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Chapter 

4 
Continuous Dependent Variable Models 
 

CHAPTER 4; SECTION A: ANALYSIS OF VARIANCE 

Purpose of Analysis of Variance: 

Analysis of Variance is used to analyze the effects of one or more independent variables (factors) on 
the dependent variable. The dependent variable must be quantitative (continuous). The dependent 
variable(s) may be either quantitative or qualitative. Unlike regression analysis no assumptions are 
made about the relation between the independent variable and the dependent variable(s).  The theory 
behind ANOVA is that a change in the magnitude (factor level) of one or more of the independent 
variables or combination of independent variables (interactions) will influence the magnitude of the 
response, or dependent variable, and is indicative of differences in parent populations from which the 
samples were drawn. 

Analysis is Variance is the basic analytical procedure used in the broad field of experimental designs, 
and can be used to test the difference in population means under a wide variety of experimental 
settings—ranging from fairly simple to extremely complex experiments. Thus, it is important to 
understand that the selection of an appropriate experimental design is the first step in an Analysis of 
Variance. The following section discusses some of the fundamental differences in basic experimental 
designs—with the intent merely to introduce the reader to some of the basic considerations and 
concepts involved with experimental designs. The references section points to some more detailed 
texts and references on the subject, and should be consulted for detailed treatment on both basic and 
advanced experimental designs. 

Examples: An analyst or engineer might be interested to assess the effect of: 
1. aggregate size on concrete compression strength 
2. maintenance procedure on bridge deck life 
3. left-turn channelization type on intersection conflicts 
4. Advance warning information type on route diversion rates 
5. Posted speed limit on vehicular emissions 

Alternative Analysis of Variance Designs and Their Applications 

1) Single Factor Experiments: [The analyst wishes to quantify the effect of one factor 
with two or more levels (treatments) on the mean of a continuous response variable.] 
• Randomized Block Designs: [The effect of an unobserved “nuisance” variable is 

controlled by randomizing across “blocks”. Blocks are chosen because of a 
presumed unknown but potentially real effect on the response, and includes items 
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such as test or manufacturing equipment, batches of raw materials, people, and 
time.]  

• Latin Square Designs: [Similar to the Randomized Block Design, but instead the 
analyst wishes to randomize the effect of two nuisance variables on the response 
instead of one.]  

 
 

Example: Single Factor Experiment. An analyst wishes to assess the effect of three different 
maintenance procedures, A, B, and C, on bridge deck life. The analyst, with cooperation from 
the local jurisdiction, has 100 bridges in which to assess the three different maintenance 
procedures. The analyst first considers a Randomized Block Design, with the intent to 
randomize the effect of traffic exposure, which plays a known role in bridge deck wear. Thus, 
the analyst sets up the experiment as follows: 
 
Run  Annual Traffic Volume Category  Maintenance Procedure 
1   low     A 
2   medium     A 
3   high     A   
4   low     B 
5   medium     B 
6   high     B 
7   low     C 
8   medium     C 
9   high     C 
 
In this Randomized Block Design, Annual Traffic Volume is the blocking variable, and 
Maintenance Procedure is the factor of interest. To conduct this experiment, all the low 
volume bridges would be randomly assigned a Maintenance Procedure, so that each of the 
bridges are evenly divided among the treatments. The same procedure, that is random 
assignment of maintenance procedures within the traffic volume blocks, would be performed 
for the medium and high volume bridges.  
 
The analyst would then proceed to assign randomly Maintenance Procedures to the bridges 
within each block, and observe the effects of the three procedures on deck life.  The 
experimental design allows the analyst to separate the effect of Annual Traffic Volume from 
the effect of Maintenance Procedure. Had blocking not been used, it is possible that a 
disproportionate number of low Annual Traffic Volume bridges would have been assigned to 
a specific Maintenance Procedure, thus confounding these two effects.  

 
 

2) Multiple Factor or Factorial Experiments: [The analyst wishes to quantify the effect of 
two or more factors with two or more levels (treatments) each on the mean of a 
continuous response variable.] 
• Two Factor Factorial Designs: [Factor A with a levels and Factor B with b levels 

are used to conduct replicate tests on each treatment combination, with a total of 
a x b treatment combinations, each with n replicates.] 

• 2K Factorial Designs: [There are a considerable number of cases where the 
factors each have only two levels. The number of treatment combinations when 
there are K factors is 2K, thus an experiment with 3 factors, A, B, and C, each with 
two levels 1 and 0, results in 8 treatment combinations.] 

3) Multiple Factors Designs with Constraints—Fractional Factorial Designs: [In a study 
with many factors the researcher is primarily interested in the main and 2nd order 
effects, and resource constraints often prohibit a full factorial design. For instance, in a 
26 factorial design, there are 64 runs required for one complete replicate. Of these 64 
runs, only 6 are associated with main effects, and 15 are associated with 2nd order 
interactions, thus some economy can be afforded by careful selection of a fractional 
factorial design.] 
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Example: Multiple Factor Experiment. A researcher wishes to assess the effect of advance 
warning information on route diversion rates on a freeway off-ramp. There are three factors 
the researcher wants to assess: A—the effect of two sign sizes (0 = small, 1 = large), B—the 
effect of how the information is displayed (0 = blinking lighting of information, 1 = constant 
lighting of information), and C—the effect on 0 = commute and 1 = non-commute travelers. To 
quantify all the possible effects and their interactions, the researcher designs a 23 factorial 
experiment. Assigning 0 and 1 as the levels of the factors, she identifies the treatment 
combinations as follows: 
   Factors             Estimated Effect 
Run  A B C   
1  0 0 0  1 
2  1 0 0  A 
3  0 1 0  B 
4  0 0 1  C 
5  1 1 0  AB 
6  1 0 1  AC 
7  0 1 1  BC 
8  1 1 1       ABC 
 
Run 1 represents the effect of all factors, sign size, information display type, and driving 
population, at their lowest level. Thus, run 1 enables the analyst to quantify the effect of small 
sign size, blinking lighting of information, and commute travelers on route diversion rates. 
The analyst decides to replicate the experiment during ten different time periods, so that each 
of the eight runs is conducted 10 times, for a total of 80 trials. 
 
Comparison of the mean diversion rates for run 1 results compared to run 4 results enables 
the analyst to assess the effect of C = 1—the effect of non-commute travelers on route 
diversion rates. Similarly, there is sufficient information in this experiment to quantify all of 
the effects listed in the table.  
 
To conduct the experiment, the researcher randomly selects 10 small signs and 10 large 
signs from all advance-warning signs. Then, she randomly selects each of these sites to be 
used at commute/non-commute times and with and without blinking lighting to fulfill the 
experimental design table.  

 
 
 

Basic Assumptions/Requirements of Analysis of Variance: 

1) The mean of the dependent continuous variable Y varies as a function of the level(s) of 
factor(s) X for different populations. 

2) The variance of Y for each population is the same. 

3) The distribution of Y for each population is normally distributed. 

Inputs for Analysis of Variance: 

Measurements on continuous variable Y  
One or more explanatory or predictor variables X (Factors) that are either qualitative or quantitative 
having at least two or more levels (values)  
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Outputs of Analysis of Variance: 

Estimated effect-size (difference in population means) between populations 
Partitioning of sources of variation: random error and systematic error ‘caused’ by level of predictor 
variable(s) 
F-ratio test statistic and associated probability 
Interactions between variables that affect the population means
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General Analysis of Variance Methodology: 

Chapter IV, Section A:
Analysis of Variance

Methodology

Generate boxplot of Y versus levels of X and examine

Are the populations normally
distributed?

NO If violations are not severe, analysis
can proceed. For significant

departures use non-parametric
Kruskall Wallis procedure

YES

Select alpha and/or beta and the decision rule

Postulate effects of levels of categorical X (or X's) on continuous variable Y based
on theoretical or past empirical research: Generate Research Hypotheses

Are the populations variances
equal?

Are the samples independent
and randomly sampled?

NO

NO

For mild violations with equal sample
sizes analysis can proceed. For
significant differences use non-

parametric Kruskall Wallis procedure

YES

YES

Use dependent-sample methods that
include paired and within-subjects

experimental designs

Compute the F-Ratio Test Statistic

Draw conclusions and report results
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 Interpretation of Analysis of Variance Output: 

How is an analysis of variance model interpreted?  
How is the F-test interpreted? 
How are degrees of freedom interpreted? 
What is an acceptable alpha level? 
What is an acceptable beta level? 
 

Troubleshooting: Analysis of Variance 

Should interaction terms be included in the model? 
How many treatments should be included in the model? 
How can randomization be accomplished? 
What should be done when population variances are not equal? 
What should be done when the populations are non-normal? 
How does one know if the errors are normally distributed? 
What should be done to cope with unequal sample sizes? 
What will confounded variables do to model results? 
 

Examples in Analysis of Variance: 

Pavements 
Waheed, Uddin, Alvin H. Meyer, and W. Ronald Hudson. (1984). Study Of Factors 
Influencing Deflections Of Continuously Reinforced-Concrete Pavements. Transportation 
Research Record #993 pp. 47-54. National Academy of Sciences. 

Adel W. Sadek, Thomas E. Freeman, and Michael J. Demetsky. (1996). Deterioration 
Prediction Modeling of Virginia's Interstate Highway System. Transportation Research 
Record #1524 pp. 118-129 National Academy of Sciences. 

Bridges 
Mitsuru, Saito, Kumares C. Sinha, and Virgil L. Anderson (1995). Bridge Replacement 
Cost Analysis. Transportation Research Record #1490 pp. 23-31. National Academy of 
Sciences. 

Fugler, Mark D., R. Richard Avent, and Mohamed Alawady. (1995). Systematic Evaluation 
of Structural Deterioration in Underwater Bridge Substructures. Transportation Research 
Record #1476 pp. 139-146. National Academy of Sciences. 

Traffic 
Graham, Jerry L., Douglas W. Harwood, and Michael C. Sharp. (1979). Effects of Taper 
Length on Traffic Operations in Construction Zones. Transportation Research Record 
#703 pp. 19-24. National Academy of Sciences. 

Humphreys, Jack B., Donald J. Wheeler, Paul C. Box, and T. Darcy Sullivan. (1979). 
Safety Considerations in the Use of On-Street Parking. Transportation Research Record 
#722 pp. 26-35. National Academy of Sciences. 
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Safety 
Hadi, Mohammed A., Aruldhas Jacob, Chow Lee-Fang and Wattlewort Joseph A. (1995). 
Estimating Safety Effects of Cross-Section Design for Various Highway types Using 
Negative Binomial Regression. Transportation Research Record #1500 pp. 169-177. 
National Academy of Sciences. 
 
Lyles, Richard W. (1980). Evaluation of Signs for Hazardous Rural Intersections. 
Transportation Research Record #782 pp. 22-30. National Academy of Sciences. 
 
Bergan, A. T., L. G. Watson, and D. E. Rivett. (1980). Mandatory Safety-Belt Law: The 
Saskatchewan Experience. Transportation Research Record #782 pp. 16-21. National 
Academy of Sciences. 

Planning 
Prothero, Jon C. and Thomas A. Seals. Evaluation of Educational Treatment for 
Rehabilitation of Problem Drivers. Transportation Research Record #672 pp. 58-63. 
National Academy of Sciences. 
 
Martha S. Lester, James W. Dare, and William T. Roach. (1979). Technique for Monitoring 
Automobile Occupancy: Research in the Seattle Area. Transportation Research Record 
#701 pp. 7-15. National Academy of Sciences. 

Materials 
Benson, Paul E. (1995). Comparison of End Result and Method Specifications for 
Managing Quality. 
Transportation Research Record #1491 pp. 3-10. National Academy of Sciences. 

 

Analysis of Variance References: 

Freund, Rudolf J. and William J. Wilson (1997). “Statistical Methods”. Revised Edition. Academic 
Press. Boston, MA. 
 
Glenberg, Arthur. M. (1996). “Learning From Data”, 2nd Edition. Lawrence Earlbaum Associates, 
Mahwah, New Jersey. 
 
Johnson, Richard A. (1994). “Miller & Freund’s Probability & Statistics for Engineers”. 5th Edition. 
Prentice Hall. Englewood Cliffs, New Jersey. 
 
Montgomery, Douglas C. (1991). “Design and Analysis of Experiments” 3rd Edition. John Wiley & Sons. 
New York 
 
Neter, John, Michael Kutner, Christopher Nachtsheim, and  William Wasserman, and (1996). “Applied 
Linear Statistical Models”. 4th  Edition. Irwin. Boston, MA. 
 

Analysis of Variance Methodology: 

Postulate effects of levels of categorical X on continuous response variable Y 
based on theoretical or past empirical research 

Underlying theory should motivate the development of an analysis of variance model 
whenever possible. Simplified, a relation is thought to exist such that the level of a factor 
variable is thought to affect the mean of a dependent variable Y. Theories and empirical 
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evidence should suggest which factor levels of the independent variable are important, 
and how they are thought to affect Y.  

Figure 1 shows two possible relationships between a response variable Yobs and an 
independent variable Xi. Figure 1a shows a regression model used when both variables X 
and Y are continuous. Figure 1b shows the results of an ANOVA when the response 
variable Y is continuous and the X variable (Factor) is at two levels (in figure 1b the 
observations are scattered across X so they can be seen, for a true categorical response 
with two levels the observations would fall on two vertical lines). The X variable may be 
either qualitative or quantitative. 
 

Figure 1: Typical Regression (a) and ANOVA (b) Relationships Between 
Response Variable Yobs and Independent Variable Xi 

 
 

 

 

 

 

 

ANOVA is used to determine the effect of two or more levels of one or more factors on the 
mean response of the independent variable. Although the mean response of the 
independent variable may change with factor/level combinations, an assumption in 
ANOVA is that the variance of the independent variable is constant at all factor/level 
combinations.   

Planning Example: Suppose that an engineer is interested in the effect of telecommuting on 
non-work travel. Of prime interest is whether non-work travel (in distance) on telecommuting 
days is significantly greater than non-telecommuting days. In this example the dependent 
variable is average non-work trip length, and the independent variable is work commute type, 
with the two levels “non-telecommute” and “telecommute”. It is postulated in advance that 
non-work trip lengths on telecommute days will be longer than on non-telecommute days. In 
addition, it is assumed that whether or not a worker telecommutes does not affect the 
variance in non-work trip lengths. 

Collect data through experimentation or observation  

Data would be collected in decreasing preference through experimentation, quasi 
experimentation, or observation (see Chapter 1). Recall that causality can be ascertained 
through experimentation only, and that quasi-experiments and observational studies suffer 
increasingly from lack of control of potentially influential variables, rendering conclusions 
from them less certain.  

A sampling plan should be devised (see Chapter 1) to collect data sufficient for detecting 
statistically significant differences between the groups of observations in the ANOVA. 
Recall from Chapter 1 that sample sizes are determined by drawing a pilot sample, 
computing variances, estimating the anticipated effect size between groups of 

Yobs
Yobs

Continuous X i Ordered or Categorical X i

β1

1

µY1

µY2

a) b)



 
Volume II: page 121 

observations, and then back calculating from the ANOVA formula to obtain the necessary 
sample sizes n for each of the groups. Balanced designs lead to the simplest 
computations in ANOVA models; thus, sample sizes for each group of observations 
should be equal whenever possible.  As models become more complex sample size 
calculations also become more complex. Fortunately, numerous software packages are 
available for helping the analyst estimate sample size requirements for simple and some 
more advanced ANOVA designs.  

Generate Boxplot of Y versus levels of X and examine 

The boxplot is useful for visualizing the magnitudes of effects of various levels of a factor X 
on the response variable Y. It is analogous to the scatter plot used in linear regression to 
examine the relation between an independent variable X and the dependent variable Y. 
Figure 2 shows a typical boxplot for three levels of a factor variable X and a response 
variable Y. The solid white horizontal stripe in the middle of each box represents the 
median of Y for each of the three factor levels of X. The height of the box represents the 
difference between the 25th and 75th percentiles of Y for each of the factor levels of X. A 
median that is in the center of the box suggests a symmetric distribution or spread of the 
data around the mean. The top and bottom end bars show the 5th and 95th percentiles of Y 
with respect to each of the factor levels respectively. Again, equal distances of the bars 
from the box represent symmetry in the distribution. Recall that for a normal distribution 
the mean and median are equivalent, and the distribution is symmetric. 

Figure 2: Example Boxplot of Y Versus 3 Factor Levels of X 

 

 

 

 

 

 

 

 

 

The boxplot is used to assess normality of Y with respect to the factor levels of X, and to 
assess the effect size. The effect size is the effect that the level of X has on the mean of Y, 
and is estimated by the difference between the means of the samples for different factor 
levels of X. In the figure, for example, it can be seen that the mean of Y for X=1 is 
approximately 20, while the mean of Y for X=2 is approximately 25. The mean of Y for 
X=3 is approximately 50. The analytical task of the ANOVA approach is to determine if the 
difference in the means between two factor levels, say X=1 and X=2, is a result that would 
arise by reasonable chance (high likelihood), or if the observed difference is rather 
supported by a low-likelihood event, giving evidence that a causal agent brought about the 
observed difference. 

Y 

0
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40
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The boxplot provides a visual inspection of the effect sizes for various factor levels, and 
allows the symmetry of the distributions at various factor levels to be inspected, one of the 
assumptions of the ANOVA methodology.  

Are ANOVA assumptions met: normally distributed Y; equal population variances; 
independently sampled populations? 

As in all statistical models, the ANOVA model has assumptions that should be thought of 
as requirements. When requisite assumptions are not met, in most cases a work-around 
analytical solution is available. The difficult part, most often, is determining when to use a 
work-around solution and when the ANOVA is appropriate. This section provides 
guidance on how to determine the appropriateness of the ANOVA assumptions, and what 
to do if the assumptions are not met. 

Is Y Normally distributed? 

The ANOVA model assumes that all populations (at each level of X) are approximately 
normally distributed. There are several plots and tests that can be used to assess 
normality, including the Q-Q plot, the boxplot, and the non-parametric chi-square test of 
distributions (see Chapter 6), and the Kolmogorov-Smirnoff test. The statistical tests 
underlying the ANOVA methodology are robust, and so moderate departures from 
normality can be ignored (Glenberg, 1996). For severe departures from normality, a 
Kruskal-Wallis H test procedure should be used to compare sample means. Because the 
Kruskal-Wallis H test is not as powerful as ANOVA, it should only be used when the 
requisite ANOVA assumptions are not met. 

Are the population variances equal? 

All of the population variances are assumed to be equal in the standard ANOVA 
framework. Called the “homogeneity of variance” assumption, mild departures from this 
assumption can be tolerated without compromising the validity of the method. For 
moderate to severe departures from this assumption, however, the non-parametric 
Kruskal-Wallis H test should be used.  

A common sampling distribution used to test whether variances were drawn from the 
same normal population (or two populations with the same variance σ2) is the F. If S1 and 
S2 are the sample variances of independent random samples of size n1 and n2 
respectively, then the sampling distribution of the test statistic F is approximately F 
distributed with ν1 (numerator) and ν2 (denominator) degrees of freedom such that: 

 
Large values of the F statistic lead to a rejection of the “homogeneity of variance” null 
hypothesis. Note that the analyst can let S1

2 be the larger of the two sample variances in 
the computation of the F statistic. Small values of the F statistic tend to support the 
alternative hypothesis that the sample variances are “equivalent”, and that observed 
differences reflect natural variability inherent in two samples drawn from a single 
population with variance σ2.  

( )F -1,  -1  = ≈ = =
S
S

F n n1
2

2
2 1 1 2 2α ν ν
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For cases with more than two factor levels and subsequently more than two variances to 
test, one needs to consider additional tests. One such test is Bartlett’s test (see 
Montgomery, D.C., 1991, pp. 102). Other tests include Hartley and modified Levene tests 
for homogeneity of variance (see Neter et al., pp. 763). The Hartley test is now briefly 
discussed. 

