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Systematic, well-designed research provides the most effec-
tive approach to the solution of many problems facing high-
way administrators and engineers. Often, highway problems 
are of local interest and can best be studied by highway 
departments individually or in cooperation with their state 
universities and others. However, the accelerating growth of 
highway transportation develops increasingly complex prob-
lems of wide interest to highway authorities. These problems 
are best studied through a coordinated program of coopera-
tive research. 
In recognition of these needs, the highway administrators of 
the American Association of State Highway and Transporta-
tion Officials initiated in 1962 an objective national highway 
research program employing modem scientific techniques. 
This program is supported on a continuing basis by funds 
from participating member states of the Association and it 
receives the full cooperation and support of the Federal 
Highway Administration, United. States Department of 
Transportation. 
The Transportation Research Board of the National Re-
search Council was requested by the Association to admin-
ister the research program because of the Board's recognized 
objectivity and understanding of modem research practices. 
The Board is uniquely suited for this purpose as: it maintains 
an extensive committee structure from which authorities on 
any highway transportation subject may be drawn; it pos-
sesses avenues- of communications and cooperation with 
federal, state, and local governmental agencies, universities, 
and industry: its relationship to its parent organization, the 
National Academy of Sciences, a private, nonprofit institu-
tion, is an insurance of objectivity; it maintains a full-time 
research correlation staff of specialists in highway transpor-
tation matters to bring the findings of research directly to 
those who are in a position to use them. 	 - 
The program is developed on the basis of research needs 
identified by chief administrators of the highway and trans-
portation departments and by committees of AASHTO. 
Each year, specific areas of research needs to be included in 
the program are proposed to the Academy and the Board by 
the American Association of State Highway and Transporta-
tion Officials. Research projects to fulfill these needs are 
defined by the Board, and qualified research agencies are 
selected from those that have submitted proposals. Adminis-
tration and surveillance of research contracts are the respon-
sibilities of the Academy and its Transportation Research 
Board. 
The needs for highway research are many, and the National 
Cooperative Highway Research Program can make signifi-
cant contributions to the solution of highway transportation 
problems of mutual concern to many responsible groups. The 
program, however, is, intended to complement rather than to 
substitute for or duplicate other highway research programs. 
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FOR EWO RD 	This report will be of principal interest to air pollution technologists including 
meteorologists, statisticians, and highway engineers concerned with air quality 

	

By Staff 	measurements and preparation of environmental impact statements. Such technol- 

	

Transport ation 	ogists who use highway air pollution dispersion models to estimate levels of 

	

Research Board 	carbon monoxide associated with proposed projects will find the report, and 
accompanying computer software, to contain a helpful methodology and data base 
for evaluating model performance. 

Federal and state regulations require that environmental impact statemehts be 
prepared for highway projects so that highway decisions are consistent with State 
Implementation Plans for achieving and maintaining air quality standards. The air 
quality portion of an EIS usually includes microscale modeling of current and 
future carbon monoxide concentrations. Several microscale models have been 
developed; they vary in approach, complexity,, accuracy, and cost. The models 
include simple line-source-oriented Gaussian models as well as more elaborate 
numerical models. The reliability and predictive accuracy of the models are not 
well defined because experimental data suitable for model evaluation have only 
recently become available and also because there is the lack of a standardized 
methodology for testing and judging model performance. The research described 
in this report was designed to fill these gaps. 

The report contains a comprehensive methodology for assessing the perform-
ance of dispersion models used to estimate highway-related air pollution. The 
methodology is also applicable to other types of models. Application of the meth-
odology requires a substantial data base developed as part of the research. The 
data base provides carbon monoxide, meteorological, grade and alignment, and 
traffic data describing a wide range of environmental conditions. A preliminary 
evaluation of selected models was performed to demonstrate the use of the meth-
odology and data base. 

Appendixes E, F, and G of the report document computer software and the 
data base and have not been published herewith. Potential users of the method-
ology and data base should request copies of the appendixes and computer tapes 
from the NCHRP and supply a blank 12-in, diameter and an 8-in, diameter, 9-track 
tape or equivalent with a density of 1,600 BPI. 
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METHODOLOGY FOR EVALUATING 
HIGHWAY AIR POLLUTION 

DISPERSION MODELS 

SUMMARY 	National, state, and local environmental regulations require that the air qual- 
ity impacts of transportation-related projects be analyzed and quantified. To this 
end, the Federal Highway Administration (FHWA) has issued guidelines to ensure 
that air quality effects are considered during planning, siting, and construction of 
highway improvements, so that highway decisions are consistent with State Imple-
meñtation Plans (SIPs) for achieving and maintaining air quality standards. 

The level of carbon monoxide (CO) associated with a given project is a 
highway-related air quality impact that requires evaluation. In general, it must be 
determined whether the ambient standards for CO (35 ppm for 1 hour and 9 ppm 
for 8 hours, not to be exceeded more than once a year) will be satisfied or exceeded 
as a result of highway improvements. this requirement calls for estimating CO 
concentrations on both local and areawide scales. 

A number of methods of varying sophistication and complexity are used to 
estimate CO levels. The techniques include simple line-source-oriented Gaussian 
models as well as more elaborate numerical models. It can be safely asserted that 
the number of highway dispersion models in. use, especially the Gaussian types, 
is probably quite large, although some models are more popular than others. 
However, the reliability and predictive accuracy of the models are not well defined 
because experimental data suitable for model evaluation have only recently be-
come available, and because there has been a lack of a standardized methodology 
for testing and judging model performance. The research described in this report 
was designed to fill these gaps. 

This work describes a comprehensive methodology for assessing the perform-
ance of dispersion models used to estimate highway-related air pollution. The 
methods are also applicable to other types of models. The objectives of the study 
are to: • develop methods for evaluating the performance of highway air pollu-
tion dispersion models • compile and document a data base to be used to assess 
model performance • perform a preliminary evaluation of selected models. 

Evaluation Methodology 

The evaluation methodology encompasses three different types of analyses 
which examine different, but complementary, aspects of model perfirmance, 
namely: 

Accuracy analysis—measures the predictive performance of the model. 
Diagnostic analysis—identifies conditions associated with inaccuracies in 

the model's predictions. 
Sensitivity analysis—quantifies the model's response to uncertainty in the 

model input data. 

Criteria for Model Evaluation. In evaluating the accuracy of a model, the 
researchers sought to answer the following questions: (1) How well does the model 



predict maximum pollution levels? (2) How well does the model predict the 
number of exceedances of the relevant air quality standard? (3) How well do the 
fluctuations in predictions follow fluctuations of the observed pollutant levels in 
time and space? (4) How closely do the computed concentrations approximate the 
numerical value of the observations? 

The first two questions are motivated by the fact that the air quality standards 
for carbon monoxide (CO) are framed in terms of maximum 1-hour and 8-hour 
averages not to be exceeded more than a specified number of times in a year. 
Hence it is important for the model to estimate accurately the maximum concen-
trations and the number of times the standard is exceeded. 

Question (3) is tied to the need to know whether the computed values coincide 
in space and time with the observations. There is a need to ascertain whether local 
areas of high concentration are correctly identified and whether time fluctuations 
of ambient CO are reproduced properly. 

The fourth question is concerned with the fidelity with which the predictions 
reproduce the numerical value of the observations. By analyzing the residuals 
(observed less predicted) it is possible to examine tendencies to overpredict or 
underpredict. 

A goal of the model evaluation procedure is to obtain a figure of merit (FOM) 
that is a summary figure that quantifies the model's composite performance in the 
areas defined by the previous four questions. In general, different statistics are 
required to measure the model's performance in each area. After evaluating a 
number of candidate statistics, six were selected to describe the model's accuracy. 
The six statistics selected are the components of the FOM. Methods for deriving 
the FOM are described in Chapter Two. 

Statistical Measures of. Model Performance. The six statistics chosen to 
measure the four aspects of model performance are either well known or are easily 
interpreted: 

Statistic 1—To measure a model's ability to estimate peak concentrations, 
the ratio of the average of the largest 5 percent of the predicted concentrations to 
the average of the largest 5 percent of the observed concentrations has been 
selected. 

Statistic 2—To measure how well a model predicts the frequency of ex-
ceedance of the air quality standard, the difference between the predicted and 
observed proportion of exceedances of the standard has been selected. 

Statistic 3, 4. and 5—To measure the coincidence of predicted and observed 
concentrations, the temporal, spatial, and Pearson's correlation coefficients have 
been selected. 

Statistic 6—To measure the degree of agreement in concentration levels, the 

root-mean-square error of the observed and predicted concentrations has been 
selected.. 

The mathematical definitions of these statistics are provided in Appendix B 
of this report. Hereafter, the six statistics will be denoted by the symbols S 
through S6. 

For each of the six statistics, a choice was made between untransformed or 
log-transformed concentrations. Untransformed concentrations are used in S, S2 , 

and S6; and transformed concentrations, for S3, S4, and S5. 
Treatment of Data Errors. Traditionally, the comparison of prediction and 

observation has been performed under the assumption that the measurements are 
correct (if not exact) and that differences between computed and measured values 
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are the fault of the model. Since the measured concentrations are subject to error, 
such an assumption tends to place an unfairly heavy burden on the model. The 
authors have attempted to remedy this situation by explicitly considering the effect 
of data 'errors on the six statistics selected to evaluate the performance of the 
model. The approach is to modify the formulas for the six statistics of interest to 
include terms associated with data errors. 

In general, three sources of error affect the comparison of observed and 
predicted concentrations: (1) measurement errors (in CO or tracer concentra- 
tions), (2) errors in the input to the model, and 	modeling errors. 

The first two sources of error can include both a random component and a 
constant, or slowly varying, bias. The model output combines the effects of input 
and modeling errors. Modeling errors are due to the inability of the model to 
simulate the physical phenomena of interest. Sensitivity analysis can help to 
estimate the magnitude of the errors associated with imperfect model input, and 
judicious application of other diagnostic methods can help to identify some of the 
sources of modeling errors, but the output of the model will nevertheless be 
afflicted by errors. 

The discussion that follows is concerned with the treatment of random errors 
in the measurement of concentrations. The approach adjusts only for the random 
error. Thus, it is assumed that the measurements have been adjusted for bias. If 
the bias is unknown, it will appear as modeling error. The precision, rather than 
the accuracy, of the data is of concern. 

For each of the six statistics previously defined, formulas have been derived 
that include the effect of random observational errors. Often, the error is specified 
as being proportional to the true concentration (e.g., the error is ±10 percent). 
Measurement precision is sometimes specified as a constant bound (e.g., ±3 ppm) 
rather than as a percentage. These two types of error specification require that the 
error be modeled in two different ways. A set of six modified performance statis-
tics has been derived for each type of error specification. 

Procedure for Computing a Figure of Merit. It is of interest to combine the 
six component statistics into a single numerical index or figure of merit that 
characterizes the overall predictive ability of the model. 

To compute the FOM, the value of each statistic S1  through S6, was trans-
formed to an arbitrary numerical scale ranging from 0 to 10. A value of zero 
denotes essentially no agreement between observation and prediction, and a value 
of 10 denotes the best, but not necessarily perfect, agreement. The FOMs for the 
individual statistics were then combined to obtain the overall FOM. 

Two approaches were used to obtain the overall FOM. In the first approach, 
the overall FOM is a weighted average of the six individual FOMs; the second 
approach sets the overall FOM equal to the smallest individual FOM. Because 
comparison of the two approaches indicated that the second scheme is very 
conservative, the weighted average method is recommended for most uses. 

A computer program was prepared that calculates the six statistics and asso-
ciated FOM. The program also computes confidence intervals for each statistic, 
and calculates the value of the statistic adjusted for measurement error. 

Sensitivity Analysis. The sensitivity analysis methodology defined a general 
approach to the problem that yields the variance matrix for the predicted concen-
trations. This matrix is a function of the errors in the input parameters of the 
model. Hence, the variance matrix of the predictions provides estimates of the 
uncertainty in the output caused by input errors. Recognizing the uncertain nature 
of the specification of input errors, a simplified sensitivity analysis procedure was 
derived from the general approach. 
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Model Evaluation Data Base 

An extensive data base was assembled that provides the model input data and the 
observations with which model predictions are to be compared. The data base is 
composed of five data sets provided by: 

General Motors Corporation (GM) 
New York Department of Environmental Conservation (NYS) 
Texas A&M University 
California Department of 'Transportation (CALTRANS) 
SRI International 

The five data sets were uniformly formatted and assembled into a data archive 
stored on magnetic tape. The archive was extensively documented in a. user's 
guide that is contained in Appendix G of this report. 

Applications of Methodology to Existing Models 

A preliminary evaluation of six selected models was performed to demon-
strate the application of the methodology; four of the models are Gaussian and two 
are numerical. The evaluation used data for one site in the Texas data base, and 
included calculating the performance statistics and associated FOM. The effect of 
observational error on the performance statistics was also investigated. Diagnostic 
analyses were performed to identify potential modeling problems. Methods of 
ranking the models in accordance with performance were investigated and illus-
trated. A simplified sensitivity analysis was also performed. 

CHAPTER ONE 

INTRODUCTION AND. RESEARCH APPROACH 

OBJECTIVES OF THE STUDY 

This report describes the development and application of 
a comprehensive methodology for assessing the performance 
of dispersion models used to estimate highway-related air 
pollution. Specifically, the goals of the study were to: 

Develop methods for evaluating the performance of 
highway air-pollution dispersion models. 

Assemble and document a data base to be used to assess 
model performance. 

Demonstrate the application of the model evaluation 
procedure by performing a preliminary evaluation of selected 
models. 

Although the focus of this work was on highway-related 
models, the methods developed are general and thus are also 
applicable to other types of models. 

It is emphasized that this study was not intended to pro-
vide a complete, definitive evaluation of the models selected. 
Instead, the evaluations are only intended to demonstrate the 
use and interpretation of the methodology. Thus, the per-
formance of the models is incidental to the focus of the study. 

RESEARCH APPROACH 

Model Evaluation Methodology 

The evaluation methodology encompasses three different 
types of analyses that examine different, but complemen-
tary, aspects of model performance, namely: 

Accuracy analysis - measures the predictive perform-
ance of the model. 

Diagnostic analysis —identifies conditions associated 
with inaccuracies in the model's predictions. 

Sensitivity analysis —quantifies the model's response 
to uncertainty in the model input data. 

The accuracy analysis is the principal element of the model 
assessment process. Six statistics have been defined that 
describe quantitatively the predictive performance of disper-
sion models. To define the statistics, model performance was 
separated into three complementary categories as follows: 

1. Ability to predict exceedances of concentration thres- 



holds (which may be equal to the ambient air quality stan-
dard). 

Ability to track pollutant levels in space and time. 
Ability to replicate the numerical value of observed 

concentrations. 

Two statistics measure performance in the first category, 
three in the second, and one in the third. Ultimately, the six 
statistics were combined into a single figure of merit (FOM), 
which is a numerical index that describes the composite per-
formance of the model. 

A novel feature of the method is that it takes into consider-
ation the presence of error in the measured pollutant concen-
trations. This quantifies model performance more fairly 
because the predictions need not exactly match observations 
that are inevitably imprecise to some degree. Thus, the 
formulas for the six statistics have been modified to include 
the effect of observational error. Without this modification 
the statistics would tend to yield a pessimistic assessment of 
model performance. Two types of observational error were 
treated: errors defined as a percentage and errors specified as 
a constant bound of the measured pollutant concentration. 

A computer program that calculates the six statistics has 
been prepared. A user's guide to the program is contained in 
Appendix E of this report. 

Diagnostic analyses of model performance can take a 
variety of forms. The approach used in this report was to 
provide the analyst with a diverse set of diagnostic tools that 
can be molded to fit specific needs. To this end, a computer 
program was prepared for performing diagnostic analyses. 
The program includes graphical displays and several selected 
statistical procedures; it is extensively documented in Ap-
pendix F of this report. 

Sensitivity analysis is used to quantify the variation of the 
model output due to estimated errors in the model inputs. 
The approach focused on estimating the error bounds asso-
ciated with the model input data, calculating a sensiti1ity 
iatrix, and combining the two to obtain the model output 
variation. Once the error-induced model output variation is 
calculated, this variation can be related to the statistics used 
in accuracy analysis. 

Data Base Assembly 

A comprehensive data base has been assembled that can  

be used to evaluate model performance for various highway 
configurations and meteorological and traffic conditions. The 
data base includes data from at-grade, above-grade (ele-
vated), and below-grade (depressed) roadways, and is com-
posed of data from measurements programs conducted by 
SRI International, Texas A & M University, New York State 
Department of Environmental Conservation, California De-
partment of Transportation, and General Motors Corpora-
tion. In general, these data are unique and are distinguished 
by a fine level of detail in the measurement of meteorological, 
pollutant, and traffic conditions.The data base assembled for 
this study uses a uniform format to facilitate access to the 
data. A user's guide to the data base was prepared and is 
contained in Appendix G. 

Applications 

The use of the model evaluation methodology developed in 
this study was demonstrated by applying it to six selected 
models, of which four are Gaussian and two are numerical. 
The model evaluation was performed using a subset of the 
data base previously mentioned. It is stressed that the model 
evaluations are solely intended to illustrate the application of 
the methodology rather than to provide a definitive assess-
ment of the merits of the selected models. 

Report Organization 

The report is organized into seven chapters and seven 
technical appendixes that include mathematical derivations 
and user's guides to the software and data base. 

The findings of the study are discussed in Chapters Two 
through Four. Chapter Two describes the development of the 
statistical methodology. Sensitivity analysis is discussed in 
Chapter Three. Chapter Four contains a description of the 
data base. The application of the methodology is described in 
Chapter Five. Conclusions and recommendations are given 
in Chapter Six. Chapter Seven contains an extensive bibli-
ography of model evaluation methods. 

Appendixes A through D describe the mathematical details 
of the statistical methodology. Appendixes E and F, respec-
tively, contain user's guides to the computer programs that 
calculate the evaluation statistics and that perform the diag-
nostic analysis.. The user's guide to the data base is given in 
Appendix G. 

CHAPTER TWO 

FINDINGS-STATISTICAL METHODOLOGY 

This chapter presents the findings relative to the statistical 
methodology used to evaluate air pollution prediction 
models. Previous literature on model evaluation methods, 
the methodology of accuracy analysis, and the methodology 
of diagnostic analysis are discussed. 

Computer programs were developed to perform the calcu-
lations associated with the accuracy and diagnostic analyses. 
These programs are described in Appendixes E and F. 

LITERATURE REVIEW 

An extensive literature review was conducted to examine 
patterns and trends in model evaluation methodology. The 
publications reviewed fell into two categories: methodo-
logical papers that developed and analyzed evaluation tech-
niques and applied papers that focused on the use of the 
methods. 

Many of the early model-verification efforts used correla- 
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tion analysis exclusively. Later, the linear regression analy-
sis became widespread and these two analyses became the 
dominant approaches. The current trend, however, is to use 
multiple methods to assess model performance. 

The methods found in the literature could be categorized 
as either primarily diagnostic or accuracy evaluation 
oriented. Diagnostic methods served to identify sources and 
conditions associated with modeling errors, were qualitative 
or graphical, and entered into the model building process 
during the developmental stage. Accuracy evaluation meth-
ods summarized overall model performance by assigning a 
numerical value to the degree of agreement between compu-
tation and observation. 

The accuracy evaluation methods were further subclassi-
fiable as fidelity, exceedance, or correspondence measures. 
The fidelity measures quantified the algebraic or percentage 
differences between the predictions and observations using 
the natural pairing. The exceedance measures quantified, in 
the aggregate, the distributional differences between the pre-
dictions and observations (e.g., without reference to the 
natural pairing). The correspondence measures quantified 
the correlations between predictions and observations. 

Very few authors considered the effects of observational 
error on the model evaluation process or addressed the issue 
of assigning different weights to various types of modeling 
errors. None of the sources reviewed considered combining 
the various performance measures into a single figure of 
merit. 

ACCURACY ANALYSIS 

Evaluation Statistics 

In evaluating the accuracy of a model, answers were 
sought to questions regarding how well the model predicts 
maximum pollution levels and the number of exceedances of 
the relevant air quality standard, how closely the spatial and 
temporal fluctuation patterns of predictions and observations 
coincide, and how closely the predictions approximate the 
observations. The statistics used to address these questions 
are called exceedance, coincidence, and fidelity measures, 
respectively. 

In deciding what exceedance, coincidence, and fidelity 
measures to select, statistics that could not easily be con-
strued as estimates of physically meaningful quantities were 
excluded from consideration. In addition, it was found useful 
to distinguish between "macro" and "micro" statistics. The 
former generic class of statistics is calculated without the 
pairwise matching of model predictions and observed con-
centrations. The latter generic class of statistics requires 
pairwise matching. It was concluded that the most appropri-
ate exceedance measures would be macrostatistics and that 
the most appropriate measures of coincidence and fidelity 
would be microstatistics. 

After evaluating a number of candidates, six statistics were 
chosen to describe the model's accuracy. To measure a 
model's ability to estimate peak concentrations, the ratio of 
the largest 5 percent of the predicted concentrations, to the 
largest 5 percent of the observed concentrations was se-
lected. To measure how well the model predicts the fre-
quency of exceedance of the air quality standard, the dif-
férence between the predicted and observed proportion of  

exceedances of the standard was. selected. To measure the 
coincidence of predicted and observed concentrations, the 
temporal, spatial, and Pearson's correlation coefficients 
were selected. Finally, to measure the degree of agreement 
in concentration levels, the root-mean-squared (RMS) error 
of the observed and predicted concentations was selected. 

Confidence Intervals and Sample Size Determination 

Confidence bounds on the values of the six evaluation 
statistics are computed because there is a degree of uncer-
tainty associated with those values. Typically the data base 
is a sparse sample of all of the potentially available data and 
consists of a few months or years of data with temporal gaps, 
gathered at a handful of monitoring stations. Confidence in-
tervals quantify the degree of uncertainty associated with the 
finiteness of the data base and are used both to gain an 
appreciation of the magnitude of the variability of the evalua-
tion statistics and to estimate the sample size required for a 
given precision in estimation. Both parametric and nonpara-
metric confidence intervals are derived for each statistic. The 
parametric confidence intervals depend for their validity on 
assumptions concerning the joint distribution of observed 
and predicted concentrations but do not depend on the data 
base. The nonparametric confidence intervals do not depend 
on assumptions concerning the joi.nt distribution but are com-
puted from the data. Based on experience, the parametric 
confidence intervals will tend to be too narrow, but are ap-
propriate for the initial estimate of the sample size necessary 
to obtain a given level of precision. The nonparametric con-
fidence intervals are used after the original sample has been 
drawn to refine the sample size determination and to assess 
more accurately the variability of the evaluation statistids. 

Adjustment for Observational Error 

Traditionally, the comparison of predictions and observa-
tions has been performed under the assumption that the dif \  
ferences between the computed and measured values are the 
fault of the model. Because the measured concentrations are 
subject to error, such an assumption places an unfairly heavy 
burden on the model. The authors of this report have at-
tempted to remedy this situation by explicitly considering the 
effect of errors in the observed concentrations on the statis-
tics selected to evaluate the performance of the model. Cor-
rection factors to be applied to the statistics to adjust for 
observational error are derived under two different assump-
tions concerning the nature of that error. 

The Figure of Merit (FOM) 

The figure of merit summarizes in a single statistic the 
correspondence between the observed and predicted con-
centrations as measured by the six component evaluation 
statistics. In deriving the FOM, a sequence of steps is under-
taken, including the construction of a ten-point scale for each 
of the six component statistics, and the choice of a strategy 
(e.g., minimum liability, minimum average liability) for com-
bining the scale-transformed and averaged statistic values. 

THE DIAGNOSTIC ANALYSIS 

Diagnostic statistics assist the researcher  and highway 
planner to identify conditions associated with inaccuracies in 
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the model's predictions. Six categories of diagnostic tech-
niques were found useful: time series, spatial, scatterplot, 
frequency distributions, multiple regression, and specialized 
displays. Within each category, the following were identi-
fied: diagnostic statistics that were appropriate to the ex-
amination of the agreement between all observations and 
predictions, the magnitude of the peak daily observations 
and predictions, and the time difference between the peak 
daily observations and predictions. An iterative procedure 
for using these diagnostic statistics is discussed. 

DEVELOPMENT OF METHODOLOGY 

Review of Evaluation Techniques 

An extensive survey of the literature was performed to 
exanine patterns and trends in model evaluation method-
ology. Table 1 gives the publications reviewed, along with 
the model evaluation methods used or proposed by their 
authors. (Full citations for literature references in Table 1 
(and other publications cited in this section) are included in 
Chapter Seven.) The publications fall in two categories: 
methodological and applied. The methodological papers de-
velop and analyze evaluation techniques; the focus of the 
applied literature is on the use of the methods. The method-
ological publications are those by Bornstein and Anderson 
(1979), Brier (1973), Goodin et al. (1976), Hayes (1979), 
Nappo (1974), Snee (1977), and Zannetti and Switzer (1979). 
The reports by Darling et al. (1977) and by Ruff and Javitz 
(1979) fall in both categories. The remaining publications are 
in the applied category. (See Bibliography for complete 
citations.) 

It is evident from Table I that the correlation/ li near regres-
sion method is the most popular approach used to charac-
terize model performance. As the table shows, many of the 
early model verification efforts used correlation analysis ex-
clusively. However, the current trend is to use multiple 
methods to assess model performance, as evidenced by the 
wide variety of techniques given in Table 1. 

The methods in Table 1 can be classified as: 

Diagnostic methods—help to identify sources and con-
ditions associated with modeling errors. 

Accuracy-evaluation methods - summarize overall 
model performance by assigning a numerical value to the 
degree of agreement between computation and observation. 

In general, the diagnostic methods are qualitative or graph-
ical, and enter the model-building process during the devel-
opmental stage when modifications of the model are contem-
plated. These methods also serve as informal assessment 
techniques that help the modeler to visualize the perform-
ance of the model. The accuracy-evaluation methods would 
be used when the emphasis is on a quantitative description of 
the predictive performance of a model rather than on model 
development. 

Because some techniques can serve both purposes, the 
line between the two categories is sometimes blurred. Al-
most any statistic that quantifies model performance can also 
be used to assist in the process of subjective judgments that 
enters into model development. Moreover, some accuracy- 

evaluation and diagnostic methods are closely related. For 
example, the slope of the regression line is related to the 
scatterplot, but the former is a quantitative performance in-
dex and the latter a qualitative tool. Because of the dual 
purpose served by many accuracy-evaluation methods, am-
biguity is avoided by restricting the use of the term diagnos-
tic" to nonquantitative techniques. 

The various methods are assigned to the diagnostic or 
accuracy-evaluation category in Table 2. In this classifi-
cation, the diagnostic methods include all the graphical tech-
niques, which provide a visual indication of the model's 
behavior. By contrast, all the methods assigned to the 
accuracy-evaluation class describe the model's performance 
by a single number. 

The accuracy-evaluation methods are generally comple-
mentary rather than mutually exclusive. Thus, some of the 
methods better quantify a particular aspect of model perfor-
mance than do others. For example, the correlation coeffi-
cient measures the correspondence between prediction and 
observation in the aggregate, but gives no indication about 
tendencies to overpredict or underpredict. Supplementing 
the correlation coefficient with the slope and intercept of the 
regression line helps to remedy this inadequacy. To measure 
multiple attributes of a model's performance, more than one 
accuracy-evaluation statistic will be required. The literature 
review suggests that the use of multiple statistics is the cur-
rent trend. 

Most of the accuracy-evaluation methods in Table 2 can be 
classified into one of three classes. The first class consists of 
techniques that quantify, in the aggregate, the magnitude of 
the error between predictions and observations. For con-
venience, this class of statistics is called "exceedance mea-
sures." Examples include the difference between the 80th 
percentiles of the predicted and observed concentrations and 
the ratio of the average-predicted to the average-observed 
concentration. An essential feature of the exceedance mea-
sures is that they do not utilize the natural pairing of the 
predictions and observations. The second class consists of 
techniques that quantify the errors between the predictions 
and observations using the natural pairing. This class of sta-
tistics, which includes the root-mean-square error, is called 
"fidelity measures." The third class, which is termed "coin-
cidence measures," contains methods that quantify the cor-
relation between prediction and observation. The various 
accuracy-evaluation methods have been assigned to these 
three classes in Table 2. Two of the techniques do not fit 
either class and are listed in a "miscellaneous" class. 

The literature review revealed only two reports that con-
sider the effects of observational error in the model-evalu-
ation process. Brier (1973) discusses the effect of normally 
distributed errors in the observations, and Maldonado and 
Bullin (1977) recognize the presence of observational errors 
by assigning a tolerance band to the observations. 

With two exceptions, none of the reports studied ad-
dresses the issue of assigning different weights to various 
types of error, such as overprediction and underprediction. 
The biased log-difference-squared loss function defined by 
Darling et al. (1977) allows errors to be weighted (i.e., biased, 
in various ways), and so does the generalized accuracy score 
proposed by Ruff and Javitz (1979). Although it is difficult to 
decide the weights to be assigned to different error types, 
there is no a priori reason to believe that weighting errors 



Table 1. Summary of literature review. 

