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This paper discusses methods of analyzing crack development in pavements 
subjected to random repetitions of various loads in variable operating con­
ditions. The approaches based on Miner's law present the advantage of 
simplicity. Their principal limitations are that the predicted fatigue life 
is generally a function of geometry and loading conditions. The data ob-· 
tained in the laboratory constitute a good approximation to limited types 
of pavement systems. This law can be modified to account for temperature 
variations and variations in loading spectrum and material properties. 
The approaches based on the concepts of fracture mechanics can be viewed 
as a generalization of Miner's law. Although the latter bases the predic­
tion of crack development on the initial configuration of the system, the 
fracture mechanics approach incorporates the changes of configuration 
(i.e., geometry}. The application of this approach to linear elastic sys­
tems can also be viewed as a special case of a general approach including 
time-dependent and nonlinear material properties. A simplified extension 
to viscoclnotic systems is nlso discussed. The modified Miner's law is 
preferred in the short range because of its simplicity and the availability 
of data, whereas the approaches based on fracture mechanics concepts are 
preferred in the long range because of their completeness. 

eTHE structural damage in pavement systems has two principal indicators: cracking 
and permanent deformation. The AASHO Road Test (1) indicates that the present 
serviceability index is not very sensitive to the degree of cracking of the pavement. 
Cracking may have, however, indirect effects on the accumulation of permanent defor­
mation. These indirect effects are generally ignored in the mathematical models for 
pavement analyses. 

Cracking results from load repetitions or environmental factors. Cracking due to 
repeated loading occurs primarily as a result of bending deflections. This type of 
failure is often designated as "fatigue failure." Fatigue in bituminous paving materials 
has been shown to be a progressive process. Cracks propagate from small flaws in­
herent in the material until ultimately the amount of cracking reaches an unacceptable 
level or the remaining section becomes so weak that catastrophic failure occurs. 

This study reviews the principal approaches for the analysis of cracking in pave­
ments. These methods are discussed, and two models are proposed. 

THEORIES AND LAWS FOR FATIGUE CRACK ANALYSIS 

A general law of fatigue crack propagation should take into account the five following 
factors ~): 

1. Geometry (dimension of structure and shape and size of crack), 
2. Loads (magnitude and !or.at.ion), 
3. Material properties (constitutive equation), 
4. Time (number of cycles, duration of loads, and time intervals between loads}, and 
5. Environment (temperature, moisture, pressure, and surrounding media). 

These various factors are aggregated to different degrees depending on the method 
of analysis. Two broad types of theories are recognized: phenomenological and crack 
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propagation theories. The labeling and distinction between these two classes of ap­
proaches is rather arbitrary. The phenomenological theories include the approaches 
that measure a degree of damage for a homogeneous material without any description 
of the number, length, and width of cracks. The homogeneous material is assumed 
to deteriorate uniformly until total failure. These theories focus principally on the 
life duration of the structure rather than on the description of progressive changes of 
the damage indicators. 

The crack propagation theories recognize the presence of flaws in the material and 
can describe the number and size of cracks as time elapses. Some of the crack prop­
agation theories could be labeled as phenomenological theories because they try to fit 
some mathematical model to the macroscopic behavior of the material. However, the 
preceding definition will be utilized in this text. 

PHENOMENOLOGICAL THEORIES 

Review of Literature 

The phenomenological theories generally assume a failure criterion for a homoge­
neous material. A general type of failure criterion would predict the failure under any 
type of loading history. Such a unified criterion is not known for any material. In­
stead different criteria are developed to account for various classes of loading histo­
ries. This approach is used in a number of engineering practices. For example, a 
maximum shear criterion is used for parts of a structure subjected to a given stress 
field, whereas a maximum tensile stress criterion is used for other parts of the same 
structure. Following a rational mechanics approach, it seems that a general criterion 
should involve combinations of stress or strain tensor invariants. Many analysts @) 
use the form 

(1) 

where Ii, I2, and Ia are stress invariants. Novozhilov (4) has given physical interpreta­
tion to these invariants. In a more general case, the failure envelope should also con­
tain the time dependence (e.g., for viscoelastic materials). Thus, it could be written as 

F[I1(T), h(r), Ia(r), t, temperature, etc.]~ K (2) 

Many simplifications are necessary in order to give this relation a tractable form. 
In particular, the important simplification of neglecting the influence of the past histo­
ries of I1, I2, and Ia may be achieved. However, general failure envelopes allowing for 
stress multiaxiality are not known yet. Most of the failure envelopes determined for 
time-dependent materials correspond to uniaxial loadings. These envelopes are char­
acterized by an indetermination in their values; i.e., statistical variations are the rule 
rather than the exception. Also,, failure envelopes corresponding to long periods of 
loading (creep type) generally show more variations than failure envelopes correspond­
ing to short times of loading. 

