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The development of a rational method of analysis of any system must in
clude the selection and analysis of a model for realistic input parameters. 
Based on this idea, a simple method has been developed for solution of 
often encountered problems of engineering practice involving slabs resting 
on subgrade. The slab is represented by a physical model, which is helpful 
in visualizing the problem and forming a solution. Regarding subgrade, 
most of the available analyses assume it to be a Winkler model, a physical 
model of a heavy liquid, or a bed of springs. In this paper the soil is 
treated as an elastic solid. With these two models for slab and subgrade, 
a computer method based on matrix analysis has been developed. From 
the solution of reactive subgrade pressures, the deflections are then sub
sequently used to compute stresses and bending moments. Two exemplary 
problems, one with a corner load and one with a center load, have been 
included. Comparison of the latter with the Winkler model is illustrated. 

•MOST pavement analyses are based on the assumption that the deflection of the slab 
at any point is proportional to the reaction pressure at that point and does not depend 
on the pressure at any other point of foundation. This assumption, originating from 
Winkler (1), corresponds to the physical model of a heavy liquid or bed of springs. 

The physical properties of the soils, however, are much more complicated than in
dicated by such a simple relation assumed by Winkler. From the known fact that soils 
can propagate waves, it is obvious that they can behave closer to elastic solids than to 
beds of springs. Wieghart (2) was the first to investigate the analogous beam problem 
under the general assumption that the deflection at any point depends on the subgrade 
reactions along a certain length 2L of the subgrade: 

+L 

y(x) = canst. f g(~)k( Ix - ~ \ )d~ 

-L 

where 

y = deflection of a beam, 
g = subgrade reaction, 
k = a kernel function depending on type of subgrade. 

(1) 

Several investigators (3-8) developed solutions for different kernels, k, mostly 
through the use of Fourierintegrals. However, no kernel function of space coordinates 
could reproduce the exact actual behavior of the subgrade. With the knowledge of soil 
behavior, the investigators have, of late, tried to include a function of time in the rela
tion between deflection and reaction pressure. Ideally, such a model will be a nearly 
true representative of soil subgrade; its application has been very limited because of 
the rigorous mathematics involved. 
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In the particular case of a thin slab of infinite extent, exact solutions have been pro-
v itled by Hogg (9) and I-Ivll (10) by uoing ela.olii.; oulltl oul.;g1·ade. Burrnistcr (11), treat
ing both the slab and the subgrade as elastic isotropic solids, has proceededfrom the 
three-dimensional general equations of elasticity to find the solutions for a two- or 
three-layered solid. His work, however, deals with slabs of infinite extent only. Cir
cular slabs of limited dimensions have been dealt with by Habel ( 12), who used differ
ence methods. Other specific cas es of slabs of finite dimensionshave been investigated 
by De Beer (13), Grasshoff (14), Schult ze (15) , Kany (16), andKrasmanovic (17). A 
summary of extensive Russian studies alongsimilar lines has been completedby Vlassov 
and Leont'ev ( 18). 

Because of the rigor of mathematics used, few of the preceding works have been 
adopted by practicing engineers as regular tools in analysis. Limited solutions suitable 
for prac tical use aimed at load distr ibutions over only circular loading surfaces have 
been developed (19, 20) wher e the influenc.e values for a load on the inter ior of a s lab 
have been calculatecTaccor ding to Hogg(elastic solid subgr ade), but the edge loads have 
been computed according to Westergaard (Winkler subgrade). This work was subse
quently extended by Pickett, Badaruddin, and Ganguli (21) to include the case of semi-
infinite slab. -

In the present paper, based on thin-plate theory, a physical model of the slab has 
been adopted. The model can handle homogeneous as well as orthotropic slabs of vari
able thickness. The subgrade is represented by an elastic, isotropic, homogeneous 
solid of infinite extent with a modulus of elasticity E, and Poisson's ratio v,. 