Ref erence5  Model Source Type 
Evaluation 
Methodt Other Methods 

Bornstein CO highway Single C Superimposed time series plots (smoothed values; log or linear 
and Anderson models, Gaus- site, scales) 
(1979) sian, 	puff, elevated, Contingency tables 

SO2, statisti- point, sur- 
cal face, area Transaction plots 

Isopleth diagrams 

Normalized and unnormalized deviations about 45 degree line 

Frequency distribution plot 

Scsttergram 

Cumulative frequency plots 

Percent of calculated values within given "tolerance" of 
observed 

Bivariste frequency distribution 

• Ratio of averages 

Root-mean-square error 

Percent correct predictions versus forecast time 

Average fractional percent error 

Brier (1973) AQDM and Multiple SA, 	C Considers errors in computed and observed data 
GEOMET Scat tergram 

Mean square deviation from regression 

Burr and OCAN Model Point, area C, LR 
Clymer 
(1976) 

Calder 
(1970) 

Chock (1977, Advection- Line C Correlations and variances 
1978a,b) diffusion, Compares predicted to observed concentration ratios as a func- 

Gaussian tion of wind speed and wind 

Predicted-to-observed concentration ratios averaged for all 
runs 

Christiansen TcII, TEM Point, area C, LR 
(1976); 
Porter and 
Christ iansen 
(1976) 

Clarke Simple, non- Point, area C, LR Error frequency distributions 
(1964) computerized 

Darling et Gaussian and Line, area C Compared output of two models against each other using: 
a].. 	(1977) numerical CO Correlation coefficient 

models for - 

highway appli- Average absolute difference 

cations 80th percentile difference 

Log-difference-squared loss function 

Biased log-difference-squared loss function 

Rank correlation 

Natural histogram 

Dowel]. et Gaussian model C. LR Variance explained (coefficient of determination), intercept 
a].. 	(1979) using Briggs 

plume rise 

Duewer et Eulerian model Ratios (predicted/measured) 
a].. 	(1978) Comparisons of time histories 

Scattergrats of observed versus calculated mean concentrations 
and observed versus calculated maximum concentrations 

• Root-mean-square error 

- Spatial correlation coefficient 

Defines four statistical measures based on correlation coeffi- 
cient (quantiles of the distribution of correlation coeffi- 
cients) 

- Ratio of mean computed concentration to mean observed concen- 
tration 	 - 



Table 1 (Continued 

Ref erence* Model Source Type 
Evaluation 
Method1  Other Methods 

Egan and Numerical Line, area Ratio of observed to predicted concentrations 	- 
Lavery advect ion- 
(1973) diffusion 

model 

Elderkin Diffusion- Elevated C Observed versus predicted concentration 88 a function of sta- 
(1974) deposition (particu- bility 

model (Gaus- late tracer Geometric means/standard deviation of observed/predicted ratio 
sian) over Man- 

ford diffu- Autocorrelation function 

sion grid) 

Eskridge Numerical Line C, LR Scattergram of observed/predicted ratio 
and advection- Linear least-squares fit 
Demerjian diffusion 
(1977) Frequency distribution 

Fortak Statistical Point, area Cumulative frequency distributiona 
(1969) model for 

Bremen 

Fuggle AQDM (Air Contingency tables for concentration categories 
(1977) Quality 

Display 
Model), CDM 
(Climatologi- 
cal Dispersion 
Model) 

Gifford ATDL Area C. LR 
(1973) 

Goodin et Various SA Residual error as function of weighting schemes 
al. 	(1976) 

Croff 	(1973) Econometric Frequency of model ranking based on multiple tests with a 
Time Series variety of data sets 
Models 

Ilabegger et Gaussian Line C, LR Multiple or nonlinear regression for concentration dependence 
al. 	(1974) steady-state on model inputs 

plume model Compares 17 models for at grade and depressed roadways 

Hayes 	(1979) Discussion of model evaluation approaches; recommended perfor- 
mance measures: 

Difference in peak station prediction and peak station mea- 
surement. 	Difference in time of occurrence of peak. 

Average and standard deviation of mean residual about the 
perfect correlation line normalized by average of predicted 
and observed concentration 

Average and standard deviation of absolute mean deviation 
about perfect correlation line normalized by average of 
predicted and observed concentrations 

Temporal correlation coefficients 

Spatial correlation coefficients 

Koch et al. SCIM Point, area C, LR Concentration frequency distributions 
(1976); 	Koch 
and Thayer 
(1971) 

Koogler et Computerized Point, area C Chi-square test on two-way contingency table 
al. 	(1971) model 

Liu and Eulerian and Trajectory (Lagrangian) model; ratios of predicted concentra- 
Seinfeld Lagrangian tion to exact solution, plotted as function of time for: 
(1974) models Horizontal diffusion 

Vertical winds 	 - 

Wind shear 

Grid (Eulerian) model; analytical solution versus computed 
percentage error 
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Table 1 (Continued) 

Reference5  Model Source Type 
Evaluation 
Methodt Other Methods 

Maldonado TRAPS, Gaus- Moving C, LR Average error 
and Bullin sian diaper- point, 	line Average mean square error 
(1977) sion, CALINE-2 

Percent within * 1 ppm 
A1.RPOL-4 All road 

points Percent within ± 2 ppm 

integrated 

HIWAY, Gaus- Line, point 
sian plume 

McCollister Linear Ratio of mean absolute value of forecasting error to mean 
and Wilson stochastic observed concentrations 
(1975) models Computer-animated films comparing measured and forecast tem- 

poral and spatial pollution patterns 

McNider AQDH Point, area C Measured versus model average concentration categorized by 
(1977) wind direction, speed, and Stability classes 

- Scattergram comparing arithmetic annual averages 

Miller et Aquatic SA Variation of output from changes of input parameters 
al. 	(1976) ecosystem Maximum error estimates 

Ralative sensitivity coefficients 

Miller and Simple, non- Point, area C, LR Chi-square test on two-way contingency table 
Hoizworth computerized 
(1967) model 

Mukherji et PThTP Point SA, C, LR 
al. 	(1976) 

Mullen et AVMSTM C 
al. 	(1977) (Steady-state, 

simple Gaus- 
sian plume) 

Nappo (1974) General models Area, point C Spatial and temporal correlation 

Newman and ERTAQ Area SA, 	C, LR. 
Spiegler 
(1974) 

Noll et-al. HIWAY, Line SA, C, LR Ratio of average of predicted concentration to average mea- 
(1978) CALINE-2 sured concentration 

Okamoto and Gaussian Area C Root-mean-square error 
Shiozawa Plot of percentile concentration curves 
(1978) 

Plot of average concentrations classified by wind direction 

Prahm and Gaussian Multiple C, LR Spatial correlation 
Christensen 
(1977) 

Prasad AQDM Area SA, C, LR 
(1976) 

Rao et al, Gaussian, Line C, LR Comparison of frequency distributions, scatterplots, ratio of 
(1979) numerical predicted to observed 

Rao and Gaussian Line C,-LR Extreme value statistics, analysis of residuals, scatterplots 
Vtsalli Average percent error, mean fractional error 
(1981) 

Frequency distributions, contingency tables 

Reynolds et General model SA, C Analysis of residuals 
al. 	(1974) for 3-D time 

dependent pho- 
tochemical air 
pollutants 
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Table 1 (Continued) 

Reference5  Model Source Type 
Evaluation 
Method1  Other Methods 

Ruff and Gaussian Point, area C, LR Scatterplot 
Javitz Linear regression with confidence and prediction bands 
(1979) 

Correlation coefficient 

Chi-square test 

Interstation error correlation 

Multiple regression of residuals 

Residual time series 

Generalized accuracy score 

Ruff and CON Point, area SA, C, LR 
Simmon 
(1977); 
Culdberg et 
al. 	(1976) 

Shieh and K-theory grid Point, area SA, C, LR 
Shir (1976) type model 

Smith and Valley MODCDM LR Frequency distribution 
Ruch (1979) Scattergram of measured/computed concentrations 

Snee (1977) Statistical C, LR Residual standard deviation 
models 

Tesche et Urban airshed Area C Percent difference between predicted and observed maximum 
al. 	(1979) model Concentration isopleths 

Distance required to bracket an observation 

Scat tergram 

Fractional deviation computed along perfect correlation line 

- Comparison of predicted and observed frequency distributions 

Relative error 

Thayer Gaussian Airport C, LR Percentile and mean of observed versus predicted 

(1974) Regression analysis on medians 

Tikvart and Single source Point Comparison of highest and second-highest concentrations 
Nears (1976) model Concentration frequency distributions 

Turner Computerized Area Error frequency distributions 
(1964) model Average absolute and RNS error 

Turner et AQDM, CDM, C, LR Root-mean-square error 
al. 	(1972) Gifford 1972 Mean absolute error 

(simple 
dispersion), Largest negative error 

Modified Henna Largest positive error 
Model Range of errors 

Error at location withh highest measured concentration 

Wang (1974) AVAP (airport Airport C, LR Scatterplot of observed versus predicted concentrations 
pollution) Histogram of calculated and observed 

Zannetti and Numerical C Residual time series 
Switzer models Autocorrelation 

Plot performance of model versus length of learning period 

Plot of prediction lag versus root-mean-square error 

Plot of prediction lag versus correlation coefficient 

Model output plotted versus input parameters 

Plot of percentage of "correct' 	prediction versus forecasting 
lag 

*Full citations for these references are given in the bibliography. 

tSA - Sensitivity Analysis, C - Correlation, LR - Linear Regression. 
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Table 2. Classification of model evaluation methods. 

Diagnostic Methods Accuracy Evaluation Methods 

Superimposed time series plots Fidelity Measures 

Transection plots percent of calculated ucluon within 
specified tolerance of observation 

Isopleth diagrams 
Mean-square and root-mean-square error 

Normalized and snnormaiieed 
deviations about 45 degree Average ratio of predicated to observed 

line concentration 

Scatter diagram of observations Geometric mean and standard deviation 

as a function of computations of observatiOn/predictiOs ratio 

Cumulative frequency plots Difference in peak-station prediction 

and measurement 
Plot of bivariate frequency 
dintribution Average error (may be norsalized) 

Plot of ratio of predicted Mean of absolute error (nay be disided 

to observed concentration by nean of observed concentrations) 

as a function of wind speed 
and direction 

Largest negative and positive error 

AutoCOrrelatiOs function 
Range of errors 

Generalized accuracy score 
Contingency tables 

Average fractional percent error 
Residual error with different 
weighting schemes Siased or unbiased log-difference 

Sensitivity analysis 
squared loss function 

Multiple regression of con- 
toceedasce Measures 

cestration dependence on Ratio of average predicted to average 

model inputs observed concentration 

Plot of average predicted 80th-percentile difference 
and observed concentrations 

Correspondence Measures 
classified by wind direction 

Correlation coefficient 
Distribution of residuals 

Residual time series 
Slope and intercept of regression line 

Spatial correlation coefficient 
Plotof prediction lag as a 
function of root-mean-square Quantiles of the spatial distribution 

errorand correlation of the correlation coefficient 

coefficient Temporal correlation coefficient 

Modeioutput plotted as a Difference is time of occurrence of pre- 
function of input parameters dicted and observed peab concentration 

Interstation error correlation 
Rank correlation 

Multiple regression of 
Miscellaneous 

residuals 
Frequency of model ranking 

Natsrai histogram 
Mean-Square deviation from regression line 

Percent correct predictions 
as a function of forecast time - 

equally (the usual procedure) is especially advantageous 
under all circumstances. 

Finally, it is apparent from the literature review that cur-
rent practice is to use multiple measures to evaluate model 
performance. However, none of the sources reviewed con-
siders combining the various performance measures into a 
single figure of merit. 

The Accuracy Analysis 

Types of Statistical Measures in an Accuracy Analysis 

In evaluating the accuracy of a model, answers are sought 
to the following questions: (1) How well does the model 
predict maximum pollution levels? (2) How well does the 
model predict the number of exceedances of the relevant air 
quality standard? (3) How well do the fluctuations in predic-
tions follow fluctuations of the observed pollutant levels in 
time and space? (4) How closely do the computed concentra-
tions approximate the observations? 

The first two questions are motivated by the fact that the 
air quality standards for carbon monoxide (CO) are framed in 
terms of maximum hourly and eight hourly averages not to be 
exceeded more than a specified number of times in a year. 
Hence it is important for the model to estimate accurately 
maximum concentrations and the number of times the stan-
dard is exceeded. Accordingly, it is desired to characterize  

numerically the model's performance in these categories. 
The statistics used for these purposes have been termed ex-
ceedance measures. 

The third question is tied to the need to know whether the 
computed values coincide in space and time with the obser-
vations. It is of interest to ascertain whether known spots 
with high CO levels are correctly identified, and whether 
time fluctuations are reproduced properly. The statistics 
usd to quantify this aspect of the model's behavior have 
been called coincidence measures. 

The last question is concerned with the fidelity with which 
the predictions reproduce the numerical value of the obser-
vations. By analyzing the residuals (observed minus pre-
dicted), it is possible to examine tendencies to overpredict or 
underpredict. The statistics used to quantify the difference 
between predicted and observed concentrations have been 
termed fidelity measures. 

Criteria for Selecting the Component Statistics 

of the Figure of Merit 

The components of the FOM are statistics selected or de-
signed to measure the four aspects of model performance 
previously defined. In the evaluation of various statistics for 
this purpose, the analysis, was restricted to those that can be 
construed as estimates of a physically meaningful quantity. 
Examples of statistics of this nature include the root-mean- 
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square error and the correlation coefficient. These statistics 
have the property that as the sample size becomes very large, 
the estimate gravitates toward the "true" value of the pa-
rameter being estimated, and the confidence interval around 
the estimate shortens. 

The use of statistics that could not be easily construed as 
estimates of physically meaningful quantities was rejected. 
Statistics of this nature are basically used to test hypotheses, 
diverge to infinity as the sample size becomes large, and must 
be referenced to statistical tables in order to determine their 
significance. Examples of these "test statistics" include 
rank-sum test statistics and chi-square test statistics. It is 
very difficult to derive, or even sometimes define, the con-
cept of a "confidence interval" for this type of statistic. 

In evaluating statistical estimates as candidates for the 
components of the FOM, it was found useful to distinguish 
between two generic types of statistics, which have been 
labeled "macro" and "micro" statistics, respectively. Ma-
crostatistics are calculated without the pairwise matching of 
model predictions and observed concentrations. The ratio of 
the highest predicted concentration to the highest observed 
concentration (where these concentrations may occur at dif-
ferent locations and times) is an example of a macrostatistic. 
Microstatistics require the pairwise matching of model pre-
dictions and observed concentrations. The correlation coef-
ficient is an example of a microstatistic. In a statistical sense, 
the macrostatistics may be computed from the marginal 
distributions of the model predictions and observed concen-
trations, whereas the microstatistics require the joint distri-
bution of the model predictions and observed concentra-
tions. In a practical sense, the microstatistics are oriented 
toward establishing the model's ability to reproduce short-
term fluctuations of the pollutant; thus, they may be said to 
be process-oriented. By contrast, the macrostatistics are 
oriented toward the determination of whether the model can 
be used to predict the violation of, or conformity to, the 
air quality standards on a long-term basis. In this sense, 
macrostatistics may be said to be exceedance-oriented. 

After considering the orientation of these two generic 
classes of statistics, it was concluded that the most appro-
priate exceedance measures would be macrostatistics and 
that the most appropriate measures of coincidence and fidel-
ity would be microstatistics. The exceedance measures are 
concerned with the peak concentrations and the concentra-
tions above the air quality standards. From the form of the air 
quality standards, it appeared more important to gauge the 
magnitude of the peak concentration and the frequency of the 
violations of the standards than to measure their particular 
time or location of occurrence. (Insight is gained into the 
agreement of the timing and spatial location of these higher 
concentrations from the coincidence measures.) If a model 
can accurately estimate these quantities, it may be confi-
dently used to predict whether the standards will or will not 
be met in a region, regardless of where and when the concen-
trations actually occur. Certain types of models may perform 
perfectly well in this regard, and yet be very poor predictors 
of the exact time or location of these higher concentrations. 
Thus, macrostatistics are oriented towards the measurement 
of the exceedances without regard to the exact time or loca-
tion of the higher concentrations. 

On the other hand, in evaluating the air quality impact of 
a new road it is also necessary to perform a detailed examina- 

tion of the area, timing, and probable cause of the pollutant 
levels, and this requires that the model be able to reproduce 
the air pollution process. As noted earlier, one aspect of such 
an examination concerns the coincidence of the predicted 
and observed levels over time and space. That is, the model 
predictions should be large when and where the observed 
concentrations are large, and the predictions should be small 
when and where the observations are small. It is also desired 
to describe the fidelity with which a model reproduces obser-
vations. A model that performs well in terms of maximizing 
coincidence and minimizing the error magnitude (i.e., maxi-
mizing fidelity) will prove useful in examining the air quality 
in detail, because it is capable of reproducing the air pollution 
process. The natural statistical estimates of coincidence and 
fidelity are microstatistics. 

Definition of the Component Statistics 

After considering a number of statistics as potential candi-
dates to measure the four aspects of model performance, six 
statistics were chosen for this purpose; hereafter they will be 
denoted by the symbols S1  through S6. These six statistics are 
either well.known or are easily interpreted: 

The ratio of the largest 5 percent of the observed con-
centrations to the largest 5 percent of the predicted concen-
trations (S1) has been selected to measure a model's ability to 
estimate peak concentrations. 

The difference between the predicted and observed pro-
portion of exceedances of the standard (S2) has been selected 
to measure how well a model predicts the frequency of ex-
ceedance of the air quality standard. 

Pearson's correlation coefficient (S3), temporal correla-
tion coefficient (S4), and spatial correlation coefficient (S5) 
have been selected to measure the coincidence of predicted 
and observed concentrations. 

The root-mean-square error of the observed and pre-
dicted concentrations (S6) has been selected to measure the 
degree of agreement in concentration levels. 

The mathematical formulas for the six component statis-
tics are given in Appendix B. 

A few comments on these statistics are in order. The statis-
tic chosen to measure agreement in peak concentrations ac-
tually measures the agreement in the average magnitude of 
the largest 5 percent of the concentrations. This was done in 
order to assist in stabilizing the variance of the statistic. 

With respect to the statistic chosen to measure the agree-
ment in the exceedance frequency, the difference in the fre-
quencies, rather than a relative error measure, has been used 
because the air quality standard is defined in terms of fre-
quencies and because relative errors are very sensitive to low 
frequencies. 

For each of the six statistics, a choice was made between 
untransformed or log-transformed concentrations. Untrans-
formed concentrations were used in the first, second, and 
sixth statistics. A principal reason for using log-transformed 
concentrations is to convert absolute differences to ratios. In 
the case of S1 , this is unnecessary because S1  is itself a ratio. 
Furthermore, there is little or no advantage in compressing 
the scale logarithmically to compute S1  because, barring 
gross errors, it is likely that the highest predicted and ob- 
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served levels will be of comparable magnitude. The second 
statistic is invariant to the transformation; hence, there is no 
need to conver't the data to log concentrations. Untrans-
formed concentrations were used for the sixth statistic be-
cause it is desired to estimate the absolute error instead of the 
relative error. 

Log-transformed concentrations were used in the compu-
tation of the three correlation coefficient statistics. Without 
this transformation the correlation coefficients would be 
dominated by the largest predicted and observed concentra-
tions. Also, the scatterplot of the predicted and observed 
concentrations often tends to resemble more closely the bi-
variate normal distribution when the axes are logarithmic. In 
addition, the residual variance around the regression line is 
usually close to being constant using logarithmic axes, which 
allows the interpretation of 1 - p2  as the proportional reduc-
tion in variance. 

The statistic chosen to measure the agreement in absolute 
concentration levels may be expressed as a sum of two statis-
tics—one measuring the bias (or systematic error) in predic-
tion and the other measuring the magnitude of the "random" 
error corrected for bias. For evaluation purposes it is not 
necessary to distinguish between error caused by bias and 
random error, although it is essential for diagnostic purposes. 
Consequently, statistics for measuring bias and random error 
have been included in the set of diagnostic statistics. The 
root-mean-square error was chosen to be used in the linear 
scale rather than in a logarithmic scale because the errors 
associated with larger ,  concentrations have a more serious 
implication for model accuracy than do errors associated 
with smaller concentrations. 

Confidence Intervals and Sample Size Determination 

Confidence intervals quantify the uncertainty in the esti-
mated value of the evaluation statistics associated with the 
finiteness of the data base. The data base typically consists 
of a few months or years of data with temporal gaps, gathered 
at a handful of monitoring stations. Consequently, the data 
base may be considered to be a sparse sample of all of the 
potentially available data. The predictive model may have 
performed somewhat better or worse on this data sample 
than it would have performed on a larger and more complete 
data base. The values of the component statistics used in the 
evaluation, therefore, might overstate or understate the pre-
dictive ability of the model. 

Two types of confidence intervals are considered: para' 
metric and nonparametric. The parametric confidence inter- 
val is based on assumptions concerning the form of the joint 
distribution of observed and predicted concentrations. The 
nonparametric confidence intervals do not depend on these 
types of assumptions. Based on experience, the assumptions 
underlying the parametric confidence intervals will be vio-
lated and the intervals will be too narrow. However, the 
parametric confidence intervals may be accurate enough to 
estimate the sample size necessary for a given precision, and 
it is intended that they be used for that purpose. After the 
sample size has been estimated and the appropriate sample 
has been drawn, the more accurate nonparametric confi- 
dence interval can be calculated. On the basis of the non-
parametric confidence interval, the investigator may decide 
to revise his estimate (obtained from the parametric confi- 

dence intervals) of the necessary sample size, and draw a 
larger sample. Unfortunately, the nonparametric confidence 
intervals cannot be used to obtain the initial estimate of the 
sample size because they cannot be calculated without data. 

The mathematical derivation of the parametric and non-
parametric confidence intervals for each of the six compo-
nent statistics is presented in Appendix C. 

The Adjustment for Observational Error 

Traditionally, the comparison of prediction and obser-
vation has been performed under the assumption that the 
measurements are correct (if not exact) and that differences 
between computed and measured values are the fault of the 
model. This assumption permeates, for example, the classi-
cal bivariate correlation/ linear regression analysis, which 
considers the explanatory variable to be known without 
error. Because the measured concentrations are subject to 
error, such an assumption tends to place an unfairly heavy 
burden on the model. An attempt has been made in this study 
to remedy this situation by explicitly considering the effect of 
data errors on the six statistics selected to evaluate the per-
formance of the model. 

Various approaches can be used to consider the effects of 
data errors. Two different methods for dealing with imperfect 
data were briefly mentioned in the context of the literature 
review (Brier, 1973; Maldonado and Bullin, 1979). The ap-
proach in this report (Project 20-18) is to modify the formulas 
for the six statistics of interest to include terms associated 
with data errors. 

In general,, three sources of error affect the comparison of 
observed and predicted concentrations: 

Errors in the inputs of the model. 
Modeling errors. 
Measurement errors in observed concentrations. 

The output of the model combines the effects of input and 
modeling errors. Sensitivity analysis can help estimate the 
magnitude of the errors associated with imperfect model in-
put. Judicious application of other diagnostic methods can 
help to identify some of the sources of modeling errors, but 
the output of the model will nevertheless be affected by 
errors. Modeling errors are caused by the inability of the 
model to simulate the physical phenomena of interest. 

The third source of error--- error in the measurement of the 
observed concentrations —affects the extent of agreement 
that can be obtained between observed and predicted con-
centrations. This source of error can include both a random 
component and a constant, or slowly varying, bias. The ap-
proach adjusts only for the random error in the observations. 
Thus, it is assumed that the measurements have been ad-
justed for bias; by implication, the mean of the error distribu-
tion is zero. It is emphasized that if the bias is known (for 
example, by analyzing the calibration data for the instru-
ments), the data should be corrected. If the bias is unknown, 
it will appear as modeling error. Of concern here is the preci-
sion, rather than the accuracy, of the data. (It should be 
noted that federal regulations require that both accuracy and 
precision data be reported on a regular basis (1).) 

The question naturally arises as to where one obtains infor-
mation about measurement errors. One source of data is the 
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manufacturer's specification. This should be considered as a 
lower bound on the measurement error: the measurement 
error cannot be smaller, and will probably be higher. Calibra-
tion records for each instrument are the best source of infor-
mation about measurement accuracy and precision. The 
Texas data base (see App. G) used calibration data to obtain 
estimates of measurement error. Whether calibration data 
are available depends on the design of the experimental pro-
gram. Of the five data bases used in this study, only the 
Texas data base explicitly defined the measurement errors 
for the various instruments (see Table G-58 in App. G). 

For each of the six component statistics formulas have 
been derived that include the effect of random observational 
errors under two models. In the first model (called the multi-
plicative model), the observational error is assumed to be 
proportional to the true concentration (e.g., the error is ±10 
percent). In the second model (called the additive model), the 
standard deviation of the observational error is expressed as 
a constant bound (e.g., ±50 ppm). The mathematical deriva-
tion of these corrections is presented in Appendix D. 

Computation of the Figure of Merit 

The FOM summarizes in a single index the correspon-
dence between the observed and predicted concentrations 
with respect to the four attributes defined earlier. Conse-
quently, the FOM is a function of the six statistics chosen to 
measure these attributes. 

The first step in computing the FOM entails transforming 
the six statistics (S1  through S6) to a common scale. The 
lowest value on the scale (which has been designated to be 
zero) corresponds to very poor agreement between predic-
tions and observations as measured by that statistic and the 
highest value on the scale (which has been designated to be 
10) corresponds to very good agreement. The transformation 
to the common scale may be different for each component 
statistic; three distinct transformations have been selected 
for S1, S2, and S6; and a common transformation has been 
selected for the three coincidence measures S3, S4, and S5. 
The transformed scores are denoted as F1  through F6, each 
on a scale from 0 to 10. 

By necessity, the specification of the transformation to a 
common scale includes a judgment factor. The importance of 
this judgment is not immediately apparent when examining 
any single transformation. For example, it is clear that if an 
else were equal, a model with a Pearson's correlation of 0.57 
would be more desirable than a model with a Pearson's cor-
relation of 0.30. However, any reasonable transformation 
(e.g., monotonic increasing from 0 to 1) would arrive at the 
same conclusion. Consequently, there would appear to be 
limited importance attached to the choice among reasonable 
transformations. However, when multiple measures are 
combined into a single FOM, the choice of the transforma-
tions assumes considerable importance. For example, it is 
much less clear whether, if all else is equal, a model with S3  
= 0.57 and S6  = 2.3 ppm is preferable to a model with S = 
0.30 and S6  = 1.7 ppm. Presumably, different researchers, 
employing different criteria, could reach dissimilar conclu-
sions about the relative desirability of the models (or, they 
might reach the same conclusion for different reasons). The 
criteria used by these researchers might stem from their per-
sonal experiences, the thoroughness with which they have 
examined the problem of comparing models with multiple  

performance measures, the intended use of the models, or 
knowledge of expected losses associated with different types 
of misprediction. Ultimately these criteria affect the evalua-
tion of the tradeoff between ppm of root-mean-squared error 
and percentage points of correlation, and the subsequent 
ranking of the models. Thus, the transformations (and the 
algorithm used to combine the transformed statistics) should 
be selected to reflect these criteria as closely as possible. In 
fact, it has been found useful to select an initial transforma-
tion, apply the transformation to real models and data, 
examine the subsequent extent of agreement of subjective 
evaluations with the FOM, and modify the transformations. 
This process of refinement also has the advantage of reveal-
ing inconsistencies in the internal criteria (and differences 
among the investigators) and assisted in resolving those in-
consistencies. It is reasonable to assume that other investiga-
tors may disagree with the choice of transformations, be-
cause they are using different underlying criteria. In that 
event they should develop their own transformations, or pre-
sent a case for modifying the transformations contained in 
this report. 

For the S statistic a transformation was used that gave 
equal values to models that underpredicted or overpredicted 
by a common factor. For example, if one model overpre-
dicted by a factor of 2.0 and another model underpredicted 
by a factor of 2.0, their transformed S  statistics would be 
equal. This transformation is shown in Figure 1. Algebra-
ically, the transformed statistic F1  = 10 * S1  for S1  :5 1, and 
F, = 10/S1  if S > 1. 

For the S2  statistic a transformation given algebraically by 
the following equation was used: 

F2  = 10 (1 - IS2IIV'P1 tz) 
where P1  is the proportion of observed values greater than 
the threshold concentration used in defining S2, and P2  is the 
proportion of predicted values greater than the threshold. 
Note that S2  = P2  - P1, so that F2  is a measurement of the 
extent to which P2  and P1  differ, normalized by division of the 
square root of P1  + P2. Figure 2 shows the values of F2  for 
different combinations of P1  and P2. On the diagonal line of 
perfect agreement (e.g., P1  = P2) the F2  statistic is equal to 10, 
and if P1  and P2  disagree completely (e.g., P1  = 1 and P2  = 0 
or P1  = 0 and P2  = 1) the F2  statistic is equal to 0. Another 
perspective on F2  can be gained from Figure 3, which shows 
F2  as a function of S2  and the minimum of P1  and P2 . 

In the computation of F2, S2  is divided by the square root 
of P1  + P2. This divisor was chosen because it yields an F2  
value that is sensitive to both the absolute difference be-
tween P1  and P2  and the proportional difference between P1  
and P2. If the divisor had been chosen to be 1.0, F2  would 
have been sensitive only to the absolute difference between 
P1  and P2. For example, a model with P1  = 0.01 and P2  = 0.05 
would have received the same F2  score as a model with P1  = 

0.62 and P2  = 0.58. This situation of equal ranking would be 
undesirable, because the relative error for the first model is 
so much greater than the relative error for the second model. 
However, if the divisor had been P1  + P2, F2  would have been 
sensitive to relative error. For example, a model with P1  = 

0.001 and P2  = 0.01 would have received the same F2  score 
as a model with P1  = 0.1 and P2  = 1.0. Again this situation 
of equal ranking would be undesirable, because the absolute 
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error of the first model is so much smaller than the absolute 
error of the second model. These considerations underlie the 
selection of the square root of P1  + P, as the divisor, which 
is half-way" between 1.0 (e.g., P1  + P2  raised to the zero-th 
power) and P1  + P (e.g.. P1  + P2 raised to the first power). 

For the correlation statistics S3, S, and S5  the transforma-
tion given in Figure 4 has been selected. For example F:1  is 
equal to 0 whenever S i  is less than or equal to 0 and is equal 
to S:i  otherwise. This transformation reflects judgment that 
negative correlation is no better than no correlation. 

For the root- mean- square error statistic the transforma-
tion used is shown in Figure 5. Algebraically the transformed 
value F6  is given by 10/(1 + A * X * X) where A is equal to 
3.704 and X is equal to S. divided by the mean observed 
concentration. The statistic S 6  was divided by the mean ob-
served concentration because the ratio is scale invariant 
(e.g., the ratio is not affected by the units used, whether 
those units are ppm or ppb). The form of the transformation 
was selected so that small to moderate values of S. (e.g., a 
root- mean- squared error on the order of 10 percent of the 
observed mean concentration) would be associated with 
large F6  values and the transformation would fall-off rapidly 
thereafter. The constant A = 3.704 was chosen so that F 6  
would equal 7.5 when X was equal to 0.3. 

Once the six statistics have been expressed in common 
units, the second task is to combine the statistics into a single 
FOM. Several strategies for computing the FOM were 
tested, and a choice between them was made on the basis of 
the data analysis. One strategy was to formulate the FOM so 
as to choose the model with the minimum liability. This 
strategy is based on the presumption that the worst possible 
single event will occur. For example, if a model performs 
poorly in predicting exceedances of the air quality standard,  

the minimum-liability criterion assumes that this characteris-
tic will be the key ingredient in the highway planning pro-
blem. In this approach. the FOM was set equal to the worst 
transformed statistic score. 