Examples of such envelopes are a log stress at failure versus log strain at failure 
envelope suggested by Smith (5) for constant rate of strain loading histories. This con­
cept, however, applies better fo monotonic loading histories than to cycling or otherwise 
varying loading histories (3, 6). These criteria apply best when the material can be 
considered continuous (that iS, it does not include flaws or other stress concentrators) 
and when it is subjected to a homogeneous state of stress. 

When failure occurs under a large number of repetitions of the load, it is caused by 
a smaller load level than what would produce failure under a single load application. 
The failure is classified then as a fatigue failure and is analyzed by special methods. 
Generally, the main variable is the number of cycles, and it is assumed that every ap­
lication of the load increases the amount of damage done to the material. The best 
known phenomenological theory for fatigue is Miner's law (7). This law states that, 
under constant stress amplitude, the increment of damage per cycle is constant and 
that this rate is a function of the load level. The law is written in the form 
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1 (3) 

where N1 is the number of cycles to failure at stress level a 1 and n1 is the actual num­
ber of applied cycles at this stress level. It can be seen readily that a major short­
coming of this law is that it does not account for sequence effects. Nonlinear forms of 
this law were derived to gain accuracy. These modifications, however, tend to impair 
the simplicity of the law and do not offer much accuracy and rigor. Indeed, by in­
creasing the number of parameters necessary in a law, one can eventually describe 
any experimental set of data. 

A generalized form of Miner's law is given by Freudenthal (8). The increment of 
damage F per cycle is assumed to be a function of the number of N or prior load ap­
plications: 

dF - = f(N), 
dN 

(4) 

where the Junction f(N) is also a function of the stress level. Thus, after N cycles, the 
amount of damage is given by the integral 

F = f N f(N),dN 
Nn• 

(5) 

where N01 is the incubation period when the damage is assumed to be zero. This form 
could account for sequence effects. 

Freudenthal and Heller (9) modified it in order to include the interactions between 
different stress levels. They introduced in Miner's law a stress interaction factor that 
is a function of the frequency distribution of the random loading. In its modified form, 
Miner's law is written as follows: 

where w1 are the interaction factors. Another specialized form of Miner's law pro­
posed by Corten and Dolan (10) attempts to account for the effects of prior history. 

These different forms of Miner's law have been mainly applied to rate-insensitive 
materials and result in the determination of an S-N envelope or stress level versus 
number of cycles to failure at this level. 

Williams (11) adapted the concept of Miner's law to rate-sensitive material by re-

placing the cycle ratio~: by a time ratio ~11 ; t 1 is the elapsed time from the start of the 

test at the strain rate R1, and T1 is the time to failure under the constant rate of strain 
R1 • It was observed that Williams' law could be combined with the failure envelope of 
Smith (5) to relate the results of different types of loading histories. However, its ap­
plication is mostly successful for monotonic types of loading histories and should not 
be applied for cyclic loading (fatigue) where the amount of dissipated energy is lar ge 
compared to the amount of strain energy. 

Another phenomenological model was derived by Dong (26). It assumes that the 
damage function or damage index can be. expressed as a nonlinear functional of the 
stress and strain tensor functions. Dong then proceeds to expand this nonlinear functional 
into a series of multiple integrals. This model yields Miner's law and Williams' law 
as particular cases. His model is very general but not very tractable. It can account 



for the sequence effects and the interactions of different stress levels; however, as 
mentioned previously, a model can account for any type of effect when the number of 
required parameters is increased indefinitely. 

Proposed Model 

With some assumptions of continuity, the damage functional F(t) can be expanded 
into a series of multiple integrals (26): 

F(t) , / t K,(t, s)V(s)ds + If K,(t, s., s,)V(s,)V(s,)ds,ds, + ... 