The Hartley test is used to assess the homogeneity of variance assumption in ANOVA. It 
is fairly sensitive with respect to the normality assumption, and so the distributions should 
be fairly normal. In addition, it requires equal sample sizes in order to be conducted. For a 
more robust test with respect to normality and for a test that does not require equal sample 
sizes, apply the modified Levine test (Neter et al., 1996, pp. 763). The Hartley test statistic 
is simply the ratio, denoted H, of the largest sample variance to the smallest sample 
variance. Values of H near 1 support the null hypothesis—that all variances are 
approximately equal. Large value of H supports the alternative hypothesis—that not all 
variances are equal. One must consult statistical tables (see Neter et al.) to determine the 
probabilities associated with various values of H, given the number of independent 
populations r and common degrees of freedom df. 

 
Traffic Example: The variance in traffic volumes in vehicles per hour squared during the 
control period and an experimental period were 360 and 318.6 respectively. Because the 
experimentation is expected to change the mean amount of traffic, the analyst would like to 
use an ANOVA to test the effectiveness of the treatment. Using a standard table of tabulated 
F values, the critical value of F at an alpha of 0.05 is 1.98.  

( )
2
1

1 22
2

360.0
F 1.13 24, 24  

318.6
S

F
S α ν ν= = = ≈ = =  

 
Thus, the test statistic of 1.13 does not exceed the critical value of F, and so the analyst 
cannot reject the null hypothesis of equivalent variances. 

 

Were the Populations Sampled Independently? 

The assumption underlying the data for ANOVA is that samples are independently 
sampled. In other words, entities representing one factor level do not affect the probability 
of entities being selected at another level. A violation of this assumption would occur, say, 
if two household members were selected in a study, one for each of two samples. Thus, a 
sampling unit or entity would be in one sample only if another member of the household 
was in the other sample. There are methods developed for dependent samples, and these 
include paired comparisons, paired data, and random assignment methods used in 
ANOVA. For detail on these advanced applications of ANOVA see Glenberg (1996), 
Freund and Wilson (1997), Montgomery (1991), or Neter et al. (1996).  

Select alpha and/or beta and the decision rule 

Recall that the alpha level is the probability of committing a type I error, while the beta level 
is the probability of committing a type II error (see Chapter 1). A type I error is made when 
the analyst incorrectly rejects the null hypothesis—that the sample means of Y are 
significantly different at various levels of factor X. A type II error, in contrast, is made when 
the analyst incorrectly fails to reject the null hypothesis when in fact it is false. Recall that 
type I and type II error rates are related (see Chapter 1), and selection of smaller type I 
error rate leads to a larger type II error rate.  
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The determination of which statistical error is less desirable depends on the research 
question and consequences of the two error types. Both types of error are undesirable, 
and thus attention to proper experimental design prior to collection of data will help the 
engineer minimize the probability of making errors.  

Often the probability of making a type I error, alpha, is set at 0.05 or 0.10 (5% and 10% 
error rates respectively). The selection of alpha often dictates the level of beta for a given 
hypothesis test. The computation of beta under different hypothesis testing scenarios is 
beyond the scope of this chapter, and the reader is referred to more complete references 
on the subject such as Glenberg (1996).  

There is nothing magical about a 5% alpha level. Selection of an appropriate alpha level 
should be based on the consequences of making a type I error. For instance, if human 
lives are at stake when an error is made (which can occur in accident investigations, etc.), 
then an alpha of 0.01 or 0.005 may by appropriate. On the other hand, if the result merely 
determines where monies are spent for improvements (e.g. congestion relief, transit level 
of service improvements, etc.), then perhaps a less stringent alpha is most appropriate. 
Finally, the consequences of types I and II errors need to be considered together, as they 
are not independent. 

Compute the F-ratio test statistic (Using the formulas appropriate for the specific 
experimental design) 

The analyst has selected the appropriate experimental design, and has collected data by 
applying this design. After all standard assumptions of ANOVA have been met; one can 
proceed with the analytical computations involved with ANOVA—typically conducted by 
using packaged software programs. The null hypothesis in the ANOVA framework is 
typically given by; H0: µ1 = µ2 =…..= µp, and the alternative hypothesis is that the null 
hypothesis is incorrect, and that the means of the population samples at various factor 
levels of X are different.  

The F statistic is central to the ANOVA framework, and is used to test the null hypothesis. 
The following formula for the F statistic is used to test the equality of p sample means: 

where; 
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p = number of population samples (1 for each factor level of X) 

N = total sample size, n1 + n2 +….+ np  

The F statistic is based on the following general principal. Two estimates of the sample 
variance are obtained, MST and MSE. If the null hypothesis is true, and the sample 
means are equivalent, these two independent estimates of the sample variance will be 
approximately equivalent, and their ratio will be approximately equal to 1. When the null 
hypothesis is not true, MST will overestimate the sample variance, and the F ratio will 
become large. As F and MST become increasingly large, one begins to suspect that the 
null hypothesis is not true. Note that the F ratio does not provide evidence as to which 
sample mean is different than the rest, only whether the estimate of error obtained through 
the computation of MST gives evidence that all sample means are not equivalent.  

Safety Example: Suppose an engineer wants to assess the number of speeding violations per 
1000 vehicles passing a work-zone with and without a newly developed work-zone warning 
sign. On four consecutive Mondays from 2:00 to 3:00 p.m., speeds are monitored in the work 
zone. For the first and second Mondays the ‘old’ work zone sign was in operation. Between 
the 2nd and 3rd Mondays the new work-zone sign was installed, and so during the final two 
Mondays the newly developed work-zone warning sign was in operation. The engineer 
conducting the analysis is convinced that the only relevant change during the ‘before’ and 
‘after’ periods is the introduction of the new sign. To enable the estimation of the variance in 
the number of speeding vehicles (per 1000), the engineer computes the number of speeding 
vehicles for each 15-minute period during the analysis periods. 
 
The data collected are as follows: 

Day  15 Minute Period Number of Violations per 1000 veh 
 1   1    0.32 

1   2    0.50 
1   3    0.30 
1   4    0.23 
2   1    0.33 
2   2    0.27 
2   3    0.27 
2   4    0.21 
3   1    0.24 
3   2    0.36 
3   3    0.32 
3   4    0.23 
4   1    0.50 
4   2    0.06 
4   3    0.17 
4   4    0.16 
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Y Y
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Mean speeding violation per 1000 vehicles of days 1 and 2 (existing sign): 0.303 
Mean speeding violation per 1000 vehicles of days 3 and 4 (new sign): 0.255 
 
 
The engineer computes an analysis of variance to obtain the following results: 
 
Effect Df  Sum of Square    Mean Square    F Value      Pr(F)  
signage   1  0.0092270  0.00922704  0.6940695  0.4187703 
Residuals  14  0.1861177  0.01329412 
 
 

Draw conclusions and report results 

In an analysis of variance the investigator is trying to determine whether an observed 
difference in population means is other than would occur by mere chance alone. Stated 
another way, the analyst is trying to determine whether there is evidence to suggest that 
there is a systematic effect of the treatment(s) (difference(s) between the two populations), 
and what this effect is. The F-ratio test is used to determine the probability that the data 
would have been observed assuming the null-hypothesis is true—that population means 
are equal. An F value with an associated probability lower than the alpha level suggests 
that data observed under the null hypothesis are unlikely to have occurred by chance 
according to some decision criteria set by the analyst. High probabilities associated with 
an F-value suggest that random sampling differences alone could have produced the 
observed data. It should be noted that alpha is arbitrarily chosen by the analyst, and the 
decision to accept or reject a chance explanation of the data is a function of the level of 
risk acceptable to the analyst.  

Designed experiments, where the treatment is the only difference between the 
populations, are best suited for analysis of variance. In designed experiments random 
effects from ‘nuisance’ factors are randomized so that they contribute to the error term in 
way that enables it to be distinguished from the systematic or treatment effect. In addition, 
other factors thought to affect the response are held constant from trial to trial. The control 
of these nuisance factors, the available resources, and the number of factors and their 
levels help the analyst to select the appropriate experimental design for the research 
problem. Additional information on experimental designs can be found in Neter et al., 
1991, and Montgomery, 1991. 

In many transportation applications, research investigations cannot be carried out as a 
designed experiment, and thus are more ‘observational’ in nature. Inferences made from 
observational studies are much more difficult, because confounded variables and other 
systematic biases can enter the data in unknown ways.  

From the example it can be seen that the statistical results of an analysis of variance do 
not provide definitive conclusions as to the underlying processes—they merely provide 
clues to support or refute an engineering claim. It should be stressed that no amount of 
statistics can replace logic and critical thinking about a process; however, they can and 
should be used to inform a process and lend insights that lead to theory refinement, further 
testing, further theory refinement, etc. In any experiment or observational study, there 
should be sufficient a priori reason to believe that an underlying material process would 
affect the results. In the signing example, an engineer should believe a priori that the new 
sign would affect motorist’s speeding behavior differently than the existing sign. Lack of a 
material explanation for observing the results is grounds to refute the results of even the 
most convincing statistical outcome. 
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Safety Example Continued: The engineer is asked to interpret the results of the analysis of 
variance on speed violations in the work zone. From the previous example is was found that 
the following analysis of variance results were obtained: 
 
Effect Df  Sum of Square    Mean Square    F Value      Pr(F)  
signage   1  0.0092270  0.00922704  0.6940695  0.4187703 
Residuals  14  0.1861177  0.01329412 
 
The F-ratio test shows that the difference between speeding violations during the two 
different periods with different work-zone warning signs is not significantly different that 
could have arisen by chance, assuming a 10% alpha level. In other words, the probability that 
the observed data occurred if the means are the same is approximately 42%. Stated another 
way, in 100 future samples of data observed, approximately 42 of the samples would result in 
a difference in means as large or larger than that observed in this sample as a result of 
natural variation. The engineer now must select from a host of conclusions: 
 
1. There is no real difference between the signs as regards their effect on speeding 

violations. 
2. Although there is a difference between the signs, the sample size was too small to 

distinguish the effect from natural variation. 
3. There were confounding variables that influenced the data and biased the observed 

difference in treatment groups. 
 
Depending on which conclusion is drawn, which should be based on logic and critical 
thought and not the statistical results, the engineer can determine the appropriate follow on 
action. If conclusion 1 is accepted, then the existing signs might still be used in work-zones. 
If conclusion 2 is accepted, then a larger study might be conducted to determine if the 
treatment effect can be found to be statistically significant. If conclusion 3 is accepted, then 
the engineer might repeat the study trying to control or randomize some of the suspected 
confounding variables. 

 

Interpretation of Analysis of Variance Output: 

How is an analysis of variance model interpreted?  

The standard one-way ANOVA model is given by: 

where; 

Yij = value of the response variable in the jth trial for the ith factor level or treatment, 

µi = model parameters, population mean for ith factor level or treatment, 

εij = normally and identically distributed error terms with mean 0 and variance σ2, 

i = 1,….,r, where r is the number of factor levels or treatment groups, 

j = 1,…,ni, where ni is the number of cases for the ith factor level or treatment. 

 
The parameters µ of the ANOVA model are estimates of the factor level or treatment 
means, while the error term ε is an estimate of the spread of the data around treatment 
means. Thus, an observation is merely the sum of the factor level or treatment mean and 

ijiijY εµ +=
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an error term. In general, the more different are the factor level means compared to the 
error terms, the more statistically defensible is the model.  

How is the F-test interpreted? 

The F-ratio test in ANOVA is the ratio of MST (mean square treatment) to MSE (mean 
square error). Under the null hypothesis, that is when the null hypothesis is true and factor 
level means are equal, the F-ratio follows the F distribution. Values of F near unity support 
the null hypothesis, and suggest that there is insufficient evidence to support different 
means for factor level populations. Large values of F support the alternative hypothesis, 
and suggest that factor level or treatment means are different. 

Specifically, the F test is interpreted in the following manner. The F ratio statistic provides 
the long-run probability that the observed data would have occurred given the null 
hypothesis.  

How are degrees of freedom interpreted? 

Degrees of freedom are associated with sample size. Every time a statistical parameter is 
estimated on a sample of data the ability to compute additional parameters decreases. 
Degrees of freedom are the number of independent data points used to estimate a 
particular parameter. With regard to analysis of variance, there are p - 1 independent data 
points to estimate treatment means, and N – p data points available to estimate the error 
variance. 

What is an acceptable alpha level? 

The alpha level, or type I error rate, is the level or risk associated with making a type I 
error. It is determined by the analyst a priori, and is based upon an assessment of risk 
acceptable for rejecting the null hypothesis (population means are different) when in fact it 
is true.  

What is an acceptable beta level? 

The beta level, or type II error rate, is the level or risk associated with making a type II 
error. It is determined by the analyst a priori, and is based upon an assessment of risk 
acceptable for failing to reject the null hypothesis (population means are different) when in 
fact it is false. Of course, the analyst begins by determining what magnitude of effect is 
desired to be detected. Large effects requires smaller samples, while smaller effects 
require larger samples, all else being equal.  

Operational Characteristic Curves are plots of the type II error probability of a statistical 
test for a particular sample size versus a parameter that reflects the extent to which the 
null hypothesis is false. The curves are used by the analyst to determine an appropriate 
number of replicates so the experiment will produce results that are sensitive to potentially 
important differences in treatments (factor levels). 

Statistical software is becoming improved with regard to assessing beta, and recent and 
future advances will enable the analyst to avoid the use of Operational Characteristic 
Curves. These curves are explained and tabulated in Montgomery, 1991, and power 
analysis tables can be found in Neter, et al., 1996. 
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Several general observations can be made about the relationship between sample size, 
power, alpha, beta, and the sample variance: 

1. The larger is alpha, the smaller is beta. In other words, for a given sample size, 
sample variance, and difference in population means, an increase in alpha 
(willingness to commit a type I error) results in a reduction in beta (willingness to 
commit a type II error). 

2. The larger is the effect size delta, the smaller is beta. Thus, for a given alpha level, 
sample variance, and sample size, larger effects (differences between population 
means) will reduce beta. 

3. Smaller sample variances for a given sample size, effect size, and alpha will reduce 
beta. Thus, reducing sample variance either through more precise measurements or 
increased sample size will reduce beta, all else being equal. 

Troubleshooting: Analysis of Variance 

Should interaction terms be included in the model? 

Suppose, that the effect of factor level X1 on Y depended not only on the factor level X1, 
but also on the factor level X2. The variables X1 and X2 are called main effects. A 
multiplicative effect is called an interaction between factor levels X1 and X2. An interaction 
between two variables is called a second-order interaction, between three variables is 
called a third-order interaction, etc. In general main-effects are more important than 
interactions, and the higher the order of interaction, the less influential the effect is on Y. 
Identifying interactions in some cases is a main objective of ANOVA. 

Interactions in ANOVA occur when two treatments or factor levels are thought to affect the 
mean of the population differently than the additive effects of the two treatments.  

How many treatments should be included in the model? 

The objective of most modeling efforts is to economize the model. In other words, the 
analyst generally wishes to explain as much of the data complexity with as few variables 
as practicable. It is generally better to favor a simpler model to a more complex one, 
simply because interpretation and implementation are simplified also. On the other hand, if 
the phenomenon is sufficiently complex, then making too simple a model may sacrifice too 
much explanatory or predictive power. In the ANOVA context, many models are built upon 
experimental data, and often the effect of one or several factors is being isolated from 
other potentially important factors. In observational contexts, the analyst should be careful 
to identify and isolate the main effects to be studies, and then randomize to the extent 
possible other ‘nuisance’ factors. 

How can randomization be accomplished? 

Randomization or random assignment is different than random sampling. Random 
sampling is the task undertaken to obtain a sample that is representative of the population 
being studied. Random sampling is necessary to make inferences about the population 
being studied. 
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Random assignment can be used to make inferences about the independent variable 
when a random sample cannot be obtained (it can also be used with random samples). 
Random assignment occurs when subjects are assigned to treatments in a random 
fashion. In this way, systematic effects that might confound the results would be 
randomized across treatment groups. When random assignment is performed, the effect 
of the independent variable is separated from other potentially confounding effects.   

What should be done when population variances are not equal? 

Called “homogeneity of variance”, the assumption of equal variances is important in the 
computation of the pooled estimate of variance in the ANOVA methodology. When 
population sample sizes are equal, mild violations of this assumption are acceptable. 
When there is evidence that population variances are very different, then a non-parametric 
Kruskal-Wallis test should be used. 

What should be done when the populations are non-normal? 

The statistical tests underlying the ANOVA methodology are robust, and so moderate 
departures from normality can be ignored (Glenberg,1996). For severe departures from 
normality, a Kruskal-Wallis H test procedure should be used to compare sample means. 
Because the Kruskal-Wallis H test is not as powerful as ANOVA, it should only be used 
when the requisite ANOVA assumptions are not met. 

How does one know if the errors are normally distributed? 

There are several methods to assess normality of a distribution. Graphical methods 
involved visual assessment of a distribution, and involve histograms, boxplots, and normal 
or Q-Q plots. For normal distributions several noteworthy characteristics make visual 
inspection fairly straightforward:  

1. A normal distribution is symmetric, or bell-shaped. 

2. The mean and median are the same in a normal distribution, thus the ‘middle most’ 
value should correspond with the average value.  

More formal methods involve comparing an observed distribution to a hypothesized 
distribution using a chi-square test or similar. This non-parametric test is used to assess 
the statistical evidence of observing distributions as dis-similar given natural sampling 
variability.  

What should be done to cope with unequal sample sizes? 

Unequal population sample sizes in ANOVA are analyzed using unbalanced designs 
methods. Essentially these are methods that correct the computations needed to handle 
the unbalanced designs. For guidance on unbalanced designs and other more 
complicated designs consult some of the ANOVA references listed in this section. 

What will confounded variables do to model results? 

Confounding of variables is likely to occur only when observational studies are conducted 
and randomization cannot be performed. Confounding is essentially a missing variable(s) 
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problem. When a variable or factor that is partly responsible for producing data, but it is 
omitted from the analysis, then the effect-sizes in the ANOVA model are biased.  

Bridges Example: Suppose an analyst measured the longevity of two different anti-corrosion 
paints on six different bridges. Three bridges were painted with Brand A, while the other three 
bridges were painted with Brand B.  
 
Analysis of the results showed that Brand B paint lasted, on average 13 months longer than 
did Brand A, and an ANOVA confirmed that this difference was statistically significant.  
 
Suppose, however, that all bridges that received Brand B paint were in more favorable 
climates for corrosion, and the analyst did not recognize this.  
 
In this case the estimate of effect-size, 13 months, is over-estimated, since the climate is 
partly or wholly responsible for the better performance of Brand B paint. Thus, the 13-month 
estimate of paint performance difference is biased high. 

 

The direction of omitted variable bias depends on the relation between the included and 
omitted variables. For positively correlated omitted variables the model parameters are 
biased high (in absolute magnitude), while for negatively correlated omitted variables the 
model parameters are biased low (in absolute magntitude). 
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CHAPTER 4; SECTION B: LINEAR REGRESSION 

Purpose of Linear Regression: 

Linear regression is used to model a linear relationship between a continuous dependent 
variable Y and one or more independent variables X. Most applications of regression aim 
to identify what variables are associated with Y, to postulate what causes Y, to predict 
future observations of Y, or to assess control over a process or system (quality control). 
Generally, explanatory or ‘causal’ models are based on data obtained from well-controlled 
experiments (e.g. conducted in laboratory), predictive models are typically based on data 
obtained from observational studies, and quality control models, although seldom 
appropriate for regression models, are based on data obtained from a process or system 
being controlled or monitored.  