PHYSICAL MODEL OF THE SLAB 

The finite-element model of the slab in this study was developed after Newmark by 
Hudson and Matlock (22). Figure 1 shows a typical nodal point. The axial deformability 
and Poisson's effects of slab elements are represented by elastic blocks. The torsional 
stiffness of the elements is represented by torsion bars and is always active in the sys
tem. It should be noted that the slab so formed may be of orthotropic behavior in any 
single element. There may be also arbitrary differences in individual stiffnesses of 
different elements. The free-body diagram of a nodal point giving all internal forces 
of the system is shown in Figure 2. 

In the Hudson-Matlock model, the reaction of the subgrade was represented by a 
spring, giving it Winkler qualities. In the present study, the subgrade is treated as an 
isotropic elastic solid, and the reaction of the s ubgrade is represented by a force under 
the nodal point. This reactive force under node affects the whole continuum (elastic 
solid) and consequently influences all the forces and displacements of the continuum. 
The real difficulty experienced in the use of this subgrade is to account for all these 
influences. With the help of computers, it has been accomplished by superposition, by 
using Boussinesq's solution and Maxwell's reciprocal relation. 

FORMULATION OF EQUATIONS 

The equation of vertical equilibrium of a nodal point can be written as 

(2) 

The shearing forces V in this expression can be evaluated in terms of bending and 
twisting moments that, in turn, can be expressed by their finite difference equivalents 
in terms of deflections of adjacent points. 

After all transformations, Eq. 2 appears as a linear equation containing an unknown 
deflection of 13 nodal points clustered in a rhomboidal array around the considered nodal 
point i, j. It can be represented in matrix form as 

[KP] (W} = -(Q} + (P} (3) 



Figure 1. Typical joint i with j taken from 
finite-element slab model @ . 

Figure 2. Free body of slab mesh point. 
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where 

[KP] is termed as stiffness matd.x oI siab, 
(W} is deflection matrix, 
(Q} is load matrix, and 
{P} is reaction matrix. 

Because we are using the finite-difference equations for moments, the stiffness 
matrix so obtained utilized one fictitious station beyond the real boundary of the slab. 
At those points, the terms in the load and reaction matrices are zero; i.e., the right
hand side of Eq. 3 is equal to zero. If the equations at these points were written, it 
would be immediately clear that they represent the so-called Kirchoff's conditions of 
the bending moments, being zero at edges. Figure 3 shows the forms of the KP, W, Q, 
and P matrices. 

The matrix [KP] and W can be rearranged as follows: 

(4) 

where 

(W.} represents deflections of all points external to real slab boundary, i.e., the 
fictitious points used; and 

{W 1 } represents all internal points, i.e., points within real slab boundary. 

Equation 4 can then easily be split into two as follows: 

(5) 

and 

[K!J {W.} + [~] {W,} = -{Q} + {P} (6) 

Equation 5 can furnish w. in terms of W, so as to satisfy the bending moments at bound
aries to be zero . It may, however , be noted that the deflections w. are not real because 
the slab does not exist there. They are used only to satisfy the boundary conditions in 
terms of finite differences. Consequently, from Eq. 5 

(7) 

Substituting this value of w. in Eq. 6 

(8) 

where 

(9) 

Naming 

(10) 

one gets 

(11) 

Finally, calling 
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the simplified form of the equation becomes 

[AK:] [W 1 } = -[Q} + [P} (12) 

This equation utilizes only the points within the real boundary of the slab and also 
serves to satisfy the boundary conditions. 

FLEXIBILITY MATRlX OF SUBGRADE 

It can be noted in Eq. 12 that matrix [ AK!J is known and [Q} is known, but the terms 
of matrices [W 1 } and [P} are both unknown. Consequently the necessity of expressing 
the relation between [W 1 } and [P} becomes obvious. 

For an elastic isotropic solid, the deflection due to unit vertical and horizontal point 
loads has been given by Boussinesq and Cerruti. According to them the deflection at 
any point B due to a point load A is given as 

(13) 

where 

P = load at point A, and 
d, = radial distance between points A and B. 

Other terms have been previously explained. From Eq. 13, the deflection at the center 
of a uniformly loaded rectangular area (ax b) can be obtained by integration (Fig. 4): 

x=a/2 y=b/ 2 

W1 = 2 f f R_ (1 - v:) 
ab nE. 

0 0 

ctx cty = R ( 1 - 11;) 1,, 
~ b 1rE. 

