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Based on condition surveys at 5-, 10-, and 15-year intervals, joints from 
43 post-World War IT pavement construction projects in Michigan were 
grouped into 4 classes of deterioration depending on the extent of damage. 
These classes were then considered as states through which a joint could 
progress as it deteriorated in time. It was further assumed that the prob
ability of a joint passing from a given state to the next higher state de
pended only on which state the joint was in and not on the previous deterio
ration history. This assumption allowed joint deterioration to be modeled 
as a continuous-time Markov process that specified the probability of a 
joint being in each state for any time during service life. A nonlinear 
least squares estimation technique was used to estimate 4 parameters 
governing the process for each of the 43 construction projects. The model's 
fit to field data for each of these projects was quite good, thereby suggest
ing that similar procedures might be used for a large variety of structural 
deterioration problems. 

•BECAUSE joint deterioration is a serious problem from both a roughness and a main
tenance point of view, to model the deterioration process for predictive purposes is de
sirable. A successful model would forecast problem occurrences such as blowups and 
thereby afford an opportunity for preventive maintenance. It is unlikely that the large 
number of variables that affect joint deterioration would be tractable enough to allow 
an extract (deterministic) formulation of the problem. Under such circumstances, one 
often resorts to the prediction of probabilities, provided one can reasonably define states 
for the process. This type of predictive model is called stochastic and often fits the 
real world quite well. For the case of joint deterioration, the first problem encoun
tered in developing the model occurred in the measurement of deterioration. The gen
eral index approach to deterioration measurement is given in an earlier paper (l). 

THE DATA 

Because all post-World War II state trunk-line concrete pavement construction was 
examined in Michigan by condition survey, it was possible to record joint condition at 
survey intervals of 5, 10, and 15 years of service life (Fig. 1). Tabulation and analy
sis of these data were made possible through the financial support of the Federal High
way Administration. Deterioration, usually joint spalls and slab cracks, is visually 
recorded on survey sheets more or less to scale. One might suppose that a good mea
sure of joint deterioration would be spall count. However, as the number of spalls in
creases, they tend to merge; hence, more advanced deterioration, namely the blowup, 
is qualitatively different from spalls and is therefore not amenable to this scaling pro
cedure. 

To measure all types of joint deterioration in proportion to their seriousness, a 
more comprehensive scaling method had to be developed. Consequently, it was de
cided to measure joint deterioration as the percentage of the total transverse joint 
length affected by all kinds of concrete failure. Mathematical modeling was facilitated 
by grouping these percentages into 4 categories or states as follows: 
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State 
Defined 

1 
2 
3 
4 

Percentages 

0 to 25 
26 to 50 
51 to 75 

76 to 100 
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State 1 consists mostly of external corner spalls, and state 4 consists mostly of 
blowups-rarely would a joint be spalled 75 to 100 percent of its transverse length. 
Usually state 4 joints were seen by the investigator as full slab width patches that by 
their extent and character suggested that a blowup occurred. These definitions of joint 
deterioration were used to classify each joint and to chart its progression from state to 
state with each subsequent condition survey. 

DEVELOPMENT OF THE MODEL 

It seems reasonable to assume that the state of current joint deterioration essentially 
determines the probability of progression to the next higher state. This is tantamount 
to assuming that the time history of deterioration is irrelevant as far as future behavior 
is concerned and that all one needs to know is the present state and the probabilities of 
further deterioration associated with each state. From a stochastic process point of 
view, this assumption of lack of system memory is called the "Markov property" and, 
if applicable, suggests that the deterioration process may be considered as a Markov 
chain (2, 3, 4). Crucial to the concept of a Markov process are the following assump
tions. - - -

1. For each pair of state EJ, Ek, for j / k, there exists the continuous function 
A1k(t) such that 

Pkk(t, t + h) X (t) 
h -+ k 

as h ... 0. Moreover, the above limit is uniform int and uniform in j for fixed k. XJx(t) 
defines the time rate of change that gove rns the passage from state E J to state Ek (Fig. 2). 