Examples: Suppose that an analyst or engineer is interested in the relationships between: 
1. Household daily trip making (dependent variable) and household socio-demographics, 

network accessibility, local land use mix, and transit accessibility. 
2. Motor vehicle carbon monoxide emissions (dependent variable) and vehicular 

characteristics, driving activity, and fuel properties. 
3. Concrete compression strength (dependent variable) and water content, steel 

reinforcement configuration, mean aggregate size, and curing temperature. 
4. Roadway capacity in vehicles per hour (dependent variable) and lane width, pavement 

type, number of lanes, shoulder width and treatment type, median width and treatment 
type, traffic mix, and terrain type. 

5. Bridge rehabilitation costs (dependent variable) and traffic intensity, traffic mix, 
environmental factors, and bridge type.  

 

Basic Assumptions/Requirements of Linear Regression: 

1) The dependent variable Y varies linearly with the independent variable(s) or X’s. 

2) The observations on dependent variable Y are assumed to have been randomly sampled from 
the population of interest. 

3) Y is caused by or associated with the X’s, and the X’s are determined by influences (variables) 
‘outside’ of the model and are measured without error. 

4) There is uncertainty in the linear relation between Y and the X’s, as reflected by a scattering of 
observations around the ‘curve’ of a hypothesized relationship (known as residuals or error 
term). 

5) The distribution of the error terms must be identified to result in an efficient and unbiased 
model. 

6) The independent variables or “X’s” are measured without error.  
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Alternative Regression Techniques and Their Applications 

In many practical cases some of the assumptions of the ordinary least squares (OLS) regression model 
are not satisfied. In addition, some difficulties with making the OLS framework fit to specific problems 
can be solved by using simpler methods. Listed below are some special situations that arise in 
regression modeling, requiring specialized regression techniques to be applied in order to solve them. 
In many cases an OLS violation can be determined by inspecting graphs (1 and 2) or computing simple 
diagnostic measures (3). In other cases (4 and 5), the analyst must scrutinize the selected variables 
and hypothesized relationships to identify a potential violation. The interested reader should refer to the 
Linear Regression References for detailed discussion and applications of these methods. Listed below 
are some of the common OLS regression violations and their commonly applied solutions: 

1) Non-normality of error terms. In OLS linear regression the response variable is assumed to be 
normally distributed. If departures from normality are serious, then making inferences about 
the true population parameters may be quite incorrect. There are several possible corrective 
actions to be taken. First, transformations may be applied to the response to obtain a normally 
distributed variable. Second, if the response follows a known statistical distribution, identified a 
priori or empirically, such as the Poisson, Negative Binomial, Logistic, etc., then a generalized 
regression model may be fitted to the data. Finally, Monte Carlo and bootstrapping techniques 
might be applied to determine with confidence the sampling distributions of the estimated 
model parameters. For references on these topics consult Greene, 1990, Neter et al., 1996, 
and Myers, 1990.  

2) Non-linear relation between Y and X’s. There are some cases when a non-linear relationship 
between Y (dependent) and the X’s (independent) variables can be successfully linearized 
within the OLS linear regression framework using transformations (see technical details in this 
chapter and the Appendix). However, caution must be exercised because many 
transformations also affect the error term, which may render other OLS requirements invalid. In 
cases where model parameters are inherently non-linear and all linear regression 
requirements cannot be met with transformations or when the modeler desires to estimate 
non-linear model parameters directly, non-linear regression models should be applied. For 
references see Neter, et al. 1996, and Myers, 1990, and Glossary of Highway Quality 
Assurance Terms,” Transportation Research Circular Number E-C010, July 1999.  

3) Non-constant variance. When the error term exhibits non-constant variance, the OLS 
framework is inappropriate. Techniques such as weighted least squares, ridge regression, and 
generalized regression techniques may be appropriate when the error terms are 
heteroscedastic, or non-constant. For references see Neter et al. 1990 and 1996, Myers, 1990, 
and Greene, 1990.  

4) Errors are correlated across time. When the error terms are correlated across time they are 
said to be autocorrelated. Autocorrelation typically occurs in situations where sampling units 
(e.g. people) are recorded at regular time intervals, making them correlated across time. Time 
series methods are appropriate when errors are correlated across time. For references see 
Greene, 1990, and Neter et al., 1996. 

5) Random error in the independent variables. Although the dependent variable is assumed to be 
measured with error, it is assumed that independent variables are measured with negligible 
error. There are numerous “fixes” for dealing with poorly measured independent variables, 
including instrumental variables techniques, method of proxy variables, and structural 
equations models. For references see Greene, 1990, Neter et al., 1996, and Myers, 1990, or 
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Weed & Barros, “Demonstration of Regression Analysis with Error in the Independent 
Variable,” Transportation Research Record 1111, 1987, pages 48-54. 

6) One or more independent variables is influenced by Y or by another X.  It is assumed that Y is 
influenced by the X’s, and not in the reverse direction. When the value of Y influences the 
value of one or more of the X’s, the affected X’s are said to be endogenous. Simultaneous 
equations models and in some cases structural equations models can be used to deal with 
these situations. For references see Greene, 1990 and Kline, 1998. 

Inputs for Linear Regression: 

Continuous variable Y 
One or more continuous and/or discrete variables X 

Outputs of Linear Regression: 

Functional form of relation between Y and X’s. 
Strength of association between Y and X’s (individual and collective). 
Proportion of uncertainty explained by hypothesized relation.   
Confidence in predictions of future/other observations on Y given X.  
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OLS Linear Regression Methodology: 

Chapter IV, Section B:
Linear Regression

Methodology

Plot relationship between Y and all X's from above to linear relationships

Transform X's to 'linearize' relation
between Y and X's

Estimate regression models using linear
relationships

Are regression
assumptions met:

linearity?
normality?

homoscedasticity?
Uncorrelated errors?

NO

Transform Y to improve/remove
heteroscedasticity

Apply time-series or
instrumental variable methods

to fix correlated errors problems

YES

Refine model: assess goodness of fit,
variable selection, check for multi-collinearity problems

External validation of model

Conduct statistical inference,
document model, and implement if appropriate

Postulate mathematical models from theory and past research
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Examples of Linear Regression: 

Pavements 
Sallack, David J. and Stephen M. Greecher. (1979). Evaluation of Highway Maintenance 
Cost and Organization in Pennsylvania. Transportation Research Record #727 pp. 17-24. 
National Academy of Sciences. 

Darter, Michael I. (1980). Requirements for Reliable Predictive Pavement Models. 
Transportation Research Record #766 pp. 25-31. National Academy of Sciences. 

Al-Suleiman, Turki I., Kumares C. Sinha and Virgil L. Anderson (1988). Effect of Routine 
Maintenance on Pavement Roughness. Transportation Research Record #1205 pp. 20-
28. National Academy of Sciences. 

Materials 
Kandhal, Prithivi S., Foo Kee Y., D'Angelo and John A. (1996). Control of Volumetric 
Properties of Hot-Mix Asphalt by Field Management. Transportation Research Record 
#1543 pp. 125-131. National Academy of Sciences. 

Stroup-Gardiner, Mary and David Newcomb. (1988). Statistical Evaluation of Nuclear 
Density Gauges Under Field Conditions. Transportation Research Record #1178 pp. 38-
46. National Academy of Sciences. 

Shah, Alam and Dallas N. Little. (1985). Evaluation of Fly Ash and Lime-Fly Test Sites 
Using a Simplified Elastic Theory Model and Dynaflect Measurements. Transportation 
Research Record #1031 pp. 17-27. National Academy of Sciences. 

Singh, Gurdev and Shafiq Khalil Hamdani. (1980). Characterization of Bitumen-Treated 
Sand for Desert Road Construction. Transportation Research Record #766 pp. 31-42. 
National Academy of Sciences. 

Bridges 
Fitch, Michael G., Weyers Richard E., and Johnson Steven D. (1995). Determination of 
End of Functional Service Life for Concrete Bridge Decks. Transportation Research 
Record #1490 pp. 60-66. National Academy of Sciences. 

Traffic 
Stokes, Robert W., Vergil G. Stover and Carroll J. Messer. (1986). Use and Effectiveness 
of Simple Linear Regression to Estimate Saturation Flows at Signalized Intersections. 
Transportation Research Record #1091 pp. 95-101. National Academy of Sciences. 

Hall, Fred L. and Denna Barrow. (1988). Effect of Weather on the Relationship Between 
Flow and Occupancy on Freeways. Transportation Research Record #1194 pp. 55-63. 
National Academy of Sciences. 

Persaud, Bhagwant and Leszek Dzbik. (1993). Accident Prediction Models for Freeways. 
Transportation Research Record #1401 pp. 55-60. National Academy of Sciences. 
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Safety 
Jovanis, Paul P. and Hsin-Li Chang. (1986). Modeling the relationship of Accidents to 
Miles Traveled. Transportation Research Record #1068 pp. 42-51. National Academy of 
Sciences. 

Squires, Christopher A. and Peter S. Parsonson. (1989). Accident Comparison of Raised 
Median and Two-Way Left-Turn Lane Median Treatments. Transportation Research 
Record #1239 pp. 30-40. National Academy of Sciences. 

Salman, Nabeel K. and Kholoud J. Al-Maita. (1995). Safety Evaluation at Three-Leg, 
Unsignalized Intersections by Traffic Conflict Technique. Transportation Research Record 
#1485 pp. 177-185. National Academy of Sciences. 

Environment 
Clemena, Gerardo G. (1981). Empirical Relationship Between Mesoscale Carbon 
Monoxide Concentrations and Areal Vehicular Emission Rates. Transportation Research 
Record #789 pp. 5-14. National Academy of Sciences. 

Cohen, Stephen L. and Gary Euler. (1978). Signal Cycle Length and Fuel Consumption 
and Emissions. Transportation Research Record #667 pp. 41-48. National Academy of 
Sciences. 

Dabberdt, Walter F. and Howard A. Jongedyk. (1978). Atmospheric and Wind Tunnel 
Studies of Air Pollution Dispersion Near Highways. Transportation Research Record #670 
pp. 43-55. National Academy of Sciences. 

Planning 
Moon, Henry E., Jr. (1988). Stepwise Regression Model of Development at 
Nonmetropolitan Interchanges. Transportation Research Record #1167 pp. 46-50. 
National Academy of Sciences. 

Hendrickson, Chris and Sue McNeil. (1984). Estimation of Origin-Destination Matrices with 
Constrained Regression. Transportation Research Record #976 pp. 25-32. National 
Academy of Sciences. 

Interpretation of Linear Regression Output: 

How is a regression equation interpreted?  
How do continuous and indicator variables differ? 
How are partial slope coefficients interpreted? 
How is the F-test interpreted? 
How are t-statistics interpreted? 
How are r and R2 interpreted? 
How are confidence intervals interpreted? 
How are prediction intervals interpreted? 
How are degrees of freedom interpreted? 
What are standardized regression coefficients? 
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Troubleshooting: Linear Regression 

Should interaction terms be included in the model? 
How many variables should be included in the model? 
What methods can be used to linearize the regression relation? 
What methods are available for fixing heteroscedastic errors? 
What methods are used for fixing serially correlated errors? 
What methods are used for fixing correlated errors? 
What can be done to deal with multi-collinearity? 
What is endogeneity and how can it be fixed? 
How does one know if the errors are normally distributed? 
What if the errors are not normally distributed? 
 

Linear Regression References: 

Freund, Rudolf J. and William J. Wilson (1997). “Statistical Methods”. Revised Edition. Academic 
Press. Boston, MA. 
 
Glenberg, Arthur. M. (1996). “Learning From Data”, 2nd Edition. Lawrence Earlbaum Associates, 
Mahwah, New Jersey. 
 
Kline, Rex B. (1998). Principles and Practice of Structural Equation Modeling. The Guilford Press. New 
York.  
 
Greene, William, (1990).  Econometric Analysis.  Macmillan Publishing Company. 
 
Johnson, Richard A. (1994). “Miller & Freund’s Probability & Statistics for Engineers”. 5th Edition. 
Prentice Hall. Englewood Cliffs, New Jersey. 
 
Myers, Raymond H. (1990). “Classical and Modern Regression with Applications”. 2nd Edition. 
Duxbury Press. Belmont, California. 
 
Neter, John, William Wasserman, and Michael Kutner  (1990). “Applied Linear Statistical Models”. 3rd 
Edition. Irwin. Boston, MA. 
 
Neter, John, Michael Kutner, Christopher Nachtsheim, and William Wasserman, and (1996). “Applied 
Linear Statistical Models”. 4th Edition. Irwin. Boston, MA. 
 

Linear Regression Methodology: 

Postulate mathematical models from theory and past research. 

Underlying theory should motivate the development of a regression model whenever 
possible. Theories that describe the nature of the relationship between variables often 
provide insight as to initial or starter model specifications for the regression model.  
 
Past empirical or experimental research on the phenomenon under study is an additional 
source for postulating relationships between variables to be employed in a regression 
model. That is, past models estimated on similar data will reveal logical starting points for 
estimating regression models in the conduct of new or continuing research. Past research 



 
Volume II: page 139 

should reveal the nature of linear relationships between variables, distributional properties 
of the model error terms, and the magnitude and sign of estimated model coefficients.  
 
In regression methodology it is assumed a priori that a linear relationships exists in the 
population of interest between a response or dependent variable Y, and explanatory or 
independent variables X1, X2, ….., XP such that: 

where; 

Yi is the value of the response variable in the ith trial, 

β1, β2,… βP-1   are the partial effects of explanatory variables X1, X2, ….., XP on Y, 

β0 is the Y intercept, or point at which the regression model crosses the Y-axis, 

X1, X2, ….., XP are known constants (resulting primarily from experimental research) 
or random variables (resulting primarily from observational research), and 

P is the number of parameters in the model,  

εi is the error term expressing the difference between the regression equation and 
observations, 

εi is a random error term with mean E [εi] = 0,and variance VAR [εi]=σ2, and 

εi and εj are uncorrelated so that the covariance COV [εi εj] = 0 for all i, j:  i ≠ j, i = 1, .., 
n. 

It is presumed in statistical theory that the model for the population of interest is never 
known or knowable. Instead, the population model is estimated using a random sample of 
data drawn from the population. The sample data are then used to estimate the model: 

where; 

b  1, b  2,…, b  P-1 are the estimated partial effects of explanatory variables X1, X2, .., XP on 
Y, and 

εi is the estimated error term expressing the difference between the regression 
equation and observations. 

 

Each sample drawn from the universe will result in different values of betas due to natural 
sampling variability. Thus, a regression line based on a sample of observations is not likely 
to fall directly on the regression line of the population of interest. Several aspects of 
sampling variability with respect to regression models should be noted: 

1) The regression line for the population of interest is never known, and is estimated by 
estimating a regression model on a sample of data. 

Y X X Xi i i P P i i= + + + + +− −β β β β ε0 1 1 2 2 1 1, , ,...

Y b b X b X b X ei i i P P i i= + + + + +− −0 1 1 2 2 1 1, , ,...
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2) Random sampling is relied upon to ensure that the sample possesses similar qualities 
and characteristics to that of the universe.  

3) A sample-based regression line that is ‘numerically close’ to the universe regression 
line is preferred to one that is ‘numerically distant’. In other words, small sampling 
variability of the betas is desirable—and are said to be more efficient. 

4) It is desirable that the long-run average of betas (obtained by estimating a large 
number of models based on different random samples) be equal to the associated 
universe parameters. An estimated parameter (beta) with this property is said to be 
unbiased. 

Pavements Example: In a study of the rate of change in pavement roughness (Al-Suleiman, 
Sinha, and Anderson, Transportation Research Record #1205, National Research Council. 
Date?), researchers postulate that change in pavement roughness (RRN) is a linear function 
of routine maintenance expenditure level (RM) in dollars per lane mile per year, the climatic 
region (R) in which the pavements are located (northern or southern Indiana). This postulated 
model was based on previous empirical findings of the authors.  
 

Plot Relationship Between Y and All X’s to Identify Linear Relations. 

Recall that the assumed relationship between the dependent variable Y and the 
independent variables (X’s) is linear. In other words, linear regression is limited to models 
where the presumed effect of X is constant over the range of Y. This is not as restrictive as 
it may first appear, since transformations of the X’s, Y, or both, can often linearize the 
relation between Y and X such that linearity between them is obtained. It is cautioned, 
however, that use of transformations can in some cases cause other problems in the 
regression that offset the advantages of the transformations (see Are Regression 
Assumptions Met?). Past research should also help to illuminate linear relationships 
between the variables under study. 

Transform X’s to Linearize Relation Between Y and X’s 

Appendix B provides an extensive list of transformations that can be used to linearize a 
relationship between two variables. It should be noted, however, that use of 
transformations to improve linearity can invalidate the assumption of constancy of the error 
terms (homoscedasticity), and so transformations cannot be used without consequence. 
In addition, transformations of the dependent variable, Y, can result in non-intuitive 
expressions of the phenomenon under study, and so comparisons of alternative models 
should always be done using the original un-transformed units of Y. 

Pavements Example: Continuing from the previous example, which focused on rate of 
change of pavement roughness, the researchers perform various scatter plots of the 
variables to arrive at a reasonable starter model specification: RRN =β 0 + β 1log10(RM) + β2R 
+β 3log10(RM)*(R). The third term in the model represents an interaction between routine 
maintenance and climatic region.  

 
Estimation of Regression Models  

Because the values of the true beta coefficients for the model based on the entire 
population of interest is not known or knowable, they must be estimated using data 
obtained from a random sample. Because the betas estimated from a sample will vary 
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from sample to sample, the estimated betas are random variables. In linear regression the 
standard method for estimating model parameters is the method of ordinary least squares. 

Method of Ordinary Least Squares (OLS) 

The OLS estimators of the betas for a linear regression model are unbiased and have 
minimum variance of all competing unbiased estimators. In the OLS method of finding 
estimators, the sum of the n squared deviations of Yi from their expected values is 
minimized. In other words, the method of OLS minimizes the difference between the 
observed Y’s and the Y’s predicted by the regression model.  

To illustrate, consider a regression model with one predictor variable, X1. Using the 
method of OLS, the estimators of β0 and β1 are those values of b0 and b1 that minimize Q 
for a given random sample of observations, where; 

The values of b0 and b1 that minimize Q can be derived by obtaining the partial derivatives 
of Q with respect to β0 and β1. The partial derivatives can then be set to zero and solved 
for the betas (b0 and b1). Computing second partial derivatives can be checked for positive 
values, indicating minimum values of the function Q. For regression models with more 
than two parameters to be estimated, matrix algebra is used to solve for the regression 
parameters. 
Properties of the fitted regression model 

Once an estimate of the theoretical universe model has been estimated from a random 
sample of data drawn from the population of interest, the fitted regression model is 
obtained. The fitted regression model possesses some interesting and sometimes useful 
properties: 

1) The expected value of Y is equal to the population regression function:  E [Y] = β0 + 
β1X1. 

2) The sum of the squared residuals is a minimum: 

3) The sum of residuals is zero: 

 

4) The sum of observed values equals the sum of fitted values, therefore the means are 
also equal: 
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5) The sum of the weighted residuals is zero when the residual in the ith observation is 
weighted by the independent variable in the ith observation. 

6) The sum of the weighted residuals is zero when the residual in the ith observation is 
weighted by the fitted value for the ith observation. 

7) The regression line always goes through the point Xave, Yave. 

The Estimated Error Terms Variance σ2 

The sum of squared errors, or sum of squared vertical deviations of the fitted values from 
observed values is given by: 

 

The sum of square errors, SSE, has N - P degrees of freedom associated with it, where P 
is the number of parameters estimated in the regression model. The mean deviation from 
the regression function of individuals observations, or MSE, is given by: 

 

where N is the sample size and P is the number of estimated parameters in 
the regression model. 
 

