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It is argued and demonstrated that, when human subjective response to road 
roughness is functionally related through multiple regression to power 
spectral density frequencies of the road profile, highly unreliable esti­
mates of frequency coefficients result. Hence, one will be misled in as­
suming that such roads are especially detrimental to ride. The problem, 
generally designated "multicollinearity," is caused by extremely high in­
tercorrelation of many of these frequencies. This follows from the math­
ematical treatment required in power spectral density analysis as well as 
from the inherent nature of road profiles. Nor is the situation any better 
if frequency selection procedures such as stepwise multiple regression 
are used in an attempt to capture only the most important frequencies. 
The presence of high multicollinearity between frequencies makes trivial 
the statistical selection and rejection criteria and thereby allows sampling 
error to essentially determine which frequencies are selected. A proposed 
solution to this problem is taken from the econometrics literature and ap­
plied to a small sample of subjective ride data for illustrative purposes 
only. The conventional full multiple regression estimates of frequency 
coefficients give totally unreasonable results, and the proposed solution 
gives results consistent with known automobile pass-band characteristics. 

•THE GENERAL MOTORS rapid-travel profilometer is currently the only distortion­
free system for profile measurement ( 1, 2). This does not imply that all wavelengths 
can be measured, and in practice the device is accurate only for wavelengths extending 
from 3 in. to approximately 200 ft. This implies that profiles are measured with re­
spect to a linear reference that is no longer than 200 ft. Moreover, the position of this 
reference is arbitrary and slowly varying as the profile is traversed. This produces 
the seeming paradox of repeat runs on the same profile appearing different when plotted. 
Again however, this is merely a consequence of measuring the profile with respect to a 
linear but slowly varying, arbitrarily positioned reference. 

Normally, this situation causes no problems in frequency domain analysis of a single 
wheelpath profile because, as stated above, the profile is entirely accurate within a 
given band. A problem does arise, however, in measuring the difference in elevation 
between inner and outer wheelpaths. This signal, known as the roll component, may 
have a strong bearing on ride quality as determined by subjective response of passen­
gers in the vehicle. Moreover, the problem is not solved by profilometers with dual 
wheelpath measuring systems. The separate wheelpath measuring elements are com­
pletely independent and produce profiles measured with respect to arbitrary and inde­
pendent references. fu this respect, the dual wheelpath systems provide no improve­
ment over measurement of each wheelpath separately with single wheelpath units. 
Unfortunately, a process called tipping, which inserts the arbitrary reference of one 
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profile into another, thereby permitting crude comparisons, cannot be used because the 
error introduced is generally similar to most roll components. 

In view of the possible importance of roll components in ride quality, it is natural to 
seek some method of utilizing the separate wheelpath profiles. Although the roll com­
ponent signal cannot be obtained directly, each wheelpath profile yields a power spec­
tral density (PSD) function that is not affected by the reference differences. It is then 
possible to combine power between inner and outer wheelpaths at each frequency to pro­
vide a power function relating the 2 signals. Three obvious combinations of power at 
each frequency are (a) the average power between lanes (I1 + Oi), where I, equals power 
in the inner lane at frequency I1 and 0 1 equals power in the outer lane; (b) the absolute 
difference in power between lanes \ I1 - 0, \; and (c) the product of (I, + Oi) x \ I1 - 0 1 \ • 

Interpretation of function a is straightforward, but functions b and c deserve some 
comment. If power in each wheelpath is similar, the difference will be small and in 
theory will not indicate the presence or absence of roll component. It is safe to assume, 
however, that a small roll component is present because transverse finishing produces 

. parallel roughness components spanning the entire lane. It is also probable that large 
differences in power between paths imply a high roll component. If this proves to be 
the case, function b may correlate with subjective response. Function c, which is av­
erage power multiplied by difference in power, expresses the interaction between aver­
age and roll power. This may prove to be a sensitive measure because rough pave­
ments, particularly flexible, have a high roll component. 

THE PROBLEM 

As measurement of road profiles with rapid travel profilometry techniques becomes 
more popular, it is natural to expect that profile PSD will be used to predict human 
subjective response to road roughness (3). If problems in the measurement of subjec­
tive response (SR) can be overcome ( 4, 5}, further problems will arise if conventional 
multiple regression techniques are used to estimate the fJ parameters in the linear 
formulation 

(1) 

where X1 is some form of intensity (usually log variance) of the respective profile fre­
quencies f1 • When the number of frequencies (the N regressors) in Eq. 1 is large, say, 
3 or more, a high degree of intercorrelation among them will usually be present. One 
reason for this is the mathematical smoothing induced by the PSD analysis. To under­
stand why this must be so, we will examine briefly the PSD analysis used in the present 
study. For this analysis, 4 statistical decisions are important: 

