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Systematic, well-designed research provides the most effec-
tive approach to the solution of many problems facing high-
way administrators and engineers. Often, highway problems 
are of local interest and can best be studied by highway 
departments individually or in cooperation with their state 
universities and others. However, the accelerating growth of 
highway transportation develops increasingly complex prob-
lems of wide interest to highway authorities. These problems 
are best studied through a coordinated program of coopera-
tive research. 
In recognition of these needs, the highway administrators of 
the American Association of State Highway and Transporta-
tion Officials initiated in 1962 an objective national 
highway research program employing modern scientific tech-
niques. This program is supported on a continuing basis by 
funds from participating member states of the Association 
and it receives the full cooperation and support of the Federal 
Highway Administration, United States Department of 
Transportation. 
The Transportation Research Board of the National Re-
search Council was requested by the Association to ad-
minister the research program because of the Board's recog-
nized objectivity and understanding of modern research 
practices. The Board is uniquely suited for this purpose as: 
it maintains an extensive committee structure from which 
authorities on any highway transportation subject may be 
drawn; it possesses avenues of communications and cooper-
ation with federal, state, and local governmental agencies, 
universities, and industry; its relationship to its parent orga-
nization, the National Academy of Sciences, a private, non-
profit institution, is an insurance of objectivity; it maintains 
a full-time research correlation staff of specialists in highway 
transportation matters to bring the findings of research 
directly to those who are in a position to use them. 
The program is developed on the basis of research needs 
identified by chief administrators of the highway and trans-
portation departments and by committees of AASHTO. 
Each year, specific areas of research needs to be included in 
the program are proposed to the Academy and the Board by 
the American Association of State Highway and Transporta-
tion Officials. Research projects to fulfill these needs are 
defined by the Board, and qualified research agencies are 
selected from those that have submitted proposals. Adminis-
tration and surveillance f research contracts are the respon-
sibilities of the Academy and its Transportation Research 
Board. 
The needs for highway research are many, and the National 
Cooperative Highway Research Program can make signifi-
cant contributions to the solution of highway transportation 
problems of mutual concern to many responsible groups. The 
program, however, is intended to complement rather than to 
substitute for or duplicate other highway research programs. 
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FOR EWO RD This report will be of interest to transportation analysts and policy planners 
in Federal Government, in state transportation departments, and in metropolitan 

By Staff planning organizations who have expertise in conventional urban travel demand 
Transportation analysis. Such persons will find guidance in using disaggregate travel demand 

Research Board forecasting models for policy analysis. These models are useful to the analyst 
studying alternative transportation modes, new technology, transit fare and ser- 
vice changes, traffic engineering improvements, and toll policies. Examples of 
models for work trip mode choice, and shopping trip mode choice, are provided 
for practitioners. Researchers will find in the appendixes exhaustive discussions 
on model development, the independence of irrelevant alternatives property, and 
a multinomial logit model that permits variations in taste across individuals. 

The overall objective of this research was to develop operational travel 
demand forecasting models consistent with travel choice behavior and with coef-
ficients estimated by use of data at the level of households or individual travelers. 
Such models are disaggregate models by definition. Early in the study it was 
determined that the three most critical issues in applying disaggregate models 
were: (1) whether the resulting models are transferable, (2) how to aggregate the 
model results for forecasting, and (3) whether the Independence of Irrelevant 
Alternatives property was an impediment to application of the resulting models. 
Findings on these critical issues together with a description of the state of the art 
in application of disaggregate models are given in this report. Under certain con-
ditions and problem requirements (e.g., accuracy and area scale), a disaggregate 
model developed for one geographic area may be transferred to another area, but 
some adjustments to the model (e.g., recalibrating mode-specific constants), so 
that the model predictions match observed aggregate model splits, are necessary 
in most instances. The authors suggest that aggregation is best handled by seg-
menting travelers into similar groups on the basis of factors important to explain-
ing travel behavior and its variability. The model would be applied to each segment 
and aggregated. With regard to the independence of the irrelevant alternative 
assumption, the authors state that the assumption can be a desirable and reason-
able one for homogeneous traveler segments. For these issues, guidance is pro-
vided analysts in developing an approach to using disaggregate models for policy 
analysis. 

The research was accomplished in three phases. Results for Plan I and Plan 
II are summarized in this report. Details are provided in (1) Disaggregate Travel 
Demand Models, Project 8-13: Phase I Report, Volumes 1 and 2 (February 1976), 
and (2) Disaggregate Travel Demand Models, Project 8-13(2): Phase II Report 
(May 1978). These reports are available on microfiche for $4.50 prepaid from the 
Transportation Research Board Publications Office, 2101 Constitution Avenue, 
N.W., Washington, DC 20418. 
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APPLICATION OF DISAGGREGATE 
TRAVEL DEMAND MODELS 

SUMMARY 	Disaggregate models of urban area travel demand are by definition con- 
structed using data at the level of the individual traveler or household. In contrast, 
aggregated data, such as zonal averages, have been commonly used in urban travel 
demand studies. Research in NCHRP Project 8-13 indicates that because disag-
gregate travel demand models are feasible methods to analyze many urban trans-
portation planning alternatives and policy issues, they deserve wider application. 
They are especially relevant to the analysis of policy issues not satisfactorily 
considered with existing approaches. Examples include (1) forecasting the demand 
for a new mode, (2) analyzing the effects of transit fare and service changes, 
(3) determining the effect of alternative air quality control and energy conservation 
policies, (4) evaluating the impact of traffic engineering improvements, and (5) toll 
policies on the use of roads and other "low capital" policy issues. 

The research described in this report demonstrates that disaggregate travel 
demand approaches offer considerable advantages over conventional approaches 
in many applications. Specific advantages include (1) reduced data costs; 

improved ability to predict the effects of public policy on travel demand; 
flexibility to meet different problems, needs, and response times; and 
potential for improved transferability of model estimation results from one 

geographic area to another. Of course, in any particular application, the full extent 
of all of these benefits may not be realized. 

The disaggregate approach to analysis of travel demand is a general frame-
work for travel behavior analysis that can be used to meet the data available, the 
desired results, and the capabilities of the user. It is not a formula or standardized 
approach. No one disaggregate model should be specified for all situations, al-
though standardized methodologies will evolve to meet analysts' needs for com-
mon problems. 

The disaggregate method of analysis indicates that changes in the travel 
choice environment affect different market segments in substantially differing 
ways. Therefore, segregating the market into groups or segments characterized by 
homogeneous tastes and socioeconomic attributes is essential to good forecasting. 
Disaggregate approaches are an ideal analysis tool to account for differences in 
response among market segments. This study developed models of work and 
nonwork trip mode choice behavior. 

This report incorporates much of the research findings of the earlier Phase I 
and Phase II project reports (1, 2). These earlier reports should be consulted by 
the practitioner of disaggregate modeling because the findings of these lengthy 
reports are only summarized in the present report. 

Early in the study it was determined that the three most critical issues in 
applying disaggregate models were (1) whether the resulting models are transfer-
able, (2) how to aggregate the model results for forecasting, and (3) whether the 
Independence of Irrelevant Alternatives property was an impediment to applica-
tion of the resulting models. 
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Findings on Transferability of Disaggregate Models 

The transferability of disaggregate models from one group of individuals to 
another (e.g., from one geographic area to another) is one of the major potential 
advances over aggregate methods which disaggregate models may incorporate. 
The proposition that disaggregate models will be transferable is based concep-
tually on the fact that they attempt to capture the behavioral regularities of indi-
viduals. Evidence supporting transferability would be a major contribution to 
improved understanding of the usefulness of disaggregate demand models. 

Despite the early optimism on transferability of disaggregate models, more 
recent evidence suggests that, at a minimum, adjustments to the models must be 
made before transferring the models from one geographic area to another. Further-
more, different models calibrated on different data have produced behavioral 
parameter estimates that are not consistent. However, these differences may be 
explained by factors other than inherent behavioral differences among people 
(different model specifications, variable definitions, etc.). Therefore, the evidence 
does not necessarily support the conclusion that a behavioral model is not trans-
ferable. 

The wisdom of transferring an existing model depends greatly on the costs of 
making forecast errors. If a high level of accuracy is desired, a sample size of 
possibly as large as several hundred observations is highly recommended to test 
the reasonableness of transferring an existing model. If less accuracy is required, 
a forecast based on an existing model with recalibration of the "mode-specific 
constant" may well be acceptable. Transferability is most likely to be valid when 
transferring the model to a group of people choosing among a set of alternatives 
identical to the calibration data set. Furthermore, it must be remembered that 
while transferring a model saves on the cost of collecting new data to calibrate a 
new model, it places greater demands on the practitioner to understand fully the 
assumptions made when applying the model. 

Findings on Aggregation of Disaggregate Models 

The aggregation issue is closely related to the issue of the transferability of 
disaggregate models. One reason that aggregate demand models may not be trans-
ferable is that a group of individuals, on average, may not behave the same as an 
individual with average levels of the explanatory variables. Identical group aver-
ages of explanatory attributes may obscure substantially different distributions of 
attributes across individuals for two groups. Attempting to forecast on the basis 
of group means under these circumstances may lead to substantial errors (the 
"aggregation error"). Calibrating a disaggregate model using data on individual 
behavior presumably would substantially reduce the data requirements and would 
also reduce the "aggregation error" in forecasting. However, to apply the model 
calibrated at the level of individuals, some procedure is required to aggregate 
forecasts to predict group behavior. Unless a workable procedure can be devel-
oped to conduct the aggregation process, the efficiency in use of data and accuracy 
of calibration of the disaggregate models may be dissipated in computationally 
burdensome and "data-hungry" aggregation procedures. 

The findings on aggregation may be summarized as follows. 

1. Aggregation bias in transportation forecasting is the error arising when a 
group of individuals is assumed to be responding to the same (aggregate or 
average) level of observed service or socioeconomic attributes when they are, in 
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fact, heterogeneous with respect to observed level-of-service and socioeconomic 
attributes. 

Aggregation bias arises if attempts are made to use aggregate data to make 
predictions with (nonlinear) disaggregate models. The simplest method of making 
predictions of group behavior with disaggregate models is to make a single predic-
tion using the group average values of the independent variables. However, the 
predictions made by this method will be erroneous if the model is nonlinear 
because in statistical terms, "the average of a nonlinear function is not equal to the 
function evaluated at the averages of the independent variables." The prediction 
error arising from the use of this method is a type of aggregation bias. The 
forecasting approach which employs group means as independent variables has 
been called the "naive method," or the "direct aggregation method." 

Aggregation error also generally occurs if an aggregate model calibrated on 
one group is applied to another group composed of individuals whose decisions 
respond to changes in the levels of the observed attributes (the independent 
variables) in a manner different from the group in the calibration sample. 

The most reliable method of making predictions with disaggregate models 
is to use the values for each individual in the forecasting model as independent 
variables and make the prediction over all individuals. This method has been 
referred to as the "enumeration method." 

For many applications the use of market segmentation is recommended as an 
aggregation technique. 

The findings presented in Appendix C make use of local transportation data 
and U.S. Census and other nationally available data to construct "market seg-
ments." In some respects, the market segmentation approach to applying dis-
aggregate models is very similar to the familiar " cros s- classification" method in 
trip generation forecasting. Both methods involve the construction of tables 
(cross-tabulations) where values of the variables thought to determine the relevant 
travel behavior are divided into categories. The intersection of a single category 
from one variable with a category from a second variable (and possibly with a 
category from a third variable, a fourth variable, etc.) defines a "cell" or market 
segment. For example, in this study a work mode choice model was applied to 12 
market segments defined in terms of income (under $15,000 and over $15,000), 
distance from transit (under 3 blocks, 3 to 6 blocks, over 6 blocks), and autos per 
driver (less than 1, 1 or more). The purpose of the market segmentation approach 
differs from that of the cross-classification method, however. In the latter method, 
the number of trips per household per day, for example, is assumed to be cor-
related with the variables defining the cells in some unspecified fashion. That is, 
households falling in any cell are predicted to make a certain number of trips, with 
no explicit model that relates tripmaking behavior to the "explanatory" variables. 
In the market segmentation approach, on the other hand, the behavioral model is 
quite explicit and the cells are nothing more than a convenient way of disaggregat-
ing the population so that the model may be applied. 

The market segmentation approach to aggregation is conceptually the sim-
plest of the aggregation procedures that have been proposed for disaggregate 
models and is certainly the one that is most familiar to the transportation planner. 
Market segmentation hopes to minimize the aggregation error by constructing 
relatively homogeneous cells of persons reasonably similar in the observed at-
tributes that determine travel choice (and presumably predicted behavior). Fore-
casting is accomplished by applying the model to each cell separately to predict 
behavior. The relative frequencies of the cells for the market segments are then 
used to weight the cells to predict aggregate behavior. 
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The market segmentation approach has been shown in many circumstances to 
eliminate much of the aggregation error. It is computationally simple (as long as 
the number of choice alternatives and explanatory variables do not become large), 
it can frequently rely on existing data, and it is similar to a technique already 
familiar to transportation planners. Although others have endorsed alternative 
aggregation approaches and the issue is by no means settled, the research in 
NCHRP Project 8-13 confirms that market segmentation is a feasible and reason-
ably accurate approach for many practical planning applications. 

This report develops procedures using existing data sources to define the 
market segments and determine cell frequencies for use with existing models. 
Because existing data sources seldom report fully on the joint distributions of all 
explanatory variables in the model, this report develops an adaptive procedure. 
The approach uses local data on the relative frequency of values for separate 
explanatory variables (marginals) and data on joint distributions from other 
sources to estimate the joint cell frequencies in the forecast population. This 
procedure is known as "marginal weighting." 

The conclusions of this research regarding the market segmentation technique 
are summarized as follows: 

Aggregation of predictions over market segments is performed by weight-
ing the prediction for any particular market segment by the probability that an 
observation will fall in that segment, and then summing the weighted predictions. 

Objectives in defining a market segmentation scheme for demand forecast-
ing are: (a) to achieve a grouping where relatively similar values of the independent 
variables are grouped together; and (b) to minimize the number of market seg-
ments that can be feasibly manipulated for quick-reaction policy analysis. The first 
objective suggests that the market segments be defined by a cross-classification of 
the independent variables and the second objective suggests that only a very 
limited number of categories (say, between two and four) be created for each 
variable. 

Market segmentation is not the only technique for applying disaggregate 
models, but it offers three attractive features for manual forecasting and sketch 
planning: it is intuitive to the policy maker, it facilitates the use of a wide range of 
data sources, and it can be accomplished manually without resort to analysis at the 
level of the entire transportation system. 

The steps in applying the market segmentation technique to forecasting may 
be summarized as follows: 

Select a disaggregate model to predict policy impacts or to forecast travel 
demand for planning purposes. 

Determine how the data should be grouped into market segments. A par-
ticular grouping (or market segmentation) is defined both by the selection of which 
variables to segment and the determination of the number of categories to be 
created for each variable. 

The bases for deciding whether to segment on a variable are that variable's 
importance in explaining travel behavior and its variability. 
In determining the number of categories to be created for each of the 
classifying variables, a tradeoff exists in that the greater the number of 
categories, the greater the reduction in aggregation bias but also the more 
unwieldy the market segmentation technique becomes for a quick-response 
policy evaluation. A compromise must be struck between these two con-
flicting objectives. 
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For each market segment defined by the foregoing steps, obtain data on the 
probability that a trip will belong to that market segment (i.e., the proportion of 
all trips that fall into that market segment) and obtain data on the averages of the 
independent variables for all of the trips in that segment. 

If the model is not calibrated on data from the population whose behavior 
is to be forecast, data on the actual choice shares within each of the market 
segments should be obtained if possible. These data may be used to adjust (or 
"update") the model to enhance its transferability to the current planning context. 

Use the average value of the independent variables to compute the baseline 
travel choice shares for each segment as estimated by the (updated) model. 

Weight the estimated choice shares for each market segment's proportion 
of all trips and combine these weighted choice shares to obtain the estimated 
aggregate baseline choice shares. 

Adjust the average values of the independent variables (in each of the 
market segments) to reflect implementation of the policy or conditions at the end 
of the planning horizon. Use these to forecast the post-policy choice shares. 

Weight and combine the post-policy choice shares for the various market 
segments as described for computing aggregate baseline choice shares to obtain 
aggregate post-policy choice shares. 

The Independence of Irrelevant Alternatives Property 

The multinomial logit (MNL) model predicts the probabilities of choice for an 
individual who confronts two or more alternatives. The Independence of Irrele-
vant Alternatives (IIA) property states that if, for example, two modes are avail-
able and a new mode is introduced, the ratio of the probabilities of the two old 
modes will be unchanged regardless of the probability of choice for a new mode. 
Applied to a group, the IIA property states that a new mode will capture an 
identical percentage of the market shares of the two existing modes. An extensive 
analysis of the IIA property of the multinomial logit model of travel demand has 
been conducted in the NCHRP Project 8-13 study. 

An example of what troubled many critics of the IIA property is the classic 
"blue bus/red bus" case, i.e., the "new mode problem." Suppose, for example, 
that the blue bus and auto mode capture 50 percent of a given travel market. 
Assume that a new bus mode is introduced with exactly the same service attributes 
as the old bus mode except that the bus is painted a different color, red (to which 
the patrons are indifferent). It is expected that the true modal shares will now be 
½, ¼, ¼ for auto, the first bus alternative, and the second bus alternative respec-
tively. However, the ordinary multinomial logit (MNL) model will forecast that 
each of the three models captures one-third of the market, which is clearly a poor 
forecast. 