(14) 

where I. for the case a = b equals 3.525. The value of I,, for cases commonly found are 
a/b = 2, I,, = 2.406; a/b = 3, I,, = 1.867; a/b = 4, I,, = 1.543; and a/b = 5, I,, = 1.322. 

For any point outside the loaded area, one can do similar integration, but very good 
approximation can be achieved only by using Eq. 13 (by taking P as total load over the 
rectangle and d, as center to center distance). Zienkiewicz (24) compared some exact 
results with that from Eq. 13 and found that, even for x = a, the error is only some 4 
percent and decreases rapidly with increase of x. 

Hence, using any set of grid points, in the case when the subgrade is of infinite depth, 
the deflections can be written as 

W = - (1 - v;) [f J (P} 
1rE,b r 

(15) 

where Ur] is the flexibility matrix of the foundation and can be obtained by Eq. 13 for 
points off the loaded area and by Eq. 14 for points under the loaded area. 

COUPLING THE STIFFNESS MATRIX OF SLAB AND 
FLEXIBILITY MATRlX OF SUBGRADE 

The column matrix W discussed previously is formed by the deflections of the in
terior points of any real slab and is thus analogous to the column matrix W I of Eq. 12. 
Substituting therefore the value of W from Eq. 15 into Eq. 12, one gets 

[AK:] [AFrJ [P} = -[Q} + [P} (16) 

where 
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r AF, 1 = - ( 1 .::: v: ) r r. 1 - -- rr~,a - .-

or 

~AK!] [AF,] - r] x [P} = -[Q} 

where I is an identity matrix or 

(17) 

(18) 

Having known [ P }, we can find the deflections from Eq. 15. By using this approach, 
it is not necessary to invert the matrix [AF,]. In all, two inversions are involved in 
the whole process, one being the inversion of matrix [ K;J that will invariably be a small 
matrix and the other being inversion of a large matrix (size equal to number of incre-

ments in x-direction multiplied by number of increments in y-direction), [c AKiJ [AF,] - r]. 
PROBLEM EXAMPLES 

For illustration, two problems have been selected. The first case is a square slab 
with corner load, and the second one is with a center load. 

Square Slab With Corner Load 

The problem has been analyzed for different values of a nondimensional flexibility 
number 

where 

b = breadth of slab, 
a = length of slab, 

E ba3 

O!=~ 

I = moment of inertia per unit width of slab, 
E = modulus of slab, and 

E. = modulus of subgrade. 

A larger value of O! indicates a more flexible slab and vice versa. 
Figure 5 shows a square slab in plan with many lines, each identified by a flexibility 

number. The two edges 1-2 and 1-4, and each one of these lines, represent the area 
of contact of the slab with subgrade, when the point of application of load is point 1. 

Westergaard's corner formula has been investigated by many workers. According 
to it, the numerically greatest value of bending moment per unit widths is given by 

(19) 

where 

a1 = r./2, and 
r = the diameter of area on which the load is acting. 

This bending moment M occurs approximately at a distance 

X1 = 2 $i lo (20) 

from the load [10 = radius of relative stiffness = ~] 



Figure 3. Form of K, W, a, and P 
matrices. 

Figure 4. Deflection due to a 
uniformly loaded slab on isotropic 
solid subgrade. 

Figure 5. Lines of separation of 
contact with subgrade. 
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In cases where r = 0, a1 will automatically become zero. The maximum moment be

r.omAR Anm1l to -9. llnci. llr.r.orciinrr to formulll. Rhnulci nr.r.ur 1mciAr thA lollci. 'T'hiR rARnlt - --- - - ·.a. 2 I - '-" I - - - - -- - - - - - - - - --- -

that, regardless of the stiffness of slab and modulus of subgrade, the maximum bending 

moment will always be -~ does not seem correct. 