Using ordinary least squares estimation, MSE is an unbiased estimator of σ2 for the 
regression model.  An estimator of the standard deviation is simply the square root of 
MSE. 
 
Using Indicator, or Qualitative Independent Variables in the regression 
model 

Thus far, regression modeling has been presented with the assumption that the 
independent variables are continuous variables, for example household income, moisture 
content, elapsed time, material stress, length, etc.  Often, however, an analyst is interested 
in the effect of qualitative variables such as gender, type of composite, type of fracture, 
etc. An analyst can include nominal and ordinal variables into the regression model. 
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Discrete variables are modeled differently than continuous variables in a regression 
model.  The use of indicator variables is best illustrated by example. 

Planning example: Suppose that an analyst wants to include as an explanatory variable the 
number of licensed drivers per household in a regression model, in addition to Household 
Income, X1, which is already in the model. Based on past empirical research, the analyst 
suspects that the following four categories have differing effects on trip generation:  
 
 1)    0  2)     1  3)      2  4)   3 or more 
 
Being that there are only four categories, it is difficult to justify using this variable as a 
continuous one (there is a much stronger justification for not using the variable as 
continuous, since one would not expect there to be the same marginal change in the 
household daily trips based on a unit increase in the number of licensed drivers in the 
household. In addition, there is not a physical interpretation that is consistent with a decimal 
change in the number of licensed drivers). 
 
Instead, indicator variables are used to introduce the following new independent variables 
into the regression model: 
 
 X2 = {1 if 1 driver, 0 otherwise} 
 X3 = {1 if 2 drivers, 0 otherwise} 
 X4 = {1 if 3 or more drivers, 0 otherwise} 
 
Note that not all-possible responses are represented by the new indicator variables.   There is 
not an indicator variable for the case when there are 0 drivers in the household.  If the analyst 
were to include an indicator variable for this case, then a condition would be created in which 
the regression parameters in the fitted regression model could not be explicitly solved. This 
problem, known as a “singularity”, results when there are fewer variables with unique 
information than there is variables in the dataset.  This is a general result that holds in all 
regressions—the modeler must not code new indicator variables for all of the possible levels 
of the original X, the result is a singularity that will trigger an error message in regression 
outputs. The omitted level of the indicator variable is subsumed in the y-intercept term, b0, 
and becomes the comparison baseline. 
 
Suppose the analyst estimates a regression model using three indicator variables 
representing 3 out of 4 levels of a categorical variable, denoted by X2 through X4 for levels 
2 through 4 respectively. Assume that X1 is a continuous variable in the model (unrelated 
to the indicator variables). The following estimated regression function would be obtained 
(the subscript i denoting observations is dropped from the equation for convenience): 

  

Careful inspection of the model shows that for any given observation, at most one of the 
new indicator variables can remain in the model. This is a result of the 0-1 coding, when 
X2 = 1,  X3 and X4 are equal to 0 by definition. Thus, the regression model becomes four 
different models based on which indicator variable is equal to 1: 

443322110 xbxbxbxbbŶ ++++=
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Inspection of these regression models reveals an interesting result. First, depending on 
which of the indicator variables is coded as 1, the slope of the regression line with respect 
to X1 remains fixed, while the y-intercept coefficient changes by the amount of the 
coefficient of the indicator variable. Stated more simply, indicator variables, when entered 
into the regression model in this form, make adjustments to the y-intercept term only: 

Graphically, the model is shown in Figure 3. It shows that the slope of X1 is the same for 
any value of the indicator variable, however, the y-intercept changes by the estimate of 
betas associated with the level of the indicator variable. 

Figure 3: Graph of Regression Lines with Three Levels of Indicator Variables 
Used to Adjust Y-Intercept  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Planning Example: Continuing with the previous example, suppose X2 through X4 
represented the household types depicted previously. To interpret the regression 
coefficients, one must consider the effect of the indicator variables on the regression 
function.  In this case, the level of licensed driver in a household determines the y-intercept of 
the model.  The indicator variables allow the analyst to assign unique y-intercepts for each 
level of the indicator variable, i.e., for each level of licensed driver. Noteworthy is that the y-
intercept intervals between each increment of licensed driver is not restricted to a constant, 
i.e. the change in y-intercept from a 1 to 2 licensed driver household is not the same as the 
change in y-intercept from a 2 to 3 licensed driver household. 
 

 

Suppose the analyst suspects that each indicator variable interacts with income differently. 
That is, each level of licensed driver responds has a unique relationship with household 
income. Interacting indicator variables with one or more continuous variables will afford 
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this flexibility in the regression. To include these interactions in the model, the former 
model can be revised to obtain: 

 

The difference between this regression model and the model shown previously is that 
each indicator is entered in the model twice: as a stand-alone variable and interacted with 
the continuous variable X1. This more complex model can be reduced to the following set 
of regression equations again depending upon the level of the indicator variable.  

 

The interpretation of these coefficients is considerably different than before. Each level of 
the indicator variable is now free to have an effect on both the y-intercept and slope of the 
regression function with respect to the variable income. Graphically, the model now looks 
like the regression equations in Figure 4. 

Figure 4: Graph of Regression Lines with Six Levels of Indicator Variables 
Used to Adjust Y-Intercept and Partial Slope Coefficients 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The figure shows that the regression model is really four different regression functions, of 
which both the slope and the y-intercept depend on the level of the indicator variable.   
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Interactions on Continuous Variables 

Often times there is a relationship between one or more independent variables that is 
worthy of inclusion into the regression function.  To illustrate, consider the two estimated 
regression functions: 

 

Regression function (1) is a function with two variables, X1 and X2, while regression 
function (2) contains an interaction term, X1X2.  In equation 1, no matter the level of X1, an 
estimate for Y is obtained by adding 15 + 10X2.  Conversely, no matter the level of X2, one 
can simply add 15 + 5X1 to obtain an estimate for Y.  In other words,  X1 and X2 act 
independently of each other with regard to their effect on Y. 

Equation 2 is different.  It contains an interaction term, which accounts for the fact that X1 

and X2 do not act independently.  The function says that the relationship between X1 and 
Y is dependent upon the value of X2, and conversely, that the relation between X2 and Y is 
dependent upon the value of X1.  The nature of the dependency is captured in the 
interaction term, X1X2. 

Essentially, the equation with the interaction term can be re-arranged to obtain: 

 
It can be seen that the resulting change in Y given unit change in one of the independent 
variables (while the other is held constant) depends on the level of the level of the 
interacted variable.  Note that this is different than before, because the change in Y per 
unit change in X stayed constant across all levels of X. There are numerous cases when 
the effect of one variable on Y depends on the variable of another independent variable, 
and in these cases interactions should be incorporated into the regression model. 

Are the regression model assumptions met? 

Estimation of regression models is an iterative process. Once regression parameters have 
been estimated, functional forms have been specified, and indicator variables and 
interaction terms have been added to the model, it is wise to check the original 
assumptions, or requirements, of the regression equation. Not checking assumptions of 
the regression is poor practice, and may result in dissemination of a poor model. Thus, 
checking the assumptions is of utmost importance and should be the standard procedure 
in regression modeling.     

There are at least nine situations in which the conditions for a regression equation are not 
ideal: 

1) Non-linearity of the regression function, 

2) Heteroscedasticity of the error terms, 
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3) Lack of independence of the error terms, 

4) Extreme influence by outlying observations, 

5) Non-normality of error terms,  

6) Omission of important variables from the regression model, 

7) Multi-collinearity of independent variables, 

8) Poorly measured X variables, and 

9) Endogeneity. 

Each of these departures from the regression assumptions is now discussed.  Note that 
both graphical and quantitative methods are used to assess departures from regression 
requirements.   

Non-Linearity of Regression Function 

Three plots are useful for exploring the linearity of the regression function. 

1) Residuals versus independent variables,  

2) Residuals versus fitted values, and 

3) Scatter plot of Y versus each of the independent variables. 

What the analyst looks for is any kind of trend in the residual plots, and non-linear trends in 
the scatter plots.  Looking at a plot of X versus the model residuals, a transformation on X 
to obtain a more linear fit can often be identified. 
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Figure 5: Plots for Diagnosing Non-Linearity of the Regression Function 
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A frequent side benefit of improving non-linearity in the regression is that a parallel 
reduction in the error term results, improving MSE, and often improving the distribution of 
residuals.  Non-linearity is removed by performing transformations on the X’s.  The 
modeler must always be careful to consider the case when the distribution of residuals is 
not normal or heteroscedastic, in which case transformations on Y might be needed. In 
these cases Y should be transformed prior to transformations of the X’s. Common 
transformations for specific patterns in scatter plots are show in Figure 6. 

Multi-collinearity 

The presence of multi-collinearity or inter-correlation between independent variables 
introduces complications into the regression function. Independent variables are often 
highly correlated when observational data are collected. Problems in the regression arise 
when two highly correlated variables are included in a regression model together, or when 
a variable is correlated with an important variable omitted from the regression model. 
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Planning Example: In a study of transportation expenditures, the independent variables 
collected are family income, family savings, and age of head of household, which are likely to 
be correlated.  These variables might also be correlated with variables not included in the 
model, such as family size or recreation expenditures. 
 
When two variables are uncorrelated, they are said to be independent or orthogonal.  
When two variables are orthogonal, and their correlation coefficient is zero, then their 
estimated coefficients will remain the same whether or not they are included in the model.  
Typically variables are orthogonal only as a result of controlled experiments—in 
observational data independent variables are rarely orthogonal to one another.  

Suppose a model was estimated with Y, X1 and X2, where the X’s are uncorrelated.  
Suppose that the following regression functions were obtained: 

1) Y = 500 + (0.452) X1 + (72.6) X2 

2) Y = 75 + (0.452) X1 

3) Y = 700 + (72.6) X2 

Thus, when variables are uncorrelated, their coefficients will be the same regardless of 
what other uncorrelated variables are included in the model.  This is a desirable result, 
since the analyst is confident that the coefficient associated with a particular variable is 
really a stable estimate of its effect on Y. 

When variables are correlated, the results are not easily interpreted.  In fact, the following 
side effects to the regression occur: 

1) Multi-collinearity does not inhibit our ability to obtain a good fit to the data, nor does it 
prevent us from obtaining confidence intervals, etc. 

2) Multi-collinearity does, however, lead to large sampling variability of the individual 
regression coefficients, or inefficient estimates.   One can in fact end up with a 
significant F-ratio test, but insignificant t-tests for all individual variable coefficients 

3) Estimated regression coefficients cannot be directly interpreted when the variables 
are highly correlated, since it may be impossible to hold one constant while varying 
the correlated one. 

4) It is possible to get incorrect signs associated with coefficients when variables are 
highly correlated, especially when an independent variable is highly correlated with a 
variable omitted from the model. 

5) As the multi-collinearity increases, the ability to solve for the regression parameters 
becomes computationally difficult. 
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Planning Example: On a regression of gasoline sales on city population, per capita income, 
and other variables, an analyst obtained a negative coefficient for population—suggesting 
that as population increases, gasoline sales decrease. The non-intuitive coefficient was 
obtained in the regression because a major competitor’s market penetration was not 
included in the model. The major competitor, who conducts business primarily in ‘big’ 
markets, competes for gasoline sales in large population cities. Thus, exclusion of this effect 
on gasoline sales leaves an effect on the coefficient for city population, which is correlated 
with competitor’s market share. 
 
Had competitors market share been included in the regression a different problem may have 
resulted. In this case the joint effect of competitor’s market penetration and population would 
be reflected in their coefficients. If the correlation between the two variables was extremely 
high, then the signs and magnitudes of the coefficients might be misleading, and the 
standard errors of the coefficients would be inflated.    

 

Fortunately, there are ways to diagnose multi-collinearity, and methods for remediation. 
The following are useful for diagnosing and remediating multi-collinearity. 

1) The simple correlation matrix provided as standard output in most regression 
packages is useful for identifying mutlicollinearity between independent variables. As 
a general rule of thumb, correlation higher than 0.7 or 0.8 should be checked. In 
addition, the variance inflation factor (VIF), provides an indication of how inflated the 
sampling variances of the parameters are due to multi-collinearity.  

2) The analyst can restrict the use of the regression function to cases where the co-linear 
independent variables follow the same co-linear structure as in the model. In other 
words, if the multi-collinearity exists in reality across time and space, then its effect on 
the regression might not create serious problems of representativeness of the real 
phenomenon. 

3) One or several correlated independent variables can be dropped from the model.  
This creates two new problems, however.  First, it is difficult to obtain direct 
information about dropping the terms from the model.  The coefficients remaining in 
the model are affected by the correlated independent variables not included in the 
model. 

4) Apply Ridge Regression, which introduces a biasing constant into the standardized 
normal equations, resulting in a significant reduction in the inflated sampling variability 
due to multi-collinearity.  In this procedure, biased estimators of the beta’s are 
obtained, but the sampling variability is reduced, which might be preferred to an 
unbiased estimator (such as OLS) with large sampling variability. 

Non-Constancy of Error Variance 

Non-constancy of the error terms is a common occurrence in the practice of regression, 
and arises in many cases naturally. Recall that that VAR [Yhat] = VAR [residuals] = σ2 for 
all predicted values of Y, and therefore for all X. Again, three plots to assess constancy of 
the error terms are employed. 

1) Residuals versus the independent variables,  
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2) Residuals versus the fitted values, and 

3) Residuals squared versus fitted values (or independent variables). 

Heteroscedastic (non-constant) errors occur fairly often with data and model development.  
Consider, for example, if yearly vacation expenditures is the dependent variable.  One 
might expect much greater variability at higher household incomes than at the lower 
household incomes, since presumably higher income households have greater 
discretionary income in which to spend on vacation. Figure 6 shows how non-constant 
error can be detected through the use of various diagnostic plots. 

Figure 6: Diagnostic Plots for Detecting Heteroscedastic Errors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

There are methods designed to minimize SSE for the linear regression based on a family 
of transformations on Y. The following represent transformations on Y that can be 
attempted to correct for heteroscedastic error terms. Figure 7 shows common 
transformations on Y and the pattern of residuals that accompany such needed 
transformations. For a comprehensive listing and detailed description of transformations 
and their effect on a regression relation, see Appendix B. 
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Figure 7: Transformations of Y for Correcting Error Heteroscedasticity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Independence of Errors 

This is really appropriate for time-based observations, where the Yi’s were collected over 
evenly spaced time increments such as seconds, months, or years.  There can be many 
effects of time, including seasonal variation, time of day variation, learning processes, and 
adaptive processes, etc.  In essence, there should be little or no correlation between 
residuals over time in a regression model. In reality, however, time series observations 
often possess correlation over time, or serially correlated errors. A plot of residuals over 
time can reveal any problems with serial correlation. 

There are methods developed to remediate serially correlated errors.  Time Series 
Analysis deals with the multitude of issues that arise with time series type data.  
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Presence of Outliers 

Outliers are observations that exert extreme influence on the fit of the estimated 
regression function. Outliers are detected graphically through inspection of plots of 
standardized residuals (residual/√MSE) versus X or fitted Y.  Because of their great 
influence on the regression equation, outliers can create great difficulty with the regression 
function. There are several reasons for this. 

1) The outlying observations are outside the body or bulk of data, and therefore may 
represent anomalous data.  

2) If the regression function is heavily swayed by potentially anomalous data, the 
regression function may not do an adequate job representing the relationships 
embedded in the bulk of the data. 

3) Outliers may actually be the result of an error, such as mis-coding of data, poorly 
calibrated instrumentation, transcription error, etc., and thus should be corrected if 
possible. 

4) Outliers may represent a phenomenon that warrants further study, and therefore 
these observations need to be scrutinized more carefully. 

Recall that in solving for the parameters of the regression, the sum of squared deviations 
is minimized.  When an outlier is present, therefore, it may unduly influence the fit of the 
regression function, leading to a significantly different fit had the outlier not been present.   

The analyst generally identifies ‘influential observations’ or outliers first, and then 
determines if they should be discarded, given a separate regression model, or left in the 
model as adequate representation of the phenomenon under study.  In general outliers 
should not be discarded unless one of the following conditions can be shown to have 
occurred: 

1) An error was made recording the data, 

2) A miscalculation was made in deriving the data, 

3) Measuring equipment was malfunctioning, or 

4) The outlying data points are unique in some identifiable way and deserve their own 
model. 

If none of these reasons can be supported or justified with direct evi dence, the general 
rule is to leave an outlier in the data set, assuming that it represents valuable information. 

There are mathematical methods for identifying outliers, and quantifying their influence on 
the regression function.  The commonly used methods include DFFITS, DFBETAS, and 
COOK’s measures. A simple plot of the standardized residuals vs. X (see Figure 8), or 
residuals versus X or fitted Y can reveal the presence of outlying observations in a 
regression. 
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Figure 8: Plot of Standardized Residuals vs. X for detecting Outlying 
Observations 

 

    Non-Normality of Error Terms 

 

 

 

 

 

 

 

Moderate departures from error-term normality do not create serious problems for the 
regression.  However, serious departures from normality are of concern. The normality of 
error terms can be studied both graphically and quantitatively. 

Several plots are useful for assessing the distribution of errors. They include box plots, 
histograms, and normal probability plots.  The Boxplot and histogram is shown in Figure 9.  
In the box plot and histogram the analyst looks for symmetry about the mean, or 0, and 
look for the presence of outlying observations. The plots in the figure represent data that 
are normally distributed.  

The normal probability plot shows how a normal population versus the observed data 
would plot on the graph. An ideal fit would be a diagonal line on the plot.  Large departures 
suggest non-normal errors, while small departures suggest normality. These plots are 
provided in most standard regression software packages. 

There are formal methods for examining the normality of errors.  For example, one can 
compute the correlation coefficient between expected (under normality) and observed 
residuals.  For a given alpha level, the analyst can compute the correlation coefficient and 
test whether or not the residuals are likely to come from a normal distribution. 

When the errors are not normally distributed, one cannot make inferences based on the 
regression function.  For example, confidence and prediction intervals cannot calculated 
with accuracy.  The options for correcting non-normality of the residuals are several. First, 
transformations of Y can be used to normalize the residuals. Second, the ‘correct’ 
distribution can be identified, such as Poisson, Gamma, or negative binomial, and 
generalized regression models can be used. Finally, in the case of an unidentifiable 
distribution of errors, Monte Carlo techniques can be employed to develop confidence and 
predictions intervals. 
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Figure 9: Box Plot and Histogram Depicting Normality of Regression Residuals 
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Omission of Important Independent Variables 

There are times (although the researcher tries to avoid this in early stages of planning a 
research study) when critical variables were not used in the estimation of the model.  By 
plotting the residuals versus the excluded variable, whether it is a dummy variable or a 
continuous one, the analyst might observe a systematic trend in the residuals that might 
suggest that inclusion of that variable might improve the model. 

As an example, consider the plot of residuals for an automobile emissions model versus 
the regression model fitted values, shown in Figure 10. Suppose that an omitted variable, 
number of engine cylinders=8, was suspected of being influential in the process of 
emission formation. When 8 cylinder engine vehicles only are plotted against the model 
residuals, as shown in the plot on the left, the residuals are generally positive for these 
vehicles, which demonstrates that observed emissions are always higher than predicted 
by the model for these vehicle types. Thus, the variable number of engine cylinders 
probably should have been included in the model as an indicator variable. Had the 
residuals been randomly distributed for vehicles with 8 cylinder engines, then there would 
not have been evidence to include it in the model. Of course, the inclusion of an additional 
variable would need to be scrutinized by all relevant model fit statistics, t-ratio, r-square, 
and F-test results.  
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Figure 10: Plot of Automobile Emissions Residuals vs. Regression Model Fitted 
Values 

8 Cylinder Engines        All Vehicles 

 

 

 

 

 

 

 

 

 

One or more of the X’s are influenced by the value of Y. 