A second strategy was to formulate the FOM so as to 
choose the model with the minimum (weighted) average lia-
bility. This strategy is based on the presumption that errors 
accumulate in highway planning problems. In this event the 
FOM was set equal to the weighted average of the trans-
formed statistic score. In computing this average a weight of 
one-half was assigned to each exceedance measure, a weight 
of one-third to each coincidence measure, and a weight of 
one to the fidelity measure. Thus, the overall FOM is given 
algebraically by [(F1  + F2)/2 + (F,, + F. + F5)/3 + F6]/3. 

The minimum (weighted) average liability definition for the 
FOM was selected because it was believed that the minimum 
liability approach would be less likely to produce similar 
model rankings when applied to different data sets. More-
over it may be overly pessimistic to assume that the worst 
possible situation would always occur. Chapter Five con-
tains examples of the effect that the minimum liability and 
minimum average liability criteria have on model rankings. 

The Diagnostic Analysis 

Diagnostic statistics assist the model user to identify con-
ditions associated with inaccuracies in the model's predic-
tions. A number of diagnostic statistics (including graphical 
displays) are defined in the following that should be useful in 
evaluating the causes of model inaccuracies. 

Taxonomy of Diagnostic Statistics 

The diagnostic statistics found to be particularly useful 
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may be classified into six basic categories: (I) time series. (2) 
spatial, (3) scatterplot. (4) frequency distributions. (5) multi-
ple regression, and (6) specialized displays. Within each cate-
gory are diagnostic statistics that are appropriate to the 
examination of the agreement between all observations and 
predictions, the magnitude of the peak daily observations 
and predictions, and/or the time difference between the peak 

daily observations and predictions. This taxonomy is illus-
trated in Table 3. Descriptions of these statistics are pre-
sented later. 

Method for Using Diagnostic Statistics 

Unlike evaluative statistics such as the FOM, diagnostic 
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statistics are employed in an iterative and interactive fashion. 
The first step entails computing the diagnostic statistics on 
the entire data base, or—in the case of multiple data bases—
on the one for which the model yields the lowest FOM. 
Examination of the diagnostic statistics and the model leads 
the investigator to suspect, for example, that certain atmos-
pheric or emissions conditions result in poor agreement be- 

tween observations and predictions. The investigator can 
then limit the data base to the days or sites in which those 
conditions occur and recompute the diagnostic statistics. 
The recomputed diagnostic statistics assist the investigator 
in determining why the model is breaking down under those 
conditions, and in identifying other factors that interact with 
the suspected condition. For example, the model may appear 
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Table 3. Classification of diagnostic statistics. 

Category 
Magnitude of 

Hourly Concentrations 
Magnitude of the 

Peak Concentration 
Time of the 

Peak Concentration 

Time series Superimposed time series of pre- Superimposed time series of 

dicted and observed concentrations daily peak predicted and 
observed concentrations 

Time series of residuals on a Time series of ratio of Time series of the daily 

linear scale daily observed and difference betieen the 

predicted peaks times of the observed 
and predicted peaks 

Spatial maps Superimposed isopleth plots from Spatial map of the average Spatial map of the 

observed and predicted concentra- ratio of the predicted to average time difference 

tions for selected hours observed daily peaks between predicted and 
observed daily peaks 

Scatterplot Scatterplot of the observed versus Scatterplot.of observed and 
the predicted concentrations predicted peak concentra- 

(both linear and log scales) tions 	(linear scale) 

Marginal Quantile-quantile plot for observed 
frequency and predicted concentrations 
distribution 

Histograms of observed and Histogram of the peak 

predicted concentrations observed and predicted 
daily concentrations 

Multiple Multiple regression of residual 
regressions error on meteorological, emissions, 

and other factors 

Specialized plots of residual error - 

versus two explanatory variables 

to perform poorly when observed concentrations are large. 
Upon restricting the data base to days with large observed 
concentrations, the investigator may find that the model per-
forms poorly only for a certain range of wind directions. On 
the basis of such insights, the investigator may decide to 
reselect the limiting conditions in order to understand better 
the model's difficulties. Continuing the example, the investi-
gator may decide that it would be worthwhile to limit the data 
base on wind direction and emission magnitudes, rather than 
observed concentration magnitude, and to recompute the 
diagnostic statistics. This process continues until the investi-
gator understands the conditions under which the model per-
forms most poorly. The discussion that follows examines 
briefly the particular diagnostic statistics that are recom-
mended, encompassing the six categories defined earlier. 

Diagnostic Statistics Related to Time Series 

Diagnostic statistics related to time series examine the 
temporal agreement between model predictions and ob-
served concentrations. Two diagnostic statistics are relevant 
to the examination of the hourly agreement: 

The superimposed time series of observed and pre-
dicted concentrations. 

The residual time series (observations less predictions 
on a linear or logarithmic scale). 

A similar diagnostic statistic may be applied to the examina-
tion of the agreement of the magnitude of the peak concentra-
tions, namely the time series of the daily ratio of the peak 
predicted concentration to the peak observed concentration. 

This diagnostic statistic is also useful for examining the time 
difference between the predicted and observed concentra-
tions if the daily time difference is substituted for the ratio of 
predicted and observed daily peak. 

Diagnostic Statistics Related to Spatial Agreement 

The spatial agreement of model predictions and observa-
tions is an important aspect of the model's predictive per-
formance. The spatial agreement for a given time may be 
examined using superimposed isopleth plots for selected 
hours of observed and predicted concentrations. The agree-
ment of the magnitude of the peak concentrations may be 
examined by generating a spatial map of the average ratio of 
the daily predicted and observed concentrations for each 
site. The time difference between observed and predicted 
daily peaks may be examined by generating a spatial map of 
the average daily time difference for each site. 

Diagnostic Statistics Related to the Scatterplot 

The scatterplot of observed and predicted concentrations 
is the most widely used diagnostic statistic for examining 
hourly agreement. The scatterplots in this study are con-
structed to include the least-squares regression line. 

Diagnostic Statistics Related to the Marginal Frequency 
Distribution 

The examination of marginal  frequency distributions al-
lows the investigator to judge whether the model is simulat- 
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ing the environmental conditions over a length of time rather 
than at any particular time. The accuracy of the model input 
should be severely questioned when the predicted and ob-
served marginal frequency distributions are similar and the 
errors between hourly or peak daily predicted and observed 
concentrations are large. The marginal frequency distribu-
tions may be measured using: 

A quantile-quantile plot (of observed as a function of 
predicted hourly concentrations, or observed as a function of 
predicted peak daily concentrations). 

Histograms of observed and predicted hourly concen-
trations and observed and predicted peak daily concentra-
tions. 

t)iagnostic Statistics Related to Multiple Regression 

Multiple regression is the most powerful of the diagnostic 
statistics. The independent variables in the regression are 
such meteorological and emissions variables as stability 
class, wind speed, wind direction, and emissions rate. Two 
dependent variables will be used. The first—the residual 
error between the predicted and observed concentration —is 
useful in determining the conditions under which the model 
either underpredicts or overpredicts the observed concentra-
tions, and consequently results in a bias. The second—the 
absolute value of the residual error—is useful in determining 
the conditions under which the magnitude of the error in 
prediction increases, even if no bias is present. 

For the purposes of the multiple regression, the residual 
error between the observed and predicted concentrations OC 
and PC will be defined as 

Residual 
= OC - PC 
  

+ PC)/2 

This form of the residual may be considered a compromise 
between the algebraic error and the relative error. The alge-
braic error is OC - PC and the relative error may be written 
either as (OC - PC)/OC or. in a more symmetric form, as 
(OC - PC)/[(OC + PC)/21. A shortcoming of the algebraic 
error is that in general it emphasizes the largest observations 
and predictions, and slights the smaller ones. The relative 
error, on the other hand, tends to emphasize the smallest 
observations and predictions, and slights the larger observa-
tions and predictions. The residual as defined in Eq. 1 
achieves a reasonable compromise. The nature of this com-
promise can be visualized in Figures 6 through 8. These 
figures display the curves along which the algebraic, sym-
metric relative, and compromise residual errors are constant. 

Specialized Plots 

Specialized plots, related to the multiple regression, pro-
vide a graphical display of the agreement between observed 
and predicted concentrations as a function of any two inde-
pendent variables, and can be devised to fit any desired 
purpose. 
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CHAPTER THREE 

FINDINGS-SENSITIVITY ANALYSIS METHODOLOGY 

The solution of a multiparameter sensitivity matrix defines 
the sensitivity (variance and covariance) of model output 
predictions. This solution is a product of two other matrices. 
One of these is a matrix of sensitivity coefficients that defines 
the partial deviatives of model output variables with respect 
to individual model input variables: the second matrix spe-
cifies the user-supplied variances of model input parameters. 
For application in this report these variances are made to 
represent the expected error variance. 

The same method is applicable to both steady-state and 
time-varying (i.e., dynamic) models. The matrices previ-
ously specified can vary with time so that, for each simulated 
event, the model prediction for each time interval can be 
bounded by expected output errors. 

The accuracy of the sensitivity analysis is limited in ana-
lyzing the effect of model input errors because input errors 
can only be approximated. Because of this limitation, tech-
niques that reduce the amount of computation are consid-
ered. These are briefly discussed in this chapter and illus-
trated in the example presented in Chapter Five. 

OBJECTIVES OF THE SENSITIVITY ANALYSIS 

The sensitivity analysis described here is applicable in a 
number of ways to diagnose the performance of an air quality 
model (or submodels) as it relates to the quality of the model 
input data: 

I. It can serve to quantify model performance in the pres-
ence of input errors. 

It can be used to quantify the required precision of 
particular model input to produce an acceptable error in the 
output. 

It can help to identify the model components that are 
the greatest sources of inaccuracy. 

It can serve as a guide to determining the origin of poor 
agreement between model prediction and measurement. 

The last point is perhaps the most significant attribute of a 
sensitivity analysis as it pertains to this study: that is, the 
issue is whether the proposed statistical tests are telling one 
that the model is not performing well or that the poor agree-
ment stems from inadequacies in the data base itself. 

Besides serving as a guide to distinguishing between model 
errors and input data errors, a sensitivity analysis can be 
applied further to indicate which components of the model 
must be improved or which data base parameters should be 
measured more accurately. Hence, it can indicate future re-
search priorities. 

FORMULATION OF THE METHOD 

The Sensitivity Matrix 

Sensitivity is formally defined as the partial derivative of  

the output of a model to the input parameter(s) in question. 
In the case of complex models, it is more appropriate to 
consider incremental changes in output resulting from incre-
mental changes in input, because determining the analytical 
expressions for partial derivatives becomes too cumber-
some. 

For relatively inert pollutants such as CO. the true (i.e., 
errorless) pollutant concentrations, x, can be represented as 
a function (mathematical model) of emissions input, Q, and 
meteorological input, 0, as follows: 

= f 	, [G]1) - [x'e  It.s 

where X, X'err, Q, and G are vectors in time, t, and space, s. 
The X'e, term represents an error in the model formulation, 
which is only a mathematical approximation of the physics 
and chemistry of the atmosphere. (In the notation used 
here,the prime will be used to designate errors caused by the 
model formulation; unprimed error terms will designate the 
total error.) For purposes of this report, it is assumed that the 
x', term represents an error not related to the Q and G 
arrays. The sensitivity of an element in the x array to an 
element in either the Q or G arrays is given by 

axi  = )f{[Q], [GI LS} 
 

or 

axi =  af{[Q], [G],}  
aG 

However, Q's and G's are also only mathematical approxi-
mations or measurements subject to error. These are ex-
pressed as 

[Q]t, = [QI s - LQerr]t.s 	 (3a) 

and 

[G], = [G] 	- [Gerr]t,s 	 (3b) 

where Q* and 0*  denote true values. 
The variations in the Qerr and 0e  terms are numbers that 

can be used to quantify air quality model errors by substitut-
ing for incremental changes in Q1 and Gj  in the discretized 
approximation of Eq. 2. Estimating model errors is discussed 
later. 

The previous results are used to define a matrix of sensi-
tivity coefficients, as follows. Let B denote the sensitivity 
coefficient matrix. Then 
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3Xi 3Xi aX 8Xi 	oX1 

OQ 0Q2 	3QN aG1 	aG 

B= 	 (4) 

0Xi. 	OX. 8Xi. 	3X. 
... OQN aG1  

where 

x i  = concentration of ith output variable, i = 1,2,..., L; 
N = number of emission-related input items; 
M = number of meteorological input items; and 
L = number of output items, 

Thus, B is of order L x (N + M). The ijth element of B 
expresses the influence of the jth input on the ith output 
variable. In the context of dispersion models the ith output 
would be the CO level at a specific receptor. 

The B matrix plays a prominent role in determining the 
variance of the output as a function of the variance of the 
input parameters. This is discussed later in the section on 
multiparameter sensitivity. For numerical models, the ele-
ments of the B matrix will vary with time. However, treat-
ment of the B matrix as time invariant is usually justified 
given other inaccuracies inherent in the method. A rigorous 
method for determination of the B matrix is given by Burns 
(2). Our approach makes use of several simplifying assump-
tions based on limited assessment of the accuracy of the 
model input data and on a priori knowledge of some of the 
sensitivity of the individual parameters. 

The first step in this type of sensitivity analysis is to iden-
tify the factors that will be evaluated (e.g., traffic speed, 
traffic volume, wind speed, diffusivity, temperature, and  

source strength input). High and low values are identified for 
each factor. 

The second step is to specify an experimental design (i.e., 
specifying the computer runs). The experimental design de-
tails the levels at which factors will be set during computer 
simulation runs. A factorial design can be used for this pur-
pose; however, a full factorial design (which requires 2" 
simulation runs, where P is the number of model parameters) 
is prohibitively expensive to perform with the more compli-
cated models. It would, however, allow the estimation of all 
main factor effects and interactions. As a practical matter, an 
attempt is made to minimize the number of simulation runs 
in a manner that is consistent with the achievable accuracy. 
This will vary from one type of model to another: Chapter 
Five contains one example of an analysis that required much 
fewer than the 2" simulation runs. 

Treatment of Model Input Errors 

The errors in the model input and validation data will be 
assumed to follow a Gaussian distribution as shown in Figure 
9. The symbols in the figure indicate the error parameters of 
interest. The distribution of errors about the true value, T, is 
subject to bias, b, and variability. Precision, o, is a measure 
of the variability of the distribution. 

The foregoing treatment is somewhat idealistic because, in 
reality, few data bases contain information that allows one to 
establish a distribution of errors as Figure 9 requires. In fact, 
for most parameters, typical values for or, and b must be 
estimated with only minimal supporting data. Another com-
plication is that some input data are directly measured 
whereas others are derived. Therefore, the following factors 
will be considered in quantifying errors in model input and 
validation parameters: 

e 

Figure 9. Assumed distribution of error. 
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Magnitude of instrument error (and its representa-

tiveness) for directly measured parameters such as winds, 
traffic counts, vehicle speeds, and ambient CO or tracer 

measurements. 
Accuracy of derived input data, such as diffusion coef-

ficients, average vehicle speed, and emission factors. 

The . representativeness" of a measurement is a signifi-

cant point which, coupled with instrument error, adds to the 

total error for directly measured parameters. Consider the 
problem of estimating model input parameters for wind speed 

and direction. Manufacturers claim instrument errors for 
wind are about 1 percent for speed and 2 to 3 percent for 

direction. In practice, field installation problems and changes 

in instrument characteristics with time can add significantly 
to these error factors. Other factors, such as roundoff of the 
data or classifying wind directions into sectors, also affect 

the error. However, all these errors can be reasonably esti-

mated. The representativeness of these winds, however, is 
somewhat more difficult to evaluate. For some of the data 

bases, more than one wind measurement is taken. Invari-

ably, multisite wind measurements are not in agreement. The 
best wind estimate, perhaps, is a spatial interpolation of 
available measurements leaving out nonrepresentative sites, 

if necessary. The distribution of wind errors, then, could be 

approximated from the variation of actual wind measure-

ments about the interpolated value. Some other parameters 
can be handled in the same way. For instance, errors in 

dispersion factors would be estimated from variability of 

source tests. 
Because of the nature of certain types of data, some errors 

must be estimated on the basis of a very subjective engineer-

ing judgment. For example, consider "measured" traffic 

speeds, where verification data do not exist. In this case one 

must rely on input (published or informal) from the manufac-
turer of the traffic detector and from the field team that 

collected the data. 
The foregoing paragraphs described some general consid-

erations and approaches to quantifying data errors. Because 

procedures for collecting the various data bases used in this 

study differed, the treatment of data base errors must remain 
flexible. However, it is imperative that the approach to each 

data base is consistent, to the extent possible. In this way, it 
is possible to minimize, in the analysis, errors that can arise 

because of the bias among data bases. 

Estimation of the Multiparameter Sensitivity of the Model 

Having obtained the sensitivity matrix, it is used to deter-

mine the variance of the output as a function of the variance 
of the input parameters. The variance of the output quantifies 
the total model output error induced by the combined influ-

ence of all the input parameters. We begin by defining the 

quantities of interest. Let 

P1  

P = 	. 	= vector of input parameters 

Pr 

where r = number of input parameters. 

11 	2 oi1 
Var (P) = 	 = matrix of variances 

[o 	o rJ 	of input parameters 

]x = [. 	

= vector of output variables 

where q = number of output variables. 

Sh S 2  
Var (x) = 	 = matrix of variances of 

S q 	S qj 	output variables I 
Both Var (P) and Var (x) are symmetric matrices. Var (P) is 

not a function of time, but Var (x) is. 

The Var (F) matrix contains the variances ((Y) and covari- 

ances (o-ii ) of the input. The variances (T are measures of the 

precision of the input and are the square of the quantity Te  

defined earlier. Thus, the values of the variances must be 

estimated from such data as wind speed, wind direction, and 

dispersion parameters. The covariance r is important only 
if the ijth pair of input items is correlated. Such correlation 

would exist for such derived input as emissions, which is 
calculated from traffic volume, emission factors, traffic 

speed, and so on. Thus, the covariance cr ij  quantifies the 

error in the emissions due to traffic volume and traffic 
speed, respectively. If the ijth pair is uncorrelated, o- ij = 0; 
an example of ordinarily uncorrelated input is emissions and 

wind speed. 
The Var (x) matrix contains the variance and covariance of 

the output 'ariables. The expected error of the ith output 
variable is given by s  (i.e., the square root of the variance). 

In this case, the ith output would correspond to the concen-
tration at the ith receptor. The covariance s, approximately 

describes the correlation of the errors of pairs of output 
variates. Knowledge of the correlation of such errors can be 

extremely helpful because it gives an indication of the limits 
of the model. Consider two outputs whose errors are highly 

correlated. The precision of one cannot be improved inde-
pendently of the other. Conversely, a low or zero covariance 

of the errors implies a high degree of independence: one 
would be free to try to improve either variable separately. 

Each entry of Var (x) shows the results of the propagation 

of the input errors through the model. In general, Var (x) is 
a function of time, so the input errors propagate through the 
model in an evolutionary fashion. It is of interest to find 

the expression that relates Var (x) to Var (P) in order to be 

able to calculate how the input errors propagate. Burns (2) 

has shown that Var (x) is given by 

Var (x) = B ' Var (P) ' B' 	 (5) 

where B is the matrix of sensitivity coefficients previously 

defined, and B" is the transpose of B. 

Note that Eq. 5 could be used in two ways. The first way 

allows one to estimate the output errors associated with input 
data errors. Thus, this approach considers input errors to be 

fixed. The second way would allow one to determine the 

level of precision required by the input in order to satisfy a 
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prespecificd accuracy bound in the output. For example. one 
could specify that a particular output variable(s) must be 
within -_10  percent of its mean value. Then, using Eq. 5 
iteratively, one could find the precision level requited of the 
input to satisfy the desired output accuracy. This would be 
extremely useful in planning a field experiment. 

The expected error in each output variable induced by the 
combined effect of all the input uncertainties is given by 

e i  = s ii  

where s11  is the square root of the ith diagonal element of Var 
(x), and i denotes the ith output variable. For example, if one 
had N receptors. i = 1.2.....N, and e l  would be the total error 
at each receptor. This error includes the effect of input pa-
rameters such as diffusivities and emissions and also of the 
measurement errors in the initial concentrations (if appli-
cable). 

INTEGRATION OF SENSITIVITY ANALYSIS AND 
STATISTICAL METHODS 

Ideally, results from the sensitivity analyses are integrated 
into results for other statistical tests. The standard deviation 
from the diagonals of the Var (x) matrix described earlier can 
be thought of as the expected error in the predicted concen-
trations, which could be handled in much the same manner 
as the measurement errors associated with observed concen-
tration. The discussion in Chapter Two shows how the mea-
surement errors can be incorporated into various statistics. 

Figure 10 graphically shows how results for a sensitivity 
study can be represented on a simple scatterplot. In Figure 
10, every comparison between calculations and measure-
rnents has upper and lower sensitivity bounds (limits as func-
tions of model input errors). In this example, only points 
labeled "2" and "6" fail to intersect the line of ideal fit. The 
conclusion is that input data errors alone cannot explain the 
disagreement for these two points. One can take several 
approaches to establishing the error bars for each compari-
son in the data base. On one extreme, the Var (x) matrix can 
be solved every time a prediction is made. At the other 
extreme, the Var (x) matrix is solved only once to give an 
average error for the entire set of comparisons. Striking a 
compromise between accuracy and cost to achieve it, one 
might work with a limited number of Var (x) solutions, each 
of which is related to some constraint on the model input 
parameters (e.g., low wind speeds versus high wind speeds). 

The nonlinearity of the sensitivity matrix poses some prob-
lems in integrating the sensitivity analysis with the rest of the 
statistical methodology. For instance, consider the steady-
state Gaussian models for which the output varies inversely 
with the wind speed. Hence, the sensitivity varies inversely 
with the square of the wind speed. A given percentage error 
in the wind speed will result in much larger model-output 
errors at lower wind speeds (say, 2 m/s) than at higher wind 
speeds (say. 8 m/s). Nevertheless, as a practical matter, for 
certain statistics it may be acceptable to consider a single 
average modeling error induced by all model input errors. 

Three alternatives in relating the Var (x) matrix to model 
output errors are follows: 

1. Solution of the sensitivity matrix for each model simula-
tion time increment. This may be warranted if one could 

X - measured 

Figure /0 .Sca tterplot with sensitivity bars. 

accurately quantify the model input errors. As discussed 
later, these errors are only roughly estimated. 

Solution of the sensitivity matrix for a limited set of 
model input values to determine an "average" model output 
error. The average error would be compared with average 
differences between model predictions and observations. 
This approach is justifiable if it is consistent with the accu-
racy limitations previously discussed. 

Combinations of the foregoing approaches could be 
used. For instance, one may choose to work with the average 
error for most of the model evaluation. However, for certain 
large disagreements between observations and predictions, 
one may choose to solve the sensitivity matrix for those 
individual cases. 

Some of these concepts are discussed and illustrated in 
Chapter Five. 

STEP-BY-STEP SENSITIVITY ANALYSIS PROCEDURE 

The following procedure varies somewhat according to the 
type of model and what is already known about its sensitivi-
ties: 

Step 1: Quantify the error bounds associated with each of 
the model input parameters. (This includes the standard 
input parameters (e.g., emissions, wind speed and direc-
tion, atmospheric stability class) as well as certain model 
constants that are user-adjustable.) These error bounds can 
usually be determined from values in the literature. 
Step 2. Given the error bounds above, determine which of 
the model input parameters vary in a manner that could 
produce a significant variation in the model output. 
Step 3: The parameters identified in Step 2 become ele-
ments in the Var (P) matrix. The step requires the conver-
sion of the error bounds to error variances in forming the 
Var (P) matrix. 
Step 4: For the same parameters, form the B matrix (or 
B matrices) for the receptor locations of interest. Quantify 



the elements in the matrix by appropriate techniques, in-
cluding analysis of the partial derivatives of the model equa-
tion and numerical estimation of the partial derivatives of 
this model equation. 
Step 5: Solve the model sensitivity equation and present 
the results with the model output values. (Each model out-
put value has an upper and lower sensitivity limit.) To ac-
complish this, the sensitivity equation can be incorporated 
into the computer code along with the model formulation. 
Alternatively, it can be solved separately. 

Step 	Interpret the results in the context of evaluating 
the model's overall performance. 
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The above procedure briefly highlights the steps of the sensi-
tivity analysis, but does not emphasize all the options that an 
individual might select, because such subjective judgment 
will differ among individuals. However, the calculation of the 
sensitivity matrix, which is fundamental to the process, 
requires the execution of the six steps previously listed. 

CHAPTER FOUR 

FINDINGS-DATA BASE ASSEMBLY 

GENERAL 

A data base was assembled for use in evaluating the per-
formance of highway air-pollution dispersion models. The 
data base, which included data from at-grade, elevated 
(above-grade), and depressed (below-grade) highways, was 
composed of five data sets provided by SRI International, 
General Motors Corporation. New York State Department 
of Environmental Conservation, Texas A&M University, 
and the California Department of Transportation. 

The five data sets are distinguished by a fine level of detail 
in the measurement of meteorological, pollutant, and traffic 
data. A user's guide to the data base has been prepared that 
describes in detail the contents, organization, and format of 
the data base. The user's guide is included in Appendix G of 
this report. 

The purpose of the data base was to provide input data for 
the dispersion models as well as the observations with which 
model predictions will be compared. For this reason, the data 
base comprises measurements collected in special experi-
mental programs expressly designed to describe highway-
related air pollution. This chapter reviews in condensed 
fashion the data base components and the organization of the 
archive, and discusses supplemental data needs. A detailed 
description of the data base is given in Appendix G of this 
report. 

COMPONENTS OF THE DATA BASE 

The data base is composed of five data sets provided by: 

SRI International (SRI) 
General Motors Corporation (GM) 
New York State Department of Environmental Conser-

vation (NYS) 
Texas A&M University (Texas A&M) 
California Department of Transportation (CALTRANS) 

Table 4 gives the contents of the five individual data bases. 
Four of the five data bases contain CO measurements, and 
three have SF6  data. The SRI and NYS data have both CO 
and SF6  data, but GM did not measure CO. The SRI data 
base has the unusual feature that two different tracer gases, 

SF, and Freon 13-Bl, were released by moving vehicles 
traveling in opposite directions. 

All five data bases contain detailed coverage of meteoro-
logical conditions, in both time and space. The geographical 
separation of the various sites suggests that a wide variety of 
meteorological regimes is represented in the data (one reason 
for including all five data sets in the model evaluation data 
base). Judging by the measurement periods, all the seasons 
are represented to some degree. The precise dates and times 
of the measurements are documented in Appendix G. 

The traffic data are also very detailed, including vehicle 
speed per lane and vehicular category, in some cases. This 
detail should lead to more accurate estimates of vehicular 
source strength. The variety of site locations implies that 
there will be a wide assortment of age distributions and of 
mix of vehicle types. Age distribution and vehicle type con-
siderations do not apply to the GM data set because the 
vehicles consist solely of 1975 model-year passenger cars. 

Site type and location are the most important factors af-
fecting the composition of the data base, inasmuch as fixing 
the site determines the weather, traffic, and other conditions. 
As Table 4 shows, the combined data sets include seven 
at-grade and three each of elevated and cut sites, allowing the 
dispersion models to be tested under a variety of highway 
configurations. 

The five data sets have been evaluated to determine the 
adequacy of the data for model evaluation purposes. This 
evaluation included assessing the quantity and quality of the 
data, as well as identifying the pollution and meteorological 
conditions represented in each data set. Data quality con-
cerns included assessing the accuracy and precision of the 
measurements, identifying anomalies in the data, and eval-
uating the experimental design of the monitoring program 
and statistical summaries. The data evaluation process in-
cluded compilation of data inventories and statistical sum-
maries. The inventories and the data summaries, which ap-
pear in Appendix G, will assist users to select data for testing 
models. 

DATA-BASE ORGANIZATION 

The data archive is divided into four parts: 
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Table 4. Contents of data bases. 

• 

Parameter 

Agency  

SRI GM NYS Texas A&M CALTRANS 

Aerometric Data 
CO x x x 
SF6  X X X 
Freon 13-Bl X 
Sulfate X X 

Meteorological Data 
Horizontal wind speed 
and direction X X X X X 

Vertical wind speed X X X X 
Temperature X X X X X 
Temperature gradient X X X X X 
Solar radiation X X X 
Relative humidity X X 
Precipitation X X 
Wind fluctations X X X 
Temperature fluctuations X 
Wind profile X X X 
Cloud cover x 
Ceiling height x 
Pressure X 

Traffic Data 
Traffic volume X X X X X 
Vehicle speed X X X X X 
Vehicle length or type X X 

Site Types 
Number of at-grade sites 1 1 1 4 
Number of elevated sites 1 1 1 
Number of cut sites 1 1 1 

Period of Measurements Jan-Feb 75 Oct 75 Apr- May 76- Apr-Jun 74 
Jul 75 May 77 Dec 77 Aug 74-Apr 75 

Aug-Sep 75 

Tape Index. 
Format Definitions. 
Table of Contents of Data Files. 
Data Files. 

The four parts of the archive appear on the tape in the order 
shown; their descriptions are given in the following. 

Tape Index 

The index is intended to provide a quick-reference guide to 
the file structure of the tape. The tape index (see Table 5) 

gives all the files, showing the name of each file and the 
corresponding pumber of blocks in the file, a block being a 
set of 3200 characters. A user can consult the index to find 
the position of a file on the tape; knowing the file position will 
allow the user to skip to the desired file by using job control 
commands indigenous to the user's computer installation. 
(Note that the tape index itself is the first file on the tape.) 

From Table 5 it can be seen that the archive consists of 30 
files as follows: 

Tape Index - File 1 
Format DefinitiOns—File 2 
Table of Contents of Data Files—Files 3 to 16 
Data Files—Files 17 to 30.  

End-of-file marks separate all the files. 

Format Definitions 

A file of format definitions (File 2 in Table 5) has been 
included to make the tape as self-documenting as possible. 
This file contains the format specifications of all the files on 
the tape. Thus, four kinds of format are defined, one each for 
the four types of file in the archive (tape index, format defi-
nitions, table of contents of the data files, and the data files). 

A uniform format has been Used in the data files. This 
format follows the SAROAD specifications. (SAROAD is an 
acronym for the Storage and Retrieval of Aerometric Data 
system devisedby EPA. See Ref. (3) for a description of the 
system.) An advantage of a SAROAD format is that each 
data record is self-contained, and thus can be read indepen-
dently of the others; the SAROAD format is well known and 
its use should facilitate access to the data. 

For the data files, records consist of 80 characters (a card 
image), with 12 hours of data per record, and two records per 
parameter per day. Records will be stored in blocks of 40 
(i.e., 3200 characters/block). Blocks are not designed so that 
each day of data has an integral multiple of blocks, because, 
in general, this would require blank-filling the last block of a 
given day, and one does not expect to have the same number 



28 

Table 5. Index of data archive. 