The major conclusions of the analysis of the IIA property are: 

The IIA property is not an inherent drawback to disaggregate demand 
modeling and is not presently an impediment to implementation of disaggregate 
demand models. 

The IIA assumption may be reasonable or unreasonable, depending on the 
circumstances of the particular application. Therefore, diagnostic tests to deter-
mine whether the assumption is valid in a particular application have been de-
signed as part of this study. 

When the IIA assumption is unreasonable, the multinomial logit model 
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cannot be applied without error. The error may be large or small depending on the 
circumstances. 

4. If the hA assumption is invalid, corrective measures have been identified 
as part of this study to take the dependence into account. 

Clearly, the hA property is implausible if applied to any random group of 
decision-makers and mode alternatives. However, as discussed extensively in 
Appendix E, the MNL model itself applies only to a reasonably "homogeneous" 
market segment facing similar choice, i.e., there is an aggregation error if the 
simple MNL model is applied indiscriminately to forecast the behavior of a group 
composed of heterogeneous market segments. For homogeneous market segments 
where the MNL model is valid, the hA will frequently be a reasonable and 
desirable assumption. The hA assumption is common to most "share" models, 
aggregate or disaggregate (3). 

Evaluation of Disaggregate Demand Models 

Evaluation of the models calibrated in this study indicates the following 
conclusions: (1) they are consistent with prior intuitive expectations of travelers' 
preferences and economic theory of rational behavior; (2) statistically reliable 
disaggregate models can be estimated using data that are commonly available for 
urbanized areas, although extensive augmentation may be necessary for calibra-
tion of models for some choice alternatives; (3) the accuracy of the estimated 
models is reasonably high; (4) logit models of disaggregate travel choice can be 
calibrated using readily available user-oriented computer programs; (5) limited 
tests (conducted as part of this study and elsewhere) suggest that at least some 
parts of disaggregate demand models can be transferred from one area to another, 
either directly or after adjustment for known between-region differences. 

CHAPTER ONE 

INTRODUCTION AND RESEARCH APPROACH 

Disaggregate travel demand models have been developed 
in recent years to respond to the transportation planner's 
needs for better techniques of demand analysis to address 
policy issues as they are understood today. The traditional 
methods of demand analysis that have widespread accept-
ance in the planning community have been found to be insen-
sitive to important policy issues, e.g., energy and new tech-
nology (new mode) issues, and inappropriate for a small scale 
of planning, such as at the project and corridor levels. They 
are also too time-consuming to provide "quick response" 
answers in the short time frequently available for planning 
studies. Evidence on the development and application of 
disaggregate demand models in this study indicates that they 
are a workable approach to analyzing the new issues and they  

also offer potential for directly improving the conventional 
approaches. 

NCHRP Project 8-13 was designed to develop, calibrate 
and evaluate the new disaggregate models and to recommend 
major conceptual and other improvements. Evaluation iden-
tified serious barriers to their use requiring a program of 
research. In the first phase of the study, models were devel-
oped and calibrated using existing urban transportation sur-
vey data, suitably augmented, to describe the travel choice 
environment (I). Although application of the model was not 
contemplated as part of the first phase of the study, exercises 
to illustrate their application and to identify possibly impedi-
ments to further application were conducted. 

Because the first two phases of the research were limited 



to advancing model development that could be made without 
new sources of data, the research concentrated on model 
development and calibration with existing data. Thus in the 
first phase, research concentrated on improving the model of 
worktrip mode choice and testing its transferability between 
geographic areas; testing alternative specifications of model 
structure, especially for discretionary trips: improving the 
model's ability to incorporate more than two modes, with 
special emphasis on the Independence of Irrelevant Alter-
native property of the multinomial logit model; and the de-
sign of data collection programs to calibrate and apply the 
models. 

Phase 11(2) focused on eliminating impediments to the 
implementation of disaggregate models. A decision was 
made to address the Independence of Irrelevant Alter-
natives, aggregation, and transferability of logit models. 
Developments in trip chaining, attitudinal modeling, 
household-individual interactions, network equilibration, 
nonutility-maximizing models, time budgets, and other 
related topics were reviewed for integration into the disag-
gregate modeling approach, but were not the object of an 
independent development effort. This decision was based 
primarily on the fact that more conventional models, such as 
probit and logit, have a demonstrated record of achievement 
in actual transportation planning. Researchers interested in 
other approaches, e.g., "threshold" and "sequential" 
models, should consult references such as Gensch and 
Svestka (4). 

The main text of this report is oriented to the general 
reader with an acquaintance of the issues currently facing the 
transportation analyst, but without experience in, or exten-
sive familiarity with, the new disaggregate approaches. 
Extensive appendixes have been prepared on the technical 
details of the research, and they are directed to the expert 
who already has some knowledge of disaggregate modeling 
or desires to acquire a detailed working knowledge of some 
major issues in disaggregate demand modeling. Users who 
would like to learn more about urban travel forecasting 
should review the literature, especially the documents pro-
vided by the U.S. Department of Transportation (5). Rather 
than reproduce this voluminous literature, the present study 
assumes a familiarity with the fundamentals of conventional 
travel demand forecasting. 

The vast bulk of the literature on disaggregate travel de-
mand modeling is oriented toward the research community. 
As a result, greater and greater progress has been achieved 
in perfecting the techniques of disaggregate models, but at 
the expense of communicating with the practicing transpor-
tation professional. One of the objectives of this project is to 
provide an "entry point" for the practitioner. 

In providing an "entry point" for transportation planners 
interested in applying disaggregate models, the report at-
tempts to identify particularly salient recent advances in 
modeling by other researchers and to provide a discussion of 
advances that were specifically made as part of the research 
on this project. This document is not intended to be a com-
plete guide to all elements of disaggregate modeling. In many 
cases the reader is referred to other references that address 
an issue in greater detail. The serious practitioner of disag-
gregate modeling is also strongly urged to review the reports 
of the Urban Travel Demand Forecasting Project, University 
of California at Berkeley (6, 7). 

This project was undertaken in connection with a number 
of other simultaneous research efforts. NCHRP Project 8-12 
produced two reports: Travel Estimation Procedures for 
Quick Response to Urban Policy Issues (8) and Quick Re-
sponse Urban Travel Estimation Techniques and Transfer-
able Parameters: User's Guide (9). 

NCHRP 8-14 was designed to review and develop new 
procedures for understanding travel behavior. Phase I of 
NCHRP 8-14 developed a framework for exploring travel 
behavior based on the concepts of role and activity choices 
(10). Phase 11(/1) incorporated the concepts identified in 
Phase I into models of trip generation and activity time 
allocation. The study also included guidelines for applying 
the improved trip generation procedures for practical fore-
casting. 

For the Federal Highway Administration, Talvitie et 
al. (/2) explored a range of issues relevant to the develop-
ment and application of disaggregate travel forecasting 
models. As such, their work is complementary to this project 
and should be useful for researchers and practioners in-
terested in disaggregate travel demand models. 

A fourth concurrent effort was the collection of a large new 
disaggregate data set from the Baltimore region. At the initi-
ation of Project 8-13, it was contemplated that development 
of models using this data set would be a major element of the 
research plan. However, the data collection was beset by 
lengthy delays. As a result, the project emphasized the reso-
lution of impediments to model implementation that could be 
accomplished without the new data. At the very close of the 
project, the data set became available and limited research 
was conducted with the remaining budget. 

The final report of this project represents an abridgement 
of certain parts of the two interim reports. Readers who 
anticipate a substantial commitment to the use of disag-
gregate models should use the present volume in conjunction 
with the two interim reports. For example, the Phase II re-
port contains an extensive example illustrating the market 
segmentation method of aggregation which is only summa-
rized in the final report. 

As a newly emerging discipline, disaggregate demand 
modeling suffers from a lack of consistent terminology and 
notation. To some extent this inconsistency also plagues this 
report because different parts of the report address different 
issues and are in some cases addressed to different audi-
ences, calling for a different model specification and nota-
tion. The procedure used here is to attempt a clear definition 
of terminology in each section and to maintain that termi-
nology within the section. 

The report proceeds as follows. First, Chapter Two ad-
dresses the principal findings on disaggregate models, with 
emphasis on an exposition of the disaggregate approach; 
specification issues in mode choice, trip distribution, and trip 
generation; data collection; aggregation; transferability; and 
detection and correction of errors in the logit model. Chapter 
Three contains an appraisal of the results. Chapter Four 
presents the conclusions and suggestions for future research. 
Appendixes contain a review of the literature on aggregation, 
guidelines for applying market segmentation, an exposition 
of the models, and an elaborate discussion of the hA prop-
erty. Readers primarily interested in practical applications 
are directed primarily to Chapters Three and Four. The more 
technically oriented reader may want to emphasize Chapter 
Two and the Appendixes. 



CHAPTER TWO 

FINDINGS-THE STATE OF THE ART 
IN APPLICATION OF DISAGGREGATE MODELS 

This chapter summarizes the status of the major issues a 
transportation planner will face when estimating and apply-
ing disaggregate models. The exposition proceeds first with 
the development of exactly what the practitioner is assuming 
when applying a disaggregate model to mode choice. The 
following sections describe model specification and estima-
tion; statistical significance tests; models of worktrip and 
shopping trip mode and destination; disaggregate approach 
to trip generation modeling; and diagnosis and correction of 
errors in the logit model. Separate sections summarize find-
ings on data collection and aggregation of disaggregate fore-
casts. 

WHAT IS THE DISAGGREGATE APPROACH? 

Appendix E develops, in detail, the behavioral assump-
tions incorporated in the disaggregate multinomial logit 
(MNL) model. In this section the fundamental assumptions 
are identified in a less rigorous, but more intuitive fashion as 
an introduction. In addition, the discussion covers the ad-
vantages of the disaggregate approach, evaluation with dis-
aggregate models, elasticity formulation, and the Independ-
ence of Irrelevant Alternatives property. Before introducing 
the disaggregate approach, a brief comparison to conven-
tional aggregate models is provided. 

Comparison to Conventional Aggregate Models 

Conventional travel demand models typically involve a 
four-step sequence: (1) trip generation (travel frequency); 
(2) trip distribution (where trips go); (3) modal split; and 
(4) route assignment. They are often called aggregate models 
because they explain the travel of a group of households or 
individuals, e.g., all households in a traffic analysis zone. 
Further, aggregate data are used in estimating the models. 
For example, the average household trip frequency for a 
zone may be a function of the average household size and 
average auto ownership levels in the zone. Note that al-
though data are usually available at the household 
(disaggregate) level, they are averaged before estimating ag-
gregate models. 

In contrast, disaggregate models explain the travel of indi-
viduals or households directly. Therefore, data are used at 
the disaggregate level at which they are collected, rather than 
averaged into large aggregates. 

In the following an overview of the disaggregate approach 
is provided. 

Fundamentals 

The logit model of individual choice behavior has been the 
most prominent methodology used in disaggregate travel de-
mand models. The logit model assumes that each individual 
makes selections from among a set of alternatives, often 
referred to as the choice set. From that set he chooses the 
alternative he prefers. In making the selection, he assigns a 
utility value to each alternative. The utility of an alternative 
is a measure of the order of preference (e.g., if one alterna-
tive is more preferred, it will be assigned a higher utility). For 
modeling purposes the utility is composed of two compo-
nents, a component based on observed attributes, often 
called the "representative utility," and an unobserved com-
ponent, called the random utility component. The term "ran-
dom utility model" is derived from the assumption that al-
though the individual's choice is rational, an observer cannot 
predict a given individual's choice because of the influence of 
unobserved determinants of choice as reflected in the ran-
dom component. 

Mathematically, assume that each tripmaker assigns some 
utility to each of his travel alternatives. Let U it  be the utility 
of the jth  alternative for the ttI  tripmaker. Further assume 
that each utility value can be partitioned into two compo-
nents, a systematic component, or "representative utility," 
Vu, and a random component, Eu, such that, 

Uu = V it + Eu 	 (I) 

The systematic component Vi, is that part of utility con-
tributed by factors that can be observed and measured (the 
"representative utility") and the random component Eit  is the 
utility contributed by unobserved factors. 

Tripmakers are assumed to choose the travel alternative 
that yields the highest utility. Thus, individual t will choose 
alternative i over alternativej if 

Uit  > Ug 	 (2) 

From Eqs. 1 and 2 it is clear that the alternative i is 
chosen if 

u + Eit  > V jt  + E jt 	 (3) 

or, equivalently, if 

Vit - vjt  > Ejt - E 	 (4) 

One cannot predict with certainty which alternative an 
individual will choose, i orj, because although Vi, and V jt  can 
be estimated and compared, it cannot be determined with 
certainty if (V - V) exceeds (E,t - 	Instead, one seeks 



to determine the probability with which (€ - e,) will be less 
than (V11 - V 21). This is generally done by assuming that the 
€'s are independently and identically distributed with the 
Weibull distribution. (See CRA (13), McFadden (14).) 
Based on these additional assumptions, it can then be shown 
that the probability that the t  11 individual will choose the jth 

alternative is given by: 
Vii  

±e1'ut  

in which 

J = the number of alternatives (including the i115  

alternative); and 
e = the base of the natural logarithm. 

Equation 5 is the well-known logit model. 
It was stated above that V is the component of utility 

contributed by observed attributes. It is computationally 
convenient to assume that V is a linear combination of the 
observed attributes of the alternative i and individual t: 

K 	 L 

Xkflk+ 	S11 a1 	 (6) 
k=l 	 1=1 

in which 

Xk = value of the k th  attribute of alternative i for the ttl 

individual; 
K = total number of attributes of the alternatives; 

13k = parameter of the kth  attribute; 
Sit = th socioeconomic characteristic of individual t; 
L = total number of socioeconomic characteristics; and 
a1  = parameter of the 11h  socioeconomic characteristic. 

The logit model cannot be calibrated if any of the indepen-
dent variables take on the same value across all alternatives 
for all individuals. Thus, attributes of the individual (such as 
income) that do not vary across alternatives enter the model 
by becoming part of the representative utility of only a subset 
of the alternatives. In the binary auto-bus case, for instance, 
income would be only part of the auto utility function. The 
income variable in the bus utility function is implicitly equal 
to zero. The decision to enter income into the auto utility 
function is arbitrary. If income were entered into the bus 
utility function, its coefficient would have the same absolute 
value but would have the opposite sign. Alternatively, attri-
butes such as income can be part of each utility function 
through the use of interaction terms. For example, the travel 
costs of each mode are divided by income in several existing 
models. 

Example 

A specific example of Eqs. 5 and 6 is useful. Later in the 
chapter a work mode choice model, defined for two modes, 
auto driver and transit, is presented, with the following ob-
served component of modal utility: 

V = AD (-5.72 + 1.38 HINC + 4.07 APERW) 	(7) 
- 0.117 OV771  - 0.03481VTT1  - 9.06 C/INC1  

AD = a dummy variable which equals 1 for auto and 0 
for transit; 

HINC = a measure of household income that equals 1 for 
incomes greater than $7,000 and 0 otherwise; 

APERW = the ratio of autos to workers in the household; 
OVTT = out-of-vehicle travel time, e.g. walking time, 

measured in minutes for the round trip; 
IVTT = in-vehicle travel time, measured in minutes for 

the round trip; and 
C/INC = round-trip cost in dollars divided by the income 

code value presented in Appendix D. 

Equation 7 illustrates several features of modal utility 
functions. First, OVTT1, IVTT1, and C/INC1  correspond to 
the XItk  of Eq. 6. Second, the socioeconomic characteristics, 
HINC and APERW, only appear in the auto utility function 
(because AD = 1 for auto and 0 for transit). These variables 
correspond to the S11  variables of Eq. 6. Third, income is also 
part of the interaction term C/INC. Finally, the constant 
term, —5.72, appears in the auto utility function and repre-
sents the effects of variables not included in the utility func-
tion, e.g., comfort of modes. 

Table 1 presents hypothetical values for the variables in 
Eq. 7. Inserting these values in Eq. 7 yields: 

V 1  = 1 [-5.72 + 1.38(1) + 4.07(1)] —0.117(0) 	(8) 
—0.0348 (60) - 9.06(0.20) 

= —4.17 

V 2  = —0.117(7) —0.0348(110) - 9.06(0.10) 	(9) 
= —5.553 

In this case mode 1 is auto driver and mode 2 is transit. 
Equation 5 is then used to estimate selection probabilities. 

TABLE 1. CHARACTERISTICS OF WORK TRIP FOR HYPO-
THETICAL INDIVIDUAL 

Socioeconomic 
Characteristics 	 Modal Attributes 

	

Auto 	 Transit 

Household Income 	$10,000 

Autos 	 1 

Workers 	 1 

Round-trip Cost 	 $1.00 	 $.50 

Round-trip 
In-vehicle Time 	 60 minutes 	110 minutes 

Round-trip Out- 
of-Vehicle Time 	' 	 0 	7 minutes 

HINC 	 1 

INC* 	 5 

APERW 	 1 

INVTT 	 60 	 110 

OVTT 	 0 	 / 

C/INC 	 .20 	 .10 

*Income code corresponding to $10,000 from Table 0-15, Appendix D. 

in which 	 SOURCE: Charles River Associates, 1980. 
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P1  (AUTO) = 	
e -4. 17 	

(10) 
e -4.17 + e -5.553 

= 0.799 

P1  (TRANSIT) = 1 - P1  (AUTO) 	(11) 
= 0.201 

The selection probabilities indicate that an individual with 
socioeconomic and trip characteristics described in Table 1 
would have a probability of about 80 percent of driving to 
work. Alternatively, about 80 out of 100 commuters with 
these characteristics would be expected to drive to work. 