1. The analog profile signal from inner and outer wheelpaths is filtered to eliminate 
all wavelengths outside the band of 2 to 50 ft; 

2. The filtered signals are sampled every 6 in. providing 4 points per cycle of the 
highest frequency present; 

3. Twenty-five ordinates are computed providing 13 "independent" estimates of the 
power spectrum (estimates are spaced O to 0.02 cycle/ft apart, and the resolution 
bandwidth is 0.04 cycle/ft; and 

4. A Hanning spectral window is used to smooth the final estimates. 

These considerations imply a theoretical correlation among PSD estimates for broad­
band white noise (6). Adjacent ordinates are correlated about 0.6 if the true spectrum 
is flat. In addition, 2 other conditions may increase the correlation among ordinates 
by unpredictable amounts. 

1. If a signal from a nonflat power spectrum has a great deal of power in a narrow 
frequency band and very little in an adjacent barid, estimates of power in the weak band 
will be too high. This occurs because a finite data sample implies a data window that 
transforms through analysis into a spectral window with nonvertical skirts and side lobes. 
This simply means that the PSD resolution filter attenuates but does not completely 
eliminate po1•11er in adjacent frequencies. Thus, the resolution filter may not attenuate 
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power at an adjacent frequency enough to keep it well below power at the frequency be­
ing examined. This problem is significant only when the true spectrum has a very steep 
roll-off of perhaps 40 dB per decade or a narrow band of power perhaps 40 dB above ad­
jacent bands. 

2. Consider the case in which the PSD for a number of roads have the same general 
shape but simply move up or down as a unit depending on general roughness. In this 
case power in a given band rises or falls along with power from an adjacent band. This 
would generate the correlation between an ordinate and its neighbors. That the PSD 
often have similar shapes but different general power levels can be seen from the ex­
amination of a number of power spectra. Indeed, neighboring frequencies may be so 
highly correlated that no useful information is supplied by one that is not supplied by 
its close neighbors. 

High independent variable intercorrelation is frequently encountered in multiple re­
gressions with large numbers of regressors and has been termed "multicollinearity" 
(7, 8, 9). Multicollinearity in the limit where 2 or more regressors are perfectly cor­
related aborts the multiple regression estimation of /3 because the xrx matrix has 2 or 
more identical columns and cannot be inverted as required by the multiple regression 
procedure. Short of this, high multicollinearity induced by either high correlation be­
tween 2 variables or moderately high correlation among all variables causes the /3 es­
timates to be extremely unreliable. If Bis used as a measure of the relative impor­
tance of profile frequencies, high multicollinearity will almost certainly lead to 
erroneous inferences. A second sample will give radically different /3 weights and 
consequently inconsistent designation of those frequencies that most seriously affect 
riding quality. 

It might be thought that some of the variable selection procedures such as stepwise 
multiple regression might solve the problem ( 10). Unfortunately, this is not the case­
these procedures are seriously influenced by multicollinearity ( 11). What will generally 
happen with the forward selection procedures is that the variables that first enter the 
equation do so on the basis of relatively high correlations with the dependent variable. 
However, PSD frequencies considered as regressors are very highly intercorrelated, 
and those chosen initially by the selection procedure would be only insignificantly more 
correlated with SR than neighboring frequencies. However, these latter frequencies 
will never be selected by the procedure because, by virtue of high intercorrelation with 
the initial set, their unique relation with SR will not be large enough to permit their in­
clusion in the regression equation. In other words, when high multicollinearity is pres­
ent and forward variable selection procedures are used, variables selected early in the 
procedure drastically militate against the inclusion of potentially important remaining 
variables. But the initial set chosen by the procedure, being only marginally more 
correlated with SR than other variables, suggests that it would not be selected initially 
in subsequent samples. Therefore, if we want to identify important PSD frequencies, 
we can expect procedures such as stepwise regression to pick a different set every time 
we process new data. 

Similar comments apply to the variable rejection part of stepwise multiple regression: 
Variables included later may through intercorrelation "rob" earlier variables of their 
contribution and thereby cause them to be rejected at a later state. Finally, even if a 
few important frequencies are repeatedly selected by these procedures, their coeffi­
cients will vary consid~rably from sample to sample. This can be seen in the formula 
for the variance of the /32 coefficient for the case of only 3 regressors in Eq. 1: 

02 
Var(~2) = ---~K~---

( 1 - d3) L (Xi - X) 2 

i=l 

(2) 

As the correlation between X2 anfl X3 (r23) increases, Var (~2) also increases until in 
the limit, when r23 = ±1.0, Var (/32) =o:>. 
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ANALYSIS PROCEDURE 

To simplify the illustration of problems encountered with road frequency multicol­
linearity, we will use only 1 of the first of the 3 power combinations discussed and de­
fine a roughness measure S1 as (01 + 11), where 11 = logarithm of squared amplitude for 
the i th frequency band of the inside wheel track, and 0 1 = logarithm of squared ampli­
tude for the i th frequency band of the outside wheel track. S can be thought of as a 
measure of "average" intensity for the respective frequencies. H S is Astandardized 
to s, we will be able to compare the multiple regression coefficients, ,81 , directly. If, 
under ordinary multiple regression specifications, we were to regress subjective re­
sponse SR on s for each frequency band, we would have 

,. ,. A 4 ,. 