File 
Number 

Block 
Number File Name 

1 1 Tape index 
2 3 File Descriptor 
3 2 Calt Santa Monica 1 table of contents 
4 3 Calt Santa Monica 2 table of contents 
5 10 Calt San Diego table of contents 
6 1 SRI Hiwy 101 table of contents 
7 2 SRI Hiwy 1280 B table of contents 
8 1 SRI Hiway 1280 A table of contents 
9 2 NY Huntington table of contents 
10 2 GlI Mich Prov Grnd. table of contents 
11 2 TA&M Dallas-Forst table of contents 
12 1 TA&M San Antonio table of contents 
13 2 TA&M El Paso table of contents 
14 1 TA&M Dallas Motley table of contents 
15 2 TA&M Houston-Katy table of contents 
16 1 TA&M Houston-Link table of contents 
17 111 Calt Santa Monica 1 data file 
18 65 Calt Santa Monica 2 data file 
19 373 Calt San Diego data file 
20 68 SRI Hiwy 101 data file 
21 46 SRI Hiwy 1280 B data file 
22 42 SRI Hiwy 1280 A data file 
23 43 NY Huntington data file 
24 20 CM Mich Prov Grnd. data file 
25 22 TA&M Dallas-Forest data file 
26 14 TA&M San Antonio data file 
27 27 TA&M El Paso data file 
28 25 TA&M Dallas Motley data file 
29 38 TA&M Houston-Katy data file 
30 17 TA&M Houston-Link data file 

of blocks per day. Accordingly, data for a new day follow 
immediately within the same block, after the data for the 
preceding day. However, the last block in a file has been 
blank-filled, if necessary, to retain the constant block size of 
3200 characters. 

The SAROAD format is not applicable to the records con-
tained in the tape index, format definition, and table of con-
tents. Thus, each of these parts of the archive has its own 
format. Regardless of the format, the block size of 3200 char-
acters has been retained. 

Table of Contents of Data Files 

The table of contents of the data files is provided to assist 
the user in locating the data for a particular day in a given 
data file. Table 6 gives an example for the Santa Monica data 
file. Referring to Table 5, this table of contents appears in 
File 3, and the data to which it refers appear in File 17. Table 
6 gives the number of the data file and the number of the first 
block and record in the file where the data for each day begin. 
For example, the data for April 10, 1974, begin in record 1 of 
block 1, whereas the data for April 11 begin in record 21 of 
block 3. One record corresponds to an 80-character line in 
the block. Hence, the data for April 11 begin on the 21st line 
of block 3. 

Table 6 shows that the header of the table of contents lists 
the number of the data file (i.e., Data File 1). This data file 
is File 17 in Table 5. The header also shows the file name and 
the number code assigned to this site (i.e., 50108). This 
number code appears in every record of the data file. 

The table of contents has been designed so that, if desired, 
the table can be searched with a computer program provided 
by the user. As shown in Table 5, there is a table of contents 
for each highway site. 

Table 6. Partial table of contents for CALTRANS 
Santa Monica site 1. 

CJ.1 FILE UJfIF 1 

FILE NAME CAUT SANTA MONICA 1 
	

50105 

SITE TYPE 	3EL0WG4)E 

DATE 	3LOC< 93. RECJ) NO. 

740410 1 1 
740411 3 21 
740412 6 1 
740413 8 21 
740415 8 37 
740416 11 17 
740417 13 33 
740418 14 13 
740419 16 33 
740420 16 37 
740421 19 13 
740422 19 29 
740423 22 9 
740424 24 29 
740425 25 
740426 27 25 
740427 23 5 
740428 28 21 
740429 28 37 
740430 31 11 
740501 	- 33 31 
740502 3b 11 
740503 38 31 
70504 41 Li 
740505 41 27 
74050b 42 3 
7.-3507 44 23 
7q0502 47 3 
7 q-0 50 q 49 23 
7q051D 32 3 

Data Files 

There are 14 data files, one for each highway site. Within 
each file, the data are ordered by month, day, and parameter 
as follows: 

Month M 
Day 1 

Parameter 1: 24 hours 

Parameter N: 24 hours 
Day 30 (or 31) 

Parameter 1: 24 hours 

Parameter N: 24 hours 
Month M + 1. 

Thus, all the measurements made on a particular day will 
be together, and the day can be regarded as the basic unit of 
data. This ordering scheme is particularly convenient, be-
cause, in general, one wishes to use the data for a given day 
for model verification purposes. 
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SUPPLEMENTAL DATA NEEDS 

The data archive assembled in this project contains some 
limitations for model evaluation purposes. These limitations 
are discussed in the following, and suggestions are offered 
for consideration in the planning and design of future mea-
surement programs. 

S The archive contains data for seven at-grade sites, and 
for only three each below-grade and above-grade sites. Thus, 
more data are needed for the latter two highway geometries. 

a In the present data base, parallel and nearly parallel 
winds and low wind speeds are relatively scarce. Such wind 
conditions tend to be troublesome for models; hence, it is 
desirable to test the models using a larger sample of such 
cases. Thus, additional data are needed for low wind speeds 
and parallel and nearly parallel winds. 

The accuracy and precision of the measurements are 
inadequately characterized in four of the five data sets. This 
is not meant to imply that the instruments were inaccurate or  

imprecise, but rather that the existing information is gener-
ally inadequate.to  describe quantitatively the accuracy and 
precision of the measurements. Because uncorrected bias in 
the measurements will appear as modeling errors in the 
model evaluation, it is recommended that calibration records 
be made an integral part of the data base generated in future 
programs. Moreover, if such records exist for the five data 
sets studied they should be appended to the present data 
archive. 

Because the emission input used by the models is a 
sensitive function of the traffic data, it is recommended that 
future programs devote considerable effort to characterizing 
the traffic parameters (volume, speed, mix, and operating 
mode), such measurements preferably being concurrent with 
the air-quality and meteorological data. 

To improve emissions estimates, it is recommended that 
controlled releases and subsequent measurement of concen-
trations of tracer gasses such as SF6  be included in future 
experiments whose data are intended for model evaluation 
purposes. 

CHAPTER FIVE 

INTERPRETATION, APPRAISAL, APPLICATIONS 

DEMONSTRATION OF EVALUATION METHODOLOGY 

This chapter describesthe application of the model evalua-
tion procedures previously developed by conducting a pre-
liminary assessment of the performance of six selected high-
way air-pollution dispersion models. The model evaluation 
was conducted using a subset of the data base assembled in 
this project, which is described in Chapter Four and in Ap-
pendix G of this report. It is emphasized that the perfor-
mance evaluation of the selected models was not intended to 
be definitive. Rather, the assessment was meant solely to 
illustrate the application of the evaluation methodology in a 
realistic context by using data collected at a highway site. 

The following first discusses the selection of the dispersion 
models and of the subset of the data base chosen for the 
application. The results of the model evaluation are then 
described. 

SELECTION OF DISPERSION MODELS 

Six models were selected: four are Gaussian and two are 
numerical. The models were selected following a review of 
various candidate models that, although thorough, was not 
intended to be exhaustive. Consequently, selection of a 
model does not constitute an endorsement, nor is it meant to 
slight those models not selected. The model selection criteria 
are discussed in the next section. Subsequent sections list the 
models considered and identify those selected. 

Criteria for Model SelectIon 

Selection of the models was guided by the following cri-
teria: 

Availability of model and its documentation —The 
documentation and computer program for a model must be 
readily obtainable. This requirement rules out proprietary or 
undocumented models. 

'.Diversity in the modeling approach —Because of - the 
constraint to selecting only a few models, it was considered 
desirable to choose models that use different modeling tech-
niques. 

Performance in previous tests—Models should have 
been previously tested with relatively good results. 

Ease of model implementation and application —The 
model must be relatively easy to implement and operate. 
(These are necessary practical constraints dictated by time 
and financial restrictions.) 

Project specifications - Some models were automati-
cally selected because the scope of work of the project re-
quired it. 

The application of these criteria to the model selections is 
discussed below. 

SelectIon of Gaussian Models 

The 12 Gaussian models considered are given in Table 7. 
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Table 7. Gaussian models. 

Model 
Name Agency Reference 

HIWAY-Il U.S. Environmental Protection (7, 	8) 
Agency (EPA) 

CALINE3 California Department of  
Transportation 

ROADMAP SRI International (4) 

GMG General Motors Corporation  

TRAPS II Texas A&M University (11, 	12) 

AIRPOL-4 Virginia Highway and Trans- (13, 	14) 
portation Research Council 

TSC/EPA Transportation Systems (15) 
Center 

14MM Walden Research Corporation (6, 	15) 

ESL Environmental Systems (6, 	15) 

Laboratory 

KSC Kaman Sciences Corporation (15) 

SCI Systems Control, Incorporated (15) 

TRC The Research Corporation of (15) 
New England  

Four of these were selected for evaluation: HIWAY-
II, CALINE3, ROADMAP, and GMG. HIWAY-II and 
CALINE3 were chosen pursuant to the specifications of the 
project scope of work. Although several of the other can-
didate models satisfy the selection criteria, ROADMAP and 
GMG were selected largely on the basis of their good per-
formance in previous tests (4, 5). The process that led to 
these selections is discussed in more detail below, and the 
features of six of the models are compared. 

Of the 12 models considered, only 7 satisfy the availability 
criterion: TRAPS II, AIRPOL-4, and TSC/EPA, in addition 
to the above four models selected. The models WHM, ESL, 
KSC, Sd, and TRC are neither current nor available; in fact, 
it appears that the ESL, KSC, and SCI models no longer 
exist. The TSC/EPA model was eliminated based on the 
results of Downey et al. (6), which show that its performance 
is similar to that of CALINEI for at-grade highways. Be-
cause CALINE1 has been superseded by better models 
(CALINE2 and, most recently, CALINE3) it. seemed rea-
sonable to exclude TSC/EPA from further consideration. 
This left ROADMAP, GMG, TRAPS II, and AIRPOL-4 as 
the candidates for the two remaining selections. In a recent 
test, GMG outperformed AIRPOL-4 in a comparison using 
data from an at-grade site in New York (Rao et at., 1979). The 
ROADMAP model has not been compared with other models 
thus far, but it has been tested with good results using SRI 
data (Dabberdt, 1977). Both AIRPOL-4 and TRAPS II con-
tain a number of unique and interesting features in their 
design, and merit further testing in the future. 

Table 8 compares various characteristics of HIWAY-II, 
CALINE3, ROADMAP, GMG, TRAPS II, and AIRPOL-4. 
The table shows that the diversity criterion is satisfied by the 
four models selected and, indeed, by all six models. The 
models are collectively applicable to a variety of highway 
configurations; each has a different formulation; and each 
accounts for vehicle-induced turbulence in a way that is 
unique for each model. All the models are fairly well docu-
mented and are easy to implement and use. All but GMG are  

available in a user-oriented package of algorithms. (The 
GMG model is considered to be research-oriented because it 
lacks a user's guide and its computer program, although easy 
to use, is not designed with a view toward highway-planning 
applications.) All the models share essentially the same types 
of input, and all the input data are normally available, with 
one exception: GMG requires a buoyancy flux parameter 
that is not readily available. (Chock (10) has derived such a 
parameter using data from the GM experiment, and has sug-
gested a method for adapting this derived value to other 
applications (16).) Only CALINE3 and TRAPS II explicitly 
incorporate a terrain roughness parameter. For CALINE3, 
the parameter is an input; for TRAPS II it is built into the 
program. The user's guide for CALINE3 (9) provides a table 
of roughness parameters for different kinds of terrain. 

Selection of Numerical Models 

The numerical models considered are given in Table 9. The 
two selected are MROAD2 and LAMB. 

The scope of work of the project required selecting one of 
either MROAD2 or MROAD3, DANARD, or RAGLAND. 
A recent comparison of MROAD2, DANARD, and RAG-
LAND using the New York data base (5) revealed that 
MROAD2 and DANARD give similar results, and that both 
outperformed RAGLAND. Thus, either MROAD2 or 
DANARD was suitable. MROAD2 was selected because it 
was readily obtainable from the Oregon Department of High-
ways, but DANARD certainly merits inclusion in any future 
projects aimed at evaluating models. MROAD3 was rejected 
because it does not satisfy the performance and implementa-
tion selection criteria. 

The LAMB model was selected, first, because its perfor-
mance in previous verification attempts using GM data has 
been very good and, secondly, because the LAMB model is 
unlike any other numerical model considered in that it uses 
the Monte Carlo method for solving the integral equation that 
describes the mean concentration field. The model thus 
differs substantially from finite-difference K-theory models 
such as MROAD2. Rather than test two versions of a 
K-theory model, it was decided to test one such model 
(MROAD2) and another that uses a significantly different 
approach. 

Of the other models given in Table 9, GMN, AVQUAL, 
CEM, EGAMA, INTERA, and LOC are proprietary and 
unavailable. This left LAMB, ESK, and ROADS as potential 
candidates for the second selection. Both ESK and ROADS 
are finite-difference models that were passed over in favor of 
LAMB for reasons already stated. However, ESK has 
several unique features, notably a new approach for incorpo-
rating the effects of vehicle-induced turbulence, that make it 
a strong candidate for inclusion in future model evaluation 
efforts. In recent tests conducted using New York data, both 
MROAD2 and DANARD outperformed ROADS (5). 

From a user's standpoint, none of the numerical models is 
packaged as well as the Gaussian models previously dis-
cussed. The technical documentation for MROAD2 is inade- 
quate, but LAMB's is better. The technical report describing 
the LAMB model contains a brief user's guide describing the 
input structure of the model, but the version of the model 
received by the research team did not always conform to the 
published description. MROAD2 has a very brief user's 



Table 8. Features of six Gaussian models. 

Treatment of 
Special Line Source 

Roadway 	- Minimum Treatment 
Virtual Configuration Wind For Vehicle- 

Model Speed Parallel Point Finite Infinite Induced Terrain Special 
Cut At-Grade Elevated Name (m/s) Wind Source Line Line Turbulence Roughnes8 Input Remarks 

HIWAY-Il X X > 0.3 Yea X Implicit in No Width of median s  Applications- 
and oy width of top of oriented program and 

cut section documentation. 

ROADMAP X X X > 0.5 Yea X Implicit in No Applications- 
a• 	and z oriented program and 

documentation. 

CALINE3 X X X > 	1.0 No X Implicit in Yea 4urface rough- Applications- 
mixing zone ness parameter; oriented package. 
width and az ob for special Includes treatment 
correction applications; for bridges. 

settling and 
deposition velo- 
cities 

GHC X 0 Yea X Implicit in 
z and a wind 

No Buoyancy flux Does not require a,. 
Uses only three ata- 

correction bility conditions. 
factor Research-oriented 

computer program and 
documentation; no 
usera guide avail- 
able. 

TRAPS II X X X > 0.5 No X Implicit in Yes Height of wind Uses non-Fickian 
at fitted equa-' speed measure- solution of diaper- 
10 m tion for CO ment and wind sion equation in a 

concentration speed at Riven semiempirical 
at edge of height; rough- approach. 
roadway ness height Application-oriented 

computer program and 
documentation. 

AIKPOL-4 x x X 0 No X Implicit 	In No Applications- 
a 	and o oriented program and 

documentation. 
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Table 9. Numerical models. 

Model 
Name Agency Reference 

IIROAD2, Oregon State Department (17, 	18) 
IIROAD3 of Highways 

LAMB U.S. 	Environmental  
Protection Agency 

DANARD University of Waterloo  

RACLAND University of Wisconsin  

ESI( U.S. 	Environmental (22, 	23) 
Protection Agency 

ROADS Oregon Graduate Center (24) 

GMN General Motors (5) 
Corporation 

AVQIJAL AeroVironment,  
Incorporated 

C921 Center for Environment (15) 
and Man 

ECAMA Environmental Research  
and Technology, 
Incorporated 

INTERA Intera (15) 

LOC Lockheed MissIlea (15) 
and Space Company  

guide that was marginally useful. Brief descriptions of 
MROAD2 and LAMB are given in the following. 

MROAD2 

MROAD2 is a K-theory model that solves the two-dimen-
sional advection-diffusion equation using finite differences. 
The governing equation is: 

ac ac ac a ac a ac 
+ u—+ w—=—K5 —+—K5 —+ S (6) 

at ax &z ax ax az 3z 

where 

C = pollutant concentration; 
u,w = mean wind speed in x and z directions, respec-

tively; 
K5  ,K5  = turbulent diffusion coefficients in x and z direc-

tions, respectively; and 
S = emission source strength. 

The two-dimensional formulation implies that the model is 
applicable to a vertical cross section of a highway. The model 
requires specification of the wind field and the diffusivity 
field at every point in the (x,z) plane. 

LAMB 

This model differs from the K-theory approach in that it 
tracks the movement to a receptor of particles released over 
the roadway. The movement of a particle is governed by a 
probability density function (pdf) of the form p(r,t/r5 ,t'), 
which is the pdf that a particle released at point r5  at time t' 
will be found at point r at time t. The governing equation of 
the model is: 

C(r,t) =Jj 	p(r,tx5 ,y',z5 ,t') S (y',t') dy'dt' 	(7) 

where 

C(r,t) = mean pollutant concentration at point 
r = (x,y,z) at time t; 

p(r,tx5 ,y',zs ,t') = pdf that a particle released at time t' at 
point x5 ,y',z5  arrives at point rat time 
t; and 

S(y' ,t') = function describing the distribution of 
vehicle emissions. 

When solved under certain particular assumptions, Eq. 7 
yields the K-theory model; those assumptions have been 
foregone in the LAMB model. Instead, particular forms of 
the pdf and S function are used, and the integral equation is 
solved using a Monte Carlo approach. The resulting solution 
consists of an ensemble of simulated particle trajectories that 
are averaged to yield the desired mean concentration. 

DATA-BASE CONSIDERATIONS 

Demonstration Data Set 

For this application, the data set for one at-grade highway 
site from the Texas data base was selected. The site is one of 
two located in Houston (the other is for a below-grade 
roadway), and has been designated as Houston 1. Appendix 
G contains a complete description of the site as well as a data 
inventory. 

The selection of this data set for demonstration purposes 
was guided by several factors. First, the demonstration data 
set must be selected in a manner consistent with the project's 
scope and associated time and financial constraints. Thus, 
although it would be ideal to apply the evaluation procedure 
to the entire data base, rather than to a subset, such an 
undertaking would substantially exceed the resources of the 
project. The Houston 1 data set satisfies this criterion be-
cause its size is manageable, yet sufficiently large to obtain 
meaningful statistics. 

Second, the data set should be well documented, espe-
cially with respect to the probable magnitude of measure-
ment errors. All the data sets in the archive are reasonably 
well documented, but the Texas data base is noteworthy 
because it includes measurement error information; such in-
fàrmation will be used to obtain performance statistics ad-
justed for observational uncertainty. 

Third, for this demonstration it is desirable to use data that 
have not been previously used to test the six selected models. 
In this way knowledge is gained about the performance of the 
models when applied to a variety of data bases. It is believed 
that none of the six models has been tested using the selected 
data. 

Figure 11 shows the instrument layout at Houston 1. As 
the figure shows, the Houston 1 site contains 12 instruments 
that monitored CO. The evaluation procedure will compute 
the performance statistics for each individual monitor and for 
all the monitors combined. Table 10 gives the number of CO 
measurements available for comparison with predictions at 
each monitor. The amount of data is smaller than that shown 
in the inventory in Appendix G because simultaneous mea-
surements of several variables are required (e.g., CO, wind 



Monitor 

Number of Hours 

Log-Transformed 
Number Raw Data Data 

1 79 79 
2 77 77 
3 78 78 
4 70 70 
5 76 76 
6 73 	. 73 
7 45 45,  
8 76 . 	52 
.9 64 64 

10 60 60 
11 64 64 
12 °  40 38 

Total 802 776 

Table 10. Number of 
hours of CO data 
for each monitor at 
Houston I site. 
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speed, traffic density, and the like). The simultaneity con-
straint reduces the size of the data set because for a given 
hour, missing data for any one variable create a gap in the 
entire data record for that hour. The size of the data set is 
further reduced for the evaluation statistics that estimate 
correlations (S3 . S. and S5) because these use the logarithm 
of the concentration, and measurements reported"as zero 
concentration must be deleted. Table 10 shows that monitors 
8 and 12 reported a total of 26 hours with CO equal to zero. 
Hourly CO concentrations at Houston 1 ranged from 0 to 19 
ppm. Thus, the one-hour ambient air quality standard for 
CO, which is 25 ppm, was never exceeded in the test data set 
for Houston 1. (Recall that the Houston 1 data set for CO is 
larger than the test data set described in Table 10. The 0- to 
19-ppm range applies only to the test data set.) 

Note that the frontage roads shown in Figure 11 could 
not be included in the analysis because no traffic data are 
available:  

Estimating Carbon. Monoxide Emission Factor 

Each of the dispersion models being tested requires the 
user supply, as part.of the model input data set, a pollutant 
emission rate for the roadway as a whole or for each lane of 
the roadway being modeled. To compute these emission 
rates, an emission factor is multiplied by the volume of vehi-
cles traveling the roadway. At the present time two mobile-
source emission estimation procedures are accepted by the 
EPA, the emission methodology based on the Federal Test 
Procedure (FTP) (28, 29) and the modal methodology (30). A 
third type of procedure for computing emission factors, one 
not currently endorsed by the EPA, involves the concept of 
mass balance (11, 13). For this study, the FTP method of 
emission factor estimation was selected. Each of these three- 

methodologies for the computation of mobile source emis-
sion factors will be outlined briefly below, followed by a 
discussion of both the relative merits and the disadvantages 
of each and the rationale for choosing the procedure to be 
used in the current study. 

In the FTP methodology, motor vehicles are divided into 
six groups: light-duty vehicles (automobiles), two classes of 
light-duty trucks, heavy-duty gasoline-powered vehicles, 
heavy-duty diesel-powered vehicles, and motorcycles. An 
emission factor is computed separately for each vehicle 
group, weighted according to the percentage of the total 
vehicle-miles driven by, that group; the weighted emission 
factors for all groups are combined to produce a composite 
emission factor. 

The equation that describes the FTP emission factor for 
light-duty vehicles (LDV) is: 

Enpstwx = SUM(Cipn*Min*Ripstwx*Aip*Lp*Uipw*Hip) 

(8) 

33 It 
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Figure 11. Instrument layout at Houston I site. 
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where all lower case letters are subscripts and 

SUM ( ) = summation over model year (i), from the 
calendar year for which emission factors are 
being calculated (i = n) to the calendar year 19 
years previous (i = n - 19); 

Enpstwx = composite emission factor in gm/mi for calen-
dar year n, pollutant p, average speed s, am-
bient temperature t, fraction cold-start opera-
tion w, and fraction hot-start operation x; 

Cipn = the FTP (1975 Federal Test Procedure) mean 
emission factor for the ith model year light-
duty vehicles during calendar year n and for 
pollutant p; 

Min = the fraction of annual travel by the ith model 
year LDVs during calendar year n; 

Ripstwx = the temperature, speed, and hot/cold cor-
rection factor for the ith model year LDVs 
for pollutant p, average speed s, ambient 
temperature t, fraction cold-start operation w, 
and fraction hot-start operation x; 

Aip = the air-conditioning correction factor for the 
ith model year LDVs for pollutant p; 

Lp = the vehicle load correction factor for pollutant 
p; 

Uipw = the trailer towing correction factor for the ith 
model year LDVs for pollutant p and fraction 
of cold-start operation x; and 

Hip = the humidity correction factor for the ith 
model year LDVs for pollutant p. 

For the light-duty truck classes (LDT), the emission factor 
equation has the above functional form with the exception of 
the trailer towing factor, which is deleted. Of course the 
values of the components of the equation differ in some cases 
for LDV and LDT. 

The equation describing the emission factors for heavy-
duty gasoline-powered vehicles (HDG) and heavy-duty 
diesel-powered vehicles (HDD) is: 

Enpsoq = SUM(Cipn*Min*Vips*Pipnoq) 	(9) 

where 

Vips = the speed correction factor for the ith model 
year HDG vehicles for pollutant p and average 
speed s; and 

Pipnoq = the truck characteristic correction factor for the 
ith model year HDG vehicles for pollutant p, 
calendar year n, truck weight o, and weight/ 
power ratio q. 

The individual components of Eq. 9 differ for HDG and HDD 
vehicles. Finally, the emission factor for motorcycles (MC) 
is given by: 

Enpstwx = SUM(Cipn*Min*Ripstwx) 	(10) 

where each component of the equation applies to motor-
cycles. 

The FTP methodology described here has been com-
puterized by EPA (29), and a version of the program (called 

MOBILE!) was used to compute the emission factors. 
The basic premise of the modal model is that the instan-

taneous emission rate, è (t), can be described as a function of 
vehicle speed v and acceleration a. Because speed and accel-
eration are functions of time, the emission rate function can 
be expressed as 

è(t) = ê[v(t),a(t)] 	 (11) 

Acceleration to or from a given speed is assumed to be a 
perturbation to the steady-state emission rate, and two equa-
tions are used to describe the emission rate: 

eA(v,a) = b1  + b2 v + b3a + b4 av + b5v2  

+ b6a2  + b7av2  + b8a2v + b9a2v2 	(12) 

and 

ê(v,o) = b10  + b11 v + b12 v2 	(13) 

where Eq. 12 describes the nonzero acceleration emission 
rate and Eq. 13 describes emission rates for steady speeds. 
Note that the idle emission rate equals the coefficient b10 . 

The instantaneous emission rate function for a given 
vehicle and pollutant is given by: 

è(v,a) = h(a)é(s) + [1 - h(a)JêA (v,a) 	(14) 

where h(a) is a weighting function dependent on acceleration 
and bounded by the values of 0 and 1, which allows for a 
smooth, continuous transition from steady speed to accelera-
tion and deceleration emission rate functions. 

Inputs to the original modal model include calendar year, 
vehicle model-year mix for various locations (low or high 
altitude, in California or outside California) and second-by-
second speed data for the driving sequence being modeled. 
The two preceding equations are solved for each second, the 
results are taken as one-second integrated emissions, and 
the model output is the total emissions over the driving 
sequence. Eighteen vehicle groups can be included in the 
vehicle mix; deterioration as a function of calendar year is 
included in the emission calculations. Temperature and cold-
start correction factors are also included. 

The basic assumption of the mass balance concept for 
computing emission factors is that the difference between the 
amount of pollutant flowing past vertical planes located 
downwind and upwind of the roadway equals the amount 
generated by the traffic on the roadway. Basic to this theory 
is the assumption that there are no other pollutant sources or 
sinks for the material between the two planes. (Because high-
ways are often approximated as line sources, the planes on 
each side of the roadway are reduced to lines, and calcula-
tions are made from measurements made at several heights 
on towers located on each side of the roadway. A major 
restriction is that the roadway pollutant plume must be 
entirely defined within the height of the towers.) 

To compute emission factors, the upwind concentrations 
measured at each height on the tower are subtracted from 
the downwind concentrations at the corresponding heights. 
The product of each concentration and the component of the 
wind vector normal to the roadway is plotted as a function of 
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height, and the resulting curve is graphically integrated to 
obtain pollutant mass per unit time and per length of road-
way. Division of this quantity by vehicle volume on the 
roadway yields the emission factor. 

Several advantages and disadvantages are common to both 
the FTP and modal models. Both methodologies are en-
dorsed by the EPA for use in estimating hydrocarbon, carbon 
monoxide, and nitrogen oxides mobile-source emissions. 
The methodologies were both derived from a large data base 
that is continually being updated. On the negative side, 
however, neither the FTP nor the modal model has been 
comprehensively validated. Also, estimates made with the 
models are based on the average emissions measured for the 
test vehicles. The emissions from the vehicle population on 
the roadway being modeled may differ from the average 
emissions of the test vehicles. 

One of the chief advantages of the FTP model is the ease 
with which it can be used. Most of the required input data are 
generally available, and national average values supplied 
with the model may be used for many of the variables for 
which more site-specific data cannot be found. However, 
some of the input parameters are difficult to estimate, and 
error in such parameters can produce error in the emission 
factors. (See Visalli (36) for a discussion of the effect of 
variations in the vehicular age and classification distribu-
tions.) This same problem may exist with the modal model, 
although to a lesser extent. 

The advantage of the modal model is that it can simulate 
emissions from a specific driving sequence, with any set of 
accelerations, decelerations, idling, and steady-speed driv-
ing. However, to gain this privilege, the user must input a 
second-by-second speed/time profile for each direction of 
the roadway. In practice, such a profile is a part of only very 
few data sets. 

The major advantage of the mass balance technique is that 
the emission factor is derived from data characteristic of the 
vehicle population and the vehicle operating conditions on 
the roadway to be modeled. However, this advantage is 
somewhat mitigated by the fact that the measured concentra-
tions at the towers could (and in a major metropolitan area 
certainly do) arise partially from emissions on surrounding 
roadways. Because carbon monoxide levels vary rapidly 
over short spatial distances, the assumption that the back-
ground level of pollutant at the tower on one side of the 
roadway is equal to that at the tower on the other side of the 
roadway is not necessarily valid, particularly as the wind 
becomes less normal to the roadway. 

Examination of the available methodologies for estimating 
mobile source emission factors has shown that for a number 
of reasons the FTP methodology is most applicable to this 
study. First, and probably most importantly, by far the 
majority of highway dispersion model users choose the FTP 
methodology to obtain emission factors because of the ease 
of application of MOBILE 1 and because the methodology is 
approved by EPA. Because this study should be directed 
toward producing results that will be pertinent to the appli-
cation of model users, the use of the FTP methodology is 
appropriate. 

Also, the modal model input data requirements include a 
second-by-second speed / time profile that is not available in 
thedata bases being used in this study. Therefore, use of the  

modal methodology is not deemed advantageous for the cur-
rent model verification program. 

Finally, the mass balance emissions methodology has not 
been used for a number of reasons: 

The methodology can only be applied at sites that have 
been heavily instrumented, such as field experiment sites. 

The results of the methodology are site-specific, and 
sufficient data do not exist to generalize the results either for 
other sites, or for a wide range of wind I roadway angles and 
meteorological conditions. Thus, use of the mass balance 
technique in sensitivity tests, for instance, would not give 
the general model user information about the emissions 
methodology most likely to be used. 

In the mass balance computations made by Bullin (31) 
the variation in computed CO emission factors is seen to be 
considerable and in some cases inexplicable. For instance, a 
CO emission factor variation of as much as a factor of 
two or more is shown between computations made at one site 
for two times of day, separated by about 20 mn and 
having nearly equal wind/roadway angles and 5-mn traffic 
volumes. 

