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A computer program has been developed that simulates impacts of various 
vehicles with guardrail barriers. This program is a digital simulation 
system, making use of several mathematical models. The vehicle simu­
lation is -composed of 3 major segments: the vehicle as a rigid body, the 
steering gear, and the deformation of the body due to the impact. The 
barrier is essentially a structured beam on many flexible supports; the 
beam is divided into a certain number of elements connected to each other 
at the nodes. The vehicle and the barrier work in the following combina­
tions: dynamics of the vehicle alone before impact when the barrier is 
motionless and undeformed; dynamics of the vehicle and the barrier ex­
erting forces on each other after impact; dynamics of the vehicle and the 
barrier not exerting forces on each other when they have no contact and 
the barrier oscillates because of inertia; and dynamics of the vehicle alone 
when there is no contact with the barrier, which is motionless and de­
formed. A certain number of full-scale tests have been computed, and a 
fair agreement with experimental results has been obtained. The use of 
such a program will substantially reduce the number of full-scale tests. 

•AT THE END of 1968 the Institute for Road Safety Research in the Netherlands real­
ized the importance of having a mathematical model to simulate the impact of a vehicle 
against a guardrail barrier. Such a mathematical model was mainly intended to corre­
late results of simulations and full-scale tests and then to predict results so that the 
number of actual tests needed to evaluate the behavior of the barrier could be reduced. 
The advantages of such a mathematical device are quite obvious; the cost of a computa­
tion, though not negligible, is always considerably lower than the cost of a full-scale 
test. We expected that the model could reduce the total cost of the work of developing 
and evaluating the barriers mentioned or enable more extensive work to be done at the 
same price. 

The work started with the development of a relatively simple model in which the bar­
rier was considered as a continuous beam supported by posts. For the reaction of the 
posts, the model used experimental data, in terms of force versus displacement and 
rate displacement, obtained by means of dynamic tests. The vehicle model was already 
pretty well defined, including complete dynamics and the body deformation due to the 
impact. 

A far more complicated model was then desired that would take into account the 
stiffening of the beam brought about by diagonal bars between the rails, the effect of 
large deflections, the second-stage effect (i.e., the increase in stiffness occurring when 
one rail hits the ground), and other aspects not included in the first model. 

That new model required a much larger memory space and computing time and 
hence a greater computer cost. But at that time it was possible to limit the cost to 
about that of the former model by usinp.; improved programming techniques that were 
developed at the Aerospace Departmei . of Politecnico of Milan for structural analysis. 
Without those new techniques, total computing time would have been more than 20 times 
greater. 

At present the mathematical model has reached a rather high level of development 
and has been tested with the experimental results of full-scale tests conducted by the 
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Institute for Road Safety Research. It is really more than a mathematical model; it is 
a digital simulation system, which in part makes use of several mathematical models. 

DIGIT AL SIMULATION SYSTEM 

The simulation system is essentially a program consisting of different parts or seg­
ments. The program itself chooses which part it has to use and how it has to combine 
the various segments during the simulation. For example, the main parts, the vehicle 
and the barrier, can work in the following combinations: 

1. Dynamics of the vehicle alone before impact when the barrier is motionless and 
undeformed; 

2. Dynamics of the vehicle and the barrier exerting forces on each other after the 
impact; 

3. Dynamics of the vehicle and the barrier not exerting forces on eacb other when 
they have no contact and the barrier oscillates because of its inertia; and 

4. Dynamics of the vehicle alone when there is no contact with the barrier, which 
is no longer oscillating. 

In configurations 1 and 4 the positions of the vehicle and the barrier are compared; 
and when an interference occurs between the side of the vehicle and the barrier (vehicle 
and barrier undeformed in configuration 1, deformed in configuration 4), the computa­
tion is turned into configuration 2. In configuration 2 the vehicle and the barrier are 
considered connected at a certain number of points at which a certain number of mutual 
forces are exerted. Each mutual force cannot be a pull, and when one force begins to 
be a pull the corresponding point is no longer a point of contact. When there is no 
longer a point of contact, the computation is turned into configuration 3. 