2. For each state Ex the1·e exists a continuous function >-.k(t) :!: 0 such that 

1 - pkk(t, t + h) , (t) 
h -+ "kk 

uniformly in t, as _h ... 0. >-.k(t) defines the time rate of change that governs the passage 
out of state EJk and must equal the sum of the particular passages, l: Xk 1 (t). Now the 

k/1 
Markov assumption of the independence of past and future events allows the Chapman
Kolmogorov equation for continuous time. 

plk(T, t + h) = L P1i(T, t) PJk(t, t + h) 

j 

where r, t, and h =0. This equation states that the probability of a transition from state 
i to state k during the time interval ( T, t + h) is equal to the probability of transition 
from state i to some intervening state j during the time interval (r, t) multiplied by the 
probability of transition from state j to state k during the time interval (t, t + h) summed 
over all intervening states j. This equation allows us to compose 

P0,(r, t + h) - P1k(T, t) 1 ( t) 1 ~ ( t) p ( t + h) h =-hP1kT, +ji"L,PsJT, 1kt, 

j 
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or by extracting the j = k term from the sum 

plk(,i·, t+h) - P 1lr, t) lp ( t) lp ( t)P ( ) h = - h tk T, + h !k T, kk t, t + h 

+ ~ L plj(T, t) pjk(t, t + h) 

jfk 

By assumptions 1 and 2, we have, by letting h .... 0 in Eq. 1, 

oP ~r t) = - plk(T, t) >,.k(t) + L plj(T, t) >,.jk(t) 

jfk 

Now, by definition, we have 

and 

;tLPk1(T, t)=O= LAk1(t) 

l 1 

Further, noting Eq. 2, we have 

or 

If we let 

and 

then Eq. 2 becomes 

;t P(T, t) = P(T, t) A(t) 

( 1) 

(2) 

(3) 

If the (A1J(t)} are cons tant for all time, the process is said to be time-homogeneous. 
If the (A1J(t)} change over time, the process is said to be non-time-homogeneous . Be
cause joints like other physical structures age, it seems unlikely that joint deteriora
tion. would be time-homogeneous. Notice a lso that it is imposs ible for joints to pass 
from a given state to a lower state. T his r equires that the matrices P( T, t) and A(t) be 
upper triangular-a feature that makes it possible to solve the system of differential 
equations generated by Eq. 3. Now let us require that in the case of joint deterioration 
it is reasonable to specify that a joint cannot progress to an advanced state of deteriora
tion without passing through each intervening state. Consequently, all transition prob
ability rates for which j > i + 1 must be 0. Thus A(t) now becomes 



121 

-xdt) X12(t) 0 0 

0 -A23(t) >..2it) 0 
A(t) = (4) 

0 0 

because L "Jk(t) = 0 as discussed earlier. It was decided to classify joint condition 

k 
into 4 classes and thereby to limit Eq. 4 to a 4 x 4 matrix. All of these considerations 
define a special case of Eq. 3 that generates the system of differential equations: 

;tPu(T, t) = - P11(7', t) A12(t) 

:t P 12( 7', t) = P 11( 7', t) A 1h) - P 12( 7', t) >..23( t) 

:t Pd 7', t) = - P22( 7', t) >..23(t) 

:t P23( 7', t) = Pd 7', t) A23(t) - P23( 7', t) A34(t) 

aot Pd 7', t) = - P33( 7', t) A34(t) 

a0tPdT, t) = PdT, t)>..23(t) - PdT, t)A34(t) 

The PJ 4(7', t) are known because L PJk = 1. 

k 
The preceding development does not specify the way in which the transition rates 

>.. 1 1+1(t) vary with time. As mentioned before, aging very likely increases the probability 
ttiat a joint in a given state of deterioration will pass to a higher state for the same time 
interval. Therefore, it would seem plausible that the >.. 1 1+ 1(t) would increase in time. , 
A simple formulation that fits graphical plots of the data is 