SR =-y + .Boso+B1s1+ ... + ,8NsN (3) 

which requires the estimation of N + 2 parameters. Suppose now that we require ~ to 
conform tu some reasonable function, remembering that it would be unlikely that ,8 
would jump around as capriciously as the ordinary multiple regression estimates do 
(12, 13). Not knowing a priori the form of this function, we should initially use only 
verygeneral functions such as polynomials. Suppose we specify a k th degree poly­
nomial together with the condition that ,8 0 = 0, i.e., that the weight corresponding to the 
frequency f 0 is O (Fig. 1). The equation functionally relating ,81 to i will be 

Substituting Eq. 4 into Eq. 3, we have 

SR= y + (o!i + a2 + ... + aK)s 1 + (2a1 + 22a 2 + ... + 2KaK)s2 

+ ... + (Na1 + N2a 2 + ... + NKetK)s·N 

Factoring etJ, we have 

SR = y + et1(s1 + 2s2 + ... + NsN) 

+ et2's1 + 22s2 + ... + N2sN) + ... 

+ etK(s1 + 2Ks2 + ... + NKsN) 

Or by defining the terms in s as z, we have 

(4) 

( 5) 

( 6) 

(7) 

Because we will choose K « N, parameter estimation by ordinary multiple regression 
will not be nearly so subject to multicollinearity problems in Eq. 7 as in Eq. 1. There­
fore, we can estimate 'YJ conventionally and by virtue of Eq. 4 estimate ,8 in turn. 

Two 111·0Lleuu; re1uai11. 

1. The order of the polynomial chosen to govern ,8 is arbitrary. Or, in other words, 
How large should K be to ensure faithful representation of the population of ,8? For 
most applications, we might be satisfied with K = 3 or 4; however, unless we have 
considerable information about ,8, we can never be sure that important peaks and val­
leys in the ,8 function are blurred by polynomials of low order. One course of action 
would be to let the selection procedures such as stepwise multiple regression deter­
mine K. For example, one could cqmpute the various zJ in Eq. 7 for, say, K = 10. 
H all the zJ were regressed on SR, ,8 would follow a tenth-order polynomial. This 
would be excessive for most applications; however, stepwise regression could sta­
tistically select those zJ that proved important enough to significantly reduce the re­
siduals. The etJ corresponding to the zJ selected would then estimate the ,81 by virtue 
of Eq. 4. Because we do not care which zJ are selected (unlike the case with the s 1), 

many combinations of zJ would probably suffice to estimate the function. We must not 
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polynomial will tend to give the same unreliable results as an ordinary multiple re­
gression on Eq. 1. 
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2. Not all the information governing the {11 distribution is used. It can be fairly as­
sumed that no {J1 should be negative. If this were not the case, the implication would be 
that power in these wavelengths improves ride. There are several ways in which this 
constraint on the {J1 can be incorporated into the estimation procedure. One is to spec-
ify the {J 1 exponentially: K 

,) akik 

fJ1 = i(k=t (8) 

for !( = 1, 2, . . . . This formulation forces the fJ distribution through O and requires 
all {11 to be positive. Moreover, the polynomial in the exponent can be of any desired 
order. Unfortunately, stepwise procedures cannot be used to determine this order be­
cause ordinary linear least squares procedures are not applicable. However, the ctk 

can be estimated by nonlinear computer search procedures. 

EXAMPLE WITH FIELD DATA 

As an illustration of the problems encountered with multicollinearity, consider the 
following example using the SR data and PSD described in detail by Holbrook in an 
earlier report (4). Fourteen test roads rated on roughness at 30 to 50 mph by a panel 
of 96 subjects using graphic rating scales were profiled with the General Motors rapid 
travel profilometer. This allowed the computation of frequency spectra for the range 
0.02 to 0.50 cycle/ft. The degree of sample correlation found between pairs of PSD 
ordinates is shown in Figure 2 for the case of the 0.22 frequency. Correlation with 
adjacent ordinates is extremely high: +0.9990 and 0.9819. Throughout most of the 
frequency range, correlations with the 0.02 ordinate are 0.9000 or higher. With the 
multicollinearity problem as acute as this, ordinary multiple regression should pro­
vide very poor estimates qf the relative importance of the respective frequencies. That 
this is so is shown by the {J 1 coefficients for regressions of SR on even and odd fre­
quencies in Figure 3. Interpretation of these weights is difficult particularly in view 
of the large number of negative signs and the fact that the weights from the even fre­
quency analysis are considerably different from those of the odd weight analysis. It 
would seem unlikely that negative weights are realistic when one considers that they 
imply that high amplitudes in the associated frequencies induce a better ride! Clearly 
we cannot depend on this traditional procedure to detect the important frequency ranges. 
Because the polynomial lag procedure might provide a better estimate of the /31 weight 
distribution, it was applied to the same data by using the stepwise procedure with Eq. 4. 
A ~1 distribution was found that peaked at about 7-ft waves. However, for shorter 
waves, the curve became unstable and actually went negative. This was due to poorer 
correlations of PSD ordinates with SR in this wavelength region-possibly due to tape 
deck vibration in the test vehicle. , 