Figure 1 shows a general flow chart of the simulation system. In configuration 1, 
phase 2 is bypassed by test 3. In configuration 2, phase 2 is executed. In configuration 
3, phase 2 is still executed, but there is no connection (and force) between the vehicle 
and the barrier. In configuration 4, phase 2 is again bypassed by test 3, which, ob­
viously, is a rather complex test. Test 4 decides when the computation has to be ter­
minated: That may happen when the computation has actually reached the end point, 
which has to be specified among input data, or when the roll angle of the vehicle be­
comes greater than l 1·adian. At that point the vehicle will certainly overturn, but the 
program cannot simulate the subsequent motion. 

VEHICLE 

The vehicle simulation is composed of 3 major segments: 

1. The vehicle as a rigid body, 
2. The steering gear, and 
3. The deformation of the body due to the impact. 

Segment 1 computes the motion of the vehicle considered as a rigid body with 6 de­
grees of freedom (Fig. 2). The forces acting are only forces of gravitation and ground 
reactions (one for each wheel). No consideration is given to aerodynamic forces. The 
vertical component of each ground reaction is computed as a function of the correspond­
ing vertical deflection of the suspension and tire; the horizontal component, or corner­
ing force (Fig. 3), equals the vertical component multiplied by a cornering force coef­
ficient, which is a function of the angle of sideslip (Fig. 4). The maximum value, 
DFCM, of that coefficient may have different values, depending on the nature and the 
condition of the road surface. 

The movement of the steering gear may be a priori known as input data, when some­
one is operating the steering wheel, or during the specified time intervals may be com­
puted from the dynamics of the steering mechanism. That is done in a rather complete 
scheme that considers also gyroscopic couples on the wheels, the effect of caster, in­
clination, and pneumatic trail (Fig. 3). (Pneumatic trail is the backward displacement 
of the centroid of the contact area between the tire and the road surface. It increases 
with the vertical reaction and with the angle of sideslip and produces a torque that tends 
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to move the steering gear in the sense of reducing the sideslip.) In this way the simu­
lation will cover any movement of the vehicle that can be obtained by operating or aban­
doning the steering wheel. 

The third segment, which works when the vehicle is in contact with the barrier, 
simulates the deformation of the body. The contact may take place at a certain number 
of points, to be assigned, up to a maximum of eight (Fig. 5). The force-deflection di­
agram at each point consists of a softer part, followed, after deflection reaches the 
value SBER(I), by a stiffer part. For decreasing deflection, the force decreases even 
more steeply, and after the force has reached zero a certain amount o'f plastic defor­
mation remains present. 

BARRIER 

The barrier is essentially a continuous beam on flexible supports. The beam is 
divided into a certain number of elements connected with each other at the nodes (Fig. 
6). An element is that part of the beam between 2 spacers and may have a diagonal bar 
(Fig. 7). Some of the nodes are connected to the flexible supports. If no external 
force acts on an element between the nodes, the element deformation is completely 
represented by the superimposition of the 6 modes shown in Figure 8. 

The diagonal bar, if p1·esent, exerts a force T depending on the relative displace­
ment 6 of its terminal points. The model for the fo1·ce T is shown in Figure 9. To in­
crease 6, beginning from /l = O, T increases elastically up to the value TA of the fric­
tion force; then T = TA. T in turn increases elastically after /l has reached the value 
allowed by the play, GPOS, between the bolts and the holes to the value TS of the limit 
bearing force . After that point, the bolt starts bearing the sheet oi the rail, increasing 
the actual play. To decrease 6, T decreases elastically. For negative values of T the 
model is the same, but a different value, GNEG, of the play may be specified. 