From a statistical point of view, it is believed that emis-
sions estimates obtained using the mass balance method can-
not be used as input for dispersion models whose predictive 
performance is to be evaluated. The problem stems from the 
fact that the CO emissions obtained by the mass balance 
method are based on the same set of measured CO concen-
trations against which the model's predictions are to be com-
pared. Thus, the emissions input of the dispersion model is 
a function of the CO concentrations that the model is try-
ing to predict. Under such circumstances, the model's 
performance would be biased because the model input is not 
independent of the output. 

The FTP methodology requires for each roadway the input 
data listed as follows: 

Calendar year. 
Vehicle type distribution. 
Model year distribution (for each vehicle type). 
Ambient temperature. 
Average route speed. 
Percentage of cold-starting and hot-starting vehicles (for 

LDV, LDT, and MC). 
Fraction of vehicles operating under an additional 500-lb 

load (for LDV and LDT). 
Fraction of LDV towing a trailer (1000 lb). 
Vehicle weight and engine displacement (for HDG and 

HDD). 

These data are part of the Texas data base (see App. G). 
It is recognized that estimates of CO emissions obtained 

using MOBILE 1 can be inaccurate. To the extent that such 
a basic model input is unreliable, it will be difficult to eval-
uate the performance of a dispersion model in an absolute 
sense. However, the performance of the various models can 
still be assessed in a comparative sense. Moreover, the prob-
lem of assessing model performance in the presence of inac-
curate emissions input can be addressed by the use of sensi-
tivity analysis, which quantifies the effect of input and other 
errors on the model's predictions. 
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The principal objective of this project was to develop 
methodology for evaluating model performance, hence the 
methods developed are independent of the emissions model 
used. As new, more accurate emissions models are devel-
oped, these methods can be used anew to examine the pre-
dictive performance of the dispersion models using the new 
emissions input. 

PRELIMINARY EVALUATION OF SELECTED MODELS 

Structure of the Model Evaluation Procedure 

The model evaluation procedure (MEP) is designed to 
meet the needs of a user who wants to assess the per-
formánce of a dispersion model (or models) that estimates 
highway-related air pollution. The MEP described below 
provides the logical structure that begins with the definition 
of a highway-related problem, and ends with a measure of the 
performance of the model (or models) in the context of 
the problem. 

The MEP developed in this study consists of four steps, 
depicted in Figure 12. The first step defines the parameters 
of the problem under consideration. The second step speci-
fies the model or models to be tested. The third step consists 
of selecting a subset of the full data base for use in the model 
evaluation, hence the apellation "working data base." It 
should be noted that the working data base could comprise 
the full data base. The working data base, as well as the full 
data base, may consist of data from several highway sites. If 
so, the component statistics and the FOM for each model 
being tested would be computed separately for each site. The 
fourth step consists of selecting one or more of three types of 
model evaluations that can be performed. The feedback be-
tween Steps 3 and 4 results from the fact that the required 
number of data points in the working data base may be in- 

STEP 1 

Define Highway 

Planning Problem 

STEP 2 

Specify Dispersion 

Model(s) to be Tested 

STEP 3 

Assemble Working 

Data Base 

STEP 4 

Select Type of 

Model Evaluation 

to be Performed 

Figure 12. Basic structure of eval-

uation procedure for highway dis-

persion models. 

fluenced by the type of model, evaluation selected. The in-
ternal structure of each of these steps is described as follows. 

Step 1 

Because different models used to predict highway-related 
air pollution do not necessarily perform equally well in all 
circumstances, the first step in the MEP defines the pa-
rameters of the planning problem that may influence the 
absolute and relative predictive performance of the models. 
These parameters will also help to define the composition of 
the working data base. There are several parameters of inter-
est, including: type of highway configuration—at grade, ele-
vated (above-grade), depressed (below-grade); distance scale 
of roadway impact—next to roadway, local neighborhood, 
regional; meteorological conditions—atmospheric stability, 
wind speed and direction, inversion height, terrain rough-
ness; time of year; and traffic count or emission rate. 

Step 2 

The air pollution dispersion models to be tested are 
specified in Step 2 (which may be concurrent with Step 1). 
Because the MEP entails comparing model predictions 
against observations, it is only necessary that the models be 
specified one at a time. Because the FOM used for judging 
model performance is an absolute index (e.g., "the model 
scored 8.5 on a 10-point scale") rather than a relative index 
(e.g., "the model was the third best among 12 tested 
models"), the user may find that the first model evaluated is 
adequate for the problem under consideration. In this event 
it is not necessary to evaluate other models, unless of course 
the user is concerned with identifying the best model or 
comparing the accuracy of several models. (Other re-
searchers (Darling et al., 15) have investigated the clustering 
of models by comparing the predictions of a model against 
predictions of other models. The clustering approach ad-
dresses the questions of which models are similar rather than 
which agree best with observed data, and requires the speci-
fication of more than one model at a time.) 

Step 3 

"Having defined the parameters of the problem and the 
models to be tested, the third step is to assemble the relevant 
portions of the full data base into a working data base. For 
example, if the user is interested only in an elevated highway 
configuration, only this configuration would be included in 
the working data base. 

As part of Step 3, a summary of the working data base 
should be prepared. This summary should include informa-
tion on the number of observed concentrations contributed 
by the individual data bases, the distribution of these data 
points by type of highway configuration, distance scale, time 
of the year, wind direction, wind speed, estimated emission 
rate, and a histogram of the observed concentrations. This 
characterization of the working data base is important both 
for documentation purposes and for assisting the user in 
deciding whether the data base is representative of the 
problem being considered. For example, it may be that the 
working data base is evenly distributed over the stability 
classes A through F, when the area under consideration 
predominantly experiences stability classes A through D 
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and only occasionally experiences stability classes E and F. 
In this event, the user may desire to compute the FOM 
separately for the two ranges of the stability class by sub-
dividing the working data base, and later compute a weighted 
average of the two FOMs (where theweights wouldbe the 
expected frequency of occurrence of the two ranges of the 
stability class in the area under consideration). 

Step 4 

The fourth step is to select and perform the desired type or 
types of evaluation analysis. As mentioned in Chapter.  Two, 
a distinction has been made between three types of test pro-
cedures that examine different, but complementary, aspects 
of model performance, namely: 

Accuracy analysis —measures the predictive perfor-
mance of the model. 

Diagnostic analysis —identifies conditions associated 
with inaccuracies in the model's predictions. 

Sensitivity analysis —quantifies the model's response to 
uncertainty in the input data. 

The components of Step 4 are shown in Figure 13. 
In highway planning problems, the first function, evalu-

ating the model's accuracy, is usually the most crucial. If the 
model is found to be inaccurate it may be discarded, or a 
diagnostic analysis can be performed to uncover the condi-
tions in the working data base associated with the prediction 
inaccuracies. For example, the diagnostic analysis may re-
veal that the FOM is being adversely affected by large differ-
ences between observations and predictions on days with  

low wind speed or by a time lag of several hours between 
observations and predictions. In the former case the working 
data base could be fashioned to exclude periods of low wind 
speeds (and another model used for these excluded periods). 
In the latter case, a modification of the model might be 
attempted. Even in cases where the FOM is high (implying 
that the accuracy of the model is high), it might be advan-
tageous to perform a diagnostic analysis to alert one to 
potential hazards in using the model. Finally, the sensitivity 
of the model to errors in the meteorological, emissions, and 
other input should be established, particularly if the user 
suspects that the input errors are more serious in the geo-
graphical area under consideration than in the working data 
base. The sensitivity of the model to input errors may also 
account for inaccuracies in the predictions, so that this 
avenue should also be explored if the FOM is low. Sensitivity 
analysis may be used to identify potential modifications in a 
model that is particularly sensitive to a specific input pa-
rameter or to establish guidelines on the allowable errors in 
model input for future data bases. 

To demonstrate the application of the model evaluation 
techniques, one cannot strictly adhere to the sequence of 
steps contained in the MEP. Thus, the focus of the sub-
sequent discussion will be on Step 4 in order to illustrate the 
use of accuracy, diagnostic and sensitivity analyses. Conse-
quently, for purposes of this report, it is assumed that the 
highway planning problem indicates a need to test the models 
under at-grade roadway conditions, and that this has led to 
specifying the Houston 1 data set to be the working data 
base. Of course, the models to be tested in this study were 
selected for reasons that are not necessarily relevant to the 
MEP. 

STEP 4 

Select Type of 

Model Eyaluation 

To Be Performed 

Accuracy 
	

Diagnostic 	 Sensitivity 

Analysis 
	

Analysis 	 Analysis 

Computation of 	
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Feedback 

to step 3 
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Figure 13. Components of step 4 of model evaluation procedure. 
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Statistical Methodology Measurement of Performance 

For ease of reference, the six performance statistics de-
fined in Chapter Two are briefly described as follows: 

S 	ratio of the largest 5 percent of the observed concentra- 
tions to the largest 5 percent of the predicted concen-
trations. 

S2  difference between the predicted and observed fre-
quency of exceedance of a CO threshold concentration. 

S3  Pearson's correlation coefficient between observed and 
predicted concentrations for the entire data set. 

S4  temporal correlation coefficient. 
S5  spatial correlation coefficient. 
S6  root-mean-square error of observed and predicted con-

centrations. 

Associated with each S1  is an FOM denoted by F1, i = 1, 

2.....6; F1  is a function of Si . The value of each F1  ranges 
from 0 to 10, where 0 denotes essentially no agreement be-
tween model predictions and observation, and 10, the highest 
level of agreement, but not necessarily perfect agreement. 
The 0 to 10 scale is both arbitrary and convenient. A com-
posite FOM is defined as a function of the individual F1 ; its 
value also ranges from 0 to 10. 

The six selected models were run and their predictions of 
hourly CO concentrations were compared with the observed 
CO levels in the Houston 1 data set. In the following, per-
formance of the models is assessed in terms of Si  and F1 . The 
meaning of Si  and F1  is examined, different ways of obtaining 
a composite FOM are investigated, and various approaches 
for ranking models according to performance are considered. 
Also demonstrated is the use of some diagnostic tools to com-
plement the performance measures Si  and F1. 

Table 11 shows S1  through S6  and their corresponding 
FOMs for the six models; their values are unadjusted for the 
effect of observational error, a topic that will be examined 
later. The optimum value of S1  is one: S1  > 1 indjcates a 
tendency to underpredict high concentrations, and S <:1 a 
tendency to overpredict. The table shows that five of the six 
models tended to underpredict, the exception being the 
LAMB model, which overpredicts by a considerable margin. 
CALINE3 and GMG differ only slightly in their performance 
as measured by S1 ; both tend to underpredict by about 25 
percent, which is a reasonably good performance. The value 
of F1  for these two models is 8.1 and 7.9, respectively, indi-
cating that both rank in the upper quarter of the FOM scale. 
ROADMAP underpredicts by a 46 percent margin, which 
places it in the top third on the FOM scale. MROAD2 and 
HIWAY-Il underpredict by more than 100 percent, which 
puts them in the bottom half of the FOM scale for F1 . The 
LAMB model not only overpredicts, but does so by a large 
margin. This indicates that the model is not working prop-
erly, an inference that will be confirmed by its performance 
in other areas. The reasons for, and implications of, the 
LAMB's model performance are discussed later. 

The apparent tendency to underpredict indicated by S , for 
five of the models, could be caused by low emissions inputs. 
Bullin èt al. (11, 31) indicate that MOBILEI emissions 
estimates tend to be low, which could explain the results 
obtained. It is emphasized that a model's tendency to over-
predict or underpredict could be caused by inaccuracy in the 
model inputs, particularly the emissions. Consequently, the 
statements in the preceding paragraph about the numerical  

margin of overprediction and underprediction are not in-
tended to imply that such behavior is inherent to the model 
because the numerical margin will change if a different 
set of inputs is used. Rather than focus on the absolute 
numbers, attention should be paid to the different tendencies 
exhibited by the various models for a common set of inputs. 
These caveats should be borne in mind in the discussions that 
follow. 

Statistic S2  measures a model's ability to predict the proba-
bility of exceeding a CO concentration threshold specified by 
the user. The value of S2  ranges from —1 to +1. S2  = 0 
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denotes perfect agreement between prediction and observa-
tion, and ± 1 correspond to total disagreement. S2  > 0 indi-
cates a tendency to overpredict, and S2  <:0 a tendency to 
underpredict. The threshold concentration of greatest inter-
est is the 1-hour NAAQS for CO, which is 35 ppm. (Alterna-
tively, the 8-hour NAAQS of 9 ppm would also be of interest 
if one were investigating concentrations averaged over 8 
hours.) As noted earlier, the highest CO level in the Houston 
1 data set is 19 ppm. Thus, when 35 ppm is used as the 
threshold five of the six models, LAMB being the exception 
once again, yield S2  = 0. This is not very enlightening be-
cause both the observed and predicted probabilities of ex-
ceeding 35 ppm are zero. Thus, the result is hardly surprising 
in view of the tendency of these five models to underpredict 
high concentrations. 

To demonstrate the application of S2 , a CO threshold of 8 
ppm was used in addition to 35 ppm. Theobserved frequency 
of exceedance of this threshold in the Houston I data set is 
0.0362, and S2  is the difference between this observed and the 
predicted frequency. Table 11 indicates that S2  is negative for 
the first five models, which is in keeping with their tendency 
to underpredict the high levels of CO. The tendency of the 
LAMB model to overpredict is apparent in the large positive 
value of S2 , which is further evidence of the problems with 
the LAMB model in its present configuration. 

CALINE3 and ROADMAP produced essentially equiva-
lent results with respect to S21  with GMG a close second. In 
fact, S2  is not statistically significant for these three models, 
which implies that the value of S2  is statistically in-
distinguishable from zero. This is reflected in the closenes 
of the respective values of F2 , which range from 9.1 to 9.4, 
for these three models. MROAD2 and HI WAY-Il also pro-
duced basically equivalent results for S2 , but the per-
formance is somewhat poorer than that of CALINE3, 
ROADMAP, and GMG, and indicates an enhanced tendency 
to underpredict that is consistent with the indications pre-
viously provided by S1 . Nevertheless, MROAD2 and 
HI WAY-IT rate fairly high on the FOM scale, with F2  being 
8.4 and 8.2, respectively. The relatively high value of F2  is a 
consequence of the fact that one is dealing with a very low 
observed probability, and any low predicted probability will 
yield a respectable F2  rating. For example, if the predicted 
probability were equal to zero, S2  = —0.0362, corresponding 
to F2  = 8.1. Thus, only large absolute deviations from the 
observed probability will yield a low F2  rating. This is the 
case with the LAMB model, which has S2  close to 1, and, 
consequently, a low F2 . 

Statistics S3 , S4 , and S5  are correlation coefficients be-
tween observation and prediction, computed using the 
natural logarithm of the concentrations. They describe the 
amount of coherence between observed and predicted con-
centrations. Their values range from —1 to + 1, with + 1 
denoting perfect coherence and zero corresponding to no 
coherence between observation and prediction. Negative 
correlations indicate an inverse relationship between obser-
vation and prediction (i.e., CO is predicted to decrease when 
it actually increases and vice-versa). Negative correlations 
are considered regardless of their value or statistical signifi-
cance, to be indicative of the presence of serious modeling 
errors. Consequently, a positive FOM is obtained only for 
positive values of S3 , S4 , and S5 . 

From Table 11 it is seen that S3  is less than 0.5 in all cases,  

which indicates a substantial amount of scatter in the data. 
CALINE3 has the highest S3  at 0.415, which is a mediocre 
performance in absolute terms. HIWAY-Il and GMG are 
second and third, respectively, and— surprisingly perhaps—
ROADMAP and LAMB have similar values of S3 . MROAD2 
shows no significant correlation between observation and 
prediction. Judging from S3 , none of the models perform as 
well as one would like, as reflected in the low values of F3  
assigned to the models. This contrasts with the good per-
formance of most of the models as measured by S and S2 . 

The decline in performance is partly a consequence of the 
fact that S3  treats the entire data set, whereas S and S2  are 
concerned only with high concentrations. It is also indicative 
of the change from macrostatistics to the more demanding 
microstatistics. Later, under the diagnostic analysis dis-
cussion, scatterplots of observation and prediction will be 
examined that will provide insight about S3 . 

S4  is the temporal correlation coefficient; it is computed 
by averaging the correlation coefficients for the individual 
monitors. Only CALINE3 and HI WAY-Il have statistically 
significant values of S4 , and both coefficients indicate a rela-
tively low level of linear agreement between observations 
and predictions. Clearly, CALINE3 is considerably better 
than the other models. The generally mediocre performance 
of the models in this category is indicated by the values ofF4 , 

which range from 0 to 5.3. Because S4  is the average of the 
correlation coefficients for the individual receptors, a low (or 
high) correlation at a single monitor cancause S4  to be too 
low (or too high). Thus, the corr elation coefficients of the 
various receptors should be examined to determine whether 
S4  is being affected by erratic behavior at a particular monitor 
or subset of monitors. In the discussion of diagnostic analy-
sis, a graphic display will be introduced that allows one to 
make such an assessment. 

S. is the spatial correlation coefficient, which measures the 
model's ability to follow the spatial fluctuations of CO on an 
hourly basis. For each hour, the correlation coefficient is 
computed over all receptors, and S5  is obtained by averaging 
all these correlations over all the hours. As with S3  and S4 , 

the values of S are relatively low, ranging from —0.191 to 
0.515. The ROADMAP model has S5  = 0.515, which is a 
considerable improvement over its performance as measured 
by S4 . HI WAY-Il, GMG, and LAMB also have values of S5  
that show an improvement over S4 , which indicates that 
these four models do a better job of matching spatial rather 
than temporal patterns. CALINE3, by contrast, shows a 
decline in S5  relative to S4 . MROAD2 has S5  = —0.191, 
which shows a lack of ability to match spatial patterns. On 
the FOM scale, F5  shows that the performance of the models 
ranged from 0 to 5.2, which continues the pattern of mediocre 
performance indicated by F3  and F4 . 

Statistic S6  is the root-mean-square (rms) error between 
observed and predicted concentration. The theoretical range 
of S6  is zero to infinity, with zero denoting .a perfect match 
between all observed and predicted concentrations. Table 11 
shows that five of the six models, LAMB excepted, have 
similar values of S6  that cover a narrow range between 2.15 
and 3.57 ppm. CALINE3 has the lowest S6, ROADMAP is 
second, HI WAY-I! and GMG are tied for third, and MROAD 
is fourth. The LAMB model has S6  = 143 ppm, which clearly 
shows a serious problem of inaccuracy in the model. 

Examined in isolation, the values of S6  that range from 2.15 
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to 3.47 ppm appear small, and it is necessary to put them in 
perspective by comparing them with the observed concentra-
tions. This is one function of F6 , which uses the ratio of 
S6  to the mean observed concentration as the variable. 
The values of F. given in Table 11 indicate that the global 
accuracy of the predictions is relatively low, all the values of 
F6  being less than 5. (A value of F(;  = 5 corresponds to a ratio 
of S6  to mean observed concentration of 0.5.) Thus, what 
appeared to be low rms errors are shown by F(i  to be 
associated with a performance that is below average. As it 
should, the inflated S6  of the LAMB model yields F6  approxi-
mately equal to zero. 
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 poor performance of the LAMB model was unex-
pected because the model had been previously evaluated (by 
both the developer of the model (19) and at SRI in the course 
of transferring it to a local computer) using the GM data base 
with excellent results (19). Following a discussion with Dr. 
Lamb, it was learned that the current version of the computer 
program contains several features that pertam only to the 
GM data base. Hence, the computer program in its present 
form is not applicable to all data bases. 

Thus, the LAMB model's poor performance can be at-
tributed to the fact that, in its current form, the model is 
data-base dependent. In view of the previous results ob-
tained by Dr. Lamb (19), the authors of this report believe 
that the problem does not be in the mathematical formulation 
of the model, which is perfectly general. Rather, the problem 
is in the way the computer program treats the emission input 
and the receptors. Thus, the results of the evaluation do not 
provide a fair test of the capabilities of Dr. Lamb's approach. 

The evaluation of the LAMB model is instructive never-
theless because it demonstrates one of the pitfalls that high-
way planners face in selecting and applying a model to a 
particular problem. Usually, it is assumed that the model is 
independent of the data base that was originally used to 
"validate" the model. Experience gained on this project 
shows that such an assumption is not always true, and it is 
well-advised to test the model using a data base different 
from that used previously to develop the model. 

Effect of Measurement Error 

The statistics given in Table 11 were not adjusted for the 
presence of uncertainty in the CO measurements, which 
Bullin et al. (11) define as ± 1 ppm. Table 12 gives the value 
of the six statistics and associated FOM after adjusting for 
measurement error. In general, the adjustment resulted in an 
improvement in the performance of the models. The greatest 
improvement occurred in S5 , which went from a positive 
range of 0.337 to 0.515 to an adjusted range of 0.463 to 0.716, 
the value of 0.716 corresponding to the ROADMAP model. 
The FOM reflects best the improvement in the performance, 
with more models approaching or exceeding the midpoint 
value of 5. Thus, as intended, adjusting for the presence of 
observational uncertainty results in enhanced measures of 
performance for the models. 

Diagnostic Analysis 

a 3 

According to the six measures of model performance, 5'. to 
S6 , five of the six models tend to underpredict high concen-
trations, and one overpredicts by a wide margin. Moreover, 
s measured by S3 , S4 , and S5  the coherence between ob-

served and predicted concentrations ranges from nonexistent 
to fair, where fair is considered to be a correlation of ap-
proximately 0.5. Statistic S6  revealed a general lack of agree-
ment between observations and predictions, which is exem-
plified by relatively large rms errors. One now turns to some 
diagnostic analyses in an attempt to gain insight about the 
reasons for such performance. Diagnostic analyses take 
many forms and use a variety of tools. The approach depends 
heavily on the use of graphic displays, particularly the 
scatterplot of observations and predictions. No claim is made 
of exhaustiveness: the aim is simply to obtain an intuitive 
understanding of a few aspects of model behavior. 
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The modeling problem is to attempt to reproduce a time 
series of CO concentrations at various receptors; the exam-
pie in this report has 12 receptors. The computer program 
that calculates S1  through S6  computes Si , S2 , S3 , and S6  for 
each receptor, and all six statistics for all the receptors com-
bined (S4  and S5  are averages defined for all the receptors 
taken together). The values of the statistics in Tables 11 and 
12 are for all the receptors combined. The multidimensional 
character of the problem suggests that one should examine 
the behavior of S1 , S2 , S3 , and S6  at the individual receptors 
to see whether any receptor or cluster of receptors stands out 
from the others and thus may have some special property 
that affects the performance of the model. 

Figure 14 displays S for the different models and recep-
tors. The receptors are numbered from 1 to 12, the number 
corresponding to the CO probes shown in Figure 11. The 
values of S1  for each model are displayed on a horizontal line 
on which the receptor number is placed at the value of S for 
that receptor. Because of space limitations, or in case of tie, 
the receptor numbers are sometimes displaced vertically 
from the horizontal line. The "0" symbol is located at the 
value of S for all the receptors combined. The figure shows 
that all the receptors cluster tightly for CALINE3. Thus, 
CALINE3 does not show much spatial variability in S. By 
contrast, the other models show substantial variations in S 
for the different receptors. HI WAY-Il does worst for moni-
tors 7, 8, 11, and 12. Referring to Figure 11, monitors 7 and 
8 are the highest, and 11 and 12 are generally upwind of the 
roadway; it appears that HI WAY-Il has difficulty in predict-
ing CO under these conditions. ROADMAP shows numbers 
only for 10 receptors, because it is not formulated to include 
upwind receptors. Figure 14 shows that ROADMAP has two 
clusters of monitors: One cluster has receptors 1,3, 5, and 9 
and has the lowest values of S.  (Figure 11 shows that these 
four receptors are located at the same height, 33 ft.) The 
other cluster for ROADMAP contains receptors 2, 4, 6, 7, 8, 
and 10, which include the lowest and highest monitors. Thus, 
again, a spatially related variability is seen in S. The GMG 
model shows three clusters, with receptors 11 and 
12—generally upwind—included in the cluster with the larg-
est S1 . MROAD2 shows extreme variability in S1 , and again 
monitors 11 and 12 (this time accompanied by receptor 5) 
show the largest S1 . The divergence of LAMB from the other 
models is apparent in the figure, as is the fact that there is 
considerable spatial variability in S. 

Figure 14 shows that different models have disparate pat-
terns of spatial variability in S1 . Several models seem to find 
it difficult to handle upwind monitors. CALINE3 has the 
smallest spatial variability in S, and does not have serious 
difficulties with the upwind monitors. Further investigation 
of the concentration distribution at each receptor and of wind 
patterns is called for to elucidate the reasons for the spatial 
fluctuations in S1 . 

Figure 15 shows a graph for S2  in which the same conven-
tions used in Figure 12 have been followed. This time fairly 
tight clusters are seen for most of the receptors for all the 
models except LAMB, which diverges so much from the 
others that it requires its own scale. The most interesting 
feature of Figure 15 is the location of monitors 1 and 11; both 
show the largest negative value for HIWAY-Il, CALINE3, 
GMG, and MROAD2. As with S, it will be necessary to  

investigate further the CO distribution at the various recep-
tors to uncover the cause of this behavior. 

Figure 16 shows that all the models exhibit considerable 
spatial inhomogeneity in S3 . CALINE3 is the only model 
with values of S3  greater than 0.5; these occur at receptors 2, 
3, 5, 6, 7, 8, and 12. HIWAY-Il has one cluster near S3  = 0 
for receptor 1, 4, 11, and 12, which (interestingly) include one 
of the receptors closest to the roadway (receptor 1) and the 
two that are farthest (receptors 11 and 12). ROADMAP 
shows two well-separated clusters, each with five receptors. 
GMG and MROAD2 display the greatest variability in S3 ; 

both models show the highest S3  at receptor 2. All the models 
have difficulty matching the CO fluctuations at monitors 1, 4, 
9, and 11. Plots of time series at these and the other monitors 
would be helpful in finding the reasons for the discrepancy. 
The diagnostic analysis program described in Appendix F 
can be used to generate such plots. 

Figure 16 also provides insight about the value of S4, the 
temporal correlation coefficient. The symbol "0" shows the 
value of S4  for each model, and the-figure allows one to relate 
S4  to its components because S4  is an average of the coeffi-
cients of the various receptors. (S4  is not the arithmetic 
mean; see App. B.) Thus, for HI WAY-Il, the cluster of sites 
1, 4, 11, 12 can be seen to be lowering the value of S4. Similar 
influences related to the spatial variability of the individual 
coefficients can be observed for the other models. 

Figure 17 shows a graph for S6 . The divergence of the 
LAMB model from the others is readily apparent. For the 
other five models, receptors 1 and 11 exhibit the largest 
values of S6 . Excluding 1 and 11, all the other receptors form 
a fairly tight cluster for each model, a cluster covering a 
range of about a factor of 2 in the value of S6 . In view of these 
and earlier results, it is clear that something special is hap-
pening at receptor 1 and 11 that would merit additional in-
vestigation if one were trying to select a model for a real 
application, or if one were developing a model. 

Another useful type of display is the scatterplot of obser-
vation and prediction. Figure 18 shows two scatterplots 
for the HIWAY-11 model: one shows the log-transformed 
(Fig. 18(a)) and the other the untransformed concentrations 
(Fig. 18(b)). Comparing these two graphs shows that the 
logarithmic transformation emphasizes the effect of the low 
concentrations (large negative values on the graph), whereas 
the linear plot emphasizes the impact of high concentrations. 
Thus, Figure 18(a) shows that the low value of S3  for 
HI WAY-Il (S3  = 0.324, see Table 11) is heavily influenced by 
a number of very low predictions with logarithms ranging 
from —11.51 to —4.72, which correspond to CO levels of 
approximately 10-  and 10 ppm. Few, if any, CO instru-
ments will measure such low levels, but of course models can 
and do predict such low values. Because the measurements 
are accurate to ±1 ppm, consideration should be given to 
rounding off the predictions to the nearest ppm or tenth of a 
ppm to avoid this problem. 

The tendency of HI WAY-Il to underestimate the observa-
tions is apparent in Figure 18(a), because although the log of 
the observations ranges from —1.61 to 2.95, that of the pre-
dictions goes from —11.51 to 2.08. The underprediction of 
high concentrations is more obvious in the linear plot of 
Figure 18(b), which shows that observations greater than 
about 10 ppm are underestimated by a wide margin. The 
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Figure 14. Graph of statistic S1  for individual receptors and models. 

correlation coefficient for Figure 18(b) is r = 0.353, which is 
slightly higher than that for Figure 18(a). Especially note-
worthy is the point in the upper left corner of Figure 18(b), 
whose coordinates are (0.24, 19.2), because it is associated 
with the highest observed CO level, which was 19.2 ppm. 
This point has a very large residual that contributes about 4 
percent to the sum of squared residuals that are used to 
calculate Sc,; without this point S would be equal to 3.16 ppm 
instead of 3,23, a 2 percent reduction. Thus, one of 802 
points contributes about 2 percent to S6 . Consequently, this 
point merits additional study to determine the validity of the 
measurement and, if the data are valid, to see whether it 
provides any clues about the model's behavior in this con-
centration range. As will be shown, this point exerts a similar 
influence on S6  for all the other models. 

Figure 19 shows log-transform and linear scatterplots for 
CALINE3. Figure 19(a) exhibits the same feature seen in 
Figure 18(a), namely, a scatter of points on the left half of the 
figure that are associated with very low predictions. Apart 
from these, the main sequence of points shows somewhat 
less scatter than Figure 18(a), and this is reflected in the 
higher correlation coefficient. Figure 19(b) shows a more  

obvious linear relationship between observation and predic-
tion, and the tendency to underpredict is also evident. The 
correlation coefficient for Figure 19(b) is r = 0.535, and is 
higher than that for Figure 19(a), which is r = 0.415. Figure 
19(b) shows that the highest observed CO (19.2 ppm) is still 
underestimated, but not as much as in Figure 18(b). The 
coordinates of this point in Figure 19(b) are (4.26, 19.2), and 
its contribution to S6  is about 3 percent. 

Scatterplots for the remaining four models are shown in 
Figures 20 through 23; each figure includes log-transformed 
and linear plots of observation and prediction. The plots 
showing the log-transformed CO display a swarm of points 
with little linearity, and thus low correlation coefficients. 
However, the correlation is statistically significant only for 
GMG. The linear scatterplots (part (b) of Figures 20 through 
22) show that the correlation is higher than for the log-
transformed CO, but the improvement is small. The linear 
plots also show the highest observed CO in its familiar posi-
tion in the upper left corner of the graph. Its contribution to 
the value of S6  for these other models is similar to those 
discussed previously. Figure 23(b) allows one to appreciate 
the magnitude of the discrepancy between observation and 
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prediction for the LAMB model—the predictions range 
as high as 681 ppm, whereas the observations only reach 
19.2 ppm. 