The logit model is often presented in the "log odds" for-
mat, where the log of the ratio of the probabilities of two 
alternatives can be expressed as a function of the difference 
in attribute levels of the alternatives: 

In I 
Pjl 
-) = 	/3,(X —XZIk) 	 (12) 

"Pit  

The conventional notation for the binary logit specification 
in odds ratio form may be derived by letting 

P 1 =P(U 1 >U 2) 	 (13) 

= 1+e' 	
(14) 

P1+P1e —v  =1 	 (15) 

Ev + 1—P1 
	 (16) 

P 1  

P 1  =eV 	 (17) 
1—P 1  

In 1 =V=V1—V2=11(X11—X21)+2(X12.22) 

+ (csl1  —a 21)S 1 	 (18) 

PROBABILITY OF 
CHOOSING AUTO 	 1.0 

This algebraic transformation of the logit equation is quite 
convenient. It has allowed researchers to simply estimate 
binary choice logit models using ordinary least squares re-
gression packages since the dependent variable can be repre-
sented as the natural log of the ratio of selections between 
i and j for individual (or class) t, and the independent vari-
ables become the differences in values of attributes between 
alternatives i andj. 

For negatively weighted attributes, such as time and cost, 
the probability of choosing an alternative will be a function 
of the attributes as shown in Figure 1. It should be noted that 
this plot is an S-shaped logistic curve. 

Advantages of the Disaggregate Approach 

Disaggregate approaches to understanding travel demand 
behavior are based on the assumption that since travel be-
havior originates with the decisions of the individual, im-
proved understanding of the aggregate behavior of the 
population can be derived by improved understanding of the 
behavior of individuals. The trend toward disaggregation of 
demand is not limited to travel demand analysis—it is be-
coming standard practice in conventional economics, mar-
keting, and many other fields. 

The considerations that have prompted the use of dis-
aggregate approaches in transportation demand analysis are 
the following. 

1. Economy of Data Collection —Aggregation of data on 
individuals into group totals or averages, such as averages 
over travel zones or over metropolitan areas, loses the de-
tailed information about the travel decisions of the individ- 

0 	 AUTO TIME - TRANSIT TIME 

SOURCE: Charles River Associates Incorporated, November 1980. 

Figure 1. Response function assumed by a probabilistic choice model. 
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uals composing the groups. To calibrate models of group 
behavior, observations of many groups are required to obtain 
reliable estimation results. When the analysis is performed at 
the level of the individual, detailed information about his/her 
situation can be explicitly incorporated into the model and its 
estimation. Thus, with a given number of observations re-
quired for model calibration, many fewer individual observa-
tions are required when the data on individuals are not aggre-
gated into groups. Furthermore, by avoiding the averaging 
or, equivalently, the aggregation process, the variability of 
the explanatory variables is much greater, making the esti-
mation more reliable. Liou and Hartgen (15) found that dis-
aggregate models permitted considerable savings in data 
costs as compared with conventional approaches. For these 
reasons, very substantial savings in data collection costs 
might be realized. 

Transferability —Models that describe the behavior of 
aggregates of individuals are frequently not transferable from 
one group to another unless the size, composition, or other 
characteristics of the group are unchanged or controlled. 
Because models of individual behavior do not have this "ag-
gregation problem," they are more likely to be transferable. 

In most applications predictions of aggregates of individ-
uals are necessary. In these cases the disaggregate models 
can be calibrated on data collected for the individual, and the 
level of aggregation (e.g., region, subregion, traffic analysis 
zone, corridor, etc.) can be taken into account in the analy-
sis. The transferability property is particularly important in 
using the results of analysis in one area for predicting be-
havior in other geographic areas. Disaggregate approaches 
need not apply to an entire region, but can be used for subre-
gions, corridors, or specific market segments. Models that 
are geographically transferable will also substantially reduce 
the cost of developing a new model to fit each particular 
situation. 

Policy Sensitivity —Traditional aggregate demand 
models have not been sensitive to many public policy alter-
natives that affect travel behavior. The disaggregate detail on 
level of service and individual and household attributes can 
provide an improved understanding of the determinants of 
travel choices. Because disaggregate approaches are devel-
oped in terms of the behavior of the individual, the evaluation 
of public policy alternatives is enhanced. The disaggregate 
approach provides a natural framework for analyzing how a 
policy alternative affects the decision-making of the indi-
vidual. If the policy effects are analyzed as they affect the 
individual, the transportation analyst's recommendations 
gain credibility because they are more intuitive. Moreover, 
disaggregate approaches are ideally suited to evaluating the 
impact of policies on different market segments or interest 
groups. 

Flexibility —Disaggregate modeling is a method of 
analysis that is not a single model or a single "cookbook" 
approach. By the same token, it takes advantage of data and 
knowledge at hand and results of previous studies, whether 
the problem is long-range demand forecasting or short-range 
analysis of issues such as air quality and energy conservation 
alternatives. 

Conventional urban transportation planning tools have 
been found satisfactory by many members of the planning 
community in meeting the needs for which conventional ap- 

proaches were designed. However, a new generation of 
planning problems has emerged which requires improved 
knowledge of how public policy affects the use of existing 
facilities —fares and tolls, air quality control programs, 
energy conservation, exclusive bus lanes, and so forth. 
Disaggregate approaches can be designed to meet these new 
needs. 

Evaluation with Disaggregate Choice Models 

It is possible to evaluate the benefits resulting from a 
change in the transportation system with disaggregate travel 
choice models. The motivation for benefit measurement is 
similar to the approach used in standard cost-benefit analy-
ses, i.e., the benefits derived from a policy change are a 
function of the differences of utilities with and without the 
policy. 

Since it is assumed that individual utility is derived from 
the chosen alternative, but not the rejected ones, the benefit 
measurement involves the differences in maximum utilities 
(over the alternatives in the choice set) with and without the 
policy. However, the maximums cannot be observed be-
cause of the random component in the utility functions. 
Therefore, expected values must be used. Specifically, the 
benefit measure is 

Benefit = Expected Value (Max 1 U—Max0 U) 	(19) 

in which 

Max 1U = the maximum utility of the alternative with the 
policy change; and 

Max 0 U = the maximum utility of the alternative without 
the policy change. 

Ben-Akiva and Lerman (16) have shown that Eq. 19 has a 
very convenient form in the case of the multinomial logit 
model: 

J 	 Jo  

Benefit = log 	V, - log V1 	(20) 

That is, the benefit of a change of the transportation system 
is the difference in inclusive values with and without the 
change. (Inclusive value is discussed later in this chapter 
under destination choice modeling). Equation 20 can be used 
to evaluate the benefits resulting from changes in the choice 
sets available to individuals as well as changes in level-of-
service variables such as travel times and costs. (Benefit 
measurement with the multinomial probit model, discussed 
later in this chapter, is also based on Eq. 19. The resulting 
expression for benefits is more complex computationally 
than Eq. 20 (the MNL benefit expression). Daganzo (17) 
gives a detailed discussion of the specifics.) 

Elasticities 

One use of disaggregate demand models has been to inves-
tigate the values and rates of substitution individuals use in 
making choice decisions. These values foi specific observed 
attributes of alternatives are revealed by the utility param-
eters estimated in model calibration. Rates of substitution 
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between attributes are implied by comparing estimated co-
efficients. 

Among the more useful of these techniques for using logit 
models to analyze consumer values and develop quick re-
sponse estimates of behavioral changes caused by policy 
shifts are elasticity approaches. A direct elasticity is the per-
cent change in market share implied by a 1 percent change in 
an attribute of that mode. Similarly, a cross elasticity is the 
percent change in market share for alternative i implied by a 
1 percent change in an attribute of another alternativej. 

The elasticities of the probabilities with respect to each of 
the attributes in the respective utility (the "own" or "direct" 
elasticity) can be shown to be: 

EXitk 
' = (1 - P) f3kXtk 	 (21) 

in which 

= elasticity of P, with respect to a X jtk , or the 
Uk 	percent change in the value of the k th  attribute 

of alternative i for the tth  individual; 
F, = probability of selecting alternative i; 
13k = parameter of the kt)  attribute; and 

XZ,k  = value of the k Ui  attribute of alternative i for 
tth individual. 

The cross- elasticity of the i Ui  probability with respect to a 
change in the kth  attribute of the jth  alternative is: 

E X Z k  = —P, f3kXJik 	 (22) 

in which —F, = the negative probability of selecting alterna-
tive j. 

It should be noted that this cross- elas ti city is the same for 
all F,, i.e., the cross- elasticities are identical for all alterna-
tives. If a change in the attribute of one alternative improves 
the share of another by 10 percent, the same improvement 
occurs for a third alternative. This property is a manifesta-
tion of the Independence of Irrelevant Alternatives (hA) 
property to be discussed below. 

In joint or separable logit models (discussed below), the 
specification of direct- and cros s-elasti cities can be quite 
notationally complex. (See CRA (2), App. B, and Parody 
(18) for elasticity formulas.) 

In applying the logit model results, elasticities must be 
interpreted cautiously. Equation 21 shows that the value of 
the level- of- s ervice attribute heavily influences the elasticity. 
The value of the coefficient on walk time could be three times 
that of linehaul time, implying that the reduction in mode 
share resulting from a 1-min change in walk time would be 
three times that of an equivalent change in linehaul time. 
However, if linehaul time is ten times that of walk time, 
linehaul time will have the greater elasticity. Since elasticity 
is percentage change in market share divided by the percen-
tage change in the attribute value, changes in attributes with 
relatively low values will tend to be big in percentage terms 
and have relatively low elasticities. Elasticity measures may 
leave much to be desired as a measure of the "importance" 
of an attribute in choice in disaggregate models. 

The elasticity formula clearly shows that elasticities criti-
cally depend on the values of the attribute and probability 
where they are evaluated. For example, it is clear that as the 
value of an undesirable attribute approaches infinity, so does 
the elasticity. The property suggests that elasticities derived  

from nonlinear models are not generally transferable without 
properly accounting for the value of the attribute and mode 
share. 

Independence of Irrelevant Alternatives 

As a practical matter there are four key assumptions in 
arriving at the MNL model: 

I. That individual behavior is random, as a result of un-
observed determinants of behavior, but the relative shares of 
the choice alternatives can be predicted with the estimated 
model, based on the "representative utilities." 

Within a group of individuals with identical observed 
attributes, there are no taste variations (stated differently, 
the model coefficients (f3k)  are fixed and not random). 

The random components of utility are independent 
across alternatives (the unobserved attributes of two alterna-
tives vary independently and are as likely to be different as 
similar). 

The random utility components and the attributes con-
tributing to that utility are not correlated with the observed 
attributes. 

Collectively, the last three assumptions produce the Inde-
pendence of (or from) Irrelevant Alternatives property of the 
logit model. This property is the most controversial issue in 
disaggregate modeling. It may be demonstrated in several 
ways. For example, in the "log odds" ratio form (see Eq. 
12), it is clear that the ratio of the share of two alternatives 
is not affected by the attributes of a third alternative. Cons e-
quently, if two alternatives have equal probabilities of being 
chosen in a two-way choice (e.g., F, = P = 0.50), the in-
troduction of a new "irrelevant" third alternative, k, with 
attributes identical to alternativej will cause all three alter-
natives to have equal market shares in a three alternative 
choice. This result is counterintuitive, since the new alter-
native, k, should only divert riders from the identical alterna-
tivej, producing shares of 50-25-25. 

The most commonly used example of the property is a 
two-mode choice situation, auto and bus. Each has a 50 
percent mode share. If a third irrelevant choice is added to 
the choice set by painting half the buses blue and the other 
half red, yielding a three-mode choice set, the MNL will 
illogically predict that the "new" mode will capture equal 
shares from auto and bus yielding a 33-33-33 mode split. 

As a result of this example, the hA problem is often re-
ferred to as the "blue bus/red bus" problem. The hA prop-
erty is also responsible for the fact that the cross- elasticity is 
the same for all modes in Eq. 22. Because of the hA, if 
improvement of one mode causes a diversion of 10 percent of 
another mode's share, an identical 10 percent diversion must 
occur from a third mode if the ratio of the second and third 
modes' shares are to be independent of the first mode's at-
tributes. 

Most of the specification errors of logit models, and the 
increasingly sophisticated modeling alternatives designed to 
correct for these errors, result from a violation of the last 
three assumptions. Before turning to a discussion of these 
possible errors, it is helpful to first address specification 
issues that have arisen in mode choice analysis so that the 
reader may see how a model is developed in practice. 
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MODEL SPECIFICATION ISSUES FOR MODE CHOICE 

A large amount of research has addressed the issue of 
appropriate specification of variables in disaggregate models. 
This section summarizes the most salient findings. 

The specification of the logit model requires the identifica-
tion of the X1t k and S 1  variables in Eq. 6. Once the variables 
are specified, a data set with the observations for each vari-
able for individuals and their choices would permit statistical 
estimation of the model coefficients (the f3k'5  and a 1's) using 
one of the available statistical logit calibration packages. 

McFadden (7) has conducted a survey of the variables that 
have been used in mode choice models and the conclusions 
are given in Table 2. Some of the more important variables 
are discussed below. This discussion is divided into two sec-
tions. First, the measurement and specification of socio-
economic characteristics are discussed. Also included under 
this heading is a treatment of the appropriate unit of analysis. 
Second, the measurement and specification of level-of-
service variables (the attributes of alternatives) are dis-
cussed. This section also includes a discussion of attitude 
variables, alternative functional forms for explanatory vari-
ables, and the effects of specification errors. 

Socioeconomic Characteristics 

The most important socioeconomic characteristics affect-
ing mode choice include financial considerations (e.g., in-
come, wage, or wealth) and automobile availability (e.g., 
ownership and competition for the family car). Other rele-
vant considerations in some choice settings can include em-
ployment type, lifecycle stage, age, and neighborhood. 

Income and Wage Levels 

Extensive research conducted as part of the Travel De-
mand Project at Berkeley indicates that after-tax wage is 
preferred over income as an indicator of the effect of finan-
cial considerations in mode choice (see McFadden (19)). 

Further, research by Train and McFadden (20) indicates that 
an acceptable specification is "cost — wage," which has the 
effect of linearly relating the value of time to the wage rate. 
Their research indicated that this specification resulted in a 
somewhat better fit than did a specification where time was 
multiplied by the wage rate (which would have the effect of 
converting time into a money equivalent). However, the 
goodness of fit of the models differed only slightly, suggest-
ing that the choice between specifications is essentially arbi-
trary. 

Despite the superior conceptual appeal of the (after tax) 
wage rate (at least for worktrip mode choice), only family 
income is reported in many data sets; therefore, it must be 
used. Researchers also should be cautioned that the quality 
of the data of the income variable is often suspected to be 
poor. Many respondents give wrong answers to income ques-
tions or skip them on surveys. Finally, there is the issue of 
whether auto ownership, which is colinear with wage and 
income, is the true underlying determining factor in mode 
choice. In any event, financial considerations are theoreti-
cally important to individual travel decisions and generally 
should not be omitted from models. 

TABLE 2. EXPLANATORY VARIABLES AFFECTING MODE 
CHOICE 

Variables with critical explanatory power 

Travel Cost 
On-vehicle time 
Walktime 
Transfer wait time 
Transit initial headway 
Number of persons in household who can drive 
Determinants of alternative availability (e.g., ability to drive, 

auto required at work) 
Wage 

Variables with important explanatory power 

Number of transfers 
Respondents relation to household head 
Enployment density at work location 
Suburban or urban residence 
Family coxposition 

Variables with ambiguous explanatory power 

Household income 
Residential population density 
CDV location of residence 
Number of workers in household 
Age of household head 
Reliability of transportation mode 
Perceptions of comfort, safety, convenience 

Variables with low explanatory power 

CBO work location 
Sex of respondent 
Age of respondent 
Work status of household head 
General attitudes toward privacy, delay, safety 

SOURCE: McFadden (1) 

With respect to transferring MNL models from one region 
to another, the importance of explicitly accounting for dif-
ferences in traveler behavior among different income classes 
has a direct bearing on the validity of applying disaggregate 
models estimated on one group of data (e.g., from one city) 
to forecast travel behavior for another group of travelers. 
Ignoring income-specific travel behavior when it is important 
will result in parameter estimates that are dependent on the 
income distribution found in the estimation sample. 

Auto Availability 

Empirical research on disaggregate demand modeling has 
frequently found that household automobile ownership (AO) 
significantly influences worktrip mode choice (21, 13). There 
are two basic considerations in using household AO variables 
in mode choice models: 

Travel decisions (e.g., mode choice) are not indepen-
dent of household mobility decisions (e.g., residential loca-
tion). As such, parameter estimates of AO variables in disag-
gregate mode choice models will probably be somewhat 
biased by these unobserved attributes. 

It is not so much the number of autos in a household as 
the availability of an auto at the time of the trip that influ-
ences choices on how, where, when, and how often to travel. 

Researchers appear to agree that possession of a driver's 
license is essential in defining those individuals actually hav-
ing a choice between auto and transit. The views regarding 
auto ownership are mixed. While auto ownership variables 
have great explanatory power, the problem is that auto 
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ownership is endogenous (i.e., is also explained by mode 
choice). Some argue that in light of this interdependency and 
the statistical problems it creates, auto ownership probably 
should not be employed as a variable because most of the 
effect is captured by income or wage variables. Others, how-
ever, have found that auto availability variables (such as 
autos per worker) have great explanatory power. 