Equation 8 was then used because it disallows negative /31 • Polynomials of orders 1 
through 4 were used as shown in Figure 4. It appe,ars that at least a second-order poly­
nomial is necessary, although little change in the {1

1 
distribution resulted from increas­

ing the order beyond 2 (see inset of Fig. 4). One would infer from Figure 4 that 5- to 
10-ft waves are of special importance in the determination of riding quality if vehicle 
speed were held constant throughout the test series. This was not true for these data 
(vehicle speed ranged from 30 to 50 mph); therefore, these results should be augmented 
with more extensive and better controlled experimental data. Notice also that no infor­
mation concerning important wavelength ranges can be obtained from conventional mul­
tiple regression (Fig. 3). 

Problems with this particular set of experimental data notwithstanding, if these re­
sults are taken as valid, the importance of this wavelength range can be rationalized 
as follows: Shake table tests of a typical vehicle resulted in maximum reactive force 
from tires when input frequencies were.near 15 cps (14, 15, 16). This is the frequency 
range generated by 6- to 8-ft waves in a vehicle travclinga.ITypical highway speeds 



Figure 1. Kth degree polynomial. 
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Figure 3. Frequency weights determined by using Eq. 1. 
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near 70 mph. Moreover, it is reasonable to assume that most automobiles have a 
similar response function despite differences in weight or suspension system. This is 
because the major determinant of vehicle response, the ratio of suspension spring con­
stant to vehicle mass, remains generally constant over a wide range of vehicles. In 
addition, the 6- to 8-ft wavelength band is of sufficient width to accommodate some 
change in the mass to spring constant ratio. 

An important implication of these findings concerns the design of a standardized 
ride-quality measuring system. The 6- to 8-ft wavelength band or even the 2- to 8-ft 
band can be easily measured by uncomplicated instruments. Such a device would be 
much simpler than the GM profilometer and would involve a single accelerometer and 
simple processing circuits. The statistic returned would be a single number represent­
ing average power in the 5- to 10-ft band. It would be possible to continuously display 
this statistic during a profile run to locate areas of excessive roughness. Although de­
tails of this system are not presented here, the authors will supply information on its 
design. 

CONCLUSION 

Because of high intercorrelations among amplitudes or road profile spectra, con­
ventional multiple regression techniques should not be used to correlate frequency bands 
with subjective response to pavement roughness. In particular, one would get mislead­
ing estimates of the relative importance of the various bands as far as human response 
to road roughness is concerned. It would, therefore, become very unlikely that one 
would be able to separate the effects of the several frequencies on subjective response. 
Stepwise regression procedures merely exacerbate the problem because the statistics 
such as partial F-tests and partial correlation coefficients used in these procedures 
will reject important frequencies highly correlated with frequencies already included 
as independent variables. Consequently, these procedures discriminate against fre­
quencies less correlated with subjective response than those frequencies selected 
earlier because of only slightly high!=lr correlation. In short, with conventional re­
gression analysis, one would expect to get drastically different estimates of the fre­
quency coefficients from sample to sample. The method of overcoming the problem 
put forth in this paper is to impose restrictions on the frequency coefficients. An ob­
vious restriction is the requirement that the coefficients must lie on a polynomial of 
specified order. The order can be arbitrarily set by the investigator (particularly if 
he has some prior knowledge of the coefficient distribution), or it can be determined 
by a selection procedure such as stepwise multiple regression. The coefficients of the 
polynomial are considerably fewer in number than those of the conventional regression 
and are, therefore, more reliably estimated. These parameters are then used with 
the specified polynomial to estimate the frequency coefficients originally sought. 

Sample data provide an example that shows how conventional multiple regression 
fails to produce a reasonable distribution of the frequency coefficients. Application of 
the polynomial procedures to these same data provides an initial coefficient distribution 
that peaks at about 8 cycles/ft. Further studies based on more and better data are 
needed to establish the validity of this distribution. 
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