Investigations were therefore done for a point load applied at a corner of slabs of 
different rigidities. Figures 5 through 12 show the results of investigations. From 
Figure 7, it appears that the maximum moment along the diagonal changes in magni
tude as well as location with the Ol-value. The peak moment is nearer to the point of 
application of load in case of flexible slabs and is farther for rigid slabs. The magni
tude also increases with rigidity. Table 1 gives the results of investigations. The max
imum bending moments due to Westergaard's considering the load as point load have 
been computed. Also computed are the bending moments, when the load is considered 
to be uniformly spread over a circle of radius r such that 

It was also revealed that, if the value of 111 is plotted on log scale against the distance 
of peak points from the point of load application, the points fall on a straight line. Fig
ure 9 shows such a plot. From the figure one can get the relation 

d, Cd ,0.083 + 0.0765 (10g 3!0)1 (21) 

where 

d = diagonal of square slab, and 
d1 = distance of maximum moment point from corner where load is applied. 

It was also found that if fY. is plotted on log scale against magnitude of maximum bend
ing moments, the points fall on one straight line. Figure 10 is a plot of this type and 
gives the following relation 

/, 420\ 
M.,. = Q \0.21 + 0.0215 log ci""/ (22) 

It may be pointed out that, for values of °' less than 2, the preceding relations do not 
hold, though they will not be far off. 

For a slab with a corner load, this is a significant relation that relates the moments 
to the relative flexibility number and has been derived for the first time. 

Square Slab With Center Load 

This example compares the results obtained from an elastic solid model with that of 
a Winkler model. This comparison was part of a model test (performed under con
trolled conditions) to study the effect on stresses due to load alone (25). 

An aluminum slab 2 ft sq and % in. thick was used. The ratio between thickness 
and length in this test was 1:48, whereas in actual pavements it ranges from 1:40 to 
1:80. The modulus of elasticity of aluminum used is 10.5 x 106 psi, and its Poisson's 
ratio is 0.33. The loads were applied through a 4-ton hydraulic jack, in equal incre
ments. The maximum load was well below the ultimate load that could cause yield in 
slab. A yellow silty clay with a maximum dry density of 111 lb/ft3 at optimum moisture 
content of 16 percent was used as soil model. 

Loads were recorded by a calibrated proving ring, and strain gauges were used to 
read strains at various slab locations. For deflection measurements, dial gauges 
were utilized. Figure 13 shows the setup, and Figure 14 shows the plan of slab with 
position of dial and strain gauges. 



Figure 6. Pressure distributions 250 

along edge of square slab 
loaded at corner. 

Figure 7. Bending moment 
along diagonal of square slab 
loaded at corner. 
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Figure 8. Bending moment along edge of slab loaded at corner. 
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Figure 9. Relation of location point of maximum stress and flexibility number for corner 
load. 
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Figure 10. Relation 
of maximum bending 2 oo 
moment and flexibility 
number for corner 
load. 
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Figure 12. Deflection along diagonal of square slab loaded at corner. 
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Table 1. Maximum moments in square slab with 
corner load. 

Maximum Moments, 
Westergaard (lb-in.) MaJdmum 

Moments, 
With Load Elastic 
Spread on Solid 

Flexibility With Point (~ x~) Subgrade 
Number Load (lb-in. ) 

2 500 444 260 
5 500 433 251 

10 500 423 246 
20 500 411 239 
50 500 394 230 

100 500 378 222 
200 500 360 212 

Figure 13. Test equipment. 
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The modulus value of the soil was computed from the measured deflection bowl by 
the following formula developed by Losberg (26): 

E. = [ arn'I, ( 1 - v:)J'!. 

where 

t = the thickness of slab, 
E = modulus of elasticity of slab, and 
9 = slope of load versus depression volume curve. 

The value of E. obtained was 1,550 psi. 
Figure 15 shows the deflections. The results show that the values of deflection com

puted from Westergaard's formula and those from discrete-element model using Winkler 
subgrade are comparable. These values differ from the elastic solid subgrade though 
the patterns are very nearly the same. The deflection computed from the discrete
element model using elastic solid subgrade shows remarkable agreement with observed 
deflections. 