Research on this project has focused on understanding the 
distinction between automobile ownership and automobile 
availability, and how these factors influence travel behavior. 
In the short run, improvements in the performance of disag-
gregate demand models can be gained by improving their 
representation of auto availability effects. The larger ques-
tion of modeling the interaction of household location, 
automobile ownership, and household travel (frequency, 
destination, time of day, and mode choice) remains as a 
long-range research issue. 

In understanding the influence of automobile availability 
on travel behavior, it is useful to introduce the notion of 
competition for use of a car within the household. Generally, 
the greater the number of licensed drivers in a household, the 
greater will be the competition for use of the household's 
automobiles. Stated another way, as the competition for use 
of a household's automobile(s) increases, the probability that 
an auto is used for any given trip should decrease. This is 
particularly true for a household's worktrips where there is 
little flexibility on when the trip can be made. 

This project assesses the effects of both worker and non-
worker competition for use of a household's automobiles 
(see App. D). In this context, worktrip competition is re-
ferred to as the number of workers in a household who may 
make exclusive use of the household's auto(s) for their work-
trip. Nonworktrip competition expresses the possibly mutu-
ally exclusive uses of the household's auto(s) between 
workers and nonworkers. 

Based on models discussed in Appendix D, the estimation 
results are consistent with a priori expectations on the effects 
of auto availability. Both worker and nonworker competition 
for auto use within a household affect work mode choice. 
Moreover, it was found that the direct competition of two 
workers for one auto is more significant in determining work 
mode choice than indirect competition for household auto 
use by nonworkers. 

Other Socioeconomic Variables 

Many models for particular choice situations have found 
other socioeconomic variables to be useful predictors of 
mode choice. For instance, Ben-Akiva and Atherton (22) 
found employment type to be a useful variable in analyzing 
carpool incentives. Lifecylce stages can influence the 
amount of income available for transportation and the need 
for an auto at home. For instance, a young working couple 
may have considerable financial resources available for the 
comfort and convenience of automobile transportation and 
be relatively insensitive to costs. A suburban housewife may 
require an auto to get through her day, thereby successfully 
competing with her breadwinner husband for the car during 
the day. Age may be a relevant variable where walking and 
bicycling are included in the choice set. 

Unit of Observation and Prediction —Household versus 
Individual 

In formulating disaggregate demand models, the individual 
traveler generally has been considered to be the basic 
decision-making unit. However, household characteristics 
also may reflect individual behavior. Therefore, socio-
economic variables such as household income, number of 
autos owned by the family, or autos per licensed driver are 
frequently included in the traveler's utility function. 

An alternative strategy could be postulated by assuming 
that travel behavior by individuals in a household is inter-
related. As a consequence of these interdependent travel 
decisions, the household unit should be the primary element 
of analysis. For example, the use of the family automobile by 
the household head for a worktrip may reduce the likelihood 
of that mode for nonworktrips by other members of the 
family. On the other hand, if a shopping trip requires the 
transportation of bulky or heavy parcels, fewer automobiles 
may be available for worktrips. 

The interdependency of travel decisions extends to trips 
for the same trip purpose. Many households have more than 
one worker. Hence, for a given number of automobiles 
owned by a family, it may be desirable to sequentially con-
struct worktrip models for the primary worker and then for 
the secondary workers. The secondary worker models would 
include variables that assume values conditional on decisions 
made by the primary worker. For example, in calibrating 
such a model the choice of auto by the primary worker re-
duces by one the number of autos available for worktrips by 
secondary workers. In forecasting, an expected value based 
on weighted probability would be calculated. (See Ben-
Akiva and Atherton (22) for an example of this approach for 
carpooling incentives.) A major problem with this approach 
would be empirically identifying primary and secondary 
workers. Moreover, it would be an even more complex prob-
lem to forecast primary and secondary work forces. 

Family interactions in disaggregate models ordinarily have 
been handled by modeling the individual's choice behavior as 
affected by socioeconomic variables defined at the family 
level. The other alternative is to develop a hierarchy of 
choices so that mode choice for the secondary worker or 
shopper is dependent on the primary worker's worktrip 
mode choice. 

Level-of-Service Variables 

This section discusses issues in the specification of level-
of-service (LOS) variables: travel time, wait time, and travel 
cost. The issues considered are the following: 

Generic versus alternative-specific. 
Level of aggregation. 
Network versus observed. 
Perceived versus objective. 

Generic Versus Alternative-Specific 

In a generic specification the estimated coefficient for a 
variable is restricted to taking the same value across alterna- 
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tives. With an alternative-specific specification the restric-
tion is lifted. A separate coefficient is estimated for each LOS 
attribute of each alternative. 

The advantages of using generic LOS data in disaggregate 
mode choice models are well known: (1) generic LOS vari-
ables are consistent with economic utility theory; and (2) use 
of generic LOS facilitates demand forecasts of new choice 
alternatives. 

The use of abstract commodity attributes in utility theory 
was introduced by Lancaster (23), and applied in practical 
applications to numerous aggregate (24) and disaggregate 
(13, 25, 26) travel demand model studies. Theoretically, the 
use of generic LOS variables is well founded. In a mode 
choice modeling framework, for instance, generic LOS rep-
resentation assumes that an additional minute spent traveling 
on a bus is valued equally to an additional minute spent 
traveling by auto. Indeed, if such were not the case—if, for 
example, additional bus time is found to be more onerous 
than additional time spent in an auto—it is due to the effects 
of unobserved modal attributes omitted from the model (such 
as comfort, privacy, reliability, etc.). Thus, in a well-
specified model that explicitly accounts for all attributes that 
significantly affect choice, the use of generic representations 
of LOS is justified. 

In practice, however, it is generally not possible to ascer-
tain a priori whether choice models are sufficiently well spec-
ified to justify the use of generic LOS variables. This project 
tested the validity of generic LOS representation (see App. 
D). The estimation results suggest that mode choice models 
are not able to distinguish significantly different traveler 
valuations of travel times and costs between auto and transit. 
In fact, the hypothesis that travelers' valuations of the LOS 
variables do not differ between modes was tested statisti-
cally. In the application in this report, the null hypothesis 
that the time and cost parameters do not differ between 
modes could not be rejected. Similarly, the modeling system 
developed by Cambridge Systematics (27) contains generic 
LOS variables. 

How general are the findings of the NCHRP Project 8-13(2) 
study on the validity of using generic LOS variables in disag-
gregate choice models? In fact, the findings in this study are 
encouraging. In models that explicitly specify all significant 
influences on travel choice, one would expect that time or 
cost is valued "abstractly." The models estimated were ad-
mittedly weak in differentiating the comfort, safety, privacy, 
and other amenity characteristics between alternative 
modes. Nonethelsss, it was found that use of generic LOS 
variables is statistically justified. 

However, these findings differ from the conclusions of 
McFadden et at. (19) on the use of generic versus alternative-
specific LOS variables. McFadden et al. concluded that al-
though the importance of in-vehicle time did not seem to vary 
for public transportation modes (bus and BART), auto in-
vehicle time was valued differently from in-vehicle time for 
public transportation. Surprisingly, auto in-vehicle time was 
found to be more onerous than transit time. 

The authors speculate that this apparent anomaly reflects 
the fact that transit in-vehicle time is not really very onerous, 
and that other separately specified variables in the model 
such as out-of-vehicle time may represent the unpleasant 
aspects of transit travel. In fact, transit travel time per se may 
be more relaxing than auto driving because the burden of  

driving is removed from the traveler. CRA also suggests that 
the most undesirable features of transit such as discomfort 
and schedule unreliability may have been captured in the 
alternative-specific constant term, since these features may 
not vary substantially with trip length. 

Because the conclusion of McFadden et al. differs from the 
approach used in many disaggregate mode choice models 
where LOS variables are generic, further research on the 
issue of generic versus alternative-specific LOS variables 
would be useful in resolving the differences among previous 
studies. 

Level of Aggregation 

The general rule (see Train (28)) is that data generally 
should be disaggregated to the lowest level possible. Some 
examples follow: 

Time should be disaggregated into in-vehicle, walk, and 
transfer components. 
Variables should be specific to the individual decision 
maker (individual values are preferred over, say, zonal 
averages). 

However, it should be noted that disaggregate LOS data may 
be difficult and costly to obtain, especially for alternatives, in 
the calibration data set and difficult to forecast for the fore-
cast data. In many cases, hand-coded data differ significantly 
from network data. At minimum, it has a greater variance 
between respondents. These differences can have significant 
effects on the estimated model. 

As disaggregate models have been calibrated and imple-
mented, a considerable amount of attention has been given to 
the question of use of network zonal averages for LOS data 
versus data calculated specifically for the individual. An 
early CRA study (13) made a careful attempt at collecting 
LOS data specific to the individual traveler, but many studies 
since that data have been, by necessity, required to rely on 
network averages even when calibrating a disaggregate 
model. The disaggregate LOS data are obviously preferred, 
but tedious collection of such disaggregate data mitigates to 
some extent the purported data economy of disaggregate 
models. The evidence on use of disaggregate LOS data is 
discussed below. 

Network vs. Observed Data 

In this discussion, it is assumed that LOS data calculated 
specifically for the individual (observed data) correctly mea-
sures the characteristics of the travel alternatives facing the 
individual. The network data, which are zonal averages of 
the LOS variables, are used to approximate the observed 
variation. As a simplification, it is assumed that there is a 
linear relationship between observed and network data. 

Oijt  = a0  + b 3 N + Eijt 	 (23) 

in which 

= the value of the i1h  observed variable for the 
alternative for the tth individual; 
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Nij  = the corresponsing network variable; 
a,, bij  = coefficients; and 

Eut = a random error term. 

Two questions can be raised. First, how accurately do 
network variables approximate observed variables? Ideally, 
one would want a, 	0, bij  = 1, and € 3, = 0, i.e., that the 
network and observed variables coincide. Talvitie and Deh-
ghani (29) performed linear regression analyses of the form 
of Eq. 23 on several LOS variables for auto, bus, and BART 
modes. In many cases, correlation coefficients were low and 
aij  and b 3  differed substantially from 0 and 1, respectively. 
This finding suggests that network data may not always 
closely approximate observed data. 

The second question is how do models estimated with 
observed and network data differ? To analyze this issue, it is 
useful to express the observed variable as the sum of the 
corresponding network variable and a residual term, i.e., 

O,, = N,,, + r,,, 	 (24) 

in which 

r,, = a, + (b13  —1) Nij, + Eijt 	(25) 

Equation 24 shows that estimation of a model with network 
variables replacing the correct observed variables results in 
the exclusion of the residual, r,,. This is a form of specifica-
tion error that results in biased model coefficients. 

Tardiff's (30) results on specification errors can be used to 
analyze the nature of the bias. The random component, 
in Eq. 25 causes a downward bias in the coefficients of the 
model, including the one corresponding to the LOS variable 
in question. If b13  =A 1, the residual term is correlated with the 
network variable (and possibly other variables in the model). 
This causes bias that can be either upward or downward 
depending on the direction of correlations between the re-
sidual and the other variables. 

In general, therefore, the use of network data results in 
biased coefficients. This result is consistent with Horo-
witz's (31) finding, but seems to contradict the finding of 
McFadden and Reid (32) that when bij  = 1, the use of net-
work data does not result in biased coefficients. The appa-
rent contradiction may arise from the fact that Tardiff and 
Horowitz assume maximum likelihood estimation, while Mc-
Fadden and Reid assume the Berkson method (which uses 
the "log odds" formulation and least squares estimation). 
Tardiff has shown that the two estimation methods can yield 
different coefficients, even in very large samples, when im-
portant variables such as r13 , are excluded from the model. 

The estimation procedure assumed by McFadden and Reid 
requires that individuals with similar values on the observed 
LOS variables be grouped together before estimating the 
model. This would be difficult, if not impossible, to accom-
plish if network data were used. Maximum likelihood esti-
mation has become the dominant method for travel choice 
modeling. Therefore, the findings of Horowitz and Tardiff 
are more germane to this issue. 

Talvitie and Dehghani (29) and McFadden et al. (19) pre-
sent empirical evidence on bias and the use of network data. 
The coefficients of models using network data are quite dif-
ferent from the corresponding coefficients of models using 
observed data, even though there is very little difference in 
goodness of fit. It is particularly interesting that network  

models indicate that out-of-vehicle time is consistently con-
sidered more onerous than in-vehicle time, while the models 
estimated with observed data do not. 

"Perceived" Versus 'Objective" Data 

Considerable debate has ensued in the literature over 
whether engineering" LOS data, based on sources other 
than the traveler, or data as "perceived" by the traveler are 
the appropriate variables. 

Engineering LOS data are generally derived from com-
puterized "skim trees" representing the travel times and 
distances between nodes in transportation network. These 
data are generally available for most urban areas and were 
developed during the highway building boom of the 1950s 
and 1960s. These data, however, may be outdated and may 
not accurately reflect the LOS for all individuals for all trips. 

Perceived LOS data can be developed during the travel 
survey used to collect data on socioeconomic characteristics 
for model calibration. The argument for the use of "per-
ceived" data is obvious. Since the traveler is responding to 
the factors he perceives, perceived data are "obviously" 
superior. On the other hand, if models are to be transferable, 
there must be an explicit mechanism for translating engineer-
ing data to perceived data. As a practical matter, most fore-
casters have only engineering data available, and developing 
sufficient perceptual data for both modeling and forecasting 
purposes would put an unacceptable burden on the interview 
process. Finally, there is the argument that perceptual data 
are engineering data weighted or discounted by the model 
coefficients and therefore should not be weighted again in the 
model calibration. 

A major problem with perceived data is that travelers' 
perceptions of LOS on their alternatives to their chosen 
alternatives are likely to be poor. People have enough trouble 
estimating the time it takes them for the chosen alternative 
without having to guess how long it would take them by a 
rejected alternative. 

Another major problem with respect to the use of per-
ceived LOS data is the policy variables one can or one wishes 
to manipulate. Clearly, it is within the scope of public policy 
to change the objective level of service offered by transit or 
highway systems. Fares, tolls, headway, and congestion all 
can be externally controlled. Perceptions of LOS, which may 
or may not be closely tied to engineering LOS, are not as 
readily manipulable. Transportation planners have little ex-
perience in making the bus seem faster or the auto feel more 
expensive. Consequently, for these reasons the use of per-
ceived LOS data for general planning applications is not 
recommended. 

Attitude Variables 

Attitude variables have been suggested for inclusion in 
travel choice models. Three types of attitude variables have 
been used in previous studies: (1) perceptions of the attri-
butes of alternatives; (2) general feelings toward the alterna-
tives; and (3) general lifestyle attitudes, e.g., perference for 
privacy, being on time, etc. 

Empirical evidence on the usefulness of such variables is 
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inconclusive. McFadden et al. (19) conclude that although 
particular attitudinal variables may have some explanatory 
power, attitudinal variables only marginally improve models 

'already containing objective variables. At the other extreme 
is the finding of Dobson and Tischer (33) that perceptions of 
modal attributes are clearly superior to objective variables. A 
middle position is that of Gilbert and Foerster (34), who find 
that some attitudinal variables are quite useful and others are 
not. 

If there is a strong relationship between attitudinal vari-
ables and travel behavior, the issue of causality arises. In 
order for attitudinal variables to be properly specified in 
travel choice models, the direction of causality must be from 
attitude to behavior, i.e., a change in attitude leads to a 
change in behavior. Empirical evidence on this issue sug-
gests that the reverse causality of behavior influencing atti-
tudes may be at least as important as the commonly assumed 
direction (35, 36). 

In addition to these unresolved theoretical issues, models 
with attitudinal variables are more difficult to use for plan-
ning and analysis purposes. Not only must data on existing 
attitudes be collected, but forecasts on future values of the 
attitudinal variables must be made. The latter problem has 
received very little research attention. Therefore, because of 
the theoretical and practical difficulties with attitudinal vari-
ables, they are not used in this project. 

Functional Form for Explanatory Variables 

In most previous applications, the explanatory variables 
were entered directly into the representative utilities (i.e., 
utilities have been assumed to be linear functions of LOS 
variables and other characteristics). When the model is trans-
formed into the "log odds" ratio form (Eq. 12), differences 
between characteristics of two alternatives are emphasized. 
However, the parameter estimates remain linear in form. 

In early binary choice modeling studies, there was some 
discussion of whether differences were the most appropriate 
comparison of model characteristics. For example, Stopher 
and Lavender (37) compared differences, ratios, and loga-
rithms of ratios in the "log odds" form of binary logit models 
and found only slight differences in goodness of fit. Similarly, 
Watson (38) argued for dividing the difference by the average 
time for the two modes. While there is some intuitive appeal 
for simple ratios and relative time differences, these com-
parison functions do not readily generalize to the multinomial 
choice situation. 

The use of ratios as the comparison function introduces the 
problem that the model is sensitive to which alternative ap-
pears in. the denominator of the ratio. The problem can be 
illustrated by a simple binary choice model with a single 
independent variable, cost. It is further assumed that there is 
a flat transit fare, so that transit cost is invariant. 

If auto cost is used in the denominator, the resulting binary 
logit model is 

A 	COSTT  
In i P—=a 	 (26) 

T' COSTA  

Since transit cost is invariant, the log odds ratio varies with 
the inverse of auto cost. However, if transit cost is used in 
the denominator, the log odds ratio would vary directly with 

auto costs. This is clearly a different model. The difficulties 
with the ratio comparison are discussed in greater detail by 
Oum (39). 

