the 
top of layer 4 decrease with the increase in speed; their maximum values occur at or 
immediately after the load passes point 0. The predominant contribution of the vertical 
stress to the principal stress indicates that, if rutting is caused by excessive stresses 
in the subgrade, there is very little difference whether the design or evaluation is 
based on the vertical or the principal stress. 

2. The vertical compressive strains and the major principal strains at the top of 
layer 4 also decrease with the increase in speed. However, the maximum vertical 
strain occurs after the load passes point 0, whereas the maximum principal strain, 
because of the large component of shear strain, occurs before the load reaches point 
0. When shear strains are large and contribute to a significant portion of the principal 
strains, a criterion based on the vertical compressive strain will certainly be different 
from that based on the major principal strain. 

3. The principal tensile strains at the bottom of layer 1 also decrease with the in
crease in speed, and, because of the existence of the large shear strain, the maximum 
principal tensile strain occurs before point O is reached. 
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