>..dt) = cdl/> 

A23( t) = r;t<t> 

A34(t) = yt<t> 

(5a) 

(5b) 

(5c) 

where a, r;, 'Y are scaling coefficients and ¢ is a parameter that indicates the degree of 
time nonhomogeneity. If r/J = O, the process is time-homogeneous; if¢ /. 0, the process 
is non-time-homogeneous. Furthermore, we would expect that Cl( < ~ < 'Y because 
a joint already in a highly deteriorated state can be expected to decay more rapidly to 
the next higher state. This specification of X11+1(t) together with the initial conditions, 
P11(T, T) = P22(7', 7') = p33(T, T) = 1, yields the' following solutions to the system of 
equations: 

where 

Eh =Cl(, 
82 = r;, and 
03 = 'Y. 

-8.;\<l>dx -8 (td>+t. ,dJ+l) 
Pu(T, t)=e' =e; .r,+ 1 
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Also, 

-P j\"'dx 
P1ir, t) = c1(r)e · + particular solution 

-Pj'-"'dx 
Particular solution = o:e 

j1l1"'•1+ Q1'ql+ l l 

= O'.e "'"' I 

t 

f 
IP - allv"'+l_Tql+l) 

y'lle q1+ 1 dy 

'T 

t 

f 
tp-aly</)+I 

y.;ie 111+ 1 dy 

'T 

r <tft~1- ,</J+ I I _ph<,ll+ I_Tql+ l )l 
=-0'.-le- ,,,,. , -e ,,,. , 

~-~L ~ 

Because the initial condition P12(r, r) = 0, c(r) = 0. Therefore, 

where r specifies the time at which the prC>cess starts. Similarly, 

Now, 
t 

,;,jx<l>dx 
P 13( r, t) = c2( r )e + particular solution 

-, f\</Jdx 
Particular solution = e r" 

Because the initial conditions are P13('T, r) = 0, c2(r) = 0. Therefore, 

.. 
ii . 
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ESTIMATION OF PARAMETERS 

The problem now arises as to how to estimate Cll, fj, y, and¢. Because the expres
sions for P 11 (r, t) and P 1J(r, t) are nonlinear, classical least squares techniques are 
not helpful. In the present case, a computer optimization procedure containing a mod
ification of Ute steepest method was used (J_, _!!, ~). The procedure minimized the ex
pression where the P 1J(r, t) were proportions computed directly from the survey data. 
In addition, each residual was weighted in proportion to the number of joints entering 
into the probability determination. 

RESULTS WITH FIELD DATA 

An attempt was made to estimate the model's 4 parameters by the nonlinear least 
squares procedure for all the 43 construction projects surveyed at 5-, 10-, and 15-year 
intervals. Except for a small number of extremely good projects for which there was 
no appreciable deterioration at 15 years, estimates for Cll, fj, y, and¢ converge rapidly. 
In all cases, the model's flt was within ±0.10 for the 4 probabilities x 3 survey years 
x 43 projects = 516 data points (Figs. 3, 4, 5, and 6). Examples of state probability 
history curves for several particularly good and poor projects are shown in Figures 
7 and 8. Shown in Figure 9 are the expected (average) state histories for the same 2 
projects. The probabilities for states 2 and 3 of the poorly performing projects peak 
at about 11 and 13 years and then decline. This is because joints are not entering states 
2 and 3 so fast as they are leaving these states for state 4. State 4 is a terminal or ab
sorbing state and naturally captures more joints with time until all joints are finally in 
this state. 