The diagnostic displays previously discussed are a small 
but important component of a complete diagnostic analysis. 
The plots have raised a number of questions that merit 
further examination. The diagnostic analysis package devel-
oped in this project (see App. F) provides various tools that 
can be used to obtain the desired answers. For example, it 
would be fruitful to compare the entire distribution of obser-
vations and predictions, and this can be done using the 
quantile-quantile plot option of the analysis package. In addi-
tion, to examine the behavior of the various statistics, it 
would be helpful to regress the residuals as a function of wind 
speed or direction, which can be done using the multiple 
regression procedure in the package. The possibilities are 
many, and the diagnostic tools provided are flexible enough 
to accommodate most of them. 

Confidence Intervals and Sample Size 

The computer program developed in this project for calcu-
lating S1  through S6  also computes a 95 percent confidence  

interval for each statistic. Appendix D of this report contains 
the mathematical derivation of the confidence intervals, and 
Appendix E describes the computer program. This section 
discusses the interpretation of the confidence intervals and 
their use in guiding the estimation of the size of the working 
data base. 

The value of Si computed by the program is an estimate of 
the unknown true value of the statistic. The value of Si is 
called a point estimate because it is a single number. The 
confidence interval describes the precision of the point esti-
mate (i.e., how close the point estimate may be to its true 
value). The precision is low if the interval is wide and high if 
the interval is narrow. In general, a small sample size leads 
to a wide interval and low precision, and a large sample size 
to narrow interval and high precision. 

Specifically, a 95 percent confidence interval contains the 
true value 95 percent of the time. It is inaccurate to state that 
there is a 95 percent probability that the true value is inside 
some particular interval because the true value either is or is 
not inside the interval. The correct interpretation is that the 
95 percent confidence is related to the expectation that if 
many intervals were calculated, on the average 95 percent of 
them would contain the true value. 



44 

I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 

® CORRESPONDS TO S3  

	

HIWAY fl - 	 CORRESPONDS TO S4 	 iii 	92 5 10 6 387 	 - 
412 

	

CALINE3 - 	 4 9111 	85 7326 	 - 
10 	12 

	

ROADMAP - 	 2841 	 63510 	 - 

	

7 	 9 

	

GMG - 	 8 	12 915 4 367 	2 	 - 
11 10 

	

MROAD2 - 	 11 	 9581 10 7 36 	2 	 - 
4 	12 

	

LAMB - 	 418 	12 2 5 76113  

I 	 I 	 I 	

10 	

I 	 I 	 I 

-1.0 	-0.8 	-0.6 	-0.4 	-0.2 	0 	0.2 	0.4 	0.6 	0.8 
	

1.0 

STATISTIC S3  AND S4  

Numbers correspond to the individual receptors shown in Figure 11; ® and 0  denote 

[lie Vdlues ul 33  dOd 54 for all receptors combined. 
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Figure 24 displays the 95 percent confidence intervals for 
S1  for all models, as well as the point estimates of S1 , which 
are represented by the inverted triangle. The figure indicates 
that CALINE3. ROADMAP, and GMG have overlapping 
confidence intervals that include a value of one. Hence, their 
respective performances relative to S are statistically in-
distinguishable at the 95 percent confidence level. The differ-
ences in precision are apparent from the width of the in-
tervals, although the visual impression is somewhat distorted 
by the logarithmic scale. HI WAY-Il has the widest interval 
and the interval width decreases as follows: ROADMAP, 
GMG, MROAD2. CALINE3. and LAMB. The intervals for 
HI WAY-Il, MROAD2, and LAMB are significantly different 
from a unit value, as evidenced by the fact that their respec-
tive confidence intervals do not overlap one. 

The confidence intervals for S9 are displayed in Figure 25, 
in which the LAMB model requires its own scale in order to 
fit into the figure. Except for LAMB, all the other models 
show considerable overlap in their confidence intervals, indi-
cating substantial similarity in their behavior with respect to 

S9. CALINE3, ROADMAP, and GMG include zero in their 
respective confidence intervals, which shows that their re-
spective point estimates of S9 do not differ significantly from 
zero, a very good result. 

Figure 26 shows the confidence intervals for S:i . The wide 
intervals for five of the models indicate a low precision for 
the point estimate. The intervals for ROADMAP, MROAD2, 
and LAMB straddle zero, indicating that S is not statistically 
significant for these models. CALINE3 exhibits the nar-
rowest interval and, thus, the highest precision. The intervals 
for HIWAY-11 and CALINE3 overlap, suggesting that for 
these two models, S1  does not differ significantly at the 95 
percent confidence level. 

For S, the intervals for all the models except CALINE3 
are so wide, as can be seen in Figure 27, that the point 
estimates are not very credible. In fact, the intervals for 
ROADMAP, GMG, MROAD2. and LAMB all contain zero; 
hence, their point estimates of 5;  are not statistically signifi-
cant at the 95 percent level. CALINE3, by contrast, has a 
relatively high precision. The general lack of precision for 
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Figure /7. Graph of statistic S6  for individual receptors and models. 

five of the models is a consequence of the spatial inhomoge-
neity of the correlation coefficients for the individual recep-
tors, which was depicted in Figure 16. 

Figure 28 shows the confidence intervals for S5. In contrast 
to S4, S generally exhibits relatively good precision in the 
form of moderately narrow intervals. Only MROAD2 has a 
wide confidence interval. The confidence interval for LAMB 
is contained in that for HIWAY-lI, implying statistically 
similar behavior with respect to S5. Indeed, the figure shows 
considerable overlap of the intervals for all the models ex-
cept MROAD2. Because none of the intervals contains zero, 
all the S. coefficients are statistically significant at the 95 
percent confidence level. 

Statistic S6  exhibits the highest precision of the six statis-
tics, as can be seen in Figure 29. The figure shows that the 
confidence interval for CALINE3 is the narrowest and that 
it does not overlap any of the others. Hence, as measured by 
S6, CALINE3's performance is significantly better than that 
of the other models. The graph also shows that there is no 
statistically significant difference in the values of S. for 
HI WAY-Il, ROADMAP, GMG, and MROAD2. S6  for the 
LAMB model looks like an outlier, which it is. 

In general, Figures 24 through 29 indicate that the preci-
sion of S1 , S, S5. and S6  is acceptable, but that of S.1  and S1  
is not. One way to attempt to increase the precision is by 
increasing the size of the working data base. To estimate the 
new sample size, the following formula is recommended: 

N1  = No 	(W1 /w 2 	 (15) 

where 

N 1  = new sample size; 
N,, = present sample size: 
W I  = current width of the 95 percent confidence 

interval for the ith statistic, S1; and 
w, = desired width of the 95 percent confidence 

interval for Si. 

In the example, N. = 802 points. The precision of S1, S, 
S5, and S. seems acceptable, hence w, = W1  for i = 1, 2, 5, 
and 6. For illustration purposes, it is assumed that we want 
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Figure 19. Scatterplot of observed and predicted CO for CALINE3 (plotted numbers indicate number of points with 
same coordinates; plotted line represents line of equality). 
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Figure 20. Scatterplot of observed and predicted CO for ROADMAP (plotted numbers indicate number of points with 
same coordinates; plotted line represents line of equality). 
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Figure 21. Scatterplot of observed and predicted CO for GMG (plotted numbers indicate number of points with same 
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same coordinates; plotted line represents line of equality). 
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Figure 26. Statistic S3 -95 Percent confidence intervals. 
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to cut in half the confidence intervals for 53  and S4. Then 
w1  = ½ Wi  for i = 3, 4. Substituting in Eq. 15 yields 

N1  = 802 x 2 =1  1604 

Hence the original sample size must be doubled to improve 
the precision of S3  and S4  by a factor of 2. However, there is 
no guarantee that the desired result will be achieved. Every 
time a new sample size is defined the dispersion models must 
be rerun with the new data, the performance statistics and 
their confidence intervals recomputed, and the precision of 
each Si  checked to see whether the precision is satisfactory. 
If it is not, a new sample size is recalculated and the cycle is 
repeated. Thus, achieving a desired precision is an iterative 
process that continues until one of the following occurs: 

The desired precision is achieved. 
One runs out of data without achieving the desired 

precision. 
It is decided that it is too costly to continue, and what-

ever precision has been attained is accepted. 

The example has shown that the sample size can escalate 
rapidly in the face of stringent precision requirements. In-
deed, simply increasing the sample size to improve precision 
is a brute-force approach to the problem. Instead, before 
attempting to increase the sample size, it is recommended 
that a careful investigation be conducted of the reasons for 
the low precision in the statistics of interest. Such an investi-
gation may well rdveal some characteristic of the data base 
or of the model or of both that could be advantageously used 
to achieve the desired precision. Alternatively, some basic 
limitation could be uncovered that could prevent altogether 
any improvement in precision regardless of sample size. 
There is no "sure-fire" solution to the problem of improving 
precision, and the investigator must tread carefully to avoid 
unpleasant collisions with time and financial constraints. 

RANKING MODELS 

Approaches to Ranking 

Once the performance statistics and associated FOMs 
have been computed, the next step is to select the model best 
suited for one's purpose. Such selection can take many 
forms, all being guided by the intended application and all 
involving some form of model ranking. The following discus-
sion demonstrates the use of the two alternative ranking 
methods that were described in Chapter Two—the weighted-
average liability (WAL) method and the minimum liability 
(ML) method. In addition, the WAL rankings are compared 
with those obtained by what is termed the sum-of-ranks 
(SOR) method. Although these ranking methods are useful 
for many applications, no claim is made that they will fit all 
the problems faced by a highway planner. Ultimately, the 
model ranking and selection will depend on the investigator's 
judgment. The methods described below are offered to assist 
the investigator to make choices; they are not meant to re-
place the investigator's judgment. 

Application of Ranking Methods 

The overall FOM shown in Tables 11 and 12 was computed  

using the WAL method. Given the overall FOM, the ranking 
of the models consists simply in ordering the models accord-
ing to the value of the FOM. Thus, the overall FOM in Table 
11 indicated the following ranking: CALINE3, GMG, 
ROADMAP, HIWAY-11, MROAD2, and LAMB. Table 12 
yielded essentially the same ranking, but with GMG and 
ROADMAP tied for second. 

The ML method assigns the smallest F1  as the overall FOM 
for the model. Based on Table 11, the ML method produces 
the following ranking: CALINE3 (FOM = 3.4), HIWAY-
II (FOM = 2.1), GMG (FOM = 0.9), and ROADMAP, 
MROAD2, and LAMB tied for last place (FOM = 0). 
Clearly, a method that lumps ROADMAP with LAMB is 
insensitive, and for this reason was discarded. Nevertheless, 
it is interesting to note that CALINE3 emerged in first place 
using both WAL and ML methods, which is a consequence 
of'its steady performance in all six categories. 

It is useful to compare the WAL rankings against rankings 
derived from the SOR method, because the latter is insensi-
tive to monotonic increasing changes in F1. The SOR method 
works as follows. For each F1 , the SOR assigns a numeric 
value from 1 to 6 to each model, with 1 denoting the best 
performance and 6, the worst. For example, referring to 
Table 11, for F1, CALINE3 would be assigned a 1, GMG a 
2, ROADMAP a 3, MROAD2 a 4, HI WAY-Il a 5, and LAMB 
a 6. This process is continued for all the F1, and then the 
numeric values for each model are combined. The model 
with the lowest total is ranked first, that with the second 
lowest total is ranked second, and so on. Two ways of com-
bining the ranks were used. One simply sums the six ranks, 
and the other uses the weighted sum (R1  + R2)12 + (R3  + R4  
+ R5)/3 + R6, where R1  denotes the rank associated with F1. 
The latter scheme is similar to that used to compute the 
overall FOM. 

Table 13 gives the table of ranks that corresponds to the F1  
in Table 11. Those cases in Table 13 that have been assigned 
the fraction ½ were tied with the same value of F1. Both the 
simple and the weighted sum of ranks produce the following 
overall ranking: CALINE3, ROADMAP, GMG, HIWAY-Il, 
MROAD2, and LAMB. This ranking is almost the same as 
that produced by the WAL method. The difference is that 
ROADMAP and GMG have exchanged places. This is not 
surprising because the overall performances of these two 
models are almost identical. For example, Table 12 shows 
them with the same overall FOM. In fact, applying the SOR 
method to Table 12 yields the same ranking as that shown in 
Table 13, but with slightly different sums of ranks. Thus, the 
SOR and WAL methods produce consistent results. 

Because the SOR method is easily applied, it is recom-
mended that it always be used to check the rankings pro-
duced by the WAL method. In fact, the SOR can be used by 
itself as the method for ranking the models. Clearly, it awards 
the top ranks to the models that score most consistently near 
the top of each category. 

SENSITIVITY ANALYSIS 

Approaches to Solving the Sensitivity Equation 

Two approaches were considered in solving the sensitivity 
equation 
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Table 13. Application of sum of ranks method'. 

Model 

Rank Assignment for Each FOM Sum of 
Ranks 

Weighted 
Sum of Ranks 71  F2  F3  F4  F5  F6  

1IIWAY—Il 5 5 2 2 3 40  21 11.3 

CALINE3 1 1 1 1 4.5 1 9.5 4.2 

ROADMAP 3 2 4.5 5.5 1 2 18 8.2 

GMC 2 3 3 4 4.5 3 19.5 9.3 

MROAD2 4 4 5 1 5 5 .24 12.7 

LAMB 6 6 4.5 5.5 2 6 30 16 

'Based on Table 11. 
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Var(x)= B .Var(P) Bt 	 (16) 

The first approach is the rigorous method, whereby, for each 
simulation period, the B matrix is numerically solved as part 
of the simulation. The output sensitivity matrix Var (x) is 
then obtained by means of the matrix multiplication given 
above. (Only the diagonals of the sensitivity matrix are really 
needed to calculate error bars for the simulation.) Hence, the 
model simulation output includes both the predicted concen-
trations and the sensitivity matrices (one for each simulation 
period). 

The foregoing method is the most thorough approach. For 
this work, it may constitute an "overkill" if one'can show 
that acceptable accuracy can be achieved by fewer simula-
tions. It is suspected that the accuracy is limited by errors 
inherent in the quantification of the P matrix, which requires 
specification of the model input errors. Accurate quantifica-
tion of these errors is extremely difficult for certain param-
eters that are derived from measurements (e.g., atmospheric 
stability, emission rates) and moderately difficult for other 
parameters that are measured directly (e.g., winds). Because 
of these inherent inaccuracies, a second approach is con-
sidered that minimizes the computational burden by consid-
ering a coarser resolution in computing the B matrix and by 
computing an x matrix that is consistent with the accuracy of 
the model input errors. An example of the second approach 
is described as follows. 

An Example of the Simplified Procedure 

Estimating the Var (P) matrix primarily relies on analysis 
of available literature (e.g., previous studies, manufacturers 
specifications). The general procedure for estimating the B 
matrix is presented in Figure 30. The main feature of the 
procedure is a screening operation prior to model runs. The 
screening operation serves to identify the most influential 
input parameters. As a result, the model runs can be reduced 
to a manageable number. 

The procedure is used for each model being evaluated. 
However, results of sensitivity analyses from similar models 
are used in the screening process (i.e., estimating the sensi-
tivity range for each parameter) and in augmenting results 
from the model runs. The screening operation can differ for 
each generic type of model. In this report an example for 
HI WAY-Il is considered which is a Gaussian model. 

ANALYZE RESULTS I 
AND 	I 

SYNTHESIZE THE Figure 30. Procedure for estimat- 
B MATRIX 	I ' ing the sensitivity matrix. 

ESTIMATING INPUT ERRORS AND 
SCREENING MODEL SENSITIVITY 

In accordance with the procedure previously described 
typical errors and sensitivities for the model input param-
eters used with a Gaussian model were reviewed. Previous 
work by Texas A&M University (31) is the basis for estimat-
ing many typical input errors. Work by Dabberdt et al. (33) 
augments this study in quantifying errors in emission esti-
mates. A study by the California Department of Transporta-
tion (9) provides a sound basis for screening model output 
errors given typical model input errors. 

Table 14 contains the estimated upper bound in model 
output errors, given estimated model input errors. Because 
the functional form of HI WAY-Il and most other Gaussian 

Table 14. Screened Gaussian model sensitivities based on 
CALINE3 model results. 

Parameter 
Typicul Error 

in input 

Error in 
Ilodel Output 1 

(percent) 

Sensitivity 
Fuectionui 

Form 
Ilutriu 

Variubie 

Wind direction 8°  60 Numeric C2  

Wind speed, u 0.21 u 	Is 50 s - 

Ateospheric One stability 
stability cutesury 60 Sueeric C3  

living height 500 m IS Numeric Not used 

Iltghttuy width < 	I e Segiigibie Not used 

Illghwuy iength 0.01 he Neghigibie --- Not used 

Source height < 	1/2 e Negligible --- Not used 

Surface roughness lOS percent 5 Numeric Not used 

Emissions 40 percent 40 Constant Qi 

1Represents the opproximute order of nugnitude in expected error, given the 
indicated input error. 
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models is similar to that for CALINE3, it is expected the 
sensitivity matrices (B) to be about the same. The results in 
Table 14 can now be used to assist in efficiently planning 
sensitivity runs for the test case (HI WAY-Il). For instance, 
sensitivity runs for source height probably will not be re-
quired because the expected output error is negligible. Simi-
larly, one would plan more sensitivity runs for wind direction 
than for mixing height, because the output is six times more 
sensitive to errors in wind direction than it is to mixing 
height. 

Sensitivity runs are not needed when the functional forms 
are known, because they are for emission input data; in this 
case, errors in the model output are equal to errors in the 
input emission estimates. Other parameters (e.g., atmosphe-
ric stability) require sensitivity runs because the functional 
forms are not easy to derive by hand and, hence, require a 
nunerical solution. Table 14 shows that most of the expected 
model output error will result from errors in four input pa-
rameters—wind direction, wind speed, atmospheric stabil-
ity, and emissions. 

Thus, the model input has been quantified, and the four 
control parameters (as shown in Table 14) for the B matrix 
have been identified as follows: 

Q1 = emission rate; 
G1  = wind speed; 
G2  = wind direction; and 
03  = atmospheric stability. 

Mixing height has been neglected because the model output 
is not particularly sensitive to it, at least within the accuracy 
constraints of this analysis. 

The Var (P) Matrix 

The Var (P) matrix is essentially known at this point if it is 
assumed that errors among input parameters are uncor-
related. The Var (P) matrix then becomes: 

0 0 01 0.16 0 0 ol 
1 0 (T'  0 0 0 

[ 
0.06w2  0 ol 

o:oj 0 0 6401 P=L

0 
0 0 01] 

00 00 

where o-H , 0221  033, and 044 are estimated model input errors 
for emissions, wind speed, wind direction, and atmospheric 
stability class, respectively. 

The B Matrix 

Evaluation of the B matrix requires one to make computer 
runs to determine the sensitivities not already known. The 
only sensitivity known is that for emission rate (as given in 
Table 14, the sensitivity runs to determine model sensitivities 
for a number of receptor orientations (receptor angle with 
respect to roadway and receptor distance from the roadway). 

It was arbitrarily decided to define four B matrices, each as 
a function of a different downwind distance; these distances 
were set at 15, 30, 60, and 90 in, respectively. Further, each 
of the individual B matrices had four rows, with each row 
a function of a different receptor angle from the roadway; 
these receptor angles were set at 15°, 30°, 60°, and 90°, 
respectively. 	 - 

The next step is to make computer runs which enable one 
to quantify the B matrix elements. As an example, consider 
the plots for atmospheric stability class as shown in Figure 
31. Four plots are presented for each of the receptor dist-
ances. For a unit change in atmospheric stability class, the 
magnitude for the output change could be approximated as 
constant for a specific receptor orientation (angle and 
distance). Hence, each element in the B matrix is a different 
constant that represents the upper bound of expected sensi-
tivity. The element value is a percentage fraction change of 
model output magnitude per unit change in the model input 
parameter. 

Referring to Figure 3 1(a), one can observe the change in 
8x/8G3  with receptor angle. The percentage difference be-
tween two adjacent curves varies from about 6 percent at a 
receptor angle of 15° to about 50 percent at a receptor angle 
of 90°. 

Curves similar to those of Figure 31 were prepared to show 
the wind speed variance. (Wind speeds of 1, 2, and 5 m/s 
were used in each of the four plots.) In this case, 8x/8G1  was 
defined in terms of the known function form (i.e., - k/u2). 
A different value of k was determined from the wind-speed 
curves for each combination of receptor angles and dis-
tances. 

For sensitivity to wind direction, it was not necessary to 
make additional plots. Instead, estimates could be made from 
the plots for atmospheric stability and wind speed. The re-
ceptor angle to the roadway ordinate can be directly related 
to the estimated wind direction error of 8° (from Table 14). 
The sensitivity to wind direction variation is simply the slope 
of the curve at the receptor angle of interest. 

Thus, the foregoing procedure provides enough informa-
tion to allow one to define the B matrix. There is much 
subjectivity in the actual quantification process, although 
this can be reduced by opting for more computer runs. In the 
examples, a probable maximum value was estimated for each 
element, considering magnitudes only. (It is assumed that 
there are equal positive or negative model output errors re-
sulting from input errors.) 

The B matrix is shown, as follows, for the roadway-to-
receptor distance of 15 in: 

3Xi 3Xi 8Xi 8Xi 
8Q 8G, 802  8G3  

8X2 8X2 aX2 8X2 
3Q 8G 8G2  3G3  

B15  = 
3X3 8X3 8X3 8X3 
8Q 8G 3G2  8G3  

3X4 8X4 8X4 8X4 

8Q aG 9G2  303 
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Figure 31, HIWA Y-11 model output as a function of receptor angle and atmospheric stability classes. 

1 0 0.06 
U2  

3.5 
I 0.03 0.07 

B15 = 

0.03 0.20 
U- 

I 0.04 0.50 
U2  

where x1 , x2 , x3, and x4  are values at receptor angles of 15°, 
300 f° and 90°, respectively. 

The sensitivities to emission rates are one in the first col-
umn; the second column reflects the dependence on the in-
verse square of the wind speed. The third column shows that 
the model is insensitive to wind direction errors for the recep-
tor angle (15°) closest to the line normal to the roadway. The 
fourth column shows values of sensitivity to atmospheric 
stability classification errors. Two values (0.06 and 0.05) 
were discussed earlier. 

Matrices similar to the one above were also prepared for 
distances of 30, 60, and 90 m, but are not presented herein. 

The Var (x) Matrix 

The Var (x) matrix is calculated from Eq. 5 in Chapter 
Three. Results for the receptor highway to receptor distance 
of 15 in are given as follows: 

Var (x) = 
- 	0.54 	0.61 
0.16 + - 0.16 + 	0.17 + 0.72 	1.08 

0.19 + 
u2 	u2  u2  

0.61 	0.74 
0.16 + 	0.22 + - 0.24 + 0.84 	1.26 - 0.27 + 

U2 	u2  U- 	u2  

0.72 	0.84 
0.17 + 	0.24 + - 0.28 + 0.96 	1.44 - 0.38 + 

U2 	 U2  U2 	u2  

1.08 	1.26 
0.19 + 	0.27 +- 0.38 + 1.44 	2.16 

0.65 + - 
u2 	u L, u- 



The diagonal of Var (x) is model output variances at receptor 
sites at 15°, 30°, O  and 90°, respectively; the square root of 
these elements is the magnitude of the model output error 
resulting from the model sensitivity to input errors described 
in Var (P). The nondiagonal elements are covariances of two 
different receptor locations which, as stated in Chapter 
Three, are measures of correlations of the output variations. 

Analysis of the Diagonal Elements 

The work here focuses on the diagonal elements, because 
they can be used to describe an error bar in the prediction. 
For example, tolerances are placed on a prediction for x1, x2,  
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x2  ± S22  
x3  ± S32  

Xq  ± Sqq  

Each of the foregoing gives ranges to the prediction that 
allow for variations induced by errors in the model input 
data. 

The values of the diagonal elements were calculated for 
each of the four matrices. In the process, four wind speed 
values were substituted for u. Table 15 contains the result for 
each of the matrices. Corresponding curves for expected 
errors are given in Figure 32. Results show that the expected 
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Figure 32. Expected error as a function of down wind distance, roadway angle, and wind speed. 
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Table 15. Expected error (percent) as a func-
tion of distance, angle (0), and wind speed (u). 

Distance 
(rn) 	I 	u 

8 deg 

15 30 60 
- 

90 

15 1 84 98 111 165 
2 51. 64 72 105 
5 43 50 56 80 

an 40 47 53 75 

30 1 84 91 97 146 
2 54 60 63 104 
5 43 48 49 88 

an 40 46 46 85 

60 1 66 66 70 93 
2 51 51 56 82 
5 46 46 51 79 

an 45 45 50 79 

90 1 62 62 63 75 
2 53 53 54 68 
5 51 51 52 66 

0) 50 50 51 66 

TIME I 

error could be as low as 40 percent of the prediction for small 
angles, downwind distances of 30 in and less, and high wind 
speeds: or they could be as high as 165 percent for large 
angles, downwind distances of 15 rn, and low wind speeds. 

APPLICATION OF RESULTS 

Table 15 and Figure 32 show that the expected error can be 
approximated by knowing three parameters— wind speed, 
roadway angle, and downwind distance. These values could 
be incorporated into the HIWAY-LI model so that the appro-
priate value for expected error could be included with each 
model prediction. Treatment of this prediction error could be 
formalized in much the same manner as were observational 
errors. (See the section in Chapter Two addressing "Treat-
ment of Data Errors.") 

Figure 33. Simulation showing expected error bounds. 

EXTENSION OF THE METHODOLOGY 

The example presented in this section entailed a simple 
exercise of the sensitivity analysis methodology. Regardless 
of the complexity, one can always apply the bare formulation 
that solves the Var (x) matrix. For numerical simulation 
models, the solution is time variant and must be treated 
accordingly. In such cases quantification of the B matrix can 
be extremely complex, even if one can use crude approxi-
mations to most of the B matrix elements. In the complex 
case, Var (x) must be solved at each simulation time. Figure 
33 shows this concept. For each simulation time, the model 
output will provide a predicted concentration and upper and 
lower bounds. 

CHAPTER six 

CONCLUSIONS AND SUGGESTED RESEARCH 

CONCLUSIONS 

In this study, a systematic examination of model eval-
uation requirements was conducted within the context of 
highway planning applications. The components of model 
performance were defined that would be most important for 
users of highway-related air pollution dispersion models, and 
six statistics were identified that describe the modeFs per-
formance quantitatively. Associated with each of the six sta-
tistics is a figure of merit (FOM), which is a numerical index 
that serves to describe model performance in an absolute 
sense. The individual FOMs were combined in various ways 
to obtain an overall FOM. These quantitative measures were  

supplemented with a variety of semiquantitative and graphi-
cal diagnostic techniques that provide further insight about 
the model's behavior. 

Concurrently, a methodology was developed for sensitiv-
ity analysis that describes the response of a model in the 
presence of errors in the models inputs. Such input errors 
place fundamental limitations on the accuracy of model pre-
dictions; sensitivity techniques allow the user to estimate the 
magnitude of these limitations. The performance statistics, 
diagnostic methods, and sensitivity techniques were inte-
grated in a model evaluation procedure (MEP). The MEP 
provides the logical framework that links these three compo-
nents of the performance assessment with other key ele- 
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ments such as the composition and size of the data base used 
to test the model. To assist the user, computer programs 
were developed for computing the performance statistics, for 
conducting diagnostic analyses, and for estimating the size of 
the data base needed to satisfy user-specified requirements 
on the accuracy of the value of the performance statistics. 
Finally, a comprehensive data base was assembled and docu-
mented for the purpose of conducting full-fledged model 
evaluations in subsequent studies. A subset of this data base 
was used in the present study to demonstrate the application 
of the statistical methodology. 

The six statistics used to measure model performance have 
certain attijbutes that require some elaboration. First, al-
though these statistics provide a reasonably complete quanti-
tative description of model performance, they are considered 
to be the minimum number capable of providing such a de-
scription. Thus, no claim is made or is intended that the 
possibilities have been exhausted. Rather, recognizing the 
special nature of many model verification problems, users 
are encouraged to supplement these statistics with others 
that may be especially suitable for a particular problem. By 
using the six statistics defined in this report, evaluations of 
model performance conducted by different researchers can 
be compared on a common basis. Moreover, for these six 
statistics one can readily compute adjustments that account 
for observational error, and can calculate confidence in-
tervals using computer programs developed in this study. 

Because a quantitative description of model performance 
was of interest, the six statistics are, of necessity, summary 
statistics. They summarize in the sense that a single number 
(i.e., the value of each statistic) measures model response in 
a particular performance category. By their nature, summary 
statistics describe complex situations in a simplified manner, 
and thus can hide or mask patterns in the performance 
data—knowledge of which may be very valuable to the re-
searcher in gaining a better understanding of model behavior. 
Such patterns can be discerned by the judicious application 
of diagnostic analysis. Thus, users are urged to always sup-
plement the summary statistics with diagnostic analyses, 
which should include at the very least scatterplots of obser-
vations and predictions. For this reason considerable effort 
was devoted to reviewing and applying diagnostic tech-
niques, and to the development of algorithms for diagnostic 
analysis. 

Using several statistics to measure model performance 
poses the problem of how to compare the performance of 
different models. For example, is a model that has a low rms 
error (S6) and a low correlation coefficient (S3) preferable to 
one with a higher rms error but also a higher correlation? 
Such judgments are inherently subjective and depend on the 
experience of the researcher, as well as on the nature of the 
intended application. An attempt has been made to deal with 
this problem by devising the figure of merit (FOM) numerical 
scale, which allows one to express the various statistics on a  

cOmmon basis. There is, of course, a large degree of sub-
jectivity involved in constructing the FOM scale, but this is 
the nature of the problem. The FOM was found to be con-
venient, helpful, and intuitively appealing. However, no 
claim is made that the FOM scale defined in this study is 
unique or is the best. Although this particular FOM scale can 
be useful in many cases, the concept, rather than the FOM 
scale itself, is considered to be the more important contribu-
tion. Thus, the specific FOM scale is offered as a technique 
to be investigated. 