+ f · .. ,ft K..(t, s., ••• , s.)V(s,) ... V(s.)ds, .•. ds. 
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(6) 

The measure of damage F(t) is not, however, uniquely defined. The damage may be 
measured by the density of cracking, or by the value of dynamic modulus of the layer 
materials at a given frequency, because this modulus decreases as the density of crack­
ing increases (8). The creep compliance of the material can be used as a measure of 
crack propagation (12) or the number or remaining cycles before complete failure under 
a given mode of loading can be used for this purpose (7). Any of these measures can 
be used, and it is convenient to normalize them so that the damage functional equals 0 
when the material is intact and increases to 1 at failure. In the preceding equation, 
V(s) is a function involving stress or strain invariants or both, and s is an arbitrary 
parameter that may have a meaning of time or cycles. This representation of the 
damage functional is general and accounts for accumulation of damage, recovery pro­
cesses such as healing, and aging effects. 

The review of literature showed that, for various asphaltic and bituminous mixtures, 
failure envelopes were related to a strain measure. In the general case of triaxial 
loading conditions, the strain measure should be expressed as a combination of invari­
ants. In the absence of results of triaxial tests, we will use the derivative of the major 
principal strain as a strain measure in the damage functional. Thus, 

t t 

F(T) , / K, (t, s)i(s)ds + JJ K,(t, s., s,)i(s.)i(s,)ds,ds, + (7) 

where the symobol with a dot over it represents a differentiation with respect to the 
argument. When s has a time meaning, expansion is similar to the representation of 
the time response of a nonlinear viscoelastic material. When s has a cycle meaning, 
it may be related to the dynamic representation of a nonlinear viscoelastic material 
and may be determined as a transfer function of a system subjected to a cyclic loading. 

In order to simplify this expansion, we assumed that three different damage pro­
cesses may be recognized: a damage process depending on the number and amplitude 
of cycles, a healing process (or a recovery process) depending on the elapsed time 
since the damage was created, and an aging process where the materials properties 
are changing with time. The damage functional may now be written as 

t t 

F(t) 
0

/ K1(s,t- s)ds)ds+ ff K2(s1,t- s1,s2,t- s2)£<s1)ds2)ds1ds2+ ... (8) 
0 
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This equation implies that the kernels are functions of the running time s (cumulative 
and aging processes) and of the lapse of time t - s (recovery process). 

In a first approach to the problem, the second and higher order kernels will be ne­
glected in the damage expression. We will further assume that the first-order kernel 
may be factorized: 

Ki(s, t - s) = Ka •• (s) Kr00 (t - s, s) (9) 

i.e., the cumulative and recovery processes are independent. The aging process is in­
cluded in both Kc •• and K ... through the dependency on the time s. 

Determination of these kernels depends on choosing a measure for the damage and 
normalizing it as mentioned previously. Let N be the number of cycles to failure (i.e., 
inadmissible density of cracking) under a given type of random load during relatively 
short time (no aging or recovery takes place). A damaged material will undergo only 
N' cycles under the same conditions before failing. The amount of damage is repre-

sented by N - N'. N and N' can be measured on control specimens. Note that in this 
N 

case F(t) is not a measure of the amount of cracking but is a function of it. 
Cumulative Kernel-For a small period of time over which there is neither aging nor 

damage recovery, we have for the increment of damage aF(T) an expression such as 

(10) 

where T indicates that the number of cycles to failure may vary because of aging and 
that the envelope is to be determined for different values of T. The increment of dam­
age is also a function of the average strain amplitude applied during the increment of 
time -r. 

Recovery Kernel-The recovery kernel Kr•• (t - -r, t) is a function of the time (t - 7") 
elapsed since the application of the damage increment and of the age of the material. 
It is apparent that healing requires the presence of a minimum compressive stress (13). 
Thus, we will assume that the argument (t - -r) can be replaced by (t* - -r) and -

(11) 

where H[ J is the Heaviside step function that is equal to 1 when its argument is posi­
tive and zero elsewhere, and a.1n is the minimum compressive stress that triggers 
healing. Thus (t* - -r) is the accumulated time during which a minimum compressive 
stress is present. 

To determine K..0 (T), two identical specimens (or sets of specimens) should be given 
the same amount of damage F. Fis determined by testing one of the two specimens 
(control specimen) and measuring the amount of damage that should be applied to 
cause the specimen to fail. The second specimen is left to rest for a time T and then 
caused to fail to determine the amount of recovery K,00 (T). 