It is assumed that the model is structured such that Y is dependent upon values of the X’s. 
In other words, the direction of influence is assumed to flow from right to left in the 
equation—the right-hand-side variables influence Y. The X’s, on the other hand, should 
not be influenced or determined by Y. Right-hand-side variables that are determined 
‘outside’ the model are called exogenous, and those that are determined by Y are called 
endogenous. Standard regression techniques assume that all right-hand-side variables 
are exogenous. Endogenous variables must be dealt with using somewhat advanced 
techniques such as instrumental variables or structural equation models. For further 
reference see Greene, 1997, or most textbooks on econometrics.  

Safety Example: In a regression model of ice-related accident rate as a function of ice 
warning sign frequency (and other variables), it is assumed as a caveat of the regression 
modeling framework that ice warning sign frequency will affect ice-related accident rate. 
Although this assumption is valid, it is also true that there is influence in the reverse 
direction—that ice-related accident rate affects ice warning sign frequency. The fact that Y 
has likely influence on X is termed endogeneity or simultaneity, and results in a violation of 
the standard regression assumptions.  

 
The independent variables (X’s) in the model are assumed to have been 
measured without error. 

In the standard ordinary least squares regression model it is assumed that Y is measured 
with error, and this is partly what contributes to the difference between observed and 
predicted Y. The presumption, however, is that the X’s are measured precisely. That is 
measurement error in the X’s can largely be ignored because it is small. When 
measurement error in the X’s is large, one must consider alternative methods of model 
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estimation. The most popular of measurement error models are structural equation 
models. Other software packages are available for handling measurement error problems.  

Refine the Regression Model 

After the modeler has iterated between different models, checking the requirements of the 
regression, making necessary transformations, then re-estimating models, she is now 
ready to make final refinements to the model. In this stage multi-collinearity problems and 
goodness of fit of the ‘best’ model specifications are assessed. 

Recall that the analyst must consider the objectives of the research and resultant model, 
and the variables that have been considered in the model. The first model inspection 
should consist of checks on the variables in the models, including interaction effects, 
higher order interactions, and whether the model makes sense from theoretical grounds. 
Then, some statistical measures can be used to refine the models, and compare and 
contrast various “good” model formulations.  

Descriptive Measures of Association Between X and Y 

Models are assessed and refined using measures of association between X and Y. The 
most common descriptive measures are R-Square, commonly called the coefficient of 
determination, and the coefficient of correlation, r. 

The coefficient of determination is defined as: 

where; 

R2 is the coefficient of determination, 

SSTO is the total sum of squares, 

SSR is the sum of squared regression, 

SSE is the sum of squared errors, 

and 0 ≤ r2 ≤ 1. 

The coefficient of determination R2 can be thought of as the proportionate reduction of 
total variation associated with the use of the independent variables, or X’s. Commonly it is 
interpreted as the proportion of total variance explained by the X’s. When SSE = 0, R2 = 1, 
and all of the variance is explained by the model. When SSR = 0, R2 = 0, and there is no 
association between the model X’s and Y.  

Because R2 can only increase with additional variables in a model, an adjusted measure, 
denoted R2

adjused accounts for the degrees of freedom changes as a result of different 
numbers of model parameters, and allows for a reduction in R2

adjusted. The adjusted 
measure is superior for comparing models with different numbers of parameters.  

It is common to place too much emphasis on the R2 measure or to mis-interpret it. The 
measure is only relevant to compare against previous studies that have been conducted 
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on the phenomenon under investigation. Thus, an R2
adjusted of 40% in one study may be 

considered “good” only if it represents an improvement over past studies and the 
improvement reflects a real contribution to an understanding of the underlying 
phenomenon. Thus, it is possible to obtain an improvement in the R2

adjusted value without 
gaining a greater understanding of the phenomenon being studied. It is only through the 
combination of a “good” R2

adjusted value and a material understanding/explanation of the 
phenomenon that refines an existing understanding of an underlying data generating 
process.  

Finally, it should be noted that the R2
adjusted value is bound by 0 and 1 only when an 

intercept model is applied. When the intercept is forced through zero the R2
adjusted value 

can exceed the value 1 and is not as useful for comparisons across models.   

The coefficient of correlation r is the square root of R2. It is more commonly used to 
express the linear association between two variables, and not multiple variables in the 
regression. The coefficient of correlation can be computed as follows: 

where the slope of the regression functions determines the sign. 

Other measures are available for assessing and comparing model fits. These include 
comparisons of Mean Squared Error (MSE), Mallow’s CP, and other similar measures.  

  
Validation of the Regression Model 

Internal and external validation of the regression model are critical steps in the model 
building process. Validation is perhaps the most often overlooked aspect of model 
building. This is unfortunate, since validation is the most objective method to assess the 
credibility of a model. There are several important reasons to validate a model. 

1) The process of fitting a statistical model to data can result in anomalous fits to the 
data. In essence, apparent relationships reflected through significant variables are the 
result of over-fitting and not real relationships that generated the data. For further 
information see Myers, 1990, pp. 178-180. 

2) It is important to ensure that the sampling frame chosen for the population of interest 
will yield a sample that accurately represents the population. The poll that forecast 
Dewey as the next president in 1948 was wrong because of a sampling frame error.  

3) The theoretical expectations of the model should agree with empirical results obtained 
from modeling the sample data.  

4) Some of the relationships captured in the sample data may not be valid over time or at 
other locations. 

To conduct model validation an independent set of data is needed. There are numerous 
ways to generate data for model validation, three of which are described here.  

1) A holdout data set is retained from the original data. Thus, in planning the sample size 
for the study, the size of the sample should be increased by an additional 20%, for 
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example. The data should be collected as usual. When it comes time for model 
building, a random sample of 20% can be removed from the model-building data set, 
and used for validation purposes. If data were collected over time or were collected in 
pairs, then data could be split over time or pairs could be split to determine if these 
factors would render model extrapolations invalid. If there are no perceivable 
differences between the holdout dataset and the estimation sample, then the 
validation merely can be used to determine if the model was over fit to the estimation 
data (i.e. spurious relationships were detected). If the holdout data represents a study 
replication, then the validation will also test the generalizability over time and space.  

2) A second alternative it so collect additional data after the initial data collection effort. 
However, this is impractical in some studies, as it usually more expensive to collect 
data after the initial data collection effort. There are times, however, when other efforts 
may collect similar data, and these should be viewed as opportunities for model 
validation. 

3) A third procedure for model validation involves computer programming via Monte 
Carlo methods. Essentially, the data are randomly assigned to 10 bins, resulting in 
10% of the data assigned to each bin. Then the first 10% is removed from the data 
and used for validation on the model estimated using the remaining 90%. The 10% 
are then returned to the data and the 2nd 10% are removed, and a new model 
estimated on the remaining 90%. This process is repeated 8 more times to complete 
the analysis. This process results in an efficient use of the data, because all the data 
are used to estimate models and all the data are used for validation. The results can 
be presented for each of the 10 model estimations and validations, and assessments 
can be made as to the validity of each of the drawn samples. Again, this technique is 
most useful for checking for model over-fitting of the model to data. Similar methods 
include the PRESS statistic and other re-sampling methods.  

There are numerous measures of goodness-of-fit used to compare model predictions to 
actual data in the validation process. The sum of squared prediction errors, the mean 
squared prediction error, the mean absolute prediction error, and Thiel’s U-statistic, the 
Press Statistic, and Conceptual Predictive Criteria (Cp Statistic) are examples of methods 
that can be used to compare model predicted results to validation data. 

Conduct statistical inference, document model, and implement 

The modeler is now ready to conduct statistical inference, document the model, and 
implement. Statistical inference is the process by which inferences are made about the 
population, or process being modeled, based on the model estimated on the sample of 
data. Statistical inference is the cornerstone of statistical theory and allows the modeler to 
make statements about the population. 

There are several estimated parameters that are used to make inferences about the 
population, the betas, which represent the mean change in Y given a unit change in the X, 
and Yhat, which reflects the mean response given a combination of X values. Each of 
these is discussed here. 

Inferences on β’s 

Inferences surrounding the betas in a regression are useful in that information can be 
obtained as to the uncertainty in the effect of an individual X on Y. It can be shown that: 
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An unbiased estimator of the variance of β1 is given by: 

The square root of s2, s [b1] is the estimator of σ[b1]. 

A useful distribution that arises in statistics is the students’ t distribution, which is the ratio 
of (Xave - µ) to √(S2/n).  It can be shown that s (b1) is t distributed with n - p degrees of 
freedom, where n is the sample size and p is the number of estimated parameters. 

A confidence interval for β1 is given by: 

where;  

t is percentile of the t distribution, 

α is acceptable confidence error in decimal, i.e. .01, .05,.10 etc, and 

n - p are the appropriate degrees of freedom. 
 

The interpretation of a confidence interval is very explicit and should be treated with 
caution.   A 1- α confidence interval on β1 indicates that the true value of β1 will fall within 
the confidence limits given repeated samples taken on the same X levels α times out of 
100.  Recall that β1 is the mean change in the mean of the distribution in Y with a unit 
change in x. 

Materials Example: In a regression model predicting the percentage of voids in a mineral 
aggregate (%VMA), it was found that the percentage of material passing a #200 sieve (%200S) 
was a significant predictor. Assume that the sample size was 27, and three variables were in 
the model. The following was estimated in the regression model. 
 
 Variable Coefficient Estimate s( )   
 %200S   - 0.75  0.09  
 
Using this data, the analyst can compute a confidence interval around the effect of %200S on 
%VMA. Using the CI formula the engineer obtains: 
 
 95% CI = - 0.75 +- t (1 - .05/2; 27 – 4) x 0.09  
 =  - 0.75 +- 2.069 x 0.09 
 =  -0.75  +- 0.186 
 
Thus, using the 95% CI surrounding the coefficient estimate for %200S, the engineer can say 
the following: “the true value of β  for %200S  will fall between 0.564 and –0.936 95 times out of 
100, given repeated samples taken at the same X levels.  
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One-sided versus two-sided hypothesis testing 

The confidence interval given by b1 +- t {1 - α / 2;  n - 2} s [b1] is a two-sided confidence 
interval.  This means that the analyst is concerned with how probable events are on either 
side of the true parameter β1.  Often, the engineer wants to ask the question “does some 
confidence interval of β1 contain the value 0?”  The alternative hypotheses then are: 

 H0:  β1 = 0, and Ha: β1 ≠ 0. 

 
If the confidence interval for a given confidence level 1 - α (i.e. 1 - .05 = .95) does not 
contain 0, then one can conclude that at that confidence level, α*100 times out of 100 
when repeat samples are drawn at the same x levels the confidence interval will not 
contain 0. 

The analyst could alternatively test whether β1 is positive.  In this case the test hypotheses 
are: 

 H0: β1 ≤ 0, and Ha: β1 > 0. 

 
In this case one side of the distribution is considered such that all the error is assigned to 
one side of the probability distribution. 

Bridges Example: In a regression model of the time required to rehabilitate bridge decks (in 
days), researchers assessed as independent variables the square feet of bridge deck that is 
delaminated (X1), spalled (X2), and patched with asphalt (X3).  They found the following results 
based on 30 bridge samples: 
 
Predictor Coefficient Standard Deviation t-ratio           p-value 
Constant        6.5               8.5   0.76                    0.220  

X1            0.03              0.01                  3.00                    0.001     
X2         0.02              0.01                              2.00                    0.023 
X3         0.08              0.02                              4.00                  <0.001 
 
The regression output shows each variable, its estimated coefficient, standard deviation, t-
ratio, and p-value. The coefficients represent the estimates for β 0, β 1, β 2, and β3 respectively 
for the constant, X1, X2, and X3. The estimated values represent the change in the response, 
time in days required to repair a bridge deck, given a unit change in the corresponding 
independent variable. Thus, for 100 square feet of delaminated bridge deck, the estimated 
rehabilitation time is increased by 3 days.  
 
The standard deviations show the variability in the estimated coefficients. Assuming a 
normally distributed response, the standard deviations represent standard units from the 
mean of a normally distribution around the coefficient estimate.  
 
The t-ratio represents the result of a hypothesis test on whether a two-sided confidence 
interval contains the value zero. The t-value is the number of standard units that the 
coefficient estimate is away from the value zero. The estimated coefficient for variable X3, for 
example, is 4.00 standardized units away from zero. For a normal distribution this represents 
an unlikely occurrence. That is, if the parameter for X3 was in fact equal to zero (had no effect 
on Y), then the observed data would occur less than 1 time in 1000 repeated draws from the 
population. 
 
The p-value, shown for the variables, represents the probability of obtaining the observed 
sample if the coefficients were indeed zero. In general, the less likely to have observed the 
sample if the coefficients were zero, then the more evidence there is to reject the notion of 
parameters equal to zero.  
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Confidence Band around Regression Function 

Often an analyst is concerned with quantifying the confidence in the mean response 
around the entire regression function. To accomplish this, a procedure that allows for 
multiple simultaneous tests on the fitted regression line is used. In other words, the 
confidence interval is appropriate for many research questions ‘asked’ about the 
regression function. One method is the Working-Hotelling approach, which for a 1 - α 
confidence band around the regression function has the following two boundary conditions 
at Xh:                                                                                                                                                                                    

This simultaneous confidence band around the regression function is a wider confidence 
interval at Xh than that computed by a single confidence interval estimate at Xh.  

Traffic Example: Suppose that a regression model was used to model travel times as a 
function of various network parameters, such as route complexity, number of signals, 
average route flow rates as measured by a video camera, and other system attributes. The 
engineer wants to know how reliable the estimated travel times for some future condition. 
She computes a 90% CI on Yh to find that travel time under a future traffic scenario will be 
between 42 and 52 minutes.  
 
She then correctly reports this information to her supervisor: In 95% of samples drawn the 
mean travel time for a sample of motorists under those conditions will be between 42 and 52 
minutes. In 5% of the observed cases the mean travel times will be either less than 42 or 
greater than 52 minutes in duration. 

 

Model Documentation 

Once a model has been estimated and selected to be the best among competing models 
it needs to be thoroughly documented, so that others may learn from the modeler’s efforts. 
It is important to recognize that a model that performs below expectations is still a model 
worth reporting. This is because the accumulation of knowledge is based on objective 
reporting of findings—and only presenting success stories is not objective reporting. It is 
just as valuable to learn that certain variables don’t appear effectual on a certain response 
than vice versa.  

When reporting the results of models, enough information should be provided so that 
another researcher could replicate your results. Not reporting things like sample sizes, 
manipulations to the data, estimated variance, etc., could render follow-on studies difficult.  

Perhaps the most important aspect of model documentation is the theory behind the 
model. That is, all the variables in the model should be accompanied by a material 
explanation for being there. Why are the X’s important in their influence on Y? What is the 
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mechanism by which X influences Y? Would one suspect an underlying causal relation, or 
is the relationship merely associative? These are the types of questions that should be 
answered in the documentation accompanying a modeling effort. In addition, the model 
equations, the t-statistics, R-square, MSE, and F-ratio tests results should be reported. 
Thorough model documentation will allow for future enhancements to an existing model. 

Model Implementation 

Model implementation, of course, should have been considered early on in the planning 
stages of any research investigation. There are a number of considerations to take into 
account during implementation stages: 

1) Are the variables needed to run the model easily accessible? 

2) Is the model going to be used within the domain with which it was intended? 

3) Has the model been validated? 

4) Will the passage of time render model predictions invalid? 

5) Will transferring the model to another geographical location jeopardize model 
accuracy? 

These questions and other carefully targeted questions about the particular phenomenon 
under study will aid in an efficient and scientifically sound implementation plan.  

Interpretation of Linear Regression Output: 

How is a regression equation interpreted? 

A regression equation represents the linear additive association between a dependent 
variable Y and one or more independent variables (X’s). The regression parameters, or 
partial slope coefficients, represent the change in Y given a unit change in X, all else held 
constant. If the regression was estimated using experimental data, then the regression 
parameters represent the change in Y caused by a unit change in a particular X. If the 
regression was estimated using quasi-experimental or observational data, then the 
regression parameters represent the change in Y associated with a unit change in a 
particular X.  

The regression equation is meant to model as accurately as possible the relationships in 
the true population, in as simple an equation as is possible. The regression model is 
known not to capture all the structure in the real data, and is known to be wrong to some 
degree. The model represents a convenient way to explain relationships or predict future 
events given known inputs, or value of the independent variables (X’s). 

How do continuous and indicator variables differ? 

Continuous variables are usually interval or ratio scale variables, whereas indicator 
variables are usually nominal or ordinal scale variables. Indicator variables can be entered 
in the regression to adjust the y-intercept term, or be interacted with a continuous variable 
and affect the slope coefficient of the interacted variable. Indicator variables are somewhat 
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analogous to testing the difference in means between two groups as in ANOVA. Indicator 
variables in the regression can only take on one of two values— 0 or 1.   

How are partial slope coefficients interpreted? 

The beta’s in a regression function are called the regression coefficients, or partial slope 
coefficients in multiple independent variable regression.   

The meaning of the parameter β0, indicates the mean of the probability distribution at x = 
0, if a distribution exists at x = 0.  When x = 0 does not exist, β0 does not have any 
particular interpretation or meaning. 

The coefficient with the variable, β1, indicates the change in the mean of the probability 
distribution of Y per unit increase in X, considering their difference in units. If the 
independent and dependent variables are standardized, then the partial slope coefficients 
are in the same standardized units.  If the regression coefficients in the model were 
estimated on the X’s in their original units then the magnitude of coefficients across X’s 
cannot easily be compared; however they are meaningful in that the analyst can assess 
unit changes of individual variables in their original ‘intuitive’ units. Standardized regression 
coefficients, calculated on standardized variables, offer an advantage over non-
standardized variables in that the magnitude of effects can be compared on standardized 
units. For further discussions consult Neter et al. (1990, 1996) and Myers (1990). 

What are interactions? 

Interactions are often important effects that need to be considered in the regression. In the 
standard regression model without interaction terms the effect of X1 on Y depends only on 
the level of X1, and is equal to bX1.  Suppose, however, that the effect of X1 on Y 
depended not only on the level of X1, but also on the level of X2. This multiplicative effect is 
called an interaction between X1and X2.        

An interaction between two variables is called a second-order interaction, between three 
variables is called a third-order interaction, etc. A variable in a model non-interacted with 
other variables is called a main effect. In general main-effects are more important with 
respect to ‘explaining variability’ than interactions, and the higher the order of interaction 
the less influential the effect is on Y. Interactions, however, may reflect important aspects 
of underlying data generating processes, and therefore may be kept in the model on these 
grounds alone, and not on the basis of their contribution to the R2 value. 

What are standardized regression coefficients? 

Standardized regression coefficients are obtained by performing regression on 
standardized variables. Standardized variables result from transforming an original X by 
subtracting the mean of X and dividing by the standard error of X, such that Xs=(X-Xave)/σX. 
When standardized variables are used in a regression their partial regression coefficients 
can be compared across the independent variables. 

How is the F-test interpreted? 

The F-test is a general test that can be used in a myriad of ways to test regression 
models. In essence, the F-test compares the results of two models to one another to see if 
the more complex (full) model is convincingly better than a simpler (reduced) model. The 
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standard F-test provided in many statistical program output compares the explanatory 
power of the full model to the reduced model with only the y-intercept term in it, which is 
equivalent to the sample mean. Thus, it compares a model with one or more partial slope 
coefficients to the sample mean model, to see if it provides a convincingly better fit to the 
data. 

How are t-statistics interpreted? 

A t-statistic is similar to an F-test, except the test is for a single variable in the model. The 
standard t-test provided by most standard statistical software packages is used to 
determine the probability that an individual variable’s parameter is equal to zero. In 
actuality the test is conditional on the variable’s parameter equaling zero, and provides the 
probability of the data having arisen under this constraint. 