Regarding the preliminary evaluation of the six selected 
models, it is emphasized that it is inappropriate to consider 
the results of the evaluations to be general indicators of the 
capabilities of these models. The tests were not meant to be 
definitive, but were to serve only to illustrate the application 
of the methodology. Thus, the evaluations are limited in 
scope, and such questions as the accuracy of the emissions 
inputs could not be addressed. Such matters are the province 
of model evaluation studies per Se, for example (5, 9, 32). 
Nevertheless, the evaluation provided some interesting les-
sons. First, one of the models turned out to be data-base 
dependent; the performance statistics clearly showed it to be 
out-of-step with the other models. This experience shows 
that before an application is undertaken, a model developed 
using a particular data set should be tested on at least one 
other data set that is independent of the one originally used. 
Second, the preliminary analysis did point out some potential 
deficiencies in the models that require further investigation. 
The diagnostic analysis also indicated the need for closely 
scrutinizing the data base to see whether it contains some 
particular feature that the models find difficult to handle. 
Finally, as a group, the Gaussian models performed as well 
as or better than the numerical model that was not data-base 
dependent. This result is consistent with the findings of Rao 
et al. (5). 

SUGGESTED RESEARCH 

It is recommended that future research on the topics 
covered in this study include the following: 

Perform exhaustive evaluations of several dispersion 
models using the methods of this report and, in particular, 
using a variety of data sets from the archive assembled in this 
study. 

Develop a computer program for sensitivity analysis. 
Investigate the construction of other figure-of-merit 

scales, and devise a general approach for constructing such 
scales. 

In selecting models for evaluation, the choices should be 
restricted to those models that are extensively documented. 
Inadequate documentation can result in too much time being 
spent in getting the numerical models operational, and this 
situation should be avoided in the future. 



62 

CHAPTER SEVEN 

BIBLIOGRAPHY ON MODEL EVALUATION 

Bornstein, R.D., and Anderson, S.F., "A Survey of Statis-
tical Techniques Used in Validation Studies of Air Pol-
lution Prediction Models." Technical Report No. 23, 
SIAM Institute for Mathematics and Society (SIMS), 
Department of Statistics, Stanford University (Mar. 
1979). 

Brier, G.W., "Validity of the Air Quality Display Model 
Calibration Procedure." EPA-R4-73-017, Final Report 
for National Environmental Research Center (1973). 

Burr, J.C., and Clymer, A.B., "Air Modeling in Ohio EPA." 
Proc. Conference on Environmental Modeling and 
Simulation, Cincinnati, Ohio (Apr. 19-22, 1976). 

Calder, K.L., "A Climatological Model for Multiple Source 
Urban Air Pollution." First Meeting of NATO I CCMS 
Panel on Modeling, Frankfurt, Germany (Oct. 9 1970). 

Chock, D.P., "General Motors Sulfate Dispersion Experi-
ment: Assessment of the EPA HI WAY Model." J. Air 
Poll. Control Assoc., Vol. 27, No. 1(1977) pp. 39-45. 

Chock, D.P., "An Advection-Diffusion Model for Pollutant 
Dispersion near Roadways." J. AppI. Meteorol., Vol. 
17 (1978) pp.  926-989. 

Chock, D.P., "A Simple Line-Source Model for Dispersion 
near Roadways." Almos. Environ., Vol. 12 (1978) pp. 
823-829. 

Christiansen, J.G., "Design and Application of the Texas 
Episodic Model." Proc., Conference on Environmental 
Modeling and Simulation, Cincinnati, Ohio (Apr. 19-22, 
1976). 

Clarke, J.F., "A Single Diffusion Model for Calculating 
Point Concentrations for Multiple Sources." J. Air Poll. 
Control Assoc., Vol. 14, No. 9 (1964) pp. 347-352. 

Darling, E.M., Prerau, D.S., Downey, P.J., and Mengert, 
P.H., Highway Air Pollution Dispersion Modeling: 
Preliminary Evaluation of Thriteen Models. U.S. 
Department of Transportation, Transportation Systems 
Center, Cambridge, Mass. (June 1977). 

Dowell, K.E., et al., "Diffusion Model Validation from Am-
bient Air Measurements Around 5 Coal-Fired Electrical 
Power Plants in Indiana." Fourth Symposium on Turbu-
lence, Diffusion and Air Pollution, Reno, Nev. (Jan. 15, 
1979). 

Duewer, W.H., MacCracken, M.C., and Walton, J.J., "The 
Livermore Regional Air Quality Model: II Verification 
and Sample Application in the San Francisco Bay 
Area." J. AppI. Meteorol. Vol. 17 (1978) pp. 273-3 11. 

Egan, B.A., and Lavery, T.F., "Highway Designs and Air 
Pollution Potential." Third Urban Technological Con-
ference and Technical Display, Boston, Mass. (Sept. 
25-28, 1973). 

Elderkin, C.E., et al., "Diffusion-Deposition Measurements 
and Modeling." Symposium on Atmospheric Diffusion 
and Air Pollution, Santa Barbara, Calif. (Sept. 9-13, 
1974). 

Eskridge, R.E., and Demerjian, K.L., "A Highway Model 
for the Advection, Diffusion and Chemical Reaction of 
Pollutants Released by Automobiles: Part 1—Advection 
and Diffusion of SF6  Tracer Gas." Joint Conference on 
Application of Air Pollution Meteorology, Salt Lake 
City, Utah (Nov. 29, 1977). 

Fortak, H.G., "Numerical Simulation of the Temporal and 
Spatial Distributions of Urban Air Pollution Concentra-
tions." Symposium on Multiple Source Urban Diffusion 
Models, Chapel Hill, N.C. (Oct. 27-30, 1969). 

Fuggle, R.F., and Dutkiewicz, R.K., "An Air Pollution Sur-
vey of Capetown and its Comparison with Selected 
Computer Models." Proc., Fourth International Clean 
Air Conference, Tokyo, Japan (May 16-20, 1977). 

Gifford, F.A., "The Simple ATDL Urban Air Pollution 
Model." Proc., Fourth Meeting of the Expert Panel on 
Air Pollution Modeling. Oberursel, Germany (May 
28-30, 1973). 

Goodin, W.R., McRae, G.J., and Seinfeld, J.H., "Validity 
and Accuracy of Atmospheric Air Quality Models." 
Third Symposium on Atmospheric Turbulence, Diffu-
sion, and Air Quality, Raleigh, N.C. (Oct. 19-22, 1976). 

Groff, G.K., "Empirical Comparison of Models for Short 
Range Forecasting." Management Sci., Vol. 20, No. 1 
(1973) pp.  22-31. 

Guldberg, P.H., Wright, T.E., and McAllister, A.R., "Use 
of Climatological Dispersion Model for Air Quality 
Maintenance Planning in the State of Rhode Island." 
Proc., Conference on Environmental Modeling and 
Simulation, Cincinnati, Ohio (Apr. 19-22, 1976). 

Habegger, L.J., et al., "Dispersion Simulation Techniques 
for Assessing the Air Pollution Impacts of Ground 
Transportation Systems." Argonne National Labora-
tory, Ill. (Apr. 1974). 

Hayes, S.R., "Performance Measures and Standards for Air 
Quality Simulation Models." Final Report EPA Con-
tract 68-02-253, Systems Applications, Inc., San Rafael, 
Calif. (1979). 

Koch, R.C., Pelton, D.J:, and Hwang, P.H., "Sampled 
Chronological Input Model (SCIM) Applied to Air Qual-
ity Planning in Two Large Metropolitan Areas." Proc., 
Conference on Environmental Modeling and Simula-
tion, Cincinnati, Ohio (Apr. 19-22, 1976). 

Koch, R.C., and Thayer, S.D., "Validation and Sensitivity 
Analysis of the Gaussian Plume Multiple-Source Urban 
Diffusion Model." Final Report Contract CPA 70-94, 
Geomet, Inc. (1971). 

Koogler, J.E., et al., "A Multivariate Model for Atmo-
spheric Dispersion Predictions." J. Air Poll. Control 
Assoc., Vol. 17, No. 4 (1967) pp. 211-214. 

Liu, M.K., and Seinfeld, J.H., "A Comparison of the Grid 
and Trajectory Models of Urban Air Pollution." Sympo-
sium on Atmospheric Diffusion and Air Pollution, Santa 
Barbara, Calif. (Sept. 9-13, 1974). 



63 

Maldonado, C., and Bullin, J.A., "Modeling Carbon Mon-
oxide Dispersion from Roadways." Environ. Sci., and 
Tech. Vol. 11, No. 12 (1977) pp.  1071-1076. 

McCollister, G.M., and Wilson, K.R., "Linear Stochastic 
Models for Forecasting Daily Maxima and Hourly Con-
centrations of Air Pollutants." Atmos. Environ., Vol. 9 
(1975) pp. 417-423. 

McNider, R.T., "Variability Analysis of Long-Term Disper-
sion Models." Joint Conference on Application of Air 
Pollution Meteorology, Salt Lake City, Utah (Nov. 
29-Dec. 2,1977). 

Miller, D.R., Butler, G., and Bramall, L., "Validation of 
Ecological Systems Models." J. Environ. Mgmt., Vol.4 
(1976) pp.  404-407. 

Miller, M.E., and Holzworth, G.C., "An Atmospheric Diffu-
sion Model for Metropolitan Areas." J Air Poll. Control 
Assoc., Vol. 17, No. 1, (1967) pp.  46-50. 

Mukherji, S.K., et al., "Modified Dispersion Modeling Pro-
cedures for Indiana Power Plants." Proc., Conference 
on Environmental Modeling and Simulation, Cincinnati, 
Ohio (Apr. 19-22, 1976). 

Mullen, J.B., et al., "Development and Validation of a 
Model for Diffusion in Complex Terrain." Joint Confer-
ence on Applicatipns of Air Pollution Meteorology, Salt 
Lake City, Utah (Nov. 29, 1977). 

Nappo, C.J., "A Method for Evaluating the Accuracy of Air 
Pollution Prediction Models." Proc., Symposium on At-
mospheric Diffusion and Air Pollution, Santa Barbara, 
Calif. (Sept. 9-13, 1974). 

Newman, E;, and Spiegler, D.B., "Operational Experience 
with an Air Quality Control System—AIRMAP." 
Proc., Symposium on Atmospheric Diffusion and Air 
Pollution, Santa Barbara, Calif. (Sept. 9-13, 1974). 

Noll, K.E., Miller, T.L., and Claggett, M., "A Comparison 
of Three Highway Line Source Dispersion Models." 
Atmos. Environ., Vol. 12 (1978) pp.  1323-1329. 

Okamoto, S., and Shiozawa, K., "Validation of an Air Pollu-
tion Model for the Keihin Area." Atmos. Environ., Vol. 
12 (1978) pp.  2139-2149. 

Porter, R.A., and Christiansen, J.H., "Modeling of Partic-
ulate and Sulfur Dioxide in Support of Ten-Year Plan-
ning." Proc., Conference on Environmental Modeling 
and Simulation, Cincinnati, Ohio (Apr. 19-22, 1976). 

Prahm, L.P., and Christensen, M., "Validation of a Multiple 
Source Gaussian Air Quality Model." Atmos. Environ., 
Vol. 11(1977) pp.  791-795. 

Prasad, C., "Improvements in Air Quality Display Model." 
Proc., Conference on Environmental Modeling and 
Simulation, Cincinnati, Ohio (Apr. 19-22, 1976). 

Rao, S.T., Kennan, M., Sistala, G., and Samson, P., "Dis-
persion of Pollutants Near Highways: Data Analysis and 
Model Evaluation." EPA-600/4-79-011 (Feb. 1979). 

Rao, S.T., and Visalli, J.R., "On the Comparative Assess-
ment of the Performance of Air Quality Models," J. Am. 
Poll. Control Assoc., Vol. 31(1981) pp.  851-860. 

Reynolds, S.D., et al., "Mathematical Modeling of Photo-
chemical Air Pollution: Vol. III Evaluation of the 
Model." Atmos. Environ., Vol. 8 (1974) pp.  563-593. 

Ruff, R.E., and Javitz, H.S., "Evaluation of Real-Time Air 
Quality Model (RAM) Using the RAPS Data Base." 
Final Report EPA Contract 68-02-2770, SRI Interna-
tional, Project 6868 (Apr. 1979). 

Ruff, R.E., and Simmon, P.B., "Evaluation of Emission 
Inventory Methodologies for the RAPS Program." 
Project 4331, Stanford Research Institute, Menlo Park, 
Calif. (1977). 

Shieh, L.J., and Shir, C.C., "Analysis of Input Parameters 
and Results of Urban Air Pollution Computation." 
Proc., Third Symposium on Atmospheric Turbulence, 
Diffusion, and Air Quality, Raleigh, N.C. (Oct. 19-22, 
1976). 

Smith, D.B., and Ruch, R.B., "Comparative Performance 
on Complex Terrain of Several Air Quality Impact As- 
sessment Models Based on Aerometric Program Data." 
Fourth Symposium on Turbulence, Diffusion, and Air 
Pollution, Reno, Nev. (Jan. 15-18, 1979). 

Snee, R.D., "Validation of Regression Models: Methods and 
Examples." Technometrics, Vol. 19, No. 4 (1977) pp. 
415-427. 

Tesche,T.W., Burton, C.S., and Mirabella, V.A., "Recent 
Verification Studies with the SAl Urban Airshed Model 
in the South Coast Air Basin." Fourth Symposium on 
Turbulence, Diffusion, and Air Pollution, Reno, Nev. 
(Jan. 15-18, 1979). 

Thayer, S.D., "The Development and Validation of an Air-
port Air Quality Model." Symposium on Atmospheric 
Diffusion and Air Pollution, Santa Barbara, Calif. (Sept. 
9-13, 1974). 

Tikvart, J.A., and Mears, C.E., "Application of the Single 
Source (CRSTER) Model to Power Plants: A Sum-
mary." Proc., Conference on Environmental Modeling 
and Simulation, Cincinnati, Ohio (Apr. 19-22, 1976). 

Turner, B.D, Zimmerman, J.R., and Busse, A.D., "An 
Evaluation of Some Climatological Dispersion Models." 
Third Meeting of Panel on Modeling of NATO Commit-
tee on the Challenges of Modern Society, Paris, France 
(Oct. 2-4, 1972). 

Turner, D.B., "A Diffusion Model for an Urban Area." J. 
App!. Meteorol., Vol. 3, No. 1(1964) p. 83. 

Wang, I.T., "Airport Vicinity Air Pollution Study, Model 
Application and Validation and Air Quality Impact 
Analysis at Washington National Airport." Final Re-
port, Argonne National Laboratory, Energy and En-
vironmëntal Systems Division (1974). 

Zannetti, P., and Switzer, P., "Some Problems of Validation 
and Testing of Numerical Air Pollution Models." Fourth 
Symposium on Turbulence, Diffusion, and Air Pollution 
Reno, Nev. (Jan. 15-18, 1979). 



64 

REFERENCES 

Federal Register, Vol. 44, No. 92 (May 10, 1979) pp. 
27558-27604. 
BURNS, J.R., "Error Analysis of Nonlinear Simulations: 
Applications to World Dynamics." IEEE Trans. 
Systems, Man and Cybernetics, Vol. SMC-5, No. 3 
(May 1975) pp. 33 1-340. 
U.S. Environmental Protection Agency, "SAROAD 
Users Manual." APTD-0663 (July 1971). 
DABBERDT, W.F., "Air Quality on and Near Roadways." 
SRI International Project 2761, Draft Final Report (Aug.. 
1977). 
RA0, S.T., KEENAN, M., SISTALA, G., and SAMSON, P., 
"Dispersion of Pollutants Near Highways-Data Analy-
sis and Model Evaluation." EPA 600 /4-79-011 (Feb. 
1979). 
DOWNEY, P.J., GARLITZ, J.D., and MURPHY, K.H., 
"Comparison of Six Highway Air Pollution Dispersion 
Models Using Synthetic Data." Report DOT-TSC-OST-
76-58 (Sept. 1977). 
ZIMMERMAN, J.R., and THOMPSON, R.S., "User's Guide 
for HIWAY, a Highway Air Pollution Model." EPA 
650/4-74-008 (1974). 
RAO, S.T., and KEENAN, M.T., "Suggestions for Im-
provement of the EPA-HIWAY Model." New York 
State Department of Environmental Conservation, Al-
bany, N.Y. (1979). 
BENSON, P.E., "CALINE3-A Versatile Dispersion 
Model for Predicting Air Pollutant Levels Near High-
ways and Arterial Streets." FHWA /CA/TL-79/23, In-
terim Report (1979). 
CHOCK, D.P., "A Simple Line-Source Model for Disper-
sion Near Raodways." GMR-2407, General Motors Re-
search Publication (1977). 
BULLIN, J.A., POLASEK, J.C., and GREEN, N.J., "Ana-
lytical and Experimental Assessment of Highway Impact 
on Air Quality." RH WA TX79-218-4, Texas A&M Uni 
versity (Oct. 1978). 

12 BULLIN, J.A., and POLASEK, J.C., "TRAPS II User's 
Guide." Report FH WA TX 78-218-2 (Mar. 1978). 
CARPENTER, W.A., and CLEMA1A, G.G., "Analysis and 
Comparative Evaluation of AIRPOL-4." VHRTC75-
R55, Virginia Highway and Transportation Research 
Council, Charlottesville, Va. (1975). 
CARPENTER, W.A., and CLEMAFM, G.G., "The Theory 
and Mathematical Development of AIRPOL-4." 
VHTRC75-R49, Virginia Highway and Transportation 
Research Council, Charlottesville, Va. (1975). 
DARLING, E.M., PRERAU, D.S., DOWNEY, P.J., and 
MENGERT, P.H., "Highway Air Pollution Dispersion 
Modeling: Preliminary Evaluation of Thirteen Models." 
DOT-TSC-OST-77-33, PB271 049 (June 1977). 
CHOCK, D.P., Personal communication (Oct. 8, 1979). 
KIRSCH, J.W., and MASON, B.F., "1-205 Highway Impact 
Study: A Final Report." Oregon State Highway Depart-
ment (Dec. 1973). 

KIR5cH, J.W., and MASON, B.F., "Mathematical Models 
for Air Pollution Studies Involving the Oregon 1-205 
Highway Project." 555-R-76-2 744, Systems, Science and 
Software, Inc., La Jolla, Calif. (1975). 
LAMB, R.G., Hcxo, H., and REm, L.E., "A Lagrangian 
Approach to Modeling Air Pollutant Dispersion." EPA 
600/4-79-023 (Apr. 1979). 
DANARD, M.B., "Numerical Modeling of CO Concentra-
tion Near a Highway." J. App!. Meteorol., Vol. 11 
(1972) pp.  947-957. 
RAGLAND, K.W., and PEIRCE, J.J., "Boundary Layer 
Model for Air Pollutant Concentrations Due to Highway 
Traffic." J. Air Poll. Control Assoc., Vol. 25 (1975) pp. 
48-51. 
ESKRIDGE, R.E., BINK0w5KI, F.S., HUNT, J.C.R., CLARK, 
T.L., and DEMERJIAN, K.L., "Highway Modeling. Part 
II: Advection and Diffusion of SF6  Tracer Gas," J. AppI. 
Meteorol., Vol. 18, No. 4 (1979) pp.  401-4 12. 
ESKRIDGE, R.E., and HUNT, J.C.R., "Highway Model-
ing, Part!: Prediction of Velocity and Turbulence Fields 
in the Wake of Vehicles." J. App!. Meteorol., Vol. 18, 
No. 4 (Apr. 1979) pp.  387-400. 
PITTER, R.L., "User's Manual ROADS, PSMOG, 
VlSI." Oregon Graduate Center, Beaverton, Ore. 
(1976). 
CHOCK, D.P., "An Advection-Diffusion Model for Pollu-
tant Dispersion Near Roadways." GMR 2590, No. 39, 
General Motors Research Publication (Nov. 1977). 
LISSAMAN, P.B.S., "A Simple, Unsteady Concentration 
Model Explicitly Incorporating Ground Roughness and 
Heat Flux." Paper No. 73-129, Air Pollution Control 
Assoc. Meeting, Chicago, Ill. (June 1973). 
EGAN, B.A., and LAvERY, T.F., "Highway Designs and 
Air Pollution Potential." AIAA 3rd Urban Technology 
Conference, Boston, Mass. (Sept. 26-28, 1973). 
U.S. Environmental Protection Agency, "Mobile 
Source Emission Factors, Final Document." EPA-
400/9-78-005, Office of Transportation and Land Use 
Policy, Washington, D.C. (Mar. 1978). 
U.S. Environmental Protection Agency, "User's Guide 
to MOBILE 1: Mobile Source Emissions Model." Office 
of Air, Noise, and Radiation, Washington, D.C. (1978). 
U.S. Environmental Protection Agency, "Modal Pro-
gram Guide." An update to "Automobile Exhaust Emis- 
sion Modal Analysis Model." EPA460/3-74-005 (1974). 
BULLIN, J.A., GREEN, N.J., and POLASEK, J.C., "Deter-
mination of Vehicle Emission Rates from Roadways by 
Mass Balance Techniques." Environmental Science and 
Technology, Vol. 14 (June 1980) pp.  700-705. 
DABBERDT, W.F., SHELAR, E., MARIMONT, D., and 
SKINNER, G., "Analyses, Experimental Studies and 
Evaluations of Control Measures for Air Flow and Air 
Quality On and Near Highways, Vol. I: Experimental 
Studies, Analyses, and Model Development." FHWA-
RD-78-179, SRI International (Dec. 1979). 



65 

KisH, L., and FRANKEL, M.R., "Balanced Repeated Rep-
lications for Standard Errors." J. Am. Statistical 
Assoc., Vol. 65, No. 331 (Sept. 1970) pp. 1071-1094. 
MILLER, R.G., "The Jackknife—A Review." Biome-
trika, Vol. 61, No. 1 (1974) pp. 1-15. 
EFRON, B., "Bootstrap Methods: Another Look at the 

Jackknife." The Annals of Statistics, Vol. 7, No. 1(1979) 
pp. 1-26. 
VISALLI, J.R., "Effects of Variable Vehicular Age and 
Classification Distributions in Mobile Source Model-
ing." J. Air Poll. Control Assoc., Vol. 31, No. 1(1981) 
pp. 68-71. 

APPENDIX A 
MATHEMATICAL NOTATION 

The definitions and derivations in Appendices B, C, and D require 

the use of a standardized mathematical notation. This appendix defines 

that mathematical notation. 

OC(i,j) 	 the observed concentration at the ith monitor on the 

jth day 

LOC(1,j) 	the natural logarithm of OC(i,j) 

OC(i,[j]) 	the ith largest observation at the ith monitor 

OC(.,[j]) 	the jth largest observed concentration among all moni- 

tors. 

The notation for the predicted concentration is obtained by substi-

tuting PC for OC. 

The notation for the true concentrations (e.g., the observed con-

centrations less observational error) is obtained by substituting TC for 

OC. 

} 
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The notation for the observational error is obtained by substitut- FUNCTIONS 

ing ERR for OC. 
IND(x) 

The letters M or A may be appended to the symbols OC, TC, and ERR 

in order to denote the observed concentration, true concentration, and 
PHI(x) 

observational error under the multiplicative and additive models, 

respectively. 

SAMPLE MOMENTS 

the indicator function of x, equal to 1.0 if x is true 

and 0.0 otherwise 

the probability that a standard normal deviate is less 

than or equal to x, also denoted 4(x). 

CONSTANTS 

SMEAN{OC(i,.)} 	the sample mean of the observed concentrations at the 
AQS 	 the air quality standard, or any threshold value used 

in the computation of S2. 	 - 

DATA BASE SIZE 

I 	 the number of monitors 

J 	 the number of time periods 

N(i,.) 	 the number of observation-prediction pairs at the ith 

monitor 

N(.,.) 	 the total number of observation-prediction pairs 

n(i,.) 	 the integer portion of 10.95 x N(i,.) + 11 

the integer portion of {0.95 x N(.,.) + 1} 

N(.,j) 	 the number of observation-prediction pairs in the jth 

time period.  

ith monitor 	- 

N(i,.) 

OC(i,j)/N(i,.) 
j=1  

SVAR{OC(i,.)} 	the sample variance of the observed concentrations at 

the ith monitor 

N( i,.) 

[OC(i,j)'- SMEAN(OC(i,.))]2  x 1/[N(i,.) - 11 
j= 1 

SSTD{OC(i,.)} 	the sample standard deviation at the ith monitor, 

obtained as the square root of SVAR {OC(i,.)} 
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SCOVAR{OC(i,.), PC(i,.)} 

the sample covariance of the observation-prediction 

pairs at the ith monitor 

= 	([OC(i,j) - SMEAN {OC(i,.)}] 

j=1  

x [PC(i,j) -.SMEAN {PC(i,-j}] x 1/[N(i,.) - 1]) 

The sample moments may also be computed for the entire monitoring 

network. In this case, the symbol "." replaces the symbol "i" in the 

definition. 

DISTRIBUTIONS 

NORM[E(OC(i,j), VAR{OC(i,j)}J 

a normal distribution with mean E(OC(i,j)} and variance 

VAR{OC(i,j)} 

LNORM[E{LOC(i,j), VAR(LOC(i,j)}] 

a lognormal distribution;- the natural logarithm of any 

variable with this distribution follows the previously 

defined normal distribution 

CHISQ(N(.,.)] 	a chi-square distribution with N(.,.) degrees of 
The sample moments may be computed for the jth time period over all  

freedom. 
monitors by substituting "•" and "j" for "i" and "." respectively in the  

definition. 

4 

E(OC(i,j)} 	the expected value of OC(i,j) 

STD{OC(i,j)} 	the standard deviation of OC(i,j) 

VAR{OC(i,j)} 	the variance of OC(i,j) 

COVAR{OC(i,j),PC(i,j)} 

the covariance of OC(i,j) and PC(i,j) 

CORR{OC(i,j), PC(i,j)} 

the orrelation coefficient of OC(i,j) and PC(i,j) 

The symbols "(.,.)" and "(i,j)" may be omitted to simplify the 

notation. For example, OC denotes OC(i,j) and SVAR{OC} denotes 

SVAR{OC(.,.)). Note that confusion as to which symbol is being omitted 

cannot arise--neither OC(.,.) nor SVAR{OC(i,j)} is defined. 

OMISSION OF CERTAIN SYMBOLS 

0\ 
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APPENDIX B 
DEFINITION OF THE COMPONENT STATISTICS 

In this appendix we define the six component statistics, denoted by 

S1  through S6, that measure the ability of the air quality model to 

predict the observed concentrations in the monitoring network. We also 

define more localized versions of S1  through S6  that are specific for an 

individual monitoring instrument or for a given time period. These 

localized statistics are not used in the FOM but may be useful for diag-

nostic analysis. 

THE RATIO OF THE LARGEST OBSERVATIONS AND PREDICTIONS, (S1) 

The first component statistic of the FOM is the ratio of the larg-

est 5 percent of the obsc.ved concentrations to the largest 5 percent of 

the predicted concentrations. For the ith monitoring station this 

statistic is defined as* 

N(i,.) 	 N(i,.) 

S(i,.) = 	 OC(i,[j]) / 	 PC(i,(j]) 
j=n(i,.) 	 jn(i,.)  

For the entire monitoring network this statistic is defined as 

Si(-,-) = The above equation with the symbol 

substituted everywhere for "i" 

Note that in these definitions it is not required that the largest 

observations and predictions occur on the same day. 

THE DIFFERENCE BETWEEN THE PREDICTED 

AND OBSERVED PROPORTIONS OF EXCEEDANCES (S2) 

The second component of the FOM measures the difference between the 

predicted and observed proportion of exceedances of a concentration 

threshold, which may be the air quality standard. For the ith monitor, 

this statistic is defined as 

N(i,.) 

S2(i,.) = 	 IND[PC(i,j) > AQS] 
N(i,.) 

1 
- 	 IND[OC(i,j) > AQS] 

N(i,.) 
j= 1 

For the entire monitoring network this statistic is defined as 

The mathematical notation used herein was defined in Appendix A. 	 S2  = S2(.,.) = The above equation with the symbol 

substituted everywhere for "i" 
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PEARSON'S CORRELATION COEFFICIENT (13) 

The third component is Pearson's correlation coefficient. For the 

ith monitor, this statistic is defined as 

THE SPATIAL CORRELATION COEFFICIENT (S5) 

The spatial correlation coefficient is the fifth component of the 

FOM. For the Jth time period, this statistic is defined as 

SCOVAR {LOC(i,.) , LPC(i,.)} 
S3(i,.) = 

SSTD{LOC(i,.)} SSTD{LPC(i,.)} 

and for the entire network this statistic is defined as 

S3 	S3(.1 .) = The above equation with the symbol 

substituted every where for "i" 

THE TEMPORAL CORRELATION COEFFICIENT () 

The temporal correlation coefficient is the fourth component 

statistic of the FOM. For the ith monitor, this statistic is defined as 

S4(i,.) = S3(i,.) 

For the entire network this statistic is defined as 

S4 = tanh [± 	tanh 1  (S3(i.)}] 

where "tanh" is the hyperbolic tangent function and "tanh 1" is the 

inverse hyperbolic tangent function. 

S5(.,j) = S3(.,j) 

and for the entire time period this statistic is defined as 

S5= tanh1 E tanh '  03(.,j)} 
j=1 

THE ROOT-MEAN-SQUARE ERROR () 

The root mean square error is the sixth component of the FOM. For 

the ith monitor, this statistic is defined as 

S6(i,.) = 	[OC(i,j) - PC(i1j)]2/N(i,.) 1/2 
j=1  

For the entire network, this statistic is defined as 

S6  = S6(.,.) 	The above equation with 

substituted for "i" 
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APPENDIX C 
	

The PCI for S1  

DERIVATION OF THE CONFIDENCE INTERVALS FOR 
THE COMPONENT STATISTIC 

	
If the numerator and denominator of S1  are divided by N-n+1, we can 

As discussed in Chapter Two of this report, both parametric and 

nonparametric confidence intervals were computed for the component 

statistics. This appendix presents the mathematical derivation of those 

confidence intervals.* A computer program that computes confidence 

intervals is described in Appendix E. 

THE PARAMETRIC CONFIDENbE INTERVALS 

The parametric confidence intervals (PCI) depend on assumptions 

concerning the form of the joint distribution of OC and PC. First, the 

approximately I x J pairs [OC(i,j), PC(i,j)] are assumed to be mutually 

independent. For the statistics S1  through S5  we assume that LOC(i,j) 

and LPC(i,j) follow a bivariate normal distribution with parameters 

({LOC}, E{LPC}, VAR{LOC}, VAR{LPC} and CORR{LOC,LPC}). For the statis-

tic S6  we assume that OC(i,j) - PC(i,j) follows a normal distribution 

with mean zero and variance VAR {OC-PC}. 