Aging-Aging is accounted for through changes in the characteristics of the constitu­
tive equation and in the cumulative and recovery kernels. 

Thus, the complete expression can take the form 

(12) 

CRACK PROPAGATION THEORIES 

Review of Literature 

A different method of approach is based on the concepts introduced in fracture 
mechanics. The formulations are based on the balance of energy release and energy 
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accumulation at the crack tip. Generally, in these formulations the damage index is a 
crack length. The rate of crack length increase per cycle is given by a relation such as 

de/ dN = f(a, c, C1 ) (13) 

where C1 are some material properties. The form of this equation describing the crack 
growth per cycle of loading is derived from a dimensional analysis, from a work­
hardening model, from equations relating the growth rate to the crack opening displace­
ment, or from a molecular theory. The basis of the law could also be empirical. 

These approaches are essentially based on the energy balance concept introduced by 
Griffith (14) for brittle materials. He postulated that a crack will propagate when the 
rate of release of the strain energy becomes greater than the rate of creating a new 
surface, i.e., rate of increase of surfac-e energy. Orowan (15) extended this theory to 
ductile materials by adding to the surface free energy the plastic energy of deforma­
tions. Rivlin and Thomas (16) generalized this theory by writing that the release of 
strain energy does not go eiiilrely to produce new surfaces (surface free energy). In 
this way, they were able to apply the Griffith theory to rubbers. 

The Griffith theory leads to the determination of a critical stress that is given in the 
following form: 

aar =KE '\fTTc (14) 

where K is a constant of the geometry, E is the material modulus, and c is the crack 
length. Williams (11) postulates that, to generalize this equation, one may use for the 
dissipated energy 'f;"""the sum of energies dissipated in the brittle, ductile, and visco­
elastic dissipation processes. A better way of extending the Griffith energy balance 
concept is to use the so-called general power equation (11). This equation may be 
w~~as -

!cl T1U1d. = D + u + t. (15) 

where T1 and u1 are the surface traction and displacements of a contour C1 that encloses 
the crack C, the dots represent a time derivative, U is the free energy (strain energy), 
Dis the energy dissipated in the form of heat, and r is the specific surface energy. 
One can also include in this equation other types of energies such as the kinetic energy 
as proposed by Blatz (17). There are different methods of applying the power equation 
to determine the law oICrack propagation. 

However, as Griffith (14) and Orowan (15) have pointed out, the Griffith energy bal­
ance criterion is equivalent to the attainment of specific stresses at the crack tip. In 
other words, it is the local state of stress at the crack tip that controls cracking. Fol­
lowing this idea, one computes the local stresses ahead of a crack using the results of 
the theory of elasticity. These local stresses are given in the form of stress intensity 
factors K1, K2, and Ka, which correspond respectively to the opening, in-plane sliding, and 
tearing modes. K1, K2, and Ka are determined by the theory of elasticity as shown by 
Inglis (18) and Sneddon and Lowengrub (19). Lee (20) showed that, for the case of stress 
boundary conditions, the elastic constants do not appear in the expression of the stress 
distribution; thus, the stress distribution is the same for a viscoelastic material as it 
is for an elastic material. Therefore, Williams (21) solved the problem of the growth 
of a crack in a viscoelastic material subjected to stress boundary conditions by using 
the elastic values of the stress intensity factors. The viscoelastic properties are used 
to deduce the strains at the crack tip. An essential advantage in this approach is that 
it concentrates on stress or strain criteria rather than energie~, and stresses can be 
superposed whereas energies cannot. 

Most of the crack propagation laws obtained for rate-insensitive materials are of the 
form 

de/ dN = C a•cn (16) 
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where C, m, and n depend on the material properties, the geometry, and the method used 
for the derivation of the law (i.e., dimensional analysis or work-hardening model). 

Proposed Model 

It was observed for pavement structures that cracks propagate under the influence 
of repeated loading rather than under the influence of monotonically varying loading 
histories. Using these assumptions, one can restrict the study of crack growth in pave­
ment structures to the study of crack growth under the influence of repeated loadings 
(fatigue). 

For fatigue cracking, it is generally convenient to give the probability of crack 
growth per cycle rather than crack growth per time unit. A cycle is the interval sep­
arating two successive troughs or two successive peaks of the load. It is readily seen 
that, although this representation will be very convenient for sinusoidal loadings, it will 
not be very useful for some types of random loadings. We will adopt this representa­
tion because it is a convenient one for the case of pavement systems where we have 
loads of different magnitudes that are applied for different durations at various intervals 
of time. 