How are r and R2 interpreted? 

The correlation coefficient (r) and coefficient of determination (R2) are two measures of 
model goodness of fit. These two measures are related in that (r)2 = R2. The R-squared 
value is the variance explained by the model divided by the total variance, both explained 
and unexplained. High R-squared values indicate that a model explains a large portion of 
the data variability, while a low R-squared value indicates the opposite. R-square values 
cannot be compared across models with different numbers of variables. An adjustment to 
R-square is needed to make fair under these circumstances. R-squared values shouldn’t 
be compared across different phenomenon, either. For some phenomenon an R-squared 
value of 0.35 represents a very good model, whereas for some others an R-squared value 
of 0.85 represents a poor fitting model.  

R-square values are commonly abused measures of model fit, as they often become the 
only method for variable selection. This practice is ill advised. Variables should be selected 
based on their theoretical and practical appeal and appropriateness, not merely because 
they contribute to a higher R-squared value. The practice of data mining in modeling to 
improve R-square is not grounded in science, and should be avoided to the extent 
possible.  

How are confidence intervals interpreted? 

A confidence interval is interpreted as follows: If samples were repeatedly drawn at the 
same X-levels as were drawn in the original sample, then alpha (α) times out of 100 the 
mean of the sample Y’s will fall within the (1-α)% confidence interval. In simpler but less 
technically correct terms, the analyst is (1-α)% confident that the mean of a new sample 
falls in the confidence interval. 

How are prediction intervals interpreted? 

A prediction interval is interpreted as follows: If samples were repeatedly drawn at the 
same X-levels as were drawn in the original sample, then alpha (α) times out of 100 an 
individual observation of Y will fall within the (1-α)% prediction interval. In simpler but less 
technically correct terms, the analyst is (1-α)% confident that an individual observation 
would falls within the prediction interval. 
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How are degrees of freedom interpreted? 

Degrees of freedom are associated with sample size. Every time a statistical parameter is 
estimated on a sample of data the ability to compute additional parameters decreases. 
Degrees of freedom are the number of independent data points used to estimate a 
particular parameter.  

 

Troubleshooting: Linear Regression 

Should interaction terms be included in the model? 

Interaction terms represent potentially real relationships embedded in data. Most often 
they arise in quasi-experimental and observational data. An interaction that is important 
should be included in the model, despite the fact that it might not contribute much to R-
square. In general, third and higher order interactions (that are real in the population) can 
be ignored without much detriment to the model. 

How many variables should be included in the model? 

The objective of most modeling efforts is to economize the model. In other words, the 
analyst generally wishes to explain as much of the data complexity with as few variables 
as practicable. Generally seven variables plus or minus two variables covers most models, 
although smaller and larger models can be found. It is generally better to favor a simpler 
model to a more complex one, simply because interpretation and implementation are 
simplified also. On the other hand, if the phenomenon is sufficiently complex, then making 
too simple a model may sacrifice too much explanatory or predictive power.  

What methods can be used to linearize the regression relation? 

Transformations of the X’s are used to linearize the relation between Y and X’s.  Common 
transforms include the log base ten and natural logs, inverse logs, powers, roots, and 
reciprocal functions. The nature of the non-linearity can often be inspected to determine 
which transform will be most useful. 

What methods are available for fixing heteroscedastic errors? 

Heteroscedasticity, a fancy term for non-constant variance, is a violation of the OLS 
regression and needs to be fixed, or other methods need to be employed. The standard 
procedure is to transform Y using log base ten and natural logs, inverse logs, powers, 
roots, and reciprocal functions. Pre-caution should be taken, however, because 
transforming the response variable often makes the response counter-intuitive, or difficult 
to interpret. The solution is of course to transform back to the original response after the 
regression is estimated. Another precaution is that transforming Y often makes the relation 
with X’s non-linear, so parallel transforms for the X’s are also needed. The modeler should 
always keep in mind that transformations on Y are for purposes of meeting the modeling 
theory, and the natural units of the response are often the most interpretable and intuitive. 
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What methods are used for fixing serially correlated errors? 

Serially correlated errors occur with time-series data. That is, the researcher might have 
data that were collected over time, such as strain gauge tests on a bridge at one-year 
intervals. If there is dependence of Y across time, then the errors will be serially correlated. 
Time series analysis, which is a natural extension of regression, is the method for fixing 
serially correlated errors. 

What methods are used for fixing correlated errors? 

Correlated errors arise when one or more X’s in a model is directly related to another X (or 
X’s) in the model, or Y. Suppose X1 is largely determined by X2, and both these variables 
are in a model to predict or explain Y. Since X1 is simply the sum of X2 times a constant 
plus an error term, then the error component of the model is correlated across 
observations, which is a violation of one of the assumptions. The solutions for this problem 
involves first detection of the problem, and second identifying a remedial measure. 
Detection of the problem is best done through intimate knowledge of the data and how 
they arose. It should be clear that none of the X’s is largely determined by the other X’s. 
Associations between variables are not a problem (it can cause multi-collinearity, which is 
a different problem), however direct causality between them is. The solution is to go to 
simultaneous equations models, such as two-stage and three-stage least squares 
procedures. 

What can be done to deal with multi-collinearity? 

Multi-collinearity is when two variables co-vary, and is common in non-experimental data. 
It is not a violation of the regression model explicitly, however it causes problems in the 
mathematics of solving for the regression parameters. In essence, highly collinear 
variables (e.g. a correlation coefficient of 0.7 or higher) cause regression parameters to be 
inefficient (high standard errors), and can cause the signs of the regression coefficients to 
be counter-intuitive.  

There are several remedies to the multi-collinearity problem. First, the variables can be left 
in the model and assumed to reflect the natural state of those variables in reality, and so 
accepting of the ever-present collinearity. A second option is to remove the less important 
of the two collinear variables and keep only one in the model. This is usually the preferred 
option. The third option is to employ a structural equation modeling approach instead of 
regression. Structural equations models explicitly use covariance among variables in the 
model building process. Finally, Ridge Regression may be applied.  

What is endogeneity and how can it be fixed? 

Endogeneity is fancy term for having an independent variable that is directly influenced by 
the dependent variable Y. It is presumed a priori that all independent variables are 
exogenous—that they are determined by influences outside of the modeling system. 
When a particular X is endogenous, the model errors are correlated with the variable (see 
correlated errors FAQ), and problems in the regression occur, such as biased estimates, 
etc. Some remedies include the use of instrumental variables approaches, proxy 
variables, and structural equations models. 
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CHAPTER 4; SECTION C: TIME SERIES ANALYSIS 

Purpose of Time Series Analysis: 

Time Series Analysis is used to develop forecast models for time-indexed data.  The 
theory and application of time series analysis come primarily from the field of 
econometrics.  Economists established econometrics in the early 1930s when “an 
unprecedented accumulation of statistical information” was creating “a need to establish a 
body of principles that could organize what would otherwise become a bewildering mass 
of data.” (Greene, 1997).  Transportation engineers and planners face the same challenge 
today.  Time Series Analysis provides a powerful set of tools to leverage transportation 
system data for improved system planning, management and control.  Two types of 
univariate time series models are presented in this section: exponential smoothing models 
and autoregressive integrated moving average (ARIMA) models. 

Examples: An analyst or engineer might be interested in developing a forecast model for: 
1. AADT using only historical AADT data 
2. freeway traffic conditions using 15-minute data from an urban traffic management center 
3. pavement deterioration based on pavement periodic inspection data 
4. demand at a transit station using historic demand levels 

Basic Assumptions/Requirements of Time Series Analysis: 

6) The random component of the data series is uncorrelated with zero mean and 
constant variance.  The term for such a series is white noise.  The instances of white 
noise disturbance in the data series are called innovations. 

7) Either the raw time series data or some transformation of the raw data must satisfy 
the following three conditions – 

• the unconditional expected value of the observations in the series is constant with 
respect to time 

• the variance of the observations is constant with respect to time 

• the covariance between any two observations in the series depends solely on the 
time lag between the observations (i.e., not on the time of occurrence of either 
observation) 

This requirement is referred to as weak stationarity. 

Inputs for Time Series Analysis: 

Time indexed data series with observations taken at discrete intervals { }tX . 

Sample of n observations on { }tX , i.e. { }nXXX ,,, 21 K . 
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Outputs of Time Series Analysis: 

Sample estimate of the variance of { }tX . 

A parameterized model for tX  in terms of previous observations and/or innovations. 

Time Series Analysis Methodology: 

Chapter IV, Section C:
Time Series Analysis

Methodology

Visually inspect series plot to identify trend, seasonality, level shifts,
variance problems, and obvious outliers

Select modeling
approach

Exponential smoothing ARIMA

Continued below Continued below
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Exponential smoothing

Seasonal component?

Simple exponential
smoothing

Double exponential
smoothing

Holt-Winters smoothing
Trend component?

Yes

No

Yes

No

Select starting value for
level

Estimate α by minimizing
sum of square error

Select starting values for
level and trend

Estimate α and δ by
minimizing sum of square

error

Externally validate the model

Document model and
implement if appropriate

Choose additive or
multiplicative seasonal

factors

Select starting values for
level, trend, and seasonal

factors

Estimate α, δ, and γ by
minimizing sum of square

error
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ARIMA

Seasonal component?

Ordinary ARIMA Seasonal ARIMA

Yes
No

Analyze autocorrelations
and partial autocorrelations

Define search space for ARIMA model order

Externally validate the model

Document model and implement if appropriate

Select model based on information criterion

Analyze model residuals

Determine necessary
differencing

Analyze autocorrelations and partial
autocorrelations at ordinary and seasonal lags

Determine necessary ordinary and seasonal
differencing
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Examples of Time Series Analysis: 

Planning Forecasts 
Nihan, N.L. and K.O. Holmesland (1980). Use of the Box and Jenkins Time Series 
Technique in Traffic Forecasting. Transportation, vol. 9, pp. 125-143. 

Operational Forecasts 
Ahmed, M.S. and A.R. Cook (1979). Analysis of Freeway Traffic Time-Series Data by 
Using Box-Jenkins Techniques. Transportation Research Record #722 pp. 1-9. National 
Academy of Sciences. 

Ross, P. (1982). Exponential Filtering in Traffic Data. Transportation Research Record 
#869 pp. 43-49. National Academy of Sciences. 

Williams, B.M., P.K. Durvasula and D.E. Brown (1998). Urban Freeway Traffic Flow 
Prediction: Application of Seasonal ARIMA and Exponential Smoothing Models. 
Transportation Research Record #1644 pp. 132-141. National Academy of Sciences. 

 

Interpretation of Time Series Analysis Output: 

How is a time series model equation interpreted? 
How is the variance estimate interpreted?  
How are prediction intervals interpreted? 
How are information criteria interpreted? 
Are there ARIM A equivalents to exponential smoothing models? 
 

Troubleshooting: Time Series Analysis 

What methods can be used to detect and model outliers? 
What if the errors are not white noise? 
 

Time Series Analysis References: 

Box, G.E.P. and D. Cox. (1964). “An Analysis of Transformations.” Journal of the 
Royal Statistical Society, Series B, 389-398. 
 
Box, G.E.P. and G.M. Jenkins. (1976). Time Series Analysis: Forecasting and Control, Revised Edition, 
Holden-Day, San Francisco. 
 
Brockwell, P.J. and R.A. Davis. (1996). Introduction to Time Series and Forecasting, Springer-Verlag 
New York, Inc., New York. 
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Chang, I., G.C. Tiao, and Chung Chen. (1988). “Estimation of Time Series Parameters in the Presence 
of Outliers.” Technometrics, 30, 193-204. 
 
Chatfield, C. and M. Yar. (1988). “Holt-Winters Forecasting: Some Practical Issues.” The Statistician, 
37, 129-140. 
 
Chen, Chung, and L. Liu. (1993a). “Forecasting Time Series with Outliers.” Journal of Forecasting, 12, 
13-35. 
 
Chen, Chung, and L. Liu. (1993b). “Joint Estimation of Model Parameters and Outlier Effects in Time 
Series.” Journal of the American Statistical Association, 88, 284-297. 
 
Ljung, G.M. and G.E.P. Box. (1978). “On a Measure of Lack of Fit in Time Series Models.“ Biometrika, 
65, 297-303. 
 
Yar, M. and C. Chatfield (1990). “Prediction Intervals for the Holt-Winters Forecasting Procedure.” 
International Journal of Forecasting, 6, 127-137. 
 

Time Series Analysis Methodology: 

Visually Inspect Series Plot to Identify Trend, Seasonality, Level Shifts, Variance 
Problems, and Obvious Outliers 

A thorough visual inspection of the data is essential.  The analyst will be specifically 
looking for evidence of trends, seasonal patterns, abrupt level shifts, variance changes, 
and gross outliers.  For example, Figure 11 illustrates the clear and expected weekly 
pattern in two weeks of freeway flow rate data (the plot is fourteen consecutive days of 15-
minute hourly flow rates beginning with Sunday).  Unexpected or counterintuitive features 
should also be noted. 
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Figure 11: Two Week Traffic Flow Rate Plot Showing Recurrent Weekly Pattern 
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Figure 12 presents a classic data set from time series literature (Box and Jenkins, 1976).  
The data are monthly international airline passenger totals from January 1949 to 
December 1960.  Inspection of the upper plot reveals a trend, a yearly pattern, and an 
increasing variance.  In the lower plot, a natural log transform has been used to address 
the increasing variance.  
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Figure 12: Monthly Airline Passenger Data  
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The general approach to dealing with non-constancy in variance is to apply what is 
referred to as a Box-Cox transformation on the input data (Box and Cox, 1964).  If we let 
{ }tY  be the transformed series and { }tX  be the input series, the transformation is 

defined as: 

λ

λ 1−
= t

t

X
Y  

Although λ can be treated as real number parameter and estimated based on the sample 
data, in practice time series transformations are usually made by taking the natural 
logarithm ( 0→λ ) or taking the square root ( 5.0=λ ).  The transformation is valid for all 
values of λ only if { }tX  is strictly positive.  For example, the two common transformations 

just mentioned will not work on negative values.  Therefore, a preliminary transformation is 
required to use a Box-Cox transformation with a series that includes negative valued 
observations.  Most of the available software packages provide easy implementation of 
Box-Cox transformations, including automatic conversion of the forecasts back to original 
units. 

Planning Example: The data presented in Figure 12 are actual international airline passenger 
data.  One might be interested in developing a forecast model for next month’s passenger 
total based on this data.  Box and Jenkins developed a model for this data that has become 
known as the “airline model” because of its relationship to the airline passenger data.  The 
model has the form ARIMA (0,1,1)(0,1,1)12.  The meaning of this model shorthand will be 
explained later in this chapter section.  However, a good illustration of the importance of 
correcting for non-constancy in variance is found in comparing the goodness of fit of the  
airline model to the raw data (Figure 12 top graph) with the goodness of fit of the airline 
model to the natural logarithm of the data (Figure 12 bottom graph). 
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     Raw Data  Natural Log Transform 
 
Mean Square Error 135.49 114.85 
Root Mean Square Error 11.64 10.71 
Mean Absolute Percentage Error 3.18% 2.93% 
Mean Absolute Error 8.97 8.18 

 

Level shifts may indicate an abrupt change in the underlying process or processes 
generating the data.  For example, the return of students to a small college town would 
result in a marked increase in traffic flows in the area.  Two basic options are available 
when faced with level shifts in a continuous sample of time series data.  Either the level 
shifts can be modeled in the context of the overall sample, or the sample can be split into 
smaller samples at the shift points.  

Outliers in time series data can result from either truly aberrant observations or from gross 
errors in the system that detects and records the data.  For example, a freeway accident 
that caused complete closure of all travel lanes would create outlying observations at 
downstream detection stations.  On the other hand, faulty detection equipment could also 
yield outlying data points.  Figure 13 shows one week of freeway traffic flow rates where 
the data collection system was “stuck” on 540 vehicles per hour for eleven hours. 

Figure 13: Traffic Flow Rate Plot Showing Data Recording Outliers 
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The steps for dealing with outliers, trends and seasonal patterns depend on whether the 
time series analysis is based on exponential smoothing or ARIMA.  Missing values may 
also be present in the time series samples.  The method for handling missing values also 
depends on the model choice.  Modeling approach selection is the next step. 

Select Modeling Approach 

The time series model choice often depends more on the intended use of the forecasts 
than it does on particulars of the data series.  Therefore, this decision is likely to have 
already been made.  Nevertheless, if the information gathered during the visual inspection 
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has relevance to the issue, this point in the process is a good time to revisit and reaffirm or 
change the selection. 

Exponential smoothing was developed in the 1950s as an ad hoc forecasting approach.  
However, a theoretical justification as well as a relationship to ARIMA was discovered after 
the fact.  Exponential smoothing is popular for many reasons.  It is easy to understand and 
intuitively pleasing.  Exponential smoothing methods have few parameters by definition 
and therefore avoid the pitfall of overfitting to the sample data with excessively complex 
models.  Exponential smoothing has proven to provide very good forecasts for a wide 
variety of univariate forecasting applications. 

On the down side, exponential smoothing assumes a model form a priori.  Although the 
forecasts are likely to be reasonably good, a fitted exponential smoothing model will fully 
exploit the temporal correlation structure of the data only if the chosen exponential 
smoothing model form closely approximates the “true” underlying model form. 

ARIMA on the other hand is a very general modeling framework.  The flexibility of ARIMA 
enables more accurate modeling but also opens up the potential for overfitting.  However, 
the use of model selection metrics known as information criteria help reduce the risk of 
overfitting and can even result in models that are simpler than exponential smoothing.  
ARIMA in most cases will provide a more accurate model and in turn provide a better 
estimate of the series variance and better forecasts. 

On the down side, ARIMA models require more expertise to develop.  Therefore from a 
field application standpoint, the marginal improvement in accuracy of ARIMA over 
exponential smoothing may not justify the added effort in some situations. 

From a scientific research perspective, ARIMA clearly gets the nod.  Of the four principal 
types of exponential smoothing – simple, double, additive Holt-Winters, and multiplicative 
Holt-Winters – only multiplicative Holt-Winters does not have an equivalent ARIMA model 
representation.  Therefore, there is nothing to be lost from selecting ARIMA.  On the 
contrary, ARIMA provides a rigorous statistical framework in which to better understand 
the time-correlated nature of the data. 

All this having been said, an analyst may choose to delay this decision altogether and 
develop a “best” exponential smoothing model and a “best” ARIMA model.  Given the 
ease of use of the available time series analysis software, the marginal effort to do both 
versus choosing one should be minimal. 

Exponential Smoothing 

The type of exponential smoothing used depends on whether or not the series in question 
has a characteristic seasonal pattern and /or trend.  If a seasonal pattern exists then one 
of the Holt-Winters methods must be used.  If a trend is present but a seasonal pattern is 
not, then double exponential smoothing is appropriate.  Simple exponential smoothing is 
for series with no trend or seasonal pattern. 

Exponential Smoothing: Seasonal Component? 

Seasonality in time series is usually known with a high degree of certainty before hand.  
The traffic flow rate and airline passenger data in Figure 11 and Figure 12 above are 
examples.  In these types of series we expect our visual inspection of the data to confirm 
our hypothesis.  The visual inspection of seasonal data plots also give information on the 
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stability of the recurrent pattern.  Holt-Winters exponential smoothing is indicated when a 
seasonal pattern is confirmed. 

Exponential Smoothing: Trend Component? 

As with seasonality, the presence of trend in a time series should be expected.  The 
obvious trend in the airline passenger data in Figure 12 mirrors the significant growth of 
schedule air travel during the 1950s.  Double exponential smoothing is indicated when 
there is trend but no seasonal pattern. 