The model for the motion of the sections of the beam is shown in Figure 10. It is a 
rigid rotation around point 0, mainly due to constraints of the posts, followed by a rigid 
rotation around point 01, when the rear rail collides with the ground . When the values 
of CRO, CRV, and CRC are properly chosen, tha model will represent a good approxi­
mation of the motion observed in full-scale tests . For the reactions of the posts, ex­
perimental values are used, which were recorded in dynamic tests ( 1), and plotted 
ver ni:i displacements (Fig. 11). Displacement is decreased by the assumption that the 
force linearly decreases; the slope starts down beyond point A, where the reaction 
reaches its maximum value. As long as the rear rail is in contact with the ground, 
contact reactions are also present and are assumed to be perfectly elastoplastic (Fig. 
12). 

The main effects of large displacements are as follows: 

1. A certain amount of tension builds up in the beam and produces a stiffening effect; 
and 

2. Because of the constraint of the posts (Fig. 13), a certain amount of secondary 
bending takes place and causes the deflection. 

That bending, although not very great, may have a rather strong stiffening effect 
because it takes place around the axis of maximum bending stiffness of the rail (axis 
bb, Fig. 7). The tension on the beam depends on the elongation as shown in Figure 14. 
Varying the values of the limit friction force, ENNA, and the play makes it possible to 
simulate different expansion joints . In tJ1e bending of the beam, some plastic deforma­
tions are also possible; this occurs when the yield stresses a1·e exceeded. 

After tl1e vehicle has moved into its new position, a new equilibrium configuration is 
found that corresponds to a small time increment dt (Fig. 15) . Typical figures for that 
time increment, which have been extensively used in computations with practically the 
same results, are 5 and 2. 5 ms. 

At every step all the nonlinear forces, such as diagonal and post reactions, are 
linearized in the small interval between 2 consecutive steps so that the new equilibrium 
configuration is the solution of the matrix equation 

(P} = [KJ (v} 
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where {v} is the column matrix of the unknowns, which are the normalized displace­
ment at every node (3 per node, Fig. 8) and the displacements of the points of contact 
between vehicle and barrier. The stiffness matrices [K] and (P} are computed at each 
step by superimposition of the contribution of the elements, posts, diagonals, vehicle 
contact forces, and barrier inertial forces (see Appendix). Some velocity-dependent 
forces (damping) may also be considered. 

INPUT DATA 

Input data are divided in 3 main groups: vehicle data, barrier data, and computa­
tion parameters. 

So far vehicle data have been prepared for 5 vehicles: a private car, 2 buses, a 
light lorry (3 t), and a heavy lorry (24 tat maximum loads). These vehicles will be 
used as test models for simulating impacts against different types of barriers. Compu­
tation parameters are mainly the position and the velocity of the vehicle at the start of 
computation (Fig. 16) and the maneuvers of the steering gear. 

OUTPUT DATA 

The output is, for every time increment, the motion of the vehicle and the deforma­
tion of the barrier. The vehicle output data are position, attitude, deformation of the 
body, velocity, steer angle, and accelerations of several points of the vehicle. The 
barrier output data are the deflections of all the nodes. 

Several computations have been prepared with input data corresponding to the full­
scale tests conducted by the Institute for Road Safety Research. They compare the out­
put of the simulation with experimental records. The comparison each time shows a 
fair agreement; in some instances the agreement was not so good because the experi­
mental figure for the velocity of the vehicle could not be more accurately deduced from 
high-speed films. 

Figures 17, 18, 19, and 20 show the comparison of the simulated final deformation 
of the barrier and the full-scale tests. The results were also visually presented by 
simulation films for comparison with the high-speed films of the actual tests. The 
simulation films were made with consecutive still pictures of a model, at ½o scale, 
which was fixed for every picture in the configuration specified by the simulation sys­
tem for every time increment. The simulation films showed an extremely gooct generai 
agreement with the actual films taken from the same angle of view. 