The use of the number of applied cycles instead of the time increments can be mainly 
justified when the measure of damage (crack accumulation in this case) varies slowly 
as a fw1ction of the number of applied cycles n. In this case it can be differ entiated 
with respect to n. The probability of a given crack growth per cycle IJ.o can be related 
to the probability of crack growth per unit time #Jt by the expression (22): 

(17) 

where w is the angular frequency. 
It appears, however, that, for many materials, the dependence on the past history of 

the local stress tensor at the tip of the crack can be restricted to the last cycle of a 
local stress measure. In other words, the crack propagation occurring during the last 
cycle of load application is exclusively a function of the local stress changes resulting 
from the last cycle of loading. This is a simplifying assumption, and its degree of 
validity depends on the type of material. 

Because the local stress at the tip of the crack is a function of the nominal stress a 
and the crack size c, the rate of crack propagation can be written generally as 

de/ dn = f(a, c, Mi} last cycle (18) 

where M1 are the materials properties; a and c can also be combined in the stress in­
tensity factor K: 

dc/dn = f(K M ) 
' 1 last cycle 

(19) 

The best method of approach for the determination of the functional f is to develop a 
good understanding of the micromechanisms of crack propagation. Otherwise one can 
only make some educated guesses and check them experimentally. For instance, for 
non-rate-sensitive materials, one can assume that 

(20) 

where K.. is the last peak value of the stress intensity factor at the tip of the crack, 
K..-112 is the last trough, and K..-1 is the value of the previous peak. It appear s logical 
to express these three independent variables by another set of independent variables 
(Fig. l}, 

K = 1MK..-1 + K..-112 + K,.) 

t.1K = K.. - K..-112 

t.2K = Ka - K.-1 

(21) 
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and to expand f in terms of K, A1K, and A2K, and the different combinations of their 
powers. The influence of K is known to be negligible for non-rate-sensitive materials, 
AtK intervenes by its fourth power (23), and the influence of A2K is not well !mown. It 
is only known that, when A2K is positive, the rate. of crack propagation is not much af­
fected. Thus, the rate of crack propagation for many rate-insensitive materials can 
be written as 

(22) 

where mis assumed to have the value of 4, and A(A2K) is a material property. For 
rate-sensitive materials, the coefficient A may also become a function of rate and tem­
perature. In this crack law, A and m may become dependent on the structure and the 
type of loading history. For instance, Ramsamooj (24) finds that it applied better to 
beams or slabs that were elastically supported than to the same structures with weakened 
supports. This fact suggests that, for cases where the viscoelastic effects are im­
portant, a more complete law of crack propagation will be required. Following the same 
reasoning to simplify the .rate propagation law, we may conclude that, if the rate of crack 
propagation can be considered a function of the changes in the stress intensity factor 
during the last cycle, then 

(23) 

where K, A1K, and A2K have been defined previously, t is the time corresponding to Kn, 
and A1t is the time lag between K,._ 1 and K,.. Being the parameter accounting mostly 
for aging and creep rupture, A1t represents the time of loading; A2t represents the rest 
period and could correspond to the healing effects. With these assumptions, we may 
assume a general law of crack propagation for rate-sensitive materials that isolate the 
most important parameters. This law can be expanded into different forms according 
to the experimental results that are found. If a simple expansion can result, this rela­
tion will be useful. If a complicated expansion is needed, it is preferable to use a more 
fundamental approach such as the power law described previously. We will assume 
that such a simplified expression can be found for paving materials: 

(24) 

Such a law can be used to account for random loadings. 
For computation purposes, we will use the special case of this propagation law: 

(25) 

where the loading time A1t represents the frequency dependence of the coefficient A. 
More accurate laws will undoubtedly be found when more is known about the fracture 
of paving materials. 

EXAMPLES OF APPLICATIONS 

Phenomenological Law 

Typical values for the failure envelope were taken from the literature (25). These 
envelopes were obtained from bending tests under constant stress levels. More ac­
curate failure envelopes should be obtained by trying to simulate typical histories of 
the triaxial state of stresses that develop at the critical points in the pavements. In 
the example that was studied, the failure envelope was given by 

where K = 5.10-4 and n = 4.5, and Af. is the strain amplitude and is measured as half the 
difference between two consecutive peaks and troughs in the strain function. For tern-
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Figure 1. Time variations of the stress intensity factor. 
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Figure 3. Typical recovery function for a fatigued dense 
bituminous mix (ll). 
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Figure 4. Temperature variations. 
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peratures above 22 C, K was increased by a function of temperature to account for 
the fact that, at higher temperatures, very large strains occur but do not contribute to 
cracking. 