Exponential Smoothing: Simple Exponential Smoothing 

Simple exponential smoothing is a single parameter forecast model appropriate for level, 
non-seasonal time series.  The recursive one-step forecast equation is given by: 

( ) 10,ˆ1ˆ
1 <<−+=+ ααα ttt XXX  

where α  is the level smoothing parameter and 

1
ˆ

+tX  is the forecast of 1+tX  from tX . 

The recursions are equivalent to the following series: 

( ) ( ) K+−+−+= −−+ 2
2

11 11ˆ
tttt XXXX ααααα  

The series representation shows that the forecast given by the recursive equation is 
equivalent to an exponentially weighted moving average of all current and past 
observations (hence the name “exponential smoothing”).  The rate of decay of the 
exponential weighting is governed by α . 

Future forecasts “flat line” in simple exponential smoothing for large t.   In other words, the 
forecast for time 1+t  is an estimate for the forecast for all times kt + , where 1>k . 

Reference was made above to an “after the fact” theoretical justification for exponential 
smoothing.  Specifically, it was proven that exponential smoothing is the limiting result as 

∞→t  of the exponentially weighted least squares solution for a constant level stochastic 
series. 

Exponential Smoothing: Select Starting Value for Level 

Since the recursive smoothing (forecast) equation requires both an estimate and an actual 
value, a decision must be made on how to “start” the recursions.  There are two basic 
choices.  If we give the first observation in the sample a time interval index of 1, i.e., 1X , 

then we can either  

• let 1X  be the forecast for the second interval 2X̂  and begin the recursive forecasts 

at the third time interval 

or 



 
Volume II: page 179 

• estimate the level at the time interval 1=t , take this estimate as 1X̂ , and use the 

recursive equation to calculate 2X̂ . 

If the second option is used, the initial level can be calculated by averaging all the sample 
observations, averaging the first few observations, or fitting a line through the sample and 
using the value on the line at time 1=t .  The more consistent the level is across the 
sample, the less difference there will be among these three choices.  However, since there 
may be a general drift in the sample or in the first few observations, the latter two methods 
for estimating the initial level are more robust.  Most of available software packages allow 
analysts to either accept a default initial level calculation or input a user provided initial 
level estimate.  If the software default estimate is accepted, the analyst should be aware of 
how the initial level was calculated and be confident that the default estimate is 
appropriate.  

A more precise way to estimate the initial level would be to reverse the sample, i.e. 
{ }nn XXXX ,,,, 121 −K  becomes { }121 ,,,, XXXX nn K− , use one of the methods 

above to begin the recursive forecasts on the reversed series, and take the estimate for 

1X  from the reversed series as 1X̂  to begin the forecasts for the original series.  For 

simple exponential smoothing, this level of effort is rarely necessary. 

Exponential Smoothing: Estimate α  by Minimizing Sum of Square Error 

The smoothing parameter is estimated by minimizing the sum of square error for the 
recursive forecasts.  If an Excel spreadsheet is used to generate the forecasts, the 
“Solver” tool can be used to do the estimation.   Another software option is the exponential 
smoothing routine in the statistical software package SPSS.  In SPSS, the user defines a 
range an increment for the smoothing parameter.  SPSS then calculates the sum of 
square error for each value of α  in the range and reports back the ten values of α  with 
the lowest sum of square error. 

Handling of outliers and missing values can vary depending on the software used.  For 
example, if Excel is used, outliers and missing values can be replaced with the recursive 
estimates.  On the other hand, the exponential smoothing routines in SPSS were not 
designed to allow for missing values.  Therefore, SPSS requires the analyst to compute 
replacements for outliers and missing values prior to estimating the smoothing parameter. 

When estimating replacement values for outliers and missing values, the goal is to derive 
reasonable values that do not bias the smoothing parameter estimates.  If the relative 
number of outliers and missing values is not high (say less than 10%, although this should 
not be considered a general rule of thumb), then the risk of model bias should be low.  In 
this case, simple techniques to calculate replacement values can be used, such as 
interpolating between reasonable observed values.  However, if the analyst is concerned 
with model bias, a more rigorous treatment of outliers should be considered.  Discussion 
of the available techniques would not be appropriate here.  However, references are 
provided in the response to the question – How extensive should the outlier analysis be? – 
in the trouble shooting section below. 
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Exponential smoothing: Double exponential smoothing 

If a trend exists in a modeled time series that has no recurrent seasonal pattern, then 
double exponential smoothing is appropriate.  Double exponential smoothing is a two 
parameter model that includes a trend smoothing parameter, γ , in addition to the level 
smoothing parameter, α .  Forecasts are calculated by the following set of recursive 
equations: 

( )( )
( ) ( ) 10,1

10,1

ˆ

11

11

1

<<−+−=
<<+−+=

+=

−−

−−

+

γγγ
ααα

tttt

tttt

ttt

BLLB
BLXL
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where α  is the level smoothing parameter,  

γ  is the trend smoothing parameter, 

1
ˆ

+tX  is the forecast of 1+tX  at time t , 

tL  is the smoothed series level at time t , and 

tB  is the smoothed series trend at time t . 

As each successive observation is fed into the equations, the smoothed level is updated 
first, then this updated level is used to update the smoothed trend, and finally the updated 
level and trend are added to calculate the forecast for the next time interval.  The concept 
is exactly the same as in simple exponential smoothing except that now an interval-to-
interval trend is being smoothed along with the level. 

Exponential smoothing: Select starting values for level and trend 

In double exponential smoothing, initial values must be estimated for level and trend.  
Available options are similar to those for estimating initial level for simple exponential 
smoothing. 

If we give the first observation in the sample a time interval index of 1, i.e., 1X , then we 

can either  

• let 22 XL = , 122 XXB −= , and 223
ˆ BLX +=  

or 

• estimate the level and trend at the time interval 0=t and add these together to 

calculate 1X̂ . 

The level and trend at time 0=t  can be estimated by fitting a line through the entire 
sample or through some initial subset of the sample.  The initial level is the value on the 
line at time 0=t  and the initial trend is the slope of the line.  If the trend is not entirely 
consistent across the sample, using a subset of the first several observations may be 
more appropriate. 
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Exponential Smoothing: Estimate α and δ by Minimizing Sum of Square Error 

See the discussion of smoothing parameter estimation under simple exponential 
smoothing above.  The points highlighted for simple exponential smoothing apply for 
double exponential smoothing as well.  The only difference is that there are now two 
parameters to estimate. 

Exponential Smoothing: Holt-Winters Smoothing 

If the series of interest has a recurrent seasonal pattern then Holt-Winters smoothing 
should be used.  The full, three-parameter form of the additive Holt-Winters model is: 

( ) ( )( )
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where α  is the level smoothing parameter,  

γ  is the trend smoothing parameter, 

δ  is the seasonal factor smoothing parameter, 

1
ˆ

+tX  is the forecast of 1+tX  at time t , 

tL  is the smoothed series level at time t ,  

tB  is the smoothed series trend at time t , and 

tS  is the smoothed additive seasonal factor at time t . 

The full, three-parameter form of the multiplicative Holt-Winters model is: 
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where α  is the level smoothing parameter,  

γ  is the trend smoothing parameter, 

δ  is the seasonal factor smoothing parameter, 

1
ˆ

+tX  is the forecast of 1+tX  at time t , 
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tL  is the smoothed series level at time t ,  

tB  is the smoothed series trend at time t , and 

tS  is the smoothed multiplicative seasonal factor at time t . 

In both model forms, the parameter d in the seasonal factor subscript represents the 
length of the recurrent seasonal pattern in terms of number of time intervals.  For example, 
a series of monthly average daily traffic volumes would have a seasonal pattern that is 12 
intervals long.  As the model is applied, there will be current values for the seasonal factor 
for each period within the seasonal pattern.  In other words, the monthly average daily 
traffic volume example would carry forward 12 seasonal factors, one for each month of the 
year. 

The level and trend are updated at each time interval and used to generate the forecast 
for the next interval.  However, only the corresponding time period’s seasonal factor is 
updated at each time interval, and this updated seasonal factor will not be used for 
forecasting until the corresponding time period comes up again.  Going back to the 
monthly average daily traffic volume example, say we have just observed a new January 
monthly average.  This value will be used to update the level and trend for forecasting the 
February monthly average.  However, the seasonal factor used for the February forecast 
will be the one we updated last February, and the newly updated January seasonal factor 
will not be used until we are ready to forecast next January’s monthly average. 

Exponential Smoothing: Choose Additive or Multiplicative Seasonal Factors  

In the Holt-Winters framework, seasonal variation can be modeled either with additive or 
multiplicative seasonal factors.  In theory, the additive model carries the assumption that 
the seasonal effect is constant for each period in the seasonal pattern.  The multiplicative 
model, on the other hand, assumes that the seasonal effect at each period in the seasonal 
pattern is proportional to the local deseasonalized level.  After reflecting on these 
assumptions, it may be possible to make a defensible case for one model versus the other 
based on a priori knowledge about the process in question. 

If the case is not strong for one method over the other, it might be prudent to develop both 
an additive and a multiplicative model and compare their performance.  If neither method 
emerges as a clear choice from a model accuracy perspective, the decision might hinge 
on practical considerations.  For example, for a strictly positive process whose values 
closely approach zero a particular points in the seasonal cycle, an additive model could 
result in negative forecasts. 

Practical issues relating to Holt-Winters forecasting are not well covered in the available 
time series texts.  A paper in The Statistician titled “Holt-Winters Forecasting: Some 
Practical Issues” is a helpful reference (Chatfield and Yar, 1988). 

Exponential Smoothing: Select Starting Values for Level, Trend and Seasonal 
Factors 

Starting value selection is more critical for Holt-Winters forecasting than with simple and 
double exponential smoothing.  Since the seasonal factors are only updated once each 
cycle, they have less opportunity to adjust.  Therefore, poor initial choices for seasonal 
factors could have a significant effect on the seasonal smoothing parameter estimate. 
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Chatfield and Yar, 1988 group the options for starting value calculation into two classes 
global values and initial values.  Global values are based on all the data in the sample, 
and initial values are based on some subset at the beginning of series.  Chatfield and Yar 
recommend initial values.  Use of global values can result in underestimation of the 
smoothing parameters, especially the seasonal factor parameter.  Chatfield and Yar 
further recommend that either the initial values be based on backcasting or on the first two 
or three seasonal cycles.  Backcasting refers to reversing the data, using a simple method 
to calculate the initial values for the reversed series, and then using the forecast values at 
the end of the reversed series for the initial values for the original series. 

The following example illustrates an initial value calculation based on the first three years 
of the airline passenger data given in Figure 12.  Since the seasonal effect appears to 
increase with level, multiplicative seasonal factors are appropriate.  In Figure 14 below, a 
fitted straight line is shown through the first three years of data.  The intercept of this line is 
114 passengers.  This value can be used for the initial level.  The slope of the line is 1.7 
passengers.  This can be used for the initial trend. 

Table 11 presents the calculation of the initial seasonal factors.  The average of the first 
three years data is 145.5.  A ratio of observed passenger total to this average is computed 
for each of the first three years observations.  Finally, the three instances of each month 
are averaged.  It so happens that the calculated initial seasonal factors average to exactly 
1.0.  When multiplicative seasonal factors do not average to 1.0 as first calculated, they 
should all be divided by the average. 

Additive seasonal factors can be calculated in a similar fashion using the difference 
between observed and average values instead of the ratio.  Additive seasonal factors 
should sum to zero.  This is achieved by subtracting an equal allocation of the sum from 
each of the seasonal factors. 

Figure 14: First Three Years of Airline Passenger Data  
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Table 2: First Three Years of Airline Passenger Data  

Month
Airline 

Passengers

Average 
First Three 

Years

Actual to 
Average 

Ratio
Seasonal 
Factors

Jan-49 112 145.5 0.77 0.85
Feb-49 118 145.5 0.81 0.90
Mar-49 132 145.5 0.91 1.03
Apr-49 129 145.5 0.89 0.98
May-49 121 145.5 0.83 0.96
Jun-49 135 145.5 0.93 1.06
Jul-49 148 145.5 1.02 1.18

Aug-49 148 145.5 1.02 1.18
Sep-49 136 145.5 0.93 1.10
Oct-49 119 145.5 0.82 0.95
Nov-49 104 145.5 0.71 0.83
Dec-49 118 145.5 0.81 0.97
Jan-50 115 145.5 0.79
Feb-50 126 145.5 0.87
Mar-50 141 145.5 0.97
Apr-50 135 145.5 0.93
May-50 125 145.5 0.86
Jun-50 149 145.5 1.02
Jul-50 170 145.5 1.17

Aug-50 170 145.5 1.17
Sep-50 158 145.5 1.09
Oct-50 133 145.5 0.91
Nov-50 114 145.5 0.78
Dec-50 140 145.5 0.96
Jan-51 145 145.5 1.00
Feb-51 150 145.5 1.03
Mar-51 178 145.5 1.22
Apr-51 163 145.5 1.12
May-51 172 145.5 1.18
Jun-51 178 145.5 1.22
Jul-51 199 145.5 1.37

Aug-51 199 145.5 1.37
Sep-51 184 145.5 1.26
Oct-51 162 145.5 1.11
Nov-51 146 145.5 1.00
Dec-51 166 145.5 1.14  

 

Exponential Smoothing: Estimate α, δ and γ by Minimizing Sum of Square Error 

See the discussion of smoothing parameter estimation under simple exponential 
smoothing above.  The points highlighted for simple exponential smoothing apply for Holt-
Winters smoothing as well.  The only difference is that there are now three parameters to 
estimate. 
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Exponential Smoothing: Externally Validate the Model 

The fitted model should now be applied to a sample of data from the modeled series that 
were not used to estimate the parameters.  This is usually done by holding out a portion of 
the available data or by using a second sample separated in time from the one used to 
develop the model.  Goodness of fit measures can be compared to the results achieved 
on the model development data.  Although one would expect the fit to be better to the 
development data, the performance should not be markedly worse for the model 
evaluation data. 

An often-overlooked step in model validation is to compare forecasts from the fitted model 
to naïve or heuristic forecasts.  For simple exponential smoothing, a reasonable naïve 

forecast to compare to would be tt XX =+1
ˆ .  For double exponential smoothing, one 

might compare the fitted model forecasts to 11 2ˆ
−+ −= ttt XXX .  Similar non-fitted 

heuristic forecasts can be developed for seasonal series as well.  If the fitted model cannot 
consistently outperform heuristic forecasts on the model evaluation data, then its 
usefulness is questionable.  Paired samples statistical tests such as the Wilcoxon Signed-
Rank test can be used to assess the statistical significance of differences in performance 
based on absolute deviation or absolute percentage error. 

Exponential Smoothing: Document the Model 

The validated model should be thoroughly documented.  All assumptions should be clearly 
spelled out along with the rationale for any modeling decisions along the way.  Specific 
items to be documented include: 

• how outliers were handled 

• how initial values were selected 

• how the model parameters were estimated 

• the methodology and results of model validation 

Exponential Smoothing: Implement the Model 

Implementation of exponential smoothing models is very straightforward.  After initial 
values are calculated, the fitted recursive equations can be used to calculate on-line 
forecasts for the modeled data stream. 

ARIMA 

Autoregressive integrated moving average (ARIMA) models provide a general framework 
for modeling time correlated discrete time stochastic processes.  The autoregressive part 
of the term refers to a time series that can be represented in terms of past observations.  
Autoregressive means “self-regressive” because the time series is in essence regressed 
on itself.  For example, a first-order autoregressive process would be represented as: 
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ttt eXX ++= −1φµ  

    where µ  is the autoregressive constant, 

    φ  is the first order autoregressive parameter, and 

    te is the white noise innovation series. 

The order of the process refers to how many steps back the model reaches.  A p-th order 
autoregressive process is referred to in shorthand as an AR (p) process. 

Moving average refers to models that are expressed in terms past innovations instead of 
past values. For example, a first-order moving average process would be represented as: 

1−−+= ttt eeX θµ  

    where µ  is the series mean, 

    θ  is the first order moving average parameter, and 

    te is the white noise innovation series. 

At first glance, the intuition behind moving average processes is not readily apparent.  
However, the first order moving average process above can be rewritten as the following 
infinite series: 

ttttttt eXXXX +−−−−
−

= −−−−− K33
3

22
2

11
θθθ

θ
µ

 

So the moving average process is an exponentially decaying function of the past series 
values.  A p-th order moving average process is referred to in shorthand as an MA (q) 
process. 

Two useful time series conventions need to be presented before going forward with this 
brief introduction to ARIMA.  The first convention is the backshift notation.  The second 
convention is differencing notation. 

The backshift operator is defined by the expression: 

jtt
j XXB −= . 

For example, 3
3

−= tt XXB . 

Differencing creates a transformed series that consists of the differences between lagged 
raw series values.  The single lag difference operator is often denoted by the symbol ∇ .  
Using this symbol, the first and second differences for the time series { }tX  can be 

defined as: 
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1−−=∇ ttt XXX  

( ) 21211
2 2 −−−−− +−=−−−=∇ tttttttt XXXXXXXX . 

Differencing with the single lag operator ∇  is sometimes called ordinary differencing.  
Differencing can also be applied at a seasonal lag.  For a series with a seasonal cycle of 
12 intervals, the first seasonal difference would be defined as 1212 −−=∇ ttt XXX . 

Using the backshift operator, the first difference can be written as 
( ) 11 −−=− ttt XXXB , the second difference as 

( ) ( ) 21
22 2211 −− +−=+−=− ttttt XXXXBBXB , and so on. 

The “I” in ARIMA refers to differencing necessary to achieve stationarity.  We can now 
introduce the general ARIMA model. 

ARIMA Process 

A time series { }X t  is as ARIMA (p,d,q) process if the differenced series 

( ) t
d

t XBY −= 1  is a stationary autoregressive moving average (ARMA) process defined 

by the expression 

  ( ) ( ) tt eBYB θφ =
 

 where B is the backshift operator defined by B W Wa
t t a= − , 

 
( ) ,1 1

p
p zzz φφφ −−−= L  

 
( ) ,1 1

q
q zzz θθθ −−−= L  and 

 te  is identically and normally distributed with mean zero, variance 2σ , 

 and ( ) 00,cov ≠∀=− kee ktt , i.e., { } ( )2,0WN~ σte . 

For a more thorough presentation of ARIMA modeling, see a comprehensive time series 
text such as Brockwell and Davis, 1996. 

Most of the available software packages allow for the presence of embedded missing 
values in time series data.  Therefore, it may not be necessary to replace missing values, 
and outliers can in this case be handled by considering them as missing.  However, the 
analyst needs to understand the method that the software will use to estimate missing 
values and be confident that the method is appropriate for the specific investigation. 
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ARIMA: Seasonal Component? 

The first step then in ARIMA time series modeling is to determine whether ordinary or 
seasonal ARIMA is appropriate.  If a recurrent seasonal pattern is expected and the 
existence of this pattern verified in the visual inspection of the data plots, then seasonal 
ARIMA should be used.  Otherwise, an ordinary ARIMA model should be developed. 

ARIMA: Ordinary ARIMA 

Box and Jenkins (1976) developed what has come to be the accepted methodology for 
applying ARIMA models.  The basic steps of this process are model identification, model 
estimation, and model diagnosis. 

The model identification stage includes the following determinations: 

8) type and level of differencing required for stationarity 

9) series transformations necessary to deal with heteroscedacity 

10) approximate model form based on analysis of the autocorrelations and partial 
autocorrelations of the differenced and transformed series 

A nonlinear regression algorithm is then used in the model estimation stage to determine 
parameter values for the fitted model.  Unless the autocorrelations and partial 
autocorrelations definitively indicate a “best” model form, the model estimation step also 
includes fitting several reasonable models and using goodness of fit statistics and 
information criteria to select the preferred model. 