The logarithm of ratios comparison can be generalized to 
the multinominal logit case. The logarithms of the variables 
are used in the utility functions for the alternatives. More 
generally, variables can be transformed prior to entry in the 
utiilty function, i.e., 

K 	 L 

Vit = 	fk (XZjk) 13k  + 1 91 (S11) a 1 	 (27) 
k=l 	 1=1 

in which 

Vit  = the representative utility of alternative ito individual 

K = the number of LOS attributes for alternative i; 
X11,, = the value of LOS attribute k for alternative i and 

individual t; 
13k = utility parameter estimate for attribute k; 
fk = any functional form or transformation of the value of 

L = the number of socioeconomic attributes of individual 

S 1  = value of socioeconomic attribute I for individual t; 
a 1  = utility parameter estimate for attribute I; and 

= any functional form or transformation of the value of 
St1 . 

Koppelman (40) has presented several alternative functional 
forms including linear If,. (Y) = Y and g1  (Y) = Y], logarithmic 
[f,.(Y)=ln(Y) and  g,(Y)=1n(Y)], and power [f,.(Y)=Y' 
and g1(Y) = YCI] functions. 

Koppelman estimated alternative work mode choice 
models with time and cost variables entered as linear func-
tions, logarithmic functions, and power functions, re-
spectively. Koppelman concluded that the power function 
specification was superior in terms of goodness of fit. These 
results should be interpreted cautiously, however. Even 
though there were statistically significant differences in 
goodness of fit, all specifications produced very similar 
goodness-of-fit measures. Further, since it can be shown that 
the linear and logarithmic functions are special cases of the 
power function, one would expect a superior fit for the power 
function. 

Although there are usually not large differences in good-
ness of fit among models using alternative functional forms 
for the explanatory variables, there can be large differences 
in predicted choice probabilities, especially for applications 
beyond the range of existing data sets. For example, because 
of gasoline price increases, automobile operating costs are 
higher than those represented in data sets typically used to 
estimate existing models (early 1970s or before). Therefore, 
predicted modal splits at higher gasoline prices may be quite 
sensitive to how auto costs and other variables are entered 
into the utility functions. 

The elasticity formulas presented earlier assume that LOS 
variables enter linearly. In the case of nonlinear transforma-
tions, these formulas become 

P1 	 äf,. (X11,.) 
E 	= ('j) 13k X11,. 	 (28) 1,. 	 aXitk 

and 
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P3 	 afk (XZtk ) 
EXtk 	

aXitk 
= —P j lj k X jtk 	 (29) 

for the direct and cross-elasticities, respectively. 
In the case of the logarithmic transformation, the elastici-

ties are 
Pi 

Exk = ( 1—Pa) $k 	 (30) 

and 

E 3  - ' if3k 	 (31) 
Xitk 

These formulas indicate that the elasticities are bounded, 
i.e., they range from zero to 13k  in absolute value. In contrast, 
the elasticities previously presented (Eqs. 21 and 22) are 
unbounded. 

The alternative elasticity formulas illustrate the possibility 
that alternative functional forms may yield very different 
predicted probabilities. For example, data from the Nation-
wide Personal Transportation Study (41) suggest that auto 
drive-alone mode splits do not vary substantially with trip 
length (42). Since auto operating costs are roughly propor-
tional to trip length, this suggests that the direct cost elastici-
ties of auto drive alone trips would not vary substantially 
with trip length if the logarithmic transformation is used. 
This, in turn, suggests that short and long trips are similar in 
their elasticity to auto cost increases. On the other hand, 
since the elasticity formula corresponding to the linear repre-
sentation of cost directly increases with cost, long trips 
would be much more sensitive to auto cost increases than 
would short trips. 

Eflects of Specification Errors 

One issue that must be addressed in specifying disaggre-
gate logit models is the consequences of excluding behavior-
ally relevant variables or including behaviorally irrelevant 
variables. Tardiff's research (30) concludes that inclusion of 
superfluous independent variables does not affect the con-
sistency of the estimation, but exclusion of behaviorally rele-
vant variables can lead to biased estimates. Consistency is a 
property of estimation that, intuitively, means that the esti-
mate gets closer and closer to the true value of the unknown 
parameter as the sample size increases. This bias would re-
suit in a situation where the excluded variable was correlated 
with the included variables (see App. E for discussion and 
examples), or more generally where there is a change in the 
structure of the random utility components. However, the 
author notes that if the correlation between included and 
excluded variables is constant over time, the underspecified 
model would provide useful forecasts despite the bias. An 
example would be where preference for transit was corre-
lated with transit LOS. An improvement in transit service 
might, over time, lead to household location decisions that 
preserved the correlation and validated the forecast, even 
though the model coefficients would be biased. 

MODEL ESTIMATION 

Logit models are generally estimated by one of two alter-
native procedures. First, data on the calibration sample can  

be loaded into a maximum likelihood estimation computer 
package for logit models. (This is generally the preferred 
approach.) Second, the data can be preprocessed into the log 
odds format and the model estimated using a least squares 
multiple regression computer routine. 

The maximum likelihood approach iteratively solves for 
the set of coefficients, 13's and a's, which yields the repre-
sentative utilities, V's, which generate the best fit to the 
observed pattern of choices in the calibration sample. The 
estimation package will iterate through the problem until 
the estimated coefficients reach a specified convergence cri-
terion or the estimation completes a specified number of 
iterations. The least squares approach finds the set of coeffi-
cients that minimizes the sum of the squared errors between 
the predicted and observed log odds ratios. 

In either case data are required on the unit of observation 
(individual or household) and each of its specific alternatives 
in the choice set. It should be recalled that variable coeffi-
cients may be specified as generic or alternative-specc. 
The generic specification requires the coefficient to take on 
the same value across all alternatives. For example, LOS 
attributes that are weighted the same across all modes 
are specified generically (e.g., in-vehicle travel time). 
Alternative-specific coefficients take on a different estimated 
value for each alternative or are restricted to entering only 
some representative utility functions. For instance, in some 
mode choice model specifications, auto availability is re-
stricted to only auto alternatives, or transfer time is re-
stricted to transit alternatives. If it is assumed that out-of-
vehicle time is more onerous for the transit alternative than 
the auto alternative, separate coefficients for this variable 
can be estimated for each alternative. 

STATISTICAL SIGNIFICANCE TESTS 

This section summarizes the appropriate techniques for 
performing tests of the statistical significance of individual 
logit model parameter estimates, overall measures of model 
goodness of fit, and tests of hypotheses concerning linear 
combinations of model coefficients. Throughout the presen-
tation here, it is assumed that the model parameters are 
derived from a maximum likelihood (ML) estimation tech-
nique. The statistical properties of ML estimators are dis-
cussed in detail elsewhere (see Theil (43) and McFadden 
(/4)). However, a brief review of ML estimation here will 
serve to define the statistics employed in hypothesis tests on 
logit model parameter estimates. 

The Maximum Likelihood Method 

A likelihood function describes the probability of observ-
ing a given choice sample (that is, the sample used in estimat-
ing the coefficients in a logit model) when the distribution of 
the underlying random component of utility is known. For 
logit model estimation, the underlying distribution is as-
sumed to be Weibull. (See Appendix E, Section 3, for a 
further discussion of this point.) In the context of logit model 
estimation, the likelihood function of a disaggregate sample 
may be written as 
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(32) 
I = I ieC, 	I 	I iCC, 	 I 

j€C, 

in which 

H is the product notation, e.g.,H X1  = 
1-1 

T = the number of observations in the sample t; 
icC1  = denotation that alternative I is in choice set C1 ; 

C = the set of choices for individual t; 
= lii alternative i were actually chosen by individual t; 

Pze  = the probability that individual t chooses alternative i 
as determined by the logit model 

x'. 0 
e 

e 

x0  = the set of K variables (a lxK vector) included in the 
model; and 

0 = aKxI vector (0.....°k' . .0K) of model parameters. 
L (0) = the likelihood function evaluated at 0. 

It is desired to find estimates of the parameters 0 which 
maximize the likelihood of observing the sample used in 
estimation. This leads to the specification of a set of K first 
order conditions: 

8L(0) = 
0, for all k 	 (33) 

(90 
Normally, this maximization procedure is performed on a log 
transformation of the likelihood function, 

L*(0) = lnL(0) 	 (34) 

to simplify the computation of derivatives. McFadden (44) 
has shown that under most conditions the 0 derived from the 
procedure previously outlined are unique and possess opti-
mal asymptotic properties. Many of the hypothesis tests pre-
sented below employ comparisons of the likely functions for 
alternative 0. 

Tests for the Statistical Significance of Individual Parameter 
Estimates 

Theil (43) has shown that in large samples, minus the in-
verse of the matrix of second derivatives of L*  is the 
variance-convariance matrix. This allows for the computa-
tion of the standard errors of each parameter estimate. Thus, 
one may test the simple hypothesis that any given parameter 
differs from 0 with a t-statistic defined as the ratio of the 
parameter estimate to its standard error. Standard logit esti-
mation packages give the standard error and t-statistic for 
each estimated coefficient. 

Measures of Overall Goodness of Fit 

Three different measures of how well a fitted logit model 
explains the variation in choice in an estimation sample may 
be employed: (1) coefficient of determination, (2) percent 
correctly estimated, and (3) goodness-of-fit test. 

Coefficient of Determination 

This measure is analogous to the squared multiple correla-
tion coefficient (R 2)  in the linear statistical model. Note from 
Eq. 32 that if a model perfectly predicts the choices of all 
individuals in a sample, the likelihood function will have the 
value 1. (In this case the term "predicts" is used in the sense 
that the chosen alternative is assigned a probability of 1. 
Actually, since a logit model is asymptotic to 0 and I proba-
bilities in its tails, one can never precisely achieve a likeli-
hood function value of 1.) At the other extreme, if all the 
parameters in a logit model are 0, the model predicts that all 
choices for any given individual are equally likely. In this 
case, the model does not explain choice variation and the 
corresponding value of the likelihood function is much 
smaller. (For example, in a binary choice logit model, the 
likelihood function with T observations and 0 = 0 would be 
(0 .5)T.) These observations suggest a natural measure of 
goodness of fit that can be used to compare alternative 
models estimated on the same data set: 

L 
p 2 = 1—

*(0)
----- 	 (35) 
L* (0) 

in which 

L* (è) = log of the likelihood for the vector of estimated 
coefficients; and 

L*(0) = the value of L*  for0 = 0. 

Because R 2  in the linear statistical model is a measure of 
the improvement of a linear model over a model that contains 
only a constant term, the preceding definition of p 2 , which 
has been commonly reported in previous studies, is not com-
pletely analogous to R 2•  Tardiff (45) has discussed a revised 
definition of p 2 , originally suggested by McFadden (14), 
which corresponds more closely toR 2. 

P2c - 1 	
L*(ô) 

- 	 (36) 
L*(C) 

in which L*(C) = the log likelihood for a model with all 
coefficients excluding alternative specific constants equal to 
zero. Like R 2 , P2c  lies between 0 and 1 with higher values 
connoting improving goodness of fit. The lower bound of the 
more commonly used p 2  equals 0 only when the proportions 
of the sample selecting each alternative are equal. When 
these proportions are unequal, the lower bound ofp 2  can be 
relatively high (45). In these cases, relatively high values of 
p 2  could occur even when the independent variables are 
highly insignificant. 

Percent Correctly Estimated 

A second measure of how closely a model explains actual 
choice is the percent of cases in an observation sample where 
the highest predicted probability is for the alternative actu-
ally chosen. For example, in a binary choice model, one 
would assign a "correct" prediction to any individual whose 
chosen alternative was predicted to have a choice probability 
greater than 0.50. The deficiency with this goodness-of-fit 
measure is that it fails to distinguish between models that 
predict correct choices in the "tails" of the logit function (a 
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desirable property) and models that predict choices near the 
midpoint of the probability range. Moreover, this measure 
does not lend itself to a rigorous test of significance in the 
sense of being able to assign a confidence level to the param-
eter estimates. 

Goodness-of-Fit Test 

This test overcomes the deficiencies with the percent cor-
rectly estimated measure cited above. It has been shown that 
a weighted sum of squared deviations of observations from 
predicted probability values is distributed as x 2. Interested 
readers are referred to McFadden (14). 

Tests of Linear Hypothesis 

The log-likelihood ratio test is a useful technique for test-
ing hypotheses on logit model parameter estimates. The fol-
lowing are examples of hypotheses that can be evaluated. 

Whether the set of estimated parameters 6 significantly 
differs from 0. (In fact, neither a likelihood test nor a 
goodness-of-fit test, as previously described, can be 
used for this hypothesis. McFadden (46) has indicated 
that in small samples, the likelihood ratio test is more 
stable than the goodness-of-fit test.) 
Whether subsets of parameter estimates satisfy speci-
fied relationships. (An example here would be a test of 
the hypothesis that the parameter estimates of alter-
native-specific LOS do not specifically differ between 
modes.) 
Whether logit model parameter estimates are transfer-
able from one data set to another.  

Theil (43) has shown that for large samples, minus twice 
the logarithm of a likelihood ratio is distributed as chi-square: 

x 2  (q) = —2ln-- 	 (37) 
L (6) 

in which 

= the chi-square statistic with q degrees of freedom 
(q is the difference in the number of coefficients 
between the null hypothesis and test hypothesis); 

L (6) = likelihood computed as a function of the K-
element vector 6 where q elements (q <K) take 
certain values corresponding to the null hypothe- 
sis; and 	 - 

L (6) = likelihood computed as a function of the maxi-
mum likelihood estimators 6. 

Most standard logit packages provide the user with the log-
likelihood ratio for each estimated equation. 

An example of the log-likelihood ratio test follows. 
Consider a test of the hypothesis that the coefficient of a 

travel time variable is the same for both auto and transit in a 
binary split mode choice logit model. To perform this test, 
two models are estimated. The restricted model embodies 
the null hypothesis assumption that the auto and transit 
travel time coefficients are equal. In the restricted case, the 
time coefficient for auto and transit would be specified as a  

generic variable that does not vary between alternatives. The 
unrestricted model estimates two separate time coefficients 
—one for auto and one for transit, as an alternativ e- specific 
specification. In this case, there is one constraint (q = 1) in 
the null hypothesis; that is, a single "generic" travel time 
parameter is estimated. Another way of thinking about calcu-
lating q is that there is a difference of one coefficient in the 
number of estimated parameters between the restricted and 
unrestricted models. If the computed value of 2(l) exceeds 
the critical value of x2(l)  for a specified significant level, the 
null hypothesis can be rejected. When the null hypothesis is 
rejected, it is concluded that the coefficients for auto and 
transit time are different (the alternative-specific specifica-
tion). 

EXAMPLES OF CHOICE MODELS 

The following section describes the estimation of some 
travel choice models. Models are included in the order of 
increasing conceptual complexity. They include worktrip 
mode choice, shopping trip mode choice, and destination 
choice. In addition, the section discusses multidestination 
tripmaking (trip chaining) and trip generation. 

Binary Mode Choice 

As part of this study, a binary choice model of worktrip 
mode split was estimated using disaggregate data processed 
from a 1967 Pittsburgh household interview survey and 
supplementary traffic network LOS data. Work mode split 
models were also estimated on data from the Twin Cities 
metropolitan area. The Twin Cities models are presented in 
Section 6 of Appendix D. The estimation sample consisted of 
115 observations of auto driver and bus (with walk access) 
worktrips drawn from selected travel corridors in the Pitts-
burgh metropolitan area. 

The mode choice model, shown in Eq. 7, included socio-
economic variables to account for differences in travelers' 
tastes and LOS variables to measure the relative impedances 
of the auto and transit modes. LOS was represented by three 
variables to measure the separate effects of in-vehicle travel 
time, IVTT; out-of-vehicle travel time (walk access), OVTT; 
and travel cost, C/INC1, on mode split. The travel cost vari-
able entered in the model was divided by income on the 
hypothesis that travelers with different incomes place dif-
ferent values on the cost of alternative modes in making their 
travel choices. 

A separate income term, HINC, was also entered in the 
model as a "pure shift" variable. This socioeconomic vari-
able reflects the hypothesis that all other factors equal, 
higher income travelers may more strongly prefer auto rela-
tive to lower income travelers. A second socioeconomic 
variable employed in the model was the auto per worker, 
APERW, term to assess the mode choice effects of competi-
tion among workers in a household for use of the household's 
automobiles. Finally, a mode-specific constant was entered 
in the model to capture the average effect of omitted attri-
butes that may influence mode choice. 

Estimation results of the mode choice model are sum-
marized in Eq. 38 with the model displayed in a log odds 
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formulation. The estimated coefficients precede each of the 
variable names. (The numbers below each coefficient repre-
sent t-statistics.) 

in P(auto) = —5.72 + 1.38 HINC + 4.07 APERW 
P(transit) (1.44) 	(3.74) 	(38) 

—0.117 OVT - 0.03481VTT 
(-2.18) 	(-1.88) 

—9.06 C/INC 
(-4.28) 

P (auto) 	= probability of choosing auto; 
P (transit) = probability of choosing transit; 
HINC 	= I if household income exceeds $7,000 per 

year; 	0 	if otherwise 	(alternative-specific 
variable entered in the auto utility func- 
tion); 

APERW = autos per worker (alternative-specific vari- 
able entered in the auto utility function); 

OVTT 	= difference (auto minus transit) in out-of- 
vehicle travel time (in minutes); 

IVTT 	= difference (auto minus transit) in in-vehicle 
travel time (in minutes); and 

C/INC 	= difference (auto minus transit) in cost in 
dollars divided by income code (see Table 
C-is). 