The recovery kernel is obtained by curve fitting with a series of exponential ex­
perimental results such as shown in Figures 2 and 3 (13). These figures show that, for 
broken and fatigued bituminous mixes, a complete recovery is obtainable after 3 months 
at 10 C. This recovery is also a function of temperature. In the example that was 
treated, the temperature dependence of this function was simplified to 

Kr00 (t) == 0.21i + -~ e-";t\ 
\ l=l ) 

where t* == total amount of time during which no load is applied and the temperature is 
above 22 C; ~1 were chosen so that the recovery is completed in a period of 3 months. 

Twelve different temperatures were generated by the random number generator. 
These temperatures were arranged by increasing order, then by decreasing order, and 
finally by a successively increasing and decreasing order [Fig. 4, (a), (b), and (c) re­
spectively J. These series were used as inputs to the analysis, and the number of load 
appllcallous was assuuwd cuuslaul aud equal Lo 15,000 loads. The 1·esulli11g 1·esidual 
strains are shown in Figure 5. These residual strains at the first interface were used 
in lieu of the residual deflections at the surface because they present the same type of 
behavior and permit the qualitative study of the trends of this behavior. Figure 5 shows 
that the residual strains after a period of 12 months were almost equal for the series 
(b) and (c) because the temperatures corresponding to the last 5 months of these series 
were identical. The effect of the difference of temperature history in the first months 
was negligible. The residual strains due to the increasing order series (a) were a little 
different. On the whole, for the assumed materials properties, the residual strains 
were not very sensitive to changes in the sequence of temperatures. 

Figure 5 shows also the strain amplitudes corresponding to each basic unit of time 
(month). These amplitudes were essentially functions of the present temperatures. 
Hence, their variations are directly related to the temperature changes. 

Figure 5 shows also the damage function, F(t), for the three sequences of tempera­
tures. The irregularities in the shape of F(t) result from the strong nonlinearities 
arbitrarily introduced by the data used in the formulations. It can be seen, however, 
that the model accounts for the differences in temperature sequences and that the se­
quences are more important for the determination of the damage function F(t) than they 
are for the determination of the residual strains. It is not possible to derive more con­
clusions from the computed behavior because the data are not real. 

Crack Propagation Law 

An approximation is used to apply this law. The stress distribution is computed at 
different temperatures in a multilayered homogeneous viscoelastic system (Fig. 6). 
The stress intensity factors are approximated by those obtained for simple tension by 
considering a small volume at the interface between the first and second layer. We 
find for a penny-shaped crack that 

where a is the nominal stress (Fig. 6) and a is the crack length. The crack is assumed 
to start at the interface and to propagate toward the surface. The initial flaw size aa 
is given from experimental data, and the final crack size a, is chosen to be equal to 
half the thickness of the first layer. Using the Paris (23) crack propagation law, we 
obtain -

N, 
/

a, __ 1_ da == TT2 /a, ct.. 
a

0 
A(t.K4

) A(2.05)4 aa a 4 (c)dc 
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Figure 6. Discretization of crack growth. 
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where A is a material property. 
This integral is broken into a summation of elements representing a small crack 

propagation during which a may be assumed to be constant: 

N, 
rr2 m 

A(2.05)2 i~l 

CONCLUSIONS 

The approach based on Miner's law presents the advantage of simplicity. Also, ex­
perimental data are readily available for its use. Its principal shortcomings are that 
it does not account properly for geometry effects and it does not give a physical de­
scription of the cracking of the pavement. 

The approach based on the crack propagation laws can be viewed as a generalization 
of Miner's law. The latter bases the prediction of crack development on the initial 
configuration of the system, and the fracture mechanics approach incorporates changes 
in configuration. It can be used in a simplified form as shown previously. It is pre­
ferred in the long range because it accounts for the five factors previo11sly desr.rihed 
(geometry, loads, material properties, time, and environment). It also provides a 
physical description of the cracking of the system. 
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