*The  mathematical notation used herein, was defined in Appendices A and 
B. 

recognize that S1  is an estimate of the mean of the distribution formed 

from the largest 5 percent' of an'LNORM (E{LOC}, VAR(LOC}) distribution 

divided by the mean of the distribution formed from the largest 5 per-

cent of an LNORM (E{LPC}, VAR(LPC}) distribution. Note that these 

means, denoted M1S1  and M2S1  respectively, are functions only of the 

unknown parameters of the distribution and the sample size. 

We desire to estimate the variability of S1  around M1S1/M2S2. We 

denote the second moment of S1  around M1S1/M2S2  by VS1. Under the 

assumption that S1/(VS1)1"2  is approximately normally distributed with 

mean M1S1/M252 and variance one, a 95 percent confidence interval for 

M151/M252  is Si 
 * 1.96(VS1)1'2. The difficulty in computing this confi-

dence interval is that VS1. is itself a complicated function of the 

parameters of the joint bivariate distribution of LOC and LPC. We 

hypothesize, however, that VS1  is a relatively stable function of the 

unknown parameters, so that VS1  may be approximated using a priori esti-

mates of the unknown parameters. A technique to approximate VS1  is dis-

cussed later in this appendix. 

The PCI for S2 	 . 

The S2  statistic is an estimate of the difference between the pro-

bability that the PC exceeds the threshold concentration (denoted AQS) 

and the probability that the OC exceeds the threshold concentration. We 
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shall denote these probabilities as P1S2  and P2S2  respectively. To 

determine a 95 percent confidence interval for P1S2/P2S2  we must compute 

the variance of S2, which we shall denote by VS2. Because S2/(VS2)112  

is approximately normally distributed with mean P1S2/P2S2  and variance 

1.0, a 95 percent confidence interval for P1S2/P2S2  is S2  ± 1.96 

(VS2)"12. Asbefore, VS2  is itself a function of the unknown parameters 

of the joint distribution of OC and PC. The approximation of VS2, given 

a priori estimates of these parameters, is discussed later in this 

appendix. 

The PCI for 53  

Under the assumption that LOC and LPC follow a bivariate normal 

distribution, a 95 percent confidence interval for the correlation coef-

ficient, denoted CORR{LOC,LPC} is given by 

1.96 

	

/ . 	1.96 
S3 + - 1 I [tanh (tanh_1 s3 - 

	

), tanh tanh 

Consequently, it is only necessary for the investigator to provide an a 

priori estimate of S3  (e.g., of CORR{LOC,LPC}) to compute the width of 

the interval for any given sample size. By varying N, the investigator 

can determine the initial sample size. 

The PCI for S 

Under the assumption that LOC and LPC follow a bivariate normal 

distribution, with a common correlation coefficient CORR{LOC,LPC} for 

all sites, a 95-percent confidence interval for this parameter is given 

by [tanh(AI - 1.96B1), tanh(AI + 1.96B1)], where 

Al = 	tanh'  S3(i,.) I I 

1/2 
BI= 	

1 

Consequently, it is only necessary for the investigator to provide an a 

priori estimate of Al [e.g., of tanh' (CORR{LOC,LPC})] to calculate the 

width of the interval for any given sample size. If we assume that the 

N(i,) are approximately equal to N/I, then BI is equal to (N - 21) 1/'2. 

The PCI for S5  

Under the assumption that LOC and LPC follow a bivariate normal 

distribution, with a common correlation coefficient CORR{LOC,LPC} for 

all sites, a 95-percent confidence interval for this parameter is given 

by [tanh (LI - 1.96 x BJ), tanh (LI + 1.96 x BJ)],  where 

LI 	tanh 1  S3(.,j) / J 

BJ =— 	
1 	

1l'2 
J j=1 N(.,j) - 2] 
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If the N(.,j) are all approximately equal to N/J, then BJ simplifies to 

(N - 21) 1/2. As before, when the investigator provides an a priori 

estimate of AJ [e.g., of tanh 1 (CORR{LOC,LPC})], the width of the con-

fidence interval can be calculated for any given sample size. 

The PCI for S6 

Under the assumption that OC and PC follow a normal distribution 

with mean zero and standard deviation STD{OC-PC}, it can be shown that 

S6 is distributed as 

STD{OC-PC} [CHISQ(N)/N] 1/2 

We note that for N larger than 30, the lower and upper 2.5 percent cut-

off values of a (CHISQ(N)/N)1"2 distribution are approximately 

1 - 1.96/(2N)1"2 and 1 + 1.96/(2N)112. This allows us to write the 95 

percent confidence interval for STD(OC-PC} as 

~2N 

96 	 1. 
s6/(1+)s6/ 	

96
)j (1-7 

Once the investigator provides an a priori estimate of S6, (e.g., of 

STD{OC-PC}), the above formula may be used to compute the width of the 

confidence interval for any given N. 

THE NONPARAMETRIC CONFIDENCE INTERVALS 

A nonparametric confidence interval (NPCI) may be constructed for 

each of the component statistics of the FOM. because these intervals do 

not require the imposition of a parametric density function, they are 

more likely to yield correct answers than the parametric confidence 

intervals discussed earlier. In addition, the NPCI are computed after 

the data set is chosen and therefore avoid the inaccuracies associated 

with a priori estimates used with the PCI. 

There are four related methods for deriving nonparametric confi-

dence intervals that have gained acceptance in the last decade. These 

methods are: true replication, pseudo-replication (33), jackknifing 

(34), and bootstrapping (35). Each of these methods estimates the vari-

ability in a component statistic attributable to the finiteness of the 

data base by computing values for the component statistic on subsets of 

the data base. There are no practically important restrictions on the 

form of the underlying probability distributions (e.g., they need not be 

lognormal). However, in the theoretical derivation of these methods the 

independence of successive observation-prediction pairs is assumed. The 

validity of two of the methods--jackknifing and bootstrapping—appears 

to be sensitive to violation of the independence assumption. The 

remaining two methods--true and pseudo-replication--appear to be less 

sensitive to violations of independence assumptions. Consequently, the 

latter two methods seem preferable to either jackknifing or bootstrap-

ping. We have selected true replication because it is easier to 
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implement and to explain than is pseudo-replication. We illustrate the 

true replication method using the S2  statistic. The S2  statistic is the 

proportion of predicted concentrations above a threshold level less the 

proportion of observed concentrations above the threshold. If our data 

base of observation-prediction pairs has 20 percent of the predictions 

and 15 percent of the observations exceeding the threshold concentra-

tion, then S2  is computed to be 5 percent. The true replication method 

for computing the variability of S2  requires that the data base be 

divided into subsets that are similar to each other and to the total 

data base. Although it is customary to divide the data base into 

tenths, we believe that because the independence assumption may be 

violated it is advisable to use fifths. The data base will be divided 

into fifths by taking groups of five days at a time and randomly assign-

ing these days to the data subsets so that each subset receives one of 

the days. Using this method, the sequential correlation between hourly 

observation-prediction pairs in each data subset will probably be only 

slightly smaller than the correlation in the overall data base, and the 

composition of each data subset will be approximately equal in terms of 

the number of hourly pairs, number of days, number of Mondays through 

Sundays, and the distribution of those days over the months in the data 

base. Let the S2  statistic computed over the Kth data subset be denoted 

by S2S(K), K = 1, ..., 5. Intuitively, if the five S2S(K) statistics 
are close to one another, then the statistic S2  which is based on a sam-

ple size five times as large as any S2S(K) should have a small variance. 

In fact, the estimate of the variance of S2  is SVAR{S2S}/5, where 

SVAR{S2S} is the sample variance of the S2S(K) statistics. Because S2  

follows approximately a normal distribution, a 95 percent confidence 

interval for the expectation of S2  (the difference in the probabilities 

of an exceedance) can be computed as 

SSTD{S2S} 

2 ± 

where t0975,4  = 2.776 is the upper 0.975-percentile point of the 

Student's t distribution with 4 degrees of freedom. 

COMPUTATION OF CONSTANTS REQUIRED 

IN THE PARANETRIC CONFIDENCE INTERVALS 

FOR S1  AND S 

Under the model that LOC(i,j) and LPC(i,j) are bivariate normaL 

with means E{LOC} and E{LPC}, variances VAR(LOC} and VAR(LPC} and corre-

lation CORR{LOC,LPC}, the confidence intervals for S1  and S2  require the 

computation of constants denoted M1S1, M2S1, VS1, and VS2. These con-

stants are defined as follows: 

M1S1  = the mean of the distribution formed from the largest 5 percent 

of an LNORM(E{LOC}, VAR{LOC}) distribution. 

M2S1  = the mean of the distribution formed from the largest 5 percent 

of-an LNORN (E{LPC}, VAR{LPC}) distribution. 
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VS1  = the second moment of S1  around M1S1/M2S1. 	 following a bivariate normal distribution with parameters E{LOC}, 

E{LPC}, VAR{LOC}, VAR(LPC), and CORR{LOC,LPC}. 
VS2  = the variance of S2. 

The computation of the above constants begins with the a priori 

specification of E{LOC}, E{LPC}, VAR{LOC}, VAR{LPC}, and CORR{LOC,LPC}. 

If we let X denote a variablewith a NORM (E{LOC}, VAR{LOC}) distribu-

tion then we can write 

M1S1  = E {exp (x) IND [X > E{LOC} + 1.96 S,TD{LOC} 1) 	/ 

P [x > E{L0C} + E{LOC} + 1.96 STD{LOC}J 

A = E{LOC} + 1.96 STD{LOC} 

B = E{LOC} + 1.96 STD{LPC} 

-1/2 -1 P 
F 	 2 
(x - E{LOC}) 

M1S1  = 20 x (2v) (STD{LOC}) 	J exp + x dx 
A 2VAR(LOC) 

and similarly 

-1/2 -1 
CD 
p (x, -  E{LPC}) 2 

M2S1  = 20 x (2n) (STD{LPC}) 	J exp - 	 + x dx 
B 2 VAR{LPC} 

Consequently M151  and M2S2  can be determined by numerical integration. 

The constant VS1  may be computed using a Monte Carlo program. On 

the Kth Iteration of the program we generate the random sample 

We compute 

exp [X1(K,[jJ)1 

Z1(K)= N 

exp [Y1(K,[jl)J 
jn 

The estimate of VS1  is 

20 M1 S 1\2 
= 	(I(K)  

19 K=1 	M2S) 

The constant VS2  was defined as 

VS = VAR N 1  E I(PC(.,j) > AQS) 
1 

- N '  E IND(OC(.,j) > AQS)} 

X1(K,j) , Y1(K,j) 	1 < j < N 
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The above expression simplifies into the equation 	 The covariance term may be decomposed as follows 

VS2 	N 1  VAR{INC(PC > AQS)} 

+ N 1  VAR{IND(OC > AQS)} 

- 2N COV{IND(PC >AQS), IND(OC > AQS)} 

If we let 

	

P1  = 	PROB{PC > AQS} 

1-PHI In AQS - E{LPC} 

	

= 	 ( 

\ STD{LPC) 

	

P2  = 	PROB{OC > AQS} 

In AQS - E{LOC} 

	

= 	1-PHI( 
\ STD{LOC} 

	

Q1= 	1-P1  

Q2= 	1-P2  

then we may write 

P1 xQ1 	P2 x Q2 
VS2 = 	 + 

N 	N 

2 
- - COV{IND(PC > AQS) , IND(OC > AQS).} 

N 

COV{IND(pc > AQS) , IND(OC > AQS)} 

= 	E {[IND(PC > AQS) - P11 [IND(OC > AQS) - P2]} 

= 	PROB{PC < AQS , OC < AQS} x QI x Q2 

+ PROB{PC ( AQS , OC > AQS} x Q1 x (-P2) 

+ PROB{PC > AQS , OC < AQS} x(-P1) x Q2 

+ PROB{PC > AQS , OC > AQS} x (-P1) x (-P2) 

Letting 

P3  = 	PROB{PC > AQS , OC > AQS} 

Q3= 	1-P3  

we can show that 

PROB{PC < AQS , OC < AQS} = 1 -P1  - P2  + P3  

PROB{PC < AQS , OC > AQS} = P1  - P3  

PROB{PC > AQS OC < AQS} = P2  - P3  

Substifuting backwards and simplifying we find 

COVAR{IND(PC > AQS) , IND(OC > AQS)} 

= P3 -P1 xP2  

P1 x Qi 	P2 x Q2 	(P3 - P1 x P2) 
VS2 = 	 + 	-2 

N, 	N 	 N 
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To calculate VS2  we only require a numerical value for P3, which can be APPENDIX D 
obtained by numerical integration of the bivariate normal density with 	DERIVATION OF THE ADJUSTMENTS FOR OBSERVA 

means of zero, variances of 1 and a correlation of CORR{LOC,LPC} over 
	TIONAL ERROR IN THE COMPONENT STATISTICS 

the region where the x coordinate is greater than (in AQS - 

E{LOC})/STD{LOC} and the y coordinate is greater than (in AQS - 	
As discussed in Chapter Two of this report, adjustments to the corn- 

E{LPC})/STD{LPC}. 	
ponent statistics for observational error were computed under a multi- 

plicative and an additive error model. This appendix presents.the 

derivationof those adjustments. 

THE MODEL SPECIFICATIONS 

The multiplicative model may be written as 

0CM = TCM[1 + ERRN] 

where 

TCM 	LNORM(E{LTCM} VAR{LTCM}) 

ERRM - NORN(O, VAR {ERRM}) 

) 

*The mathematical notation used herein was defined in Appendices A and 
B. 

/ 
0-1 
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and these two variables are independent. In this model, STD{ERRM} is 

expressed as a percentage, e.g., 4 percent. If we take natural loga-

rithms in this model we obtain 

and these two variables are independent. The STD{ERRA} is expressed in 

ppm, e.g., * 2 ppm. Under this model 

OCA - LNORM(E{LTCA}, VAR{LTCA}) + NORM(O, VAR{ERRA}) 

LOCM = LTCM + ln[1  + ERRM] 

Because the standard deviation of EREM is small, this expression may be 

simplified. Taking a first-order Taylor expansion of the last term, we 

find that the model may be approximated as 

LOCM = LTCM + ERRN 

Under this latter specification 

LOCM - NORM(E{LTCM}, VAR{LTCM} + VAR{ERRM}) 

The additive model may be written as 

OCA = TCA + ERRA 

Here, 

TCA - LNORM(E{LTCA}, VAR{LTCA}) 

ERRA - NORM(O, VAR{ERRA}) 

THE RATIO OF THE LARGEST OBSERVATIONS 

AND PREDICTIONS 

The bias in S is the amount by which S differs from the value 

that would be obtained by substituting TC for OC in the definition of 

Without this substitution, the expected value of the numerator of 

S1  is the expected value of the suni of the largest N-n+1 order statis-

tics Out of N samples from either an LNORN(E{LTCM}, VAR{LT01} + 

VAR{ERRM}) distribution or from an LNORM (E{LTCM}, VAR{LTCA}) + NORM (0, 

VARE.ERRA}) distribution, depending on whether the multiplicative or 

additive model is used. The expectation will be denoted CS1MTE under 

the multiplicative model and CS1ATE under the additive model. With the 

substitution of TC for OC, the expected value of the numerator of S1  is 

the expectation of the sum of the largest N-n+1 order statistics out of 

N samples from either an LNORM(E{LTCM}, VAR{LTCM}) distribution or from 

an LNORM(E{LTCA}, VAR{LTCA}) distribution depending, on whether the mul-

tiplicative or additive model is used.. The expectation will be denoted 

CS1MT under the multiplicative model and CS1AT under the additive model. 

Because CS1MTE is larger than CS1MT, and •CS1ATE is larger than CS1AT, S1  
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is biased upward. We define the S1  statistic adjusted for multiplica-

tive and additive error by the formulae 

S1M = S1 * CS1MT/CS1MTE 

S1A = Sl * CS1AT/CS1ATE 

Methods for computing CS1MTE, CS1ATE, CS1MT, and CS1AT are given later 

in this appendix. 

THE DIFFERENCE BETWEEN THE PREDICTED 

AND OBSERVED PROPORTIONS OF EXCEEDANCES 

The bias in S2  is the amount that S2  differs from the value that 

would be obtained by substituting TC for OC in the definition of S2. 

Without this substitution, the expected value of the second term in S2  

is the probability that a variable following an LNORM(E{LTCM}, VAR{LTCM} 

+ VAR{ERRM}) distribution is greater than the AQS, or the probability 

that a variable following an LNORM(E{LTCA}, VAR{LTCA}) + NORM(O, 

VAR{ERRA}) distribution is greater than the AQS, depending on whether 

the multiplicative or additive model is used. The probability will be 

denoted CS2MTE under the multiplicative model and CS2ATE under the addi-

tive model. With the substitution of TC for OC, the expectation of the 

second term in S2  is either the probability that a variable following an 

LNORM(E{LTC}, VAR{LTCM}) distribution is greater than the-AQS, or the 

probability that a variable following an LNORM(E{LTCA}, VAR{LTCA}) dis-

tribution is greater than the AQS, depending on whether the  

multiplicative or additive model is used. This probability will be 00 

denoted CS2MT under the multiplicative model and CS2AT under the addi-

tive model. Because CS2MTE is larger than CS2MT and CS2ATE is larger 

than CS2AT, S2  is biased downward. We denote the S2  statistic adjusted 

for multiplicative error by S2M, and for additive error by S2A. The 

statistic S2M is obtained from S2  by multiplying the second term in. its 

definition by CS2MT/CS2MTE and the statistic S2A is obtained from S2  by 

multiplying the second term in itsdefinition by CS2AT/CS2ATE. The cal-

culation of CS2MTE, CS2ATE, CS2MT, and CS2AT are discussed later in this 

appendix. 

PEARSON'S CORRELATION COEFFICIENT 

The bias in S3  is the amount that S3  differs from the value that 

would be obtained by substituting TC for OC in the definition of S3. 

Under the multiplicative model, S3  is an estimate of 

COVAR{LOCM,LPC} 

STD{LOCN} STD{LPC} 

When TCM is substituted for 0CM, S3  is an estimate of 

COVAR{LTCM,LPC} 

STD{LTCM} STD{LPC} 

Because ERRM is independent of LPC, it can beshown that 

COVAR{LOCM,LPC} = COVAR{LTCH,LPC} 
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Consequently the adjustment for S3  depends upon the relative magnitudes 	Taking natural logarithms we obtain 

of STD{LOCM} and STD{LTCM}. Let CS3M be a sample statistic that esti- 

/ mates STD{LTCM}/STD{LOCM}. The S3  statistic adjusted for multiplicative 	 LOCA = LTCA + mu 
+ ERRA
- 

\ error will be denoted S3M and is defined by 	
TCA 

 

SCOVAR{LOC,LPC} 
S3M = 
	

As long as ERRA/TCA is small, the above expression may be approximated 
[SSTD{Loc} x CS3M] SSTD{LPC} 

as 

the computation of CS3M is described later in this appendix. 

Under the additive model, S3  is an estimate of 

COVAR{LOCA,LPC} 

.STD{LOCA} STD{LPC} 

When TCA is.substituted for OCA, S3  is an estimate of 

COVAR{LTCA, LPC} 

STD{LTCA} STD{LPC} 

To examine the numerators, we rewrite the additive model as 

/ ERRA 
OCA = TCA (i + 

\ 	TCA  

ERRA 
LOCA = LTCA + - 

TCA 

Using the above approximate expression for the additive model, and not-

ing that ERRA is independent of LPC, we can establish that 

COVAR{LOCA,LPC} = COVAR{LTCA,LPC} 

Consequently theadjustment for S3  depends on the relative magnitudes of 

STD{LOCA} and STD{LTCA}. Let CS3A be a sample statistic that estimates 

STD{LTCA}/STD{LOCA}. The S3  statistic adjusted for additive error will 

be denoted 53A and is defined by 

SCOVAR{LOC,LPC} 

S3A = _________________________ 
[SSTD{LOC}x CS3A] SSTD{LPC} 

The computation of CS3A is described later in this appendix. 
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THE TEMPORAL CORRELATION COEFFICIENT 

The temporal correlation coefficient S4  was defined as the average 

over all sites of the Pearson's correlation coefficient S3(i,.). Conse-

quently the adjustments for multiplicative and additive error that were 

employed for S3  may be used with S4. We define 

	

1 	 /SCOVAR{LOC(i,.), LPC(i,.)} 

	

S4M = tanh - 	tanh 

I 1=1 	
\[SSTD{LOC(i,.)} x CS3M] SSTD{LPC(i,.)} 

	

1 	 / 	SCOVAR{LOC(i,.), LPC(i,.)} 

	

S4A = tanh - 	tanh 

	

i 	\[55TD{LOC(i,.)} x CS3A] SSTD{LPC(i,.)) 

SPATIAL CORRELATION COEFFICIENT 

The spatial correlation coefficient S5  is defined as the average 

over all time periods of the Pearson's correlation coefficient S3(.,j). 

Consequently the adjustments for multiplicative and additive error that 

were employed for S3  may also be used for S5. We define 

S5M tanh 
1 	SCOVAR{LOC(.,j), LPC(.;j)} 
- 	tanh 

\[SSTD{LOC(.,j) x CS3M] SSTD{LPC(.,j))  

THE ROOT-MEAN-SQUARE ERROR 00  

The bias in S6  is the amount that S5  differs from the value that 

would be obtained by substituting TC for OC in the definition of 

Under the multiplicative model S6  is an estimate of STD{OCM - PC). 

When TCM is substituted for 0CM, the statistic 5 is an estimate of 

STD{TCM - PC). Consequently the adjustment to S6  depends on the rela-

tive magnitudes of STD{OCM - PC} and STD{TCM - PC}. For the multiplica-

tive model, we write 

0CM = TCM + TCM x ERRM 

Subtracting PC from both sides of the above equation and taking vari-

ances we find 

VAR{OCM - PC} = VAR(TCM - PC) + VAR{TCM x ERP14} 

Note that the covariance term has disappeared because ERRH has a mean of 

zero and is independent of TCM and PC. The variance of TCM x EREM may 

be written as 

VARN{TCM x} = E{(TCM)2) x VAR{EREM} 

1 	

([SSTDILOC(',j) 

SCOVAR{LOC(.,j), LPC(.,j)} 

S5A = tanh 	tanh 
	x CS3A] SSTD{LPC(.,j)} 

To further evaluate this expression, we note that 

[0CM]2  = [TCM]2 	 RM (1 + 2 x ERRM + [ER]2) 
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Taking expectations we obtain 

E{(OCM]2) = E{[TCM]2} x 0 + VAR{ERRM}) 

Combining the above equations we obtain 

VARM{OCM - PC}= VAR{TCM - PC} 

2 	VAR{ERRM} 
+E{[OC?4] } 

1 + VAR{ERRM} 

Let CS6M be a sample estimator of 

E[OCM] 
2 } 
	

VAR{ERRN} 

1 + VARN{ERRM} 

The S6  statistic adjusted for multiplicative error is denoted by S6M and 

defined as 

S6M = ((S6)2 - CS6M1
1

hI2  

The computation of CS6M is discussed later in this appendix. 

For the additive model we may write 

[OCA - PC] = [TCA - PC] + ERRA 

Taking variances we obtain 

VAR[OCA - PC] = VAR[TCA - PC] + VAR{ERRA} 

Letting CS6A be an estimator of VAR{ERRA}, we can define S6A (the S6  

statistic adjusted for additive error) by 

S6A.= 106)2 - CS6AJ 1"2  

The computation of CS6A is discussed later in this appendix. 

COMPUTATION OF THE CONSTANTS REQUIRED 

FOR THE ADJUSTMENT FOR OBSERVATIONAL ERROR 

Previous subsections of this appendix presented adjustments to the 

component statistics of the FOM necessary to account for observational 

error under multiplicative and additive models. This subsection 

presents methods for calculating certain constants that were previously 

defined in general terms only (e.g., CS1MTE, CS1MT, CS1ATE, and CS1AT), 

and are necessary to effect those adjustments. 

Two models for observational error were presented earlier. Under 

the multiplicative model 0CM followed an LNORN(E{LTCM}, VAR{LTCM} + 

VAR{ERRM}) distribution; under the additive model OCA followed an 

LNORM(E{LTCA}, VAR{LTCA'}) + NORN(O, VAR{ERRA}) distribution. The esti-

mation of theparameters of these distributions begins with the specifi-

cation by the investigator of. the error variance, based on his knowledge 

of the type of monitoring equipment being used in the field. For the 

00 
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multiplicative model, STD{ERPJ1} is specified as a percentage (e.g., 3 

percent) and for the additive model STD{ERRA} is specified in ppm (e.g., 

2 ppm). After the standard deviation of the observational error has 

been specified, the estimates of the remaining parameters may be calcu-

lated. For the multiplicative model, the estimate of E{LTCM} is 

SMEAN{LOC} and the estimate of VAR{LTCM} is SVAR{LOC} - VAR{ERRM}. For 

the additive model we note that 

E{OCA} = exp(E{LTCA} + VAR{LTCA}/21 

VAR{OCA)= exp[2 x E{LTCA} + VAR{LTCA} 

x (exp[VAR{LTCA}] -1) + VAR{ERRA} 

Substituting SMEAN{OC} for E{OCA} and SVAR{OC} for VAR{OCA} above, we 

obtain a pair of equations in two unknowns. Partial simplification of 

those equations yields 

In the computation of the adjustments for observational error, the 00  

estimates derived above will be used as if they were the true 

parameters. 

Computation of the Adjustments for 

The adjustment constants for S1  were denoted CS1I4TE, CS1MT, CS1ATE, 

and CS1AT. We recommend that these constants be computed using Monte 

Carlo simulation. Specifically on the Kth iteration of the Monte Carlo 

program, we generate the following independent and identically distri-

buted (lid) samples: 

x1(K,1), ..., X1(K,N) - NORM(E{LTCH}, VAR{LTCM}) 

X2(K,1), ..., X2(K,N) - NORM(E{LTCM}, VAR{LTCM} + vAR{ERRM}) 

X3(K,1), ...., x3(K,N) - NORM(E{LTCA}, VAR{LTCA}) 

X4(K,1), ..., X4(K,N) - NORM(O, VAR{ERRA}) 
SMEAN(OC} et exp[E{LTCA} + VAR{LTCA}/21 

Define the transformed variables for 1 < j < N 

SVAR{OC} 	(SMEAN{OC}) 2  x (exp(VAR{LTCA}] 	1) + VAR{ERRA} 

Further simplification yields our final estimates: 

/SVAR{OC} - VAR{ERRA} 
VAR{LTCA} lnl 	 2 + 

\ 	(S1IEAN{OC}) 

Y1(K,j) = exp{X1(K,j)} 

Y2(K,j) = exp{X2(K,j)}, 

Y3(K,j) = exp(X3(K,j)) 

Y4(K,j) = Y3(K,j) + X4(K,j) 

E{LTCA} A ln[SMEAN{OC}} - VAR{LTCA}/2 
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and -compute 

N 

Z1(K) = 

	

Y1(K,[j]) 

100 

CS1ATE= Z4(K)/100 

N 

Z2(K) = 	Y2(K,[j}) 
j=n 

Z3(K) = 
	

Y3(K,[j]) 
j=n  

Z4(K) = 

After 100 iterations of the Monte Carlo program, compute the estimates 

100 

.CS1MT E Z1(K)/100 

100 

CS1MTE = 	Z2(K)/100 

100 

CS1AT = F, Z3(K)/100 

100 

CS1ATE = 	Z4(K)/100  

Computation of the Adjustments for S2  

The adjustment constants for S2  were denoted CS2MTE, CS2MT, CS2ATE, 

and CS2AT. The constants CS2MTE, CS2MT, and CS2AT are given by the 

usual formulas 

/ln AQS - E{LTCH} 
CS2MTE = 1 - 11 

\ 	SSTD{LOC} 

un AQS - E{LTCH} 
CS2MT = 1 - ( 

\ SSTD{LTCM} 

un AQS - E{LTCA) 
CS2AT = 1 - 	_________________ 

\ SSTD{LTCA} 

If we let Wand Y denote variables following a NORN(E{LTCA}, 

VAR{LTCA}), and NORM(0, VAR{ERRA}) distribution respectively, then we 

may write 

CS2ATE = PROB{exp(W) + Y > AQS} 

= JPROB{Y > AQS - exp(w)} dPROB{W=w} 

00 
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J
(AQS eXP(w))

1 	STDERRA} aPR08{Ww} 

Letting Z= (W - E{LTCA})/STD{LTCA} and changing variables, we obtain 

p/AQS - exp(z x STD{LTCA} + E{LTCA} 
CS2ATE = 	1  

.STDERRA}  

Computation of the Adjustments for S6  

The adjustment constants for S6  were denoted CS6M and.CS6A, and 

were defined as 

2 	VAR{ERRM} 
CS611  E{[OCM] } 

1 + VAR{ERRN} 

CS6A = VAR{ERRA} 

- 	 x [21r]1/2  exP().dz 

For practical purposes, the limits of integration can be assumed to be 

± 4.0. The constant CS2ATE should be determined using numerical 

integration. 

These constants can be computed using our estimates of VAR{ERRM}, 

VAR{ERRA}, and the estimate 

E{[OCM]2} 	-- 	(OC(.,j)] 2  

Computation of the Adjustments for 	and S5  

The adjustment constants for S3, S4, and S5  were denoted CS3M and 

CS3A, and were defined as 	- 

CS3M = STD{LTCM}/STD{LOCM} 

CS3A = STD{LTCA}ISTD{LOCA}. 

These constants may be estimated using our estimates of VAR{LTCtI}, 

VAR{LTCA}, and VAR{LOC}. 
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APPENDIXES E, F, AND G 

Appendixes E, F, and G are not published herewith but are 
contamed under a separate binding and titled, "Development 
and Application of Methodology for Evaluating Highway Air 
Pollution Dispersion Models—Volume II: Appendixes E, F. 
and 0." The contents of these materials are listed here for 
the convenience of qualified researchers. A computer pro- 

85 

gram package including the documentation is available by 
written request to the Director, Cooperative Research Pro-
grams, Transportation Research Board, 2101 Constitution 
Avenue, N.W., Washington, D.C. 20418, and supplying a 
blank 12-in, and 8-in, diameter 9-track, 1600-BPI computer 
tape. 
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private, nonprofit, self-governing membership corporation for the furtherance of science 
and technology, required to advise the Federal Government upon request within its fields 
of competence. Under its corporate charter the Academy established the National 
Research Council in 1916, the National Academy of Engineering in 1964, and the 
Institute of Medicine in 1970. 
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