All the estimated coefficients have the theoretically cor-
rect sign and are significant at the 10 percent level (one-tailed 
significance test). As expected, the coefficient of the income 
shift variable is positive, suggesting that, all other factors 
equal, higher income travelers exhibit a preference for auto 
travel on their worktrip. The positive coefficient on the vari-
able APERW suggests that the greater the number of autos 
relative to workers in a household, the greater the probability 
that a traveler will choose auto for the worktrip. 

All the coefficients of the LOS terms are, as expected, 
negative. The relative magnitude of the coefficients of out-of-
vehicle and in-vehicle travel time suggest that work travelers 
find walk access time more onerous (on the order of three to 
one) than in-vehicle riding. The negative coefficient on the 
travel cost term confirms expectation that the higher the cost 
of a mode, the lower the probability that mode will be chosen 
by a traveler. The values of time derived from the model for 
a traveler whose family income was $8,000 per year (1967 
dollars) were $1.15 per hour and $3.88 per hour for in-vehicle 
and out-of-vehicle travel times respectively. (See Appendix 
D for discussion of value of time estimates.) 

The overall predictive ability of the estimated model was 
good. For 107 of the 115 travelers in the sample, the highest 
predicted mode selection probability corresponded to the 
mode actually chosen. 

Models of Shopping Travel Choice 

Shopping travel has many more choice dimensions than 
work travel behavior. Unlike work travel, frequency and 
destination are generally not fixed for the shopper. Conse-
quently, a fully specified model of shopping choice behavior 
would consider at least frequency, destination, and mode  

choices. The underlying assumption of the MNL model is 
that travelers choose among alternatives so as to maximize 
their utility. In shopping (discretionary) travel, however, the 
number of choice alternatives is large. Unlike the short-mn 
work trip analysis previously discussed, for shopping trips 
the choice of destination is no longer determinate, nor for 
that matter is the decision to make a trip at all. Thus, a truly 
behavioral demand model must be capable of characterizing 
the factors influencing the full range of choice—how often to 
travel, by what mode, and to what destination. 

One approach to the model of shopping travel demand is a 
conditional probability formulation that splits each dimen-
sion of choice—frequency, f, destination, d, and mode, in 
—into a separate logit model specification. Ultimately, one 
is interested in predicting the joint probability of a house-
hold's choice of eachfdm bundle, or in aggregate terms, the 
number of travelers by mode between each zone pair. How-
ever, using the laws of conditional probability, and assuming 
additive separability of utility to factor the simultaneous 
travel decisions of an individual into a series of separate 
choice models, one can always reconstruct the joint proba-
bility, according to: 

p(fd,m) = p(m /f,d)*p(d/f)*p(f) 	 (39) 

in which 

p (f,d,m) = joint probability of choosing trip frequencyf, 
destination d, and mode m; 

p (m/f,d) = conditional probability of choosing mode m 
givenf and d choices; 

p (dlf) 	= conditional probability of choosing destina- 
tion d givenf; and 

p (f) 	= marginal probability of choosing frequencyf. 

The conditional probability structure represented by Eq. 39 
allows for a substantial savings in the number of parameters 
that must be estimated in any given model formulation, and 
facilitates identifying which explanatory factors influence the 
separate dimensions of travel choice. 

Estimation of a shopping mode choice model is presented 
as follows. 

The shopping trip mode choice model represents a condi-
tional probability structure of auto and transit choice. The 
estimation sample consists of 140 observations randomly 
drawn from specific travel corridors in the Pittsburgh metro-
politan area (see Section 1, App. D). As in the worktrip mode 
split analysis discussed earlier, mode choices were limited to 
auto driver and bus (with walk access). Auto was the mode 
chosen for 56 percent of the trips. The LOS data reflected 
travel conditions for the time of day the shopping trip was 
actually taken. 

Estimation results for the shopping trip conditional prob-
ability mode choice model are summarized in Eq. 40. The 
model specification includes three LOS variables: (transit) 
walk access time, auto and transit in-vehicle travel times, 
and modal costs divided by an index of income. A pure 
income shift variable, HINC, and a term representing house-
hold autos per licensed driver were included as socioeco-
nomic descriptors. Although the model specification of the 
shopping mode choice model is similar to the work mode 
choice model, no deliberate attempt was made to parallel the 
two. 
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P(auto) 1 
In 	j = —6.63 + 2.16 HINC ± 2.03 APERDR 

I P (transit) 	(-4.62) (2.48) 	(2.13) 	(40) 

—0.34 OVTT —0.04 INVTT —13.50 C/INC 
(-3.71) 	(-2.02) 	(-3.54) 

in which 

P (auto) = probability of choosing auto; 
P (transit) = probability of choosing transit; 
HINC = 1 if household income exceeds $7,000 per year; 

0 otherwise; 
APERDR = autos per licensed driver; 
OVTT = difference (auto minus transit) in out-of-vehicle 

travel time (in minutes); 
IVTT = difference (auto minus transit) in in-vehicle 

travel time (in minutes); and 
C/INC = difference (auto minus transit) in cost in dollars 

divided by income code. 

The parameters of all the variables in the shopping mode 
choice model were of the correct sign and significant at the 
5 percent level. The relative magnitudes of the parameters 
for transit walk (OVTT) and in-vehicle travel time are on the 
order of eight to one, suggesting that travelers find walk 
access considerably more onerous than in-vehicle travel time 
on a shopping journey. 

As in the work mode choice model, the coefficient of the 
income shift variable was positive, indicating that, all other 
factors equal, high income travelers exhibit a preference for 
auto travel. Auto availability as represented by the term 
"autos per licensed driver" (APERDR) also positively influ-
enced auto mode choice. 

The model correctly predicted the mode choice of 92.86 
percent of the travelers in the estimation sample. The overall 
goodness of fit of the model is good as indicated by the 
coefficient of determination, p 2, equal to 0.71. The coeffi-
cient of determination and other goodness-of-fit measures 
were discussed earlier in this chapter. 

Destination Choice Models 

In modeling choice of destination there may be more than 
two destination alternatives, and a simple binary choice 
model is no longer appropriate. However, the multinomial 
logit model can include any number of choice alternatives if 
the model assumptions are valid. 

Trip decisions other than mode choice have not received 
the attention in disaggregate models that has been paid to 
mode choice problems. For that reason one is less certain of 
the variables to be contained in the equations for these other 
choices. Some preliminary work has been done, however, 
and one can obtain clues as to the important variables from 
this work. 

Destination models using the MNL technique use some 
variables that are found in traditional gravity models. As in 
the gravity model, the two relevant classes of variables in 
destination choice probability models are "impedance" and 
"attraction" terms. Impedance is the utility associated with 
travel from each origin zone to each possible destination 
zone. It takes on a specific value for each origin-destination 
pair. Attraction is the utility of destination, which is specific 
to each destination. 

In MNL models of destination choice, the impedance term  

has been called the "inclusive price" or "inclusive value." 
It will be recalled that the MNL model assumes that the 
representative utility of alternative i is given in Eq. 6. To be 
consistent with the logit specification, the inclusive value 
measure for each origin combines the utilities of travel to a 
particular destination by all of the available modes by taking 
the log of the sum of the exponentials of the utilities. The 
inclusive value travel from origin o to destination d, IV, 
say, is given by 

IV od  = In Y el'mod 	 (41) 
m1 

in which 

IV Od  = the inclusive value of destination d; 
Vmod  = representative utility of mode m for travel from 

origin o to destination d; 
M 	= the number of available modes; and 
In 	= the natural logarithm. 

The variables IVod  enter directly into destination equations 
respectively. This measure of the inclusive value of travel 
from o to d is often called the "log sum of the denominator." 
For a given origin-destination pair, it is the denominator of 
the logit mode choice equations. 

To give an example, suppose that the exponentiations of 
the expected utility of auto and bus to the first destination 

(the e'm  respectively) are 2 and 3. Summing them one gets 5 
and In(5) = 1.609. Similarly, for the second destination as-
sume that the exponent of utility for the two mode choices 
are 2 and 4; In (6) = 1.792. The values, 1.609 and 1.792, would 
enter the utility function of the first two destination choice 
alternatives for the destination choice model. This procedure 
assumes, of course, that the modeler already has a mode 
choice model that he has transferred to or estimated for the 
region where he is calibrating the destination choice model. 
This mode model is used to get the origin-destination specific 
values of V. in order to calculate the inclusive value or 
impedance. 

With this definition of inclusive value, the higher the value 
of the travel time and cost to destination i, the lower the 
inclusive value. Note that this formulation of the inclusive 
value is expected to have a sign opposite from that used in 
CRA (1). A more appropriate title is therefore "inclusive 
valUe," rather than the earlier "inclusive price." Thus, the 
coefficient of the inclusive value in the destination choice 
model should have a positive sign. 

The "attraction" of destinations in a shopping trip destina-
tion choice model would measure the level of shopping op-
portumties at each destination alternative. In CRA (1) this 
variable, EMP, was defined as the retail employment in 
destination (traffic) zone i expressed as a fraction of total 
regional retail employment. However, such a specification 
cannot lead to a transferable and consistent modeling specifi-
cation for an MNL model. The reason is that the attraction 
variable is defined as percent of the total, meaning that the 
size of the variable is dependent on the city size. However, 
the hA property requires that the relative shares of two 
destinations be independent of any third destination's attri-
butes, thereby causing an inconsistency. 

For the MNL model to be specified, the definition of the 
difference in the attraction measure between the two destina-
tions should not be dependent on the number of destinations. 
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The variable 'retail employment in the destination zone as a 
percentage of total retail employment in the Pittsburgh re-
gion" (in CRA (1)) clearly does not have this property, as a 
simple example will illustrate. The logit model predicts the 
log odds ratio of the probability of the first destination to the 
second based on the differences in the attraction measure. 
Suppose they are the only two destinations and the first 
employs 200 persons and the second employs 100. The dif-
ference in the values of the independent variables is 0.66 - 
0.33 = 0.33. The addition of a third choice alternative with 
100 employees causes the difference in the variables to take 
on a value of 0.5 —0.25 = 0.25 and changes the log odds ratio 
of the two destinations, thereby making it inconsistent with 
the hA property. The attraction variable must be somehow 
normalized so that it can apply to any subset of the choice 
set, i.e., it does not depend on the size of the choice set if the 
logit model is applied. Of course, even if the attraction vari-
able were defined consistent with the hA, it would still re-
main to be proved that the hA be applicable to the joint 
destination choice/trip frequency decision. 

In short, the researcher must be careful to make the imped-
ance variable and the attraction variable consistent with the 
MNL framework, unless there is a desire to depart from that 
framework to correct a known violation of the hA. Ordi-
narily, this is accomplished by making the impedance term 
equal to the "log sum of the denominator" from the mode 
split equation and appropriate constraints are placed on the 
specification of the attraction variable, as described below. 

Sensitivity of the Destination Choice Model to Partition of 
the Destination Set 

An early study, Watanatada and Ben-Akiva (47), appro-
priately defined and constrained the attraction variable. The 
attraction variable that entered the utility of each destination 
was 1.0 In (Qd),  that is one times the log of the attraction 
variable in the destination. Although this specification may 
seem unusual, it can be shown that it provides both for con-
sistent aggregation of zones and for consistency with the hA 
property. 

It is desirable that forecasts with destination choice models 
be invariant to the aggregation of zones; i.e., if two zones are 
added, the forecast of aggregate share should be the same as 
the sum of the individual forecasts. 

In a properly specified logit model, if a zone is partitioned, 
the separate shares should sum to the total of the aggregated 
zone. A further desirable property is that scalar changes in 
the size of two zones should not affect the log odds ratio. 

It is also clear that different variables should be treated 
differently after aggregation. If a homogeneous zone is di-
vided into two, the two separate zones should have the same 
transportation times and costs, but half the share. 

The log transformation of the attraction measure has the 
property that the market shares of two competing destina-
tions are insensitive to a scalar change in the attraction mea-
sures for both alternatives since log (XA) = logk + log(A), 
and log (A) nets out of the difference in attractions. 

This property is helpful for transferability because it en-
sures that a scalar change in attraction measures across 
zones does not affect relative shares. This specification also 
satisfies the other requirements mentioned above. The aggre-
gate share of two zones is invariant to partitioning between  

the zones if the coefficient is 1 on the log of attraction. This 
may be demonstrated by assuming that there are three zones 
and 

Uj = utility 0fj1h  zone, 
V, = "representative utility" ofj excluding the attraction 

term, 
A, = attraction of thej" zone, and 
U, = V, + alogA, + €, 	j 	1,2,3 	(42) 

Then assume a = 1, and 

Pi = 	 = 	 (43) 
Vj + log A3 11 e 	 e"Ai 

Now suppose that some of the attraction of zone 2 is trans-
ferred to zone 1 and all other variables are unchanged. Let 
LxA 2  be the change in attraction. Will the total share of the 
two zones remain unchanged? Let P' 1  and P' 2  be the new 
shares: 

e%'i(A'i +A) 
P l'= 	 (44) 

e"-'i 

v,  
P2= 

e 
	 (45) 

11 e"Ai 

Vi = V 	(no change in other attributes in zones) (46) 

v 
'A e 	1 +e 	2 p l +p2 = 	 (47) 

e" i 

Thus, the sum of probabilities will be invariant to any shift in 
attraction between zones that are otherwise homogeneous 
(up to the total amount in each zone since attraction cannot 
be negative). 

It may be proved that the elasticity of a destination's 
choice probability with respect to the attraction variable 
approaches 1.0 as the probability approaches zero and ap-
proaches zero as the probability approaches 1.0 if the coeffi-
cient of the log of attraction is 1. (This is a direct consequence 
of Eq. 30.) 

The SIGMO study (48) represents one attempt to apply 
this consistent approach to the destination modeling prob-
lem. Interestingly, the coefficient on the log of the attraction 
variable was not constrained, but nevertheless was cali-
brated to be very close to 1.0, which is consistent with the 
hA property for destination choice. 

Multiple Attraction Measures 

In the preceding discussion, it was assumed that only one 
attraction variable appears in the utility function. It is possi-
ble that more than one attraction variable is used. For exam-
ple, both employment and population are used as attraction 
variables in the Metropolitan Transportation Commission 
nonhome based trip distribution models (49). Using analysis 
similar to that shown in Eqs. 42 to 47, Eq. 42 is generalized 
to the case of more than one attraction variable as follows: 
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Ui = 	+ log 	a 1 A + E j 	 (48) 

in which 

the jt" attraction variable for the Jth  zone; and 
a, = the corresponding coefficient. 

It should be noted that Eq. 48 is not linear in parameters. 
Therefore, modification of existing MNL software would be 
necessary for estimating a model of this form. 

Ben-Akiva et al. (49) propose that a utility function of the 
following form also results in appropriate aggregation. 

U j  = V + togA j  + 	a i  log A1 /A j 	 (49) 

They indicate that the first attraction variable, A , (popu-
lation in their models), is analogous to the single attraction 
variable discussed earlier. The remaining attraction vari-
ables, divided by the first variable, are viewed as similar to 
the level-of-service variables in V,. That is, Ben-Akiva et al. 
suggest that although the remaining attraction variables 
might introduce some aggregation error, the resulting errors 
are not fundamentally different from aggregation errors in-
troduced by the level-of-service variable. 

However, as Dunbar (50) notes, the utility function in Eq. 
49 does not result in consistent aggregation, i.e., the sum of 
the predictions for two contiguous zones does not equal the 
prediction for the aggregation of these two zones. This can be 
shown with an example. Let A j  be population and A j  be 
employment (with no other attraction variables). Then 

= (Aij)''2(A)'2expV, 	
(50) 

(A 1) l2(A2k)a2exp Vk 

Consider two zones with the following characteristics: 

A ll  = 100,A 21  = 0,A l2  = 0,A 22  = 100, and V 1  = V 2. 

Equation 49 predicts no trips for zones 1 and 2. However, 
since A 11  + A l2  = 100 and A 21  + A 22  = 100, the model 
predicts a positive number of trips for the zone aggregating 
zones 1 and 2. 

Summary 

As noted earlier, trip attraction measures in disaggregate 
choice models are frequently not unlike the measures nor-
mally used in aggregation models, such as type and amount 
of land use (measured by space, etc.), or on levels of activity 
(population, employment, etc.). The difference is that aggre-
gate models first estimate trip attraction ("trip ends"), which 
then becomes the independent variable in the trip distribu-
tion phase. Disaggregate models directly calibrate distri-
bution using the attraction measure, eliminating the trip at-
traction phase. 

Although both modeling approaches use some index of the 
magnitude of the opportunities for the trip purpose as mea-
sures of attraction, disaggregate approaches also may in-
clude measures of the perceived strength of the attraction. 
Readers interested in a survey of issues in destination choice 
modeling for aggregate and disaggregate models should refer  

to Jones (51). The author reviews the various measures of 
attractiveness, such as zonal retail employment in shopping 
trips or selling space, and subjective or perceived measures 
of attractiveness. Much of this research, however, has not as 
yet been integrated into the urban transportation planning 
process. 

Multidestination Tripmaking 

Early travel choice models were based on simple trip 
definitions, e.g., single trip link between home and work on 
a home-work-home roundtrip. Actual travel patterns, espe-
cially for nonwork purposes, can be more complex. In recog-
nition of this fact, a number of recent models of multidestina-
tion travel have been developed, both in the multinomial logit 
context and with other approaches. 

In analyzing nonwork travel, an important distinction be-
tween simple and multidestination travel patterns is that the 
latter involve nonhome-based trip links, i.e., trips between 
two nonhome destinations. Therefore, some choice modeling 
studies have developed separate destination choice models 
for home- and nonhome-based trips. For example, Ben-
Akiva et at. (49) developed separate home-based and 
nonhome-based nonwork destination choice models for use 
in the Metropolitan Transportation Commission (MTC) fore-
casting system. They also proposed procedures for deriving 
aggregate zonal home-based and nonhome-based trip distri-
bution from the disaggregate models. 