From Figure 16, one can see that the observed stresses and those computed by using 
both Winkler subgrade and elastic solid subgrade are very nearly the same except at 
maximum point. The difference between observed stresses and those computed by 
elastic solid theory is about 8 percent. The difference between the observed stresses 
and those computed using Winkler subgrade is 21 percent. The stresses were com
puted by Westergaard's formula as well, and the difference between the observed and 
Westergaard's is about 40 percent. The stresses according to Westergaard's formula 
are for an infinite slab and a Poisson's ratio of 0.15, whereas the value used in other 
computations was 0.33. The k-value used in Westergaard's formula was computed 
from the following: 

k = t (E./E'/,) [ E,/(1 - v;)J 

The relevant results are maximum center load, 3,953 lb; maximum observed stress, 
20,750 psi; maximum theoretical stress (Westergaard), 31,625 psi; maximum theoret
ical stress (Winkler), 25,110 psi; maximwn theoretical stress (elastic solid), 22,400 
psi ; maximum observed deflection, 0.180 in .; maximum theoretical deflection (Winkler), 
0.123 in.; and maxi.mum theoretical deflection (elastic solid), 0.1825 in. 

CONCLUSIONS AND RECOMMENDATIONS 

A simple method for solutions of often encountered problems of engineering practice, 
involving slabs resting on an elastic solid subgrade, has been developed. The slab 
model utilized is a discrete model developed by Hudson and Matlock (22). The dis
crete model allows the use of two-dimensional structural elements to r epresent a thin 
slab, and the behavior of the elements of assembly of different structural elements 
forming the slab can be described by algebraic equations. The model is not equivalent 
to the exact one, but can be made as accurate as desired. 

Two illustrative examples have been presented. For the case of square slab with 
corner load, it is found that the location and the magnitude of peak moments change 
with the rigidity of slab. Simple expressions for predicting the location as well as 
magnitude of maximum moments are furnished. 

In the second problem, an experimental investigation has been compared with various 
theoretical soil models. It was found that results from Westergaard's formula agree 
closely with that of Winkler model and that the elastic solid model simulated the ac-
tual behavior better. 

When the subgrade is not an elastic half-space but is made up of layers of different 
materials with different moduli of elasticity and Poisson's ratios, the case becomes 
more complicated. The deflection of a slab of finite dimensions, resting on elastic 
layers, has not yet been solved. Steinbrenner (27) has worked an approximate solution 
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Figure 14. Plan of slab with position of gauges. 

24" iO 

CENTER LOAD '{2• THICK PLATE 

II 

. 
II . 
II . 
Iii 

II . D • ..,. • It] • "'. . II .. . • . . • 0 . 
. 
--
24 

PO~TION OF PLAIN STAIN GAGES---- • 
LOAD POSITION AND GAGE AT BOTTOM -- e 
POST ION OF DIAL GAGES 0 

ii 

"· 

Figure 16. Deflection profile of %-in. thick slab. 

¢ 

i 
DISTANCE FROM CENTER (INCHES)-- Ml• 

0 4 8 10 12 

IJ) .0~,l-----+----+-----t--7"<ij,o<C~--t--~ 
UJ 
J: u z 
~ 
z 
0 
j:: 
u 
~ .t6,l------------------t·------, 
UJ 
0 

! 
.26---------------------

Figure 15. Stress along centerline of %-in. thick slab. 

t DISTANCE IN INCHES - B IO t,tl• 
0 o~ __ J2~ __ .:_4f-__ J6b,....d!~~'.=::;~:::::~~12 

!, 

'iii 
"' J: u 
~ 
d 
II) 

a: 
UJ 

10 
0. 

~ 
~ 
<J 
II) 
II) !5 
"' a: 
i;; 

l ' 20 I 
I 

I 
I 

' 2~ 

~~~ttlWa~rEt~~TIC SOLID}-

ANALYTIC LINE BASED----
ON(WESTERGAARD) 
ANALYTIC POINTS(WINKLER)- - -

OBSERVED DEFLECTION-- • 

y 

M 

:l-M CG- M, 

M, ~ 

24 

~1~~~~L't~:c~~;STIC SOLID) ---
~1~~~;~~:c~~:;KLER) ______ 
STRESS b. EXPERIUENTAL-- . 



177 

that, according to Terzaghi, is accurate enough for practical purposes. Extension of 
the work to account for three layers of soil has been completed by Saxena (2 5). 
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