Also of interest is the finding that & < ~ < y. Thus, a joint is more likely to deteri
ora;.teA to theA nfxt highest state if it is already in a deterioi-ated condition. Distributions 
of fj/0!. and y/OI. are shown in Figure 10. Attempts were made to quantify these relations, 
thereby reducing the number of model parameters, but the models did 11.ot fit the data 
satisfactorilyA (resiguals as high as ±0.30 were encountered). Because 'Y was generally 
greater than Cll and fj, one would presume that state 3 joints would be the ones mostlikely 
to progress to state 4. Therefore, if state 4 (mostly blowups) prediction is desired, a 
good strategy would be to look for joints in state 3. Because the model will predict the 
probability of state 4, given state 3 for any elapsed time, one can compute state 4 prob
ability curves once Cll, fj, 'Y, and ¢ have been estimated from earlier performance data 
(or possibly environmental and materials variables). 

Figure 11 shows for an arbitrary construction project the cumulative probability of 
state 4 occurring given that a joint was in state 3 at the selected r times of 1, 11, and 
15 years. Notice the rapid rate of increase in probability as r increases. For example, 
if a joint is in state 3 at 1 year ( r = 1), it takes just over 12 years before the potential 
occurrence of state 4 has reached a probability of O. 50. However, if the joint is in 
state 3 at 11 years (r = 11), it takes only 3 years for the probable occurrence of state 
4 to reach 0.50. These curves will not give good forecasts of blowup probability unless 
Cll, /j, y, and ¢ are reliably estimated from early performance data for each project it
self or from a group of relevant causal variables. 

As discussed earlier, ¢ is a measure of the non-time-homogeneity of the process. 
Figure 12 sh~ws the frequency distribution of ¢ for the 40 projects for which ¢ could be 
estimated. ¢ varies from about 0.20 to 5.83 with a median value of about 2.3. Thus, 
our hypothesis concerning non-time-homogeneity is tenable, particularly because most 
¢ are significantly greater than 0.0 (Cll level = 0.05, as tested by a linearized t test). 

CONCLUSION 

Condition survey data were used to define 4 joint conditions in terms of the percent
age of transverse joint length deteriorated. Progressive deterioration of a joint was 
considered as the passage from a given state to the next higher state. This process 
over time appeared to embody the Markov assumption, which requires that only the 
current state determine the probability of passage to another state. The Markov as
sumption was used to design a continuous time, non-time-homogeneous Markov process 



Figure 1. Survey data on joint 
condition. 

Figure 2. Probability transition 
from state i to state j as a function 
of time. 

Figure 3. Estimated versus actual 
probability of a joint in state 1 for 
5, 10, and 15 years. 
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Figure 4. Estimated versus actual 1.0 

probability of a joint progressing 
from state 1 to state 2 within 5, .9 
10, and 15 years. 
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Figure 5. Estimated versus actual 1,0 

probability of a joint progressing 
from state 1 to state 3 within 5, 

,9 
10, and 15 years. 
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Figure 6. Estimated versus actual probability of 
a joint progressing from state 1 to state 4 within 
5, 10, and 15 years. 
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Figure 7. Estimated probability of a joint from a good 
project being in a state during a 15-year service life. 
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Figure 8. Estimated probability of a joint from a poor project 
being in a state during a 15-year service life. 
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Figure 9. Estimated expected state for projects within 
15-year service life. 
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Figure 10. Cumulative ratios for coefficients plotted on normal probability 
paper. 
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Figure 11 . Cumulative probability of a joint progressing from state 3 at 1, 11, and 15 years to state 
4 at t. 
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Figure 12. Cumulative distribution of ¢. 
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to model joint deterioration. The particular model chosen required the nonlinear es
timation of 4 fitting parameters to predict 27 probabilities of joint condition measured 
at the 5-, 10-, and 15-year periods of service life. This procedure proved very satis
factory except for projects showing practically no deterioration, For these, parameter 
estimation was not possible because of computer overflow problems. Generally excel
lent fits of estimated and actual data were obtained for the 43 projects examined. Based 
on these results the procedure looks quite promising for structural deterioration model
ing in general. 
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