Lerman (52) and Lerman et al. (53) used a somewhat 
similar approach. They estimated separate joint mode/des-
tination choice models for nonwork trips originating at home 
and nonhome locations. These models were combined with 
probability distributions for the amounts of time spent at 
destinations in a semi-Markov model of trip chaining. The 
models are applied with Monte Carlo simulation techniques. 
(Monte Carlo methods involve the generation of simulated 
data based on information on the distributions of key vari-
ables. Examples include: (1) generation of a simulated sam-
ple from Census data input; (2) generation of an individual 
daily travel pattern based on the distribution of times spent 
at travel destinations and travel choice models; and (3) gener-
ation of the distribution of mode choice probabilities in a 
population for purposes of estimating aggregate mode 
shares.) 

Other approaches to analyzing multidestination travel are 
not based explicitly on simple trip links. Adler and Ben-
Akiva (54) developed an MNL model of complex travel pat-
terns. In the model, alternative simple and complex daily 
travel patterns were defined as the alternatives. The advan-
tage to this approach is that interactions among trips taken 
during a day are accounted for in the definition of the alterna-
tives. Models based on single links assume temporal inde-
pendence among travel decisions. The major disadvantage of 
the approach is the difficulty in defining the alternatives in 
the choice set. The number and type of possible daily travel 
patterns is large. This fact inhibits the use of the model for 
prediction purposes. 

Horowitz (55) has developed a set of models for multi-
destination nonwork travel. The models include: (1) an MNL 
destination choice model; (2) a sojourn frequency model (a 
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sojourn is a simple trip to a nonhome destination); (3) a model 
Of the ratio of tours per sojourn (a tour is a roundtrip originat-
ing at home which may involve multiple nonhome destina-
tions; and (4) a model relating vehicle kilometers traveled to 
the spatial characteristics of tours. The sojourn frequency 
model was a nonlinear equation that incorporated interac-
tions among sojourns made during different times in a day. 
Estimation of the tour to sojourn model suggested that trans-
portation and household variables do not explain variations 
in tours per sojourn, i.e., the model was simply a constant 
ratio. 

Findings on Trip Generation 

Research in NCHRP Project 8-13 has confirmed that the 
logit model in its present state of development is not well 
suited for calibrating trip generation models. This deficiency 
was early recognized as a weakness of the 1972 CPA study 
when the trip generation model performed poorly in an appli-
cation (see Spear (56) for discussion). In Phase 1(1) of this 
study, an effort was made to improve the logit trip generation 
model by correcting the "inclusive price" term to conform to 
the logit specification by use of the "log of the denomina-
tor." However, this correction was not sufficient to deal 
fully with the problem, namely the hA property of the MNL 
appears to be a fatal defect in its use for trip generation. 

The weakness of an MNL model for trip generation can be 
seen by reference to the specification of the logit trip fre-
quency equation, Eq. 51. Because of the hA, if the choice set 
is expanded, predicted trip frequency will increase. In ajoint 
destination and frequency model, the new destination will 
attract equally from the other destinations and the no-trip 
alternative. In a separable model the inclusive value term will 
increase with the addition of a new destination alternative. 
Both of these circumstances caused trip frequency to in-
crease by adding new destination alternatives to the choice 
set, an undesirable property. This phenomenon implies the 
following two possible situations where the hA assumption 
may be troublesome for forecasting trip frequency: 

MNL model calibration and prediction for trip fre-
quency will be extremely sensitive to the specification of the 
relevant destination choice set. For example, the separable 
frequency model infers the sensitivity of trip frequency to 
LOS by assuming that a greater number of destination 
choices generate greater "accessibility" and more trips. Un-
less the specification of the destination choice set accurately 
reflects the relevant choice set, cross-section model esti-
mates will be unreliable. 

The transferability of the model will be highly sensitive 
to the reasonableness of the hA assumption as the number of 
destination alternatives expands. If the model is transferred 
to a new city with twice as many destinations of comparable 
utility as the old city, trip frequency will increase due to the 
hA. The reasonableness of this relationship remains un-
tested. 

The problem may be illustrated by reference to the trip 
frequency equation in the NCHRP Project 8-13 Phase I 
report (1); 

In P(frequency = = 
0.14P,. + 0.071 INC 	(51) 

P(frequencyO) (1.37) (1.79) 
+ 0.77 DMW 

(1.93) 

in which 

P1 	= inclusive price of travel for frequency = I; 
INC 	= income code; and 
DMW = number of licensed drivers minus number of 

workers in the household. 

Despite the fact that the model appeared reasonably to 
predict frequency for the calibration sample, the results ap-
pear to be highly suspect as a candidate for a transferable 
model because the attraction variable for destinations, which 
enters into the inclusive price term, incorporated a nontrans-
ferable definition inconsistent with the logit model, as dis-
cussed above. 

The sensitivity of trip frequency to the number of destina-
tions can be illustrated with a simple example, using a separ-
able model. Suppose that there are three destinations with 
equal attractiveness and utility Vd . The inclusive value vari-
able will be In 3e. If the number of destinations doubles, the 
effect on trip frequency will be due to an increase in inclusive 
value to log 6e. The effect on trip frequency will depend on 
the probability of taking a trip. The effect will be greatest 
when there is a low probability of taking a trip in the three 
destination case. (This is because of the elasticity properties 
of the logit model.) 

Clearly, if the hA property does not apply, and the trip 
frequency model should not depend arbitrarily on the num-
ber of alternatives specified for destination choice, some 
procedure for "normalizing" the inclusive price term should 
be applied. While this approach is intuitively attractive, its 
theoretical justification in terms of the logit model specifica-
tion is not obvious. 

The weaknesses of the discrete choice models of the logit 
type for the trip frequency (or trip generation) equation has 
generally necessitated the use of other model specifications. 
For example, traditional cross-classification and linear re-
gression models (see SIGMO (48) for example) have been 
used in combination with logit models of the other choices. 
These other modeling approaches have their drawbacks as 
well. First, it is difficult to incorporate a measure of accessi-
bility or "generalized cost" into the model, especially for the 
"no-trip alternative." (What was the trip not taken whose 
accessibility is to be measured, and how is accessibility to be 
measured for grouped data?) 

A second problem is that of the "limited dependent vari-
able." In travel diary data such as that used to calibrate most 
disaggregate travel models, there is a preponderance of zero 
values. For instance, many or most respondents report no 
shopping trips. Consequently, the data are clustered at a limit 
of the distribution of the dependent variable. This clustering 
at the limit of the distribution violates one of the principal 
assumptions of ordinary least squares (OLS) regression. 
OLS assumes there is no relationship between the values of 
the dependent variable and the error term of the estimated 
equation. The consequence of ignoring this assumption is 
that the OLS parameter estimates have a probable bias to- 
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ward the concentration of values at the limit. The relative 
impact of the independent variables on the dependent vari-
able is underestimated in those cases were the dependent 
variable is above the limit. (See Tobin (57); McKelvey and 
Zavonia (58).) 

This general state of dissatisfaction with available disag-
gregate modeling techniques has led to an effort to develop 
alternatives (see for example, Ruygrok and Van Essen's pre-
sentation of the Poisson model (59)). Nevertheless, the mat-
ter is presently in a state of development and considerable 
differences exist regarding the most appropriate methodol-
ogy. A maximum likelihood technique developed by Tobin 
(57) to model consumer behavior in buying consumer dur-
ables is tailored for estimating a model where the dependent 
variable is limited from taking an unbounded range of values. 
The technique, which has shown to be a special case of a 
more generalized method of solving single equation relation-
ships with limited dependent variables (Johnson (60)), itera-
tively solves for the vector of coefficients which maximizes 
the log likelihood subject to the constraint of the lower limit 
of zero on the dependent variable and the constraints im-
posed by the data. Under fairly general conditions it can be 
demonstrated that the resulting maximum likelihood esti-
mates of the coefficients are consistent, asymptotically nor-
mal, asymptotically unbiased, and more efficient than any 
other estimator (see Beals (61)). This approach can be used 
to model choice behavior for sporadic events such as shop-
ping trips. 

Sheffi (62) has developed a model for estimating choice 
probabilities among alternatives that can be naturally rank 
ordered. Examples include trip generation (number of trips) 
and household auto ownership. The key behavioral assump-
tions are that: (1) selection of a higher ranked alternative 
implies that lower ranked alternatives have been previously 
chosen, e.g., a household that has made three trips has pre-
viously decided to make one and two; (2) the utilities of 
alternatives increase monotonically up to the chosen alterna-
tive; and (3) the utilities of alternatives ranked higher than the 
chosen alternative are smaller than the utility of the chosen 
alternative. In order to facilitate analytical tractability, Sheffi 
also assumes that differences in utilities are uncorrelated. 

These assumptions and the standard logit assumption on 
the distribution of the random component of the utilities 
result in the choice probabilities being a product of binary 
logit choice probabilities. Specifically, 

- 

Pi  = p(i>i+ I) flp(j>j —  1) 	 (52) 

in which 

P1 	= the probability that theit' ranked alternative 
is selected; 

p (i >1-  1) = the binary logit probability that thejtl alter-
native is preferred to the previous alterna-
tive; 

p (1 > i + 1) = the binary logit probability that thei t' alter-
native is preferred to i + 1 alternative; and 

fl 	= the product of P3  from I to i. 

A standard binary logit computer program can be used in 
estimating a model of this type. In the estimation, each mdi- 

vidual or household can be thought to contribute i + 1 "ob-
servations." Each "observation" is one of the binary com-
parisons in Eq. 52. Sheffi used the procedure in estimating a 
trip generation model for households with elderly members. 

Sheffi's model is an attractive alternative to multinomial 
logit and linear regression for problems in which alternatives 
can be rank ordered. In particular, it does not have the hA 
property, which implies, for example, that if a household that 
currently makes four trips is restricted to three or fewer trips, 
the choice probabilities for these lower ranked trips increase 
proportionately. (It might be expected that the probability of 
making three trips increases much more.) The model also can 
be viewed as a solution to the truncated distribution problem 
of linear regression. 

It should be noted, however, that Sheffi's model does not 
address the problem of the no-trip alternative in a joint trip 
frequency, trip distribution model. In its present form, it is a 
model that can address only problems where alternatives can 
be rank ordered. The joint trip frequency, trip distribution 
problem combines rank ordered and nonranked alternatives. 
Therefore, the problems of trip generation that result from 
the hA property of the joint model cannot be solved with 
Sheffi's approach. 

In closing, it is worth noting that the same problems of hA 
that plague trip generation will also often plague models of 
auto ownership. If a family prefers two cars to one car for 
unobserved reasons, it probably also will prefer one car to no 
car for the same unobserved reasons. 

FINDINGS ON DATA COLLECTION 

Initial research on disaggregate demand models was 
heavily oriented toward reducing the heavy data require-
ments for estimating aggregate models. Since those early 
expectations, considerable advances have been realized in 
knowledge of data requirements for demand modeling. The 
promise of disaggregate models for reducing data require-
ments has been largely realized. However, application of 
disaggregate models has demonstrated that accurate fore-
casting can be quite voracious in its appetite for data. Al-
though savings on data collection costs can be realized for 
model calibration, there is an increasing awareness that ac-
curate forecasting may require detailed data on the underly-
ing distribution of the explanatory variables. 

Confidence intervals for the estimated disaggregate model 
parameters are readily available from the model calibration 
programs. Reasonably "tight" intervals often can be 
achieved with relatively small data sets (say 200 observa-
tions), a result which has been the basis of much of the 
purported benefits of disaggregate models. Confidence re-
gions for the forecasts of choice probabilities are more com-
plex because the relations are nonlinear. Horowitz (63) pro-
posed several means of estimating these regions for the logit 
model, and Daganzo (64) proposed procedures for the probit 
model. Researchers have reported fairly large confidence 
intervals for some forecasting applications, a caveat that 
should be considered in applying the results of a disaggregate 
model to forecast actual splits. Since the magnitude of the 
error is dependent on the square root of the sample size, 
fairly large increases in sample size may be required to appre-
ciably affect the magnitude of the error. 
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There is no one answer to the issue of the sample size 
required for model calibration. Richards and Ben-Akiva (65) 
have estimated that a sample size of 200 to 500 is reasonable, 
but samples as small as 50 to 70 have produced reasonable 
results. A discussion of the advantages and disadvantages of 
different data collection approaches is contained in U.S. De-
partment of Transportation (66). Given the expense of data 
collection, it is highly likely that most applications of disag-
gregate models would require the use of existing data col-
lected for the purpose of using aggregate models. 

The third phase of this project focused heavily on the 
analysis of an experimental data set expressly designed for 
the calibration of disaggregate travel models. One of the 
principal findings of this work relates the design of data sets 
for disaggregate demand model calibration. Based on this 
experience, the collection of omnibus data sets for the analy-
sis of a wide variety of choice situations is not endorsed. 
CRA's experience with the Baltimore Disaggregate Data Set 
is described in detail in Appendix D. In order to achieve the 
widely advertised claims of economy in data collection and 
manipulation, the data sets for model calibration should be of 
a more modest scope, limited to only one or two choice 
dimensions. Surveys that focus on many choice situations 
are costly and troublesome to administer and manipulate for 
model calibration. 

"Choice-Based Samples" as a Means of Economizing on Data 
Costs 

Research on the use of "choice-based samples," i.e., sam-
ples where the probability of sample selection depends on the 
actual mode or destination selected (such as an on-board 
survey or screenline survey), by Lerman et al. (67) has im-
proved the usefulness of existing data. Home interview sur-
vey (HIS) data are normally stratified on the independent 
variables of demand models. As a result, no special weight-
ing of the observation is needed. Normally, such stratifica-
tion is done with the objective of improving the efficiency of 
the estimate. 

A choice-based sample is stratified by the dependent varia-
bles. For instance, a choice-based mode choice sample could 
consist of transit riders and auto drivers. However, unless 
proper estimation procedures are followed, simply calibrat-
ing a logit model on two choice-based subsamples will not 
yield valid parameter estimates. 

Lerman et al. provide a mechanism for splicing two or 
more choice-based samples. Such a mechanism is particu-
larly interesting because on-board surveys can mitigate many 
of the problems (e.g., low response by certain modal seg-
ments) and costs of HISs. One caveat, however, is that the 
home interview may provide valuable information on the 
distribution of the explanatory variables, which is critical to 
aggregation and forecasting. These data would have to come 
from another source in the absence of an HIS. Further, the 
splicing mechanism proposed by the authors requires knowl-
edge of the aggregate splits, which may not be known without 
an HIS. This is not to say, however, that a hybrid choice-
based approach is not feasible. 

Another significant advantage of choice-based sampling 
procedures accrues in instances where one or more impor- 

tant alternatives are rarely chosen by the general population. 
For instance, if only 4 percent of the population is in a corn-
dor carpool, a random sampling approach to collecting data 
for a ridesharing model would not be efficient because many 
household surveys would be required to yield a sufficient 
number of carpoolers. It would be more data-efficient to 
stratify the survey on the basis of mode choice and to sample 
more intensively from the carpool population. 

The weighting factor recommended by Lerman et al. (67) 
is the "probability of that choice from a random sample/ 
probability of that choice from the choice-based sample." 
This finding is based on the use of Bayes Theorem. This 
approach is somewhat similar to the Atherton and Ben-
Akiva (68) approach for using a small sample to update a 
transferred model calibrated on data from another area. 

It should be noted that this weighting procedure is gener-
ally applicable to choice models, not just the MNL. In par-
ticular, it can be used with the MNP model. Daganzo (17) 
discusses the use of choice-based sampling with the MNP. 

This approach calls attention to the fact that more sophisti-
cated sampling designs could pay big dividends in travel 
forecasting. Simple random sampling does not provide suffi-
ciently large numbers of observations of rare events (e.g., 
transit ridership), thereby reducing the efficiency of the esti-
mation process. A number of interesting research projects 
have recently addressed the issue. Before beginning data 
collection, the researcher should consult these reports (see 
CRA (69) and Daganzo (70)). 

Special Data Sets—Repeated Trials, Before-and-After Data, 
and the Ordered Logit Model 

Special estimation problems arise where the researcher 
has more information than just the choices at an observed 
single point in time. The proper estimation technique for 
"repeated trials" using the same levels of independent vari-
ables has been addressed by McFadden (14). Daganzo and 
Sheffi (71) have addressed the issue of panel data, i.e., se-
quential sampling of individuals over time where the in-
dependent variables vary, such as with "before-and-after 
data." 	- 

Beggs et al. (72) addresses the issue of how to use informa-
tion, not only on the most preferred alternative, but also the 
order of preference among alternatives using an "ordered 
logit" model in an application of disaggregate modeling to 
demand for electric automobiles. The ordered logit model 
uses ranked data by respondents on their order of preference 
for an array of choice alternatives. One of the advantages of 
this technique is its high efficiency and relatively low data 
costs. On the other hand, its predictive validity has not yet 
been demonstrated. Daganzo (17) presents the MNP analog 
to the "ordered logit" model, although this model apparently 
has not been used empirically. 

Comment on Data Requirements for Implementation and 
Forecasting 

In order to understand the data required for implementa-
tion and forecasting, first consider the steps in forecasting 
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using the disaggregate approach and the 'market segmenta-
tion" method of aggregation which is described in the next 
section: 

Identify the population whose choices are to be fore-
casted as a result of the policy change. 