CONCLUDING REMARKS 

The digital simulation system that has been developed for impact tests against guard­
rail barriers has proved to be a valuable tool. It may reduce the cost of a test program 
or, better still, greatly enlarge the extent of a program without increasing the cost. In 
fact, it may permit a considerable reduction of the number of full-scale tests, which 
require a relatively long time for preparation, execution, and interpretation and are 
rather costly. For example, the first simulation program, which is now under devel­
opment, comprises more than 200 simulations with different vehicles on different types 
of bridge parapets. 
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APPENDIX 
MATRIX EQUATIONS 

The nomenclature used in the equations below is defined as follows: 

u = normalized beam displacements, 
w = displacements of the contact points, 
v = displacements comprising u and w, 

dt = time interval, 
P = known terms, 
K = stiffness, 
T = diagonal force, 
S = generalized element forces, and 
F = contact forces. 

The following brackets are used for matrix notation: ( } for a column matrix and 
[ ] for every other matrix. 

The 6 generalized forces (S'} of 1 element, without a diagonal bar and without con­
tact forces between the nodes, are related to the corresponding displacements (u) by 
the matrix equation 

(S'} = [k'] (u} ( 1) 

where [k'] is the element stiffness matrix. 
If the diagonal bar exerts a force T, the generalized element forces undergo an in­

crement by the quantities 

(S"} = (M} T (2) 

which are proportional to T through the column matrix (M}. 
If 6 is the relative displacement of the end points of the diagonal bar, force T may 

have the following linearized expression: 

(3) 

which is valid for a small variation of 6. 
From Eq. 2 and the Principle of Virtual Works, 

6 = (M}T (u} (4) 

where (M) T is the row matrix transpose of (M}. 
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Then from Eqs. 2 and 4, 

(S''} = (M} T1 (MJT (u} + [M} To ( 5) 

If a certain number of contact points is present in the element between the nodes, 
the corresponding forces {F) may have the following linearized expression, derived 
from the stiffness of the vehicle body: 

(F} = (Fa} - [F1J (w} ( 6) 

where (w} is the absolute displacement of the contact points. From the barrier side, 
the displacements l w} are the sum of the part: 

(w'} = [LJ (u} (7) 

due to elements and the part 

( w' '} = [ HJ ( F } (8) 

due to the direct action of the forces. Then, 

( w} = [ LJ ( u} + [ HJ ( F} (9) 

The contact forces ( F} must be equilibrated by increments of the generalized forces 
of the elements. 

[S'"} = -[LJT (F} ( 10) 

Solving Eq. 9 for (F} by substituting in Eq. 6, we have the following additional equa­
tion for the unknowns (w}: 

(Fo} = [HJ -i (w} + [F1] (w} - [H]- 1 [LJ (u} ( 11) 

Superimposing the effects of the diagonal bar and the contact forces, we have finally 

where 

(S} = (S'} + (S"} + (S"'} - (M} To 

[kuuJ = [k'J + (M} D1 (M]I + [LJT [H]- 1 [L] 

[kwuJ = [ku.JT = -[HJ-l [LJ 

[k •• J = [H]- 1 + [F 1J 

Equation 12 may also be written, in a shorter notation, as 

(S.} = [k.J (v.} 

where [k.J is a symmetrical matrix. 

( 12) 

(13) 

(14) 

( 15) 

(16) 

( 17) 

It is now possible to assemble the stiffness matrix of the complete structure by 
simply summing the contribution of the elements, posts, diagonals, vehicle contact 
forces, and barrier inertial forces to obtain the final matrix equation: 

(P} = [KJ (v} (18) 
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Equation 18 must be solved for unknowns ( v J, which are the node displacements ( u} 
and the absolute displacements {w) of the contact points . 

IL is worth noting that matrix [KJ is a symmetrical band matrix if the unknowns 
are so ordered {at each step) that each of the unknowns (w } is placed between the dis­
placements ( u} of the 2 nodes. of the element having the corresponding contact point. 
Therefore, the best time and memory occupation techniques are applicable to solve 
Eq. 18. 