In model diagnosis, the performance of the preferred model is evaluated in its own right.  
This step involves checking the model parameters for statistical significance and analyzing 
the one step forecast residuals to see if they are uncorrelated.  If the residuals are not 
sufficiently uncorrelated, the structure of the residual correlation can be used as a basis for 
modifying the model form.  The steps are iterated in this fashion until an acceptable model 
is produced. 

The model estimating procedure presented in this manual differs from the classic Box 
Jenkins approach in relation to model specification.  For model specification, the Box-
Jenkins methodology relies heavily on analysis of the plots of the sample autocorrelations 
and partial autocorrelations.  Although these plots can provide useful guidance as to the 
appropriate model form, they are more useful for identifying pure AR or MA processes 
than they are at identifying mixed ARIMA processes.  Also, in practice, most series are 
best modeled with low-order, parsimonious models.  Therefore, rather than relying on the 
autocorrelation and partial autocorrelation plots for model identification, a more robust 
approach is to fit all models with orders constrained to some search space, e.g., 

11 Cqp ≤+≤  and 21 CQP ≤+≤ , and then select the best model form based on 

goodness of fit statistics.  For this final model selection stage, a class of goodness of fit 
statistics known as information criteria have been developed that attempt to provide 
information on the future predictive performance of estimated models by applying a 
penalty that increases as the number of model parameters increases.  The two most well 
known are the Akaike information criterion (AIC) and the Schwartz Bayesian criterion 
(SBC).  These will be discussed more under model selection below. 
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ARIMA: Analyze Autocorrelations and Partial Autocorrelations 

The sample autocorrelation and partial autocorrelation plots are indispensable for 
determining if differencing is needed and to develop a general idea of the appropriate 
model form.  Simply stated, the sample autocorrelations are measures of the strength of 
correlation between values in the sample separated by specific lags.  The sample partial 
autocorrelations are the marginal correlation that has been adjusted to remove the 
contribution from all shorter lags.  In other words, the sample autocorrelation at a lag of 12 
measures the correlation between observations in the series that are separated in time by 
12 time intervals.  The sample partial autocorrelation at a lag of 12 is the portion of this 
autocorrelation that is solely due to the correlation between observations separated in time 
by 12 time intervals taking into account the correlation between observations separated by 
11 or fewer time intervals. 

If the sample autocorrelations exhibit exponential or sinusoidal decay or if they drop off 
quickly after a few lags, then the series can be considered stationary.  If the 
autocorrelations decay linearly, then differencing is necessary, proceed to the next step. 

Once a stationary transformation of the original series is obtained, the autocorrelation and 
partial autocorrelation plots can be viewed together to get an idea of the model form.  
Table 3 gives the general characteristics of AR, MA, and ARMA processes.  Figure 15 
presents this same information graphically. 

Table 3: Correlation Characteristics of ARMA Processes 

Type of Process Autocorrelation Plot Partial Autocorrelation Plot 

Autoregressive – AR (p) Exponential or sinusoidal decay  Significant partial autocorrelation 
out to lag p then drops off 

Moving Average – MA (q) 
Significant autocorrelation out to 

lag q then drops off 
Exponential or sinusoidal decay  

Autoregressive moving average 
ARMA (p,q) 

Significant autocorrelation out to 
lag q decays exponentially or 

sinusoidally 

Significant autocorrelation out to 
lag p decays exponentially or 

sinusoidally 
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Figure 15: Correlation Characteristics of ARMA Processes 
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Even with the hypothetical plots shown in Figure 15, the model form and order may not be 
absolutely clear, and plots from real data rarely follow the textbook pattern.  That is why 
the methodology presented in this manual relies more on an information criteria based 
search to determine model form and order than on analysis of the autocorrelation and 
partial autocorrelation plots. 

ARIMA: Determine Necessary Differencing? 

If the autocorrelations decay in a slow linear pattern, then try a first difference.  A first 
difference usually is sufficient to induce stationarity.  If the autocorrelation plot of the 
differenced series still does not drop off or decay rapidly then try a second difference.  It is 
very rare to need more than a second order difference. 
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ARIMA: Seasonal ARIMA 

Seasonal ARIMA is a multiplicative generalization of the ordinary ARIMA model with 
differencing and parameters also allowed at seasonal lags.  Seasonal ARIMA is defined 
as follows: 

Seasonal ARIMA Process 

A time series { }X t  is a seasonal ARIMA (p,d,q) (P,D,Q)S process with period S if d and 

D are nonnegative integers and if the differenced series ( ) ( )Y B B Xt
d s D

t= − −1 1  is a 

stationary autoregressive moving average (ARMA) process defined by the expression 

  ( ) ( ) ( ) ( ) t
s

t
s eBBYBB Θ=Φ θφ

 

 where B is the backshift operator defined by B W Wa
t t a= − , 

 
( ) ( )φ φ φz z z z z zp

p
P

P= − − − = − − −1 11 1L L, ,Φ Φ Φ  

 
( ) ( )θ θ θz z z z z zq

q
Q

Q= − − − = − − −1 11 1L L, ,Θ Θ Θ  and 

 te  is identically and normally distributed with mean zero, variance 2σ , 

   and ( ) 00,cov ≠∀=− kee ktt , i.e., { } ( )2,0WN~ σte . 

ARIMA: Analyze Autocorrelations and Partial Autocorrelations at Ordinary and 
Seasonal Lags 

For seasonal ARIMA processes it is necessary to plot autocorrelations and partial 
autocorrelations at both ordinary and seasonal lags.  Plots for the raw data should confirm 
the seasonal cycle.  The conditions for stationarity and rules of thumb for model form are 
the same as for ordinary ARIMA, they are simply considered at both ordinary and 
seasonal lags.  Figure 16 shows ordinary lag autocorrelation plots for a series of freeway 
traffic flow rates (these are actual data from the London Orbital Motorway, M25).  The data 
in this case are 15-minute flow rates, so there are 672 intervals in each weekly seasonal 
cycle.  A daily cycle appears in the data, however there is a rise in the correlation at on 
week (7 days lag) indicated that the stronger pattern is weekly. 
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Figure 16: Ordinary Lag Autocorrelations for Freeway Flow Rate Data  
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ARIMA: Determine Necessary Ordinary and Seasonal Differencing? 

A first order seasonal difference should be tried first.  This should induce stationarity in the 
seasonal lags and will often induce stationarity at the ordinary lags as well.  Rarely is a 
second seasonal difference needed.  If ordinary differencing is also needed it is not likely 
that more than a first ordinary difference will be needed. 

ARIMA: Define Search Space for ARIMA Model Order 

The next step will be to estimate several ARIMA models from which the “best” model will 
be selected.  A finite set of models must be defined.  The autocorrelation and partial 
autocorrelation plots may provide information on limits to the search space.  However, the 
ease of specifying and estimating models in the available software programs makes it 
possible to be somewhat liberal in specifying the search space.  In most cases, the “best” 
model based on information criteria will fall within the model space defined by 

51 ≤+≤ qp  for ordinary ARIMA models.  When a multiplicative seasonal component is 

needed, the “best” seasonal model form will most likely fall within the model space defined 
by 21 ≤+≤ QP . 
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Some of the software packages include more than one parameter estimation method.  
The two common methods are conditional least squares and maximum likelihood.  
Discussion of these is beyond the technical scope of this manual.  However, empirical 
research has shown maximum likelihood to be the superior method.  Therefore, this option 
should be selected if available. 

ARIMA: Select Model Based on Information Criterion 

The term information criteria refer to a class of goodness of fit statistics that gauge the 
future predictive performance of fitted models by applying a penalty that increases as the 
number of model parameters increases.  The two most well known are the Akaike 
information criterion (AIC) and the Schwarz Bayesian criterion (SBC).  Most of the 
available software packages calculate both of these statistics, along with a host of others, 
automatically.  The SBC should be given slight preference because Monte Carlo studies 
have suggested that the AIC tends to overestimate the autoregressive order (Brockwell 
and Davis, 1996).  The SBC is sometimes referred to as the Bayesian information criterion 
(BIC).  As derived, these criteria are given in terms of the Gaussian likelihood of the 
model, L, the number of free parameters in the model, k , and in the case of the SBC, the 
number of residuals, n. 

 
( ) kL 2ln2AIC +−=  

 
( ) ( )nkL lnln2SBC +−=  

 
 
The criteria can also be expressed in terms of the sum of square errors (SSE): 

 

kn 2
k-n

SSE
lnAIC +






=  

 

( )nkn ln
k-n

SSE
lnSBC +






=  

 

After estimating the models specified by the model search space, rank them in terms of 
ascending information criterion order.  The model with the minimum calculated information 
criterion is the “preferred” model in terms of the information criterion used.  However, if a 
more parsimonious model has an information criterion value very close to the minimum, 
the analyst may choose to select the more parsimonious model.  This is a conservative 
approach that in essence assigns an even higher penalty to additional parameters than 
does the information criterion. 
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Traffic Operations Example: The procedures described above were applied to loop detector 
data from the southwest quadrant of the London Orbital Motorway.  A model specification 
search was performed using 1996 15-minute traffic flow data from September and the first 
half of October.  The three lowest SBC models were: 
 
 ARIMA Model Schwarz Bayesian Criterion 
 (1,0,1)(0,1,1)672  52359 
 (2,0,1)(0,1,1)672  52366 
 (3,0,1)(0,1,1)672  52374  

 

ARIMA: Analyze Model Residuals 

The model residuals (or one-step forecast errors) for the selected model can now be 
analyzed to see if they are uncorrelated.  Autocorrelation plots provide graphical 
information.  The common practice is to plot residual autocorrelation out to about 20 lags.  
Most software packages will include 95% confidence bounds defined by n96.1± , where 
n  is the number of residuals.  There should be no spikes well outside of these bounds 
and no more than one or two falling just outside. 

Randomness in the residuals can also be tested by using a portmanteau test.  The most 
popular is the Ljung-Box portmanteau test (Ljung and Box, 1978).  The Ljung-Box statistic 
has a distribution well approximated by the chi-squared distribution.  The statistic is 
computed by 

  ( ) ( )
( )∑

= −
+=

h

j
h jn

j
nn

1

2
2 2

ρ
χ

)
 

where n is the number of residuals 

and ( )jρ̂  is the sample autocorrelation of the residuals at lag j . 

The null hypothesis that the residuals are independent and normally distributed is rejected 
with significance α if the calculated statistic exceeds the α−1  quantile of the chi-squared 
distribution with h degrees of freedom.  In practice the Ljung-Box statistic is calculated out 
to lag 20 (h = 20). 

Traffic Operations Example Continued: For the M25 motorway 15-minute traffic flow example, 
randomness in the model residuals can be checked with the Ljung-Box statistic.  The Ljung-
Box statistic for the residuals from the ARIMA (1,0,1)(0,1,1)672 model calculates to 24.7.  The 
critical chi-squared statistic at α  = 0.05 is 31.41.  Therefore, because the calculated statistic 
does not exceed the critical statistic, the null hypothesis of independent and normally 
distributed residuals is not rejected at level 0.05. 

 

ARIMA: Externally Validate the Model 

The fitted model should now be applied to a sample of data from the modeled series that 
were not used to estimate the parameters.  This is usually done by holding out a portion of 
the available data or by using a second sample separated in time from the one used to 
develop the model.  Goodness of fit measures can be compared to the results achieved 
on the model development data.  Although one would expect the fit to be better to the 
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development data, the performance should not be markedly worse for the model 
evaluation data. 

An often-overlooked step in model validation is to compare forecasts from the fitted model 
to naïve or heuristic forecasts.  For a stationary series (no differencing required), a 

reasonable naïve forecast to compare to would be tt XX =+1
ˆ .  For a first difference 

series (a first ordinary difference required for stationarity), one might compare the fitted 

model forecasts to 11 2ˆ
−+ −= ttt XXX .  Similar non-fitted heuristic forecasts can be 

developed for seasonal series as well.  If the fitted model cannot consistently outperform 
heuristic forecasts on the model evaluation data, then its usefulness is questionable.  
Paired samples statistical tests such as the Wilcoxon Signed-Rank test can be used to 
assess the statistical significance of differences in performance based on absolute 
deviation or absolute percentage error. 

Traffic Operations Example Continued: The ARIMA (1,0,1)(0,1,1)672 model for M25 motorway 
15-minute traffic flow was applied to an independent data sample from the last half of 
October and November 1996.  The model forecasting performance was compared to a naïve 
forecast where 

tt XX =+1
ˆ . 

 
 Model Mean Absolute Error Mean Absolute Percentage Error 
ARIMA (1,0,1)(0,1,1)672  209  9.2% 
Naïve   468  12.9% 
 
The paired absolute errors were also tested using the Wilcoxon Signed-Rank test.  The null 
hypothesis that the absolute errors are from the same distribution can be rejected at the 0.01 
significance level. 

 

ARIMA: Document the Model 

The validated model should be thoroughly documented.  All assumptions should be clearly 
spelled out along with the rationale for any modeling decisions along the way.  Specific 
items to be documented include: 

• how outliers were handled 

• how stationarity was achieved 

• how the model parameters were estimated 

• the methodology and results of the analysis of the residuals 

• the methodology and results of model validation 

ARIMA: Implement the Model 

Fitted ARIMA models provide equations that can be used to calculate recursive forecasts.  
For forecasting, past innovations are estimated by the forecast residual.  All future 
innovations are estimated as zero. 

The best way to illustrate ARIMA forecasting is by example.  Say we have a fitted model 
for a 15 minute flow rates at a freeway counting station.  Furthermore, say that the model 
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is an ARIMA (1,0,1)(0,1,1)672 with parameters 8.0=φ , 4.0=θ , and 9.0=Θ .  If we 

denote the flow rate series as { }tX then the model in equation form: 

( )( ) ( )( ) tt eBBXBB 672672 9.014.0118.01 −−=−−  

Rewritten the equation becomes: 

( ) tttttttt eeeeXXXX ++−−−+= −−−−−− 67367216731672 36.09.04.08.0  

Estimating past innovations by model residuals, the one-step forecast equation becomes: 

( ) ( ) ( ) ( )6726726716716726711
ˆ36.0ˆ9.0ˆ4.08.0ˆ

−−−−−−+ −+−−−−−+= tttttttttt XXXXXXXXXX  

In other words, we now have a linear recursive forecast equation in terms of past 
observations and past residuals. 

Interpretation of Time Series Analysis Output: 

How is a time series model equation interpreted? 

For exponential smoothing models, the fitted values for the smoothing parameters give a 
sense of the stability of the smoothed component.  The more stable the time series 
component the lower the associated smoothing parameter will be.  The closer a 
smoothing parameter is to zero, the closer the recursive smoothing is to a straight average 
of all observed values.  The closer a smoothing parameter is to one, the closer the 
recursive smoothing is to simply echoing back the most recent value. 

ARIMA models need to be interpreted in light of the modeled process.  The fitted model 
should make some intuitive sense.  It is difficult to give general interpretations. 

How is the variance estimate interpreted?  

The error variance gives evidence about the magnitude of the random component in the 
process.  The higher the magnitude of the variance estimate is relative to the magnitude of 
observed values, the more dominated the process is by the stochastic component versus 
the deterministic component. 

How are prediction intervals interpreted? 

Stated simply, the forecaster has (1-α)% confident that an individual observation would 
falls within the prediction interval. 

How are information criteria interpreted? 

Information criteria can only be used to compare models on the same sample with the 
same number of residuals.  The criteria values have no absolute meaning.  When 
comparing two models, the one with the lowest information criterion value should perform 



 
Volume II: page 197 

better in forecasting for future samples of the modeled process.  Higher values either 
indicate poorer fit or too many parameters. 

Are there ARIMA equivalents to exponential smoothing models? 

Yes.  Simple exponential smoothing is equivalent to ARIMA (0,1,1).  Double exponential 
smoothing is equivalent to ARIMA (0,2,2).  Additive Holt-Winters smoothing is equivalent 
to the following ARIMA model: 

 ( )( ) ( ) tt
S eBXBB θ=−− 11  

 where the ( )Bθ  is of the order S+1 with coefficients given by 
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 (Yar and Chatfield, 1990). 

 

TroubleShooting: Time Series Analysis 

What methods can be used to detect and model outliers? 

If the analyst believes that the presence of outliers is introducing bias in the model 
estimation, there are available techniques to detect and model the outliers.  The most 
extensive work has been done by Chen et al. (Chang, Tiao and Chen, 1988), (Chen and 
Liu, 1993a), and (Chen and Liu, 1993b).  The methods they have developed are based on 
a one-at-a-time search and model strategy.  The only software package that includes 
systematic outlier detection is based on their work but not widely used, namely the time 
series software distributed by Scientific Computing Associates.  This is definitely an area 
where more research is needed and the available software tools need to be improved. 

What if the errors are not white noise? 

If the residuals for the “best” model exhibit significant correlation, there may be a problem 
with model specification.  However, white noise residuals in a univariate model should not 
be pursued if they can only be achieved by adding parameters that are not supported by 
information criterion analysis.  The presence of clustered outliers could result in correlation 
in the residuals.  It may also be possible that a univariate model alone is insufficient to 
properly model the series in question. 
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CHAPTER 4; SECTION D: SURVIVAL AND HAZARD MODELS 

Purpose of Survival and Hazard Models: 

Survival and hazard models are used to model the effect of time on the “failure” of an event, process, 
or condition, as well as the effect of other covariates.  

Examples: 
1. Lifetime of asphalt on freeways (before necessary maintenance) as a function of time, 

pavement type, maintenance program, loads, and other factors.  
2. Time to failure of an automated system (such as ITS technology) as a function of time 

and other factors.  
3. Time to crash for a driver on a specific road system as a function of physical attributes, 

experience, exposure, and other factors.  

Basic Assumptions/Requirements of Survival and Hazard Models: 

1) Unambiguous time origin, 

2) Scale for measuring the passage of time, 

3) Unambiguous definition of failure, 

4) A set of predictors (independent variables) thought to affect the failure process. 

Inputs for Survival and Hazard Models: 

Continuous variable Y measured on a time scale, 
Sample of observations on Y for vector of explanatory variables, X.  
 

Outputs of Survival and Hazard Models: 

Goodness of fit statistics of observed time-to-failure data to various assumed failure distributions 
Estimated effects of covariates, X, on time to failure 
 

Overview of Survival and Hazard Methodology: 

There are numerous characteristics of the modeling of survival data that warrant mention here. Note 
that modeling survival data is not covered in detail in this manuscript, and only some of the main 
highlights are provided. The references provided at the end of this chapter should be consulted for 
estimating survival models.  

1) Censoring is a characteristic of survival data. In other words, there are experimental units 
observed over time period T that have ‘failed’ (e.g. died, crashed, recovered from illness, etc.), 
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and the remaining experimental units have yet to fail because time has been censored, due to 
the end of the data collection period. 

2) Often observed in survival data are time-dependent covariates. These are independent 
variables that vary over time for an individual or experimental unit, reflecting the changing 
status of an individual or unit over the duration of the study. 

3) Central to the modeling of survival times is the notion of hazard and survival functions. A 
hazard function is a mathematical function that expresses the fraction of the population failing 
by time t. The survivor function, related to the hazard function, is the fraction still surviving at 
time t.  

4) There are numerous probability functions that can serve as survival functions, such as 
exponential, gamma, Weibull, compound exponential, log logistic, extreme value distribution, 
and proportional hazards family of distributions.  

5) Similar to other statistical models, there are components of variance (unexplained deviations 
from the survivor and hazard functions), and covariates that are thought to affect the survival 
time of experimental units.  

6) Similar to other statistical models, models can be compared to determine: which covariates are 
thought to influence the survival process, and which probability distribution best approximates 
the survival process. 
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