Disaggregate the population into market segments ac-
cording to the relevant choice set, levels of independent vari-
ables, differences in valuation of choice attributes and other 
segmentation criteria as required by the behavioral model. 
Identify the level of the explanatory variables for each of the 
market segments. 

Calibrate a disaggregate model on the subject population 
or adjust a model calibrated on other data to account for 
nontransferability, if any, between the calibration population 
and the forecast population. 

Modify the explanatory variables to reflect the policy 
change and evaluate the impact on the selection probabili-
ties. 

Aggregate the forecast selection probabilities to obtain 
estimates of aggregate shares for each of the choice alterna-
tives. 

The list looks rather forbidding, but Appendix C illustrates 
a method for using disaggregate models with data typically 
available to urban transportation planners. 

DIAGNOSING AND CORRECTING ERRORS IN THE MNL 

MODEL 

Sources of Errors in Disaggregate Models 

Two recent papers by Horowitz (73, 74) have provided an 
interesting survey of sources of error in estimating disag-
gregate models, methods of diagnosing these errors, and 
techniques for correcting the errors. Although the list of 
potential errors, and their consequences if uncorrected, is 
rather discouraging ("large enough to destroy the practical 
value of a model"), considerable progress has been made in 
diagnosing and correcting these errors. In principle, the 
errors are generally susceptible to correction, although in 
some cases the costs of doing so can be quite large. The 
potential sources of errors reviewed by Horowitz may be 
catalogued as follows: 

Choice of the wrong model form or behavioral assump-
tion (i.e., the assumption of utility-maximizing behavior 
when travelers actually respond to hierarchies, thresholds, 
etc.). 

Statistical sampling errors in estimation. 
Inclusion of irrelevant explanatory variables. 
Violation of the Independence of Irrelevant Alternatives 

(IIA) property of the MNL model (the blue bus/red bus prob-
lem). 

Assumptions of fixed parameter values in a population 
that is characterized by taste variations. 

Omission of behaviorally relevant variables. 
Errors in data, especially use of zonal average LOS data 

rather than disaggregate data. 

Horowitz concludes from his tests that the most important 
errors, in order of seriousness, are: (1) item 7—zonal aver- 

ages for LOS; (2) item 6—omission of behaviorally signifi-
cant variables; and (3) item 5—taste variations (random 
parameters). Curiously, the IIA problem was found to be less 
worrisome, at least as far as estimation of model parameters 
is concerned. According to the author's findings, violation of 
the IIA as a result of the blue bus/red bus problem is likely, 
for many applications, to cause errors comparable to or 
smaller than errors resulting from ordinary sampling error 
with samples of less than 1,100. Where the IIA error is sig-
nificant enough to affect the results, it appears to be large 
enough to be detected. The effect of omitting a behaviorally 
relevant variable from the specification depends on the rela-
tionship between the omitted and included variables (see 
Tardiff(30)). If a relevant but omitted variable is correlated 
with included variables, the estimated coefficients for the 
included variables will be biased. If the omitted variable is 
not related to other explanatory variables, there is no bias but 
rather less precision in the predictive poser of the model. The 
author finds that improved data and model specification 
(such as the random parameter probit) can correct the truly 
serious errors. As with any model, it appears that the user 
should be fully aware of the types of errors that can occur, 
the means of detecting them, and procedures for correcting 
the model to account for the problem. 

The consequences of a correlation between an observed 
attribute and an unobserved attribute are discussed in detail 
in Appendix E. There it is shown that the result is a bias in 
the estimated model coefficient. For example, the appendix 
notes that if people with tastes predisposed to transit (the 
unobserved attribute) locate near transit lines, time and cost 
(the observed attributes) elasticities will be biased upward. 
Chan's study (75) of elasticities indicates that time series 
elasticities are about one-half those of cross section, a finding 
that may be explained by the cross-section bias resulting 
from correlation of the unobserved attributes and indepen-
dent variables. 

Methods of Diagnosing IIA Errors in Logit Models 

A new approach to addressing the IIA problem in the MNL 
model was pioneered in Phase I of NCHRP Project 8-13 (1). 
A great deal had been said in the literature about the serious 
consequences of a violation of the IIA assumption, but very 
little had been done to evaluate how serious the problem is 
in practice or to provide a means to detect situations where 
the IIA was unreasonable. To this end, a serious effort was 
made first to itemize the various sources of a violation of the 
IIA and to develop diagnostic tests to permit the practitioner 
to determine whether a violation has occurred. The results of 
this research are included in Appendix D and in the Phase I 
report. 

Since that report, Horowitz (73) has evaluated alternative 
means of diagnosing errors in the logit model. The following 
tests have been proposed to diagnose violations of the IIA: 

Tests based on conditional choice proposed by McFad-
den, Tye, and Train (76) and in CRA's Phase I NCHRP 
Project 8-13 report (1). 

Tests based on the universal logit model proposed by 
McFadden, Tye, andTrain (76). 
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Tests based on extrapolation, first discussed in CRA's 
Phase I report (1) and developed and applied by Horo-
witz (73). 

Likelihood ratio tests to distinguish between the logit 
'and probit models and tests of significance of the estimated 
parameters in the probit model that measure departures from 
hA (see Horowitz (77) and Hausman and Wise (78)). 

In a very recent paper, Hausman and McFadden (79) have 
made two new theoretical contributions to diagnosing viola-
tions of hA. First, they have developed a test statistic for the 
tests based on conditional choice (no such statistic was de-
veloped in Phase I of this project). Second, they have pro- - 
posed statistical tests for distinguishing between the logit 
model and the nested logit model, which is described in detail 
later in this chapter. 

The assumption that the unobserved, or random, com-
ponents of utility are independent and identically distributed 
(lID) with the Weibull distribution is necessary and sufficient 
to derive the MNL model (see App. D for details). Therefore, 
all violations of the logit model assumptions also will violate 
the lID assumption and the hA property. Therefore, errors 
in applying the MNL model often may be detected as a 
violation of the hA property and corrected by making alter-
native assumptions regarding the random utility functions. 

Horowitz's (73) findings were that the most powerful tests 
are a test against aprobit model and the McFadden, Tye, and 
Train (76) test against the universal logit model. The tests 
based on conditional choice were found to be variable in their 
power to detect violations, but their intuitive appeal remains. 
Horowitz's results represent an extension of the diagnostic 
tests developed in Phase I of NCHRP Project 8-13 (and re-
ported in an appendix of this report). 

Williams and Ortuzar (80) use a somewhat similar ap-
proach in analyzing possible model specification errors. In 
addition to potential violations of the hA, they also examine 
specification errors in Horowitz's (73) first category. In par-
ticular, the authors consider three types of decision rules 
other than utility maximization over a common set of attri-
butes and alternatives: (1) a decision rule using only a subset 
of possible attributes; (2) a decision rule using only a subset 
of possible alternatives; and (3) a decision rule hypothesizing 
habitual choice behavior, i.e., choice of an alternative in-
creases the probability of choosing that alternative in the 
future. 

The approach used to analyze these potential specification 
problems involves three steps: (1) generation of simulation 
(Monte Carlo) data reflecting a choice process other than 
MNL; (2) estimation of an MNL model using the simulated 
data; and (3) comparison of the predictions of the resulting 
MNL model with the predictions of the "true" model. 

This approach can indicate the conditions under which the 
MNL is a reasonable approximation of alternative decision 
rules. Not surprisingly, prediction errors can be quite large in 
some cases. For example, the authors find that the MNL, 
which is based on tradeoffs among attributes, does not pro- - 
duce good predictions when the "true" decision rule is lexio-
graphic; i.e., choice is based on dominance on a single at-
tribute. Like Horowitz, the authors conclude that the hA 
need not be a serious problem because there are relatively 
straightforward modificiations to the MNL that mitigate the 
problem. (The most prominent modification is the nested 
logit model, which is described later in the chapter.) 

As a result of concern about the hA property and other 
consequences of violation of the logit model assumptions, 
research has focused on two approaches to address the prob-
lem. The first is the diagnostic test approach first developed 
as part of Phase II of the present project and applied in 
McFadden, Tye, and Train (76). This approach focuses on 
continued pplication of the logit model with safeguards 
designed to detect departures from the model's assump-
tions. This approach has been further developed by Joel 
Horowitz (73). 

The alternative approach, pursued by Hausman and 
Wise (78), Albright, Lerman, and Manski (81), Bouthelier 
and Daganzo (82), and McFadden's (83) generalized extreme 
value (GEV) model, is to develop more general models that 
do not employ the hA assumption. The most widely applied 
alternative is the multinomial probit model with both taste 
variations across the population (variable coefficients) and 
dependent random utility components (red bus/blue bus). 

Continued Application of the Logit Model 

The hA property is the result of three MNL assumptions: 
(1) the model coefficients are fixed, i.e., there are no taste 
variations; (2) the random components of utility are indepen-
dent across alternatives; and (3) the random utility com-
ponents are uncorrelated with the observed attributes. If 
diagnostic tests indicate that the hA does not apply, a possi-
ble strategy is to respecify a logit model so that the violations 
of the three assumptions are remedied. 

Taste Variations 

Taste variations can be addressed in two ways. First, 
socioeconomic characteristics can be included in the utility 
function as described earlier. Second, the estimation sample 
can be segmented based on socioeconomic and other charac-
teristics and separate choice models can be estimated for 
each market segment. Taste variations are represented by 
different values for the model coefficients for different mar-
ket segments. This approach has been used by Stopher and 
Lavender (37), Recker and Golob (84), and Kitamura (85). 

Correlation of Unobserved Attributes 

Violation of the second assumption occurs when the unob-
served characteristics of two or more alternatives are corre-
lated. The "nested logit" model, which is discussed in detail 
later, has been proposed as a means for remedying violations 
of the second assumption. For example, Sobel (86) applied 
nested logit analysis to a mode choice model with six alterna-
tives: walk, bicycle, moped, transit, auto driver, and auto 
passenger. In one specification, the first three modes were 
assumed to be similar in their unobserved characteristics; 
i.e., the random components of their utility functions were 
assumed to be intercorrelated. A logit mode choice model 
was estimated for these three modes and an inclusive price 
variable was constructed. This variable was included with 
the characteristics of the other three modes in a second MNL 
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model. A second specification also grouped the two auto 
modes as similar alternatives. Sobel (86) provides more de-
tails on these examples and the procedures for estimating the 
nested logit model. 

Although the nested logit model is an alternative to the 
MNL model (the MNL model is a special case of nested logit 
in which the coefficient(s) of inclusive price are equal to one), 
it can be estimated with existing or modified logit software. 
Therefore, it is a practical approach for addressing possible 
correlations among the random components of utility func-
tions. 

Correlations Between Observed and Unobserved Attributes 

Violation of the third assumption is a source of bias com-
mon to almost any statistical modeling. For example, this 
type of correlation is a potential source of bias in standard 
regression analysis. Two strategies, which are discussed in 
more detail in Appendix E, can be used to overcome this 
problem. If the analyst has some idea of the variables that 
might be correlated with currently observed variables, he 
could measure them and add them to the model. For exam-
ple, if comfort is correlated with travel time, the analyst may 
try to measure this variable by using attitudinal scales or 
physical proxies for comfort. Alternatively, possible correla-
tions between observed and unobserved variables may be 
eliminated through the collection of data after a change in the 
transportation system. As noted above, if people with a 
favorable bias toward transit tend to locate near bus routes, 
a typical mode choice model is likely to be biased because of 
this pattern of correlation between observed level of service 
and unobserved transit bias. However, people located next 
to a newly established route may be less likely to have a 
transit bias, thus removing the correlation between observed 
and unobserved characteristics. 

The Alternative Approach: Model Forms That Do Not Require 

the 11A Assumption 

A number of alternative model forms have been proposed 
that do not require the hA assumption. These alternatives 
include the multinomial probit model, the CRA hedonics 
model, the nested logit model, the generalized extreme value 
model, and the dogit model. Each of these modeling tech-
niques is discussed below.  

tributed. This property implies that the MNP structure is 
quite flexible, i.e., various assumptions underlying a particu-
lar model can be modified in such a way that the resulting 
model is stili MNP. 

Daganzo (17) explores many such modifications of the 
MNP. In many cases, these modifications are analogous to 
applications of the MNL. They will be described when the 
parallel MNL applications are presented. 

A major advance in treating violations of the hA emerged 
with the development of the Conditional Probit model by 
Hausman and Wise (78). The Hausman and Wise approach 
developed a computationally feasible method for calibrating 
a probit model that allowed for both a correlation in the 
unobserved attributes of the alternatives and variation in 
tastes across individuals. The approach allows three alterna-
tives. The authors also state that extension to four or five 
alternatives is feasible. 

The research of Daganzo, Bouthelier, and Sheffi (87) pro-
duced a computationally more efficient algorithm for com-
puting the MNP parameters, using the "Clark approxima-
tion" method. This breakthrough was significant because it 
permitted a method of computing the MNP model with more 
than three alternatives. Lerman and Manski (88) have re-
ported on a computer program that was also designed to 
overcome the computational difficulties. This program also 
incorporated the Clark method. 

Despite the early encouragement that the Clark approxi-
mation would provide a significant breakthrough in disag-
gregate methodology, some experts have expressed reserva-
tions. For example, Horowitz (89) presented examples in 
which the Clark approximation produced fairly large errors. 
Concern has been raised that the method has produced unex-
pectedly large errors in estimation and forecasting for large 
numbers of choice alternatives (see App. F). 

Random coefficient models are not confined to the disag-
gregate, discrete choice framework. Johnson and Hensher 
(90) have applied the concept to a regression model of shop-
ping trip frequency. 

The principal advantage of the MNP model over the MNL 
is that it allows for both variations in tastes across individuals 
and correlation of unobserved attributes across alternatives, 
both of which lead to violations of the hA property of the 
MNL (see App. E). In the course of calibrating the MNP 
model, the planner is provided with estimates of the variance 
in tastes and the extent to which tastes are correlated and 
estimates of the extent to which the hA is violated as a result 
of correlation in unobserved attributes. 

The Multinomial Probit Model 

The multinomial probit (MNP) model has been proposed 
as a means of correcting for the hA property of the multi-
nomial logit (MNL) model. The fact that MNP possessed the 
potential for applications that do not require the hA assump-
tion has been recognized, but computational difficulties have 
been perceived as prohibitive. Since the MNP model is based 
on the normal distribution, the properties of this distribution 
are used in the development and extension of the model. Of 
special importance is the fact that the sums and differences 
of normally distributed variables are also normally dis- 

The CRA Hedonics Model 

A version of the MNL model recently developed at CRA 
treats the individual utility function parameters being esti-
mated as random variables. This model, the CRA hedonics 
model, assumes that the marginal utilities of the attributes of 
the alternatives vary across individuals. This treatment is 
similar to one originally used by Quandt and resembles cur-
rent work on the multinomial probit model being performed 
by a number of researchers. 

Appendix F of this report compares and contrasts the 
MNL, MNP, and CRA hedonics models. The MNL model is 
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useful in analyzing a large number of transportation prob-
lems, but its applicability depends on a rather strong inde-
pendence assumption. The CRA hedonics model effectively 
relaxes what may be an important aspect of this assumption, 
since it allows for taste variations across individuals. No 
independence assumptions are required for the MNP model. 
However, the CRA hedonics model, when its assumptions 
are satisfied, is more flexible than the probit model in that it 
does not require the assumption of a normal distribution of 
the taste parameters. On the other hand, the probit model has 
the advantage of an explicit treatment of dependence among 
alternatives. 

Nested Logit or Structured Logit 

As mentioned earlier, Williams and Ortuzar (80) con-
cluded that the nested logit model appears to be an effective 
and practical approach to mitigating potential hA problems. 

The "nested logit" model is the "hierarchical," "sequen-
tial," or "separable" logit model, which was first analyzed 
in depth by Ben-Akiva (91), Domencich and McFadden (92), 
and CRA (13). Ben-Akiva first pointed out that the "inclu-
sive value" term, or "log of the denominator," would have 
a coefficient of 1.0 if the mode and destination choice were 
a joint multinomial logit model. A coefficient of between 
0 and 1 results in the nested logit model. The importance of 
this finding was made more widely known at the Second 
International Conference on Behavioral Modeling (93) in the 
workshop report on quantitative methods. Readers inter-
ested in the technique should consult Sobel (86) for a discus-
sion directed to the nontechnically oriented readers. 

Intuitively speaking, the nested logit model is analogous to 
the use of the "inclusive value" term in specifying a joint 
mode and destination choice logit model. The concept can 
best be understood by reference to a destination choice 
model in which the representative utility of a destination 
contains a term representing the "inclusive value" of all 
modes to that destination: 

Va  = ...+OI+ 	 (53) 

in which 

Vd = expected utility of dth  destination; 
0 	= coefficient of "inclusive value" of all modes to that 

destination; and 

M 

Id 	= In V ma; and 
m1 

V,fl d = expected utility of the mt  mode to the d th  destina-
tion. 

It can be seen that the inclusive value of modes to a given 
destination is in fact the "log sum" or "log of the denomina-
tor" from the previously estimated mode choice (given desti-
nation) equation. As noted above, Ben-Akiva (91) demon-
strated the very important finding that constraining 0 to 1.0 
produced the equivalent of a joint logit model of mode and 
destination choice. It can be demonstrated that 0 must be 
constrained to 0 < 0 :s 1, or irrational behavior will result. 
For a proof of this assertion, see McFadden's paper in 
Hensher and Stopher (94). 

For example, if 0< 0, it would imply that improved service 
to a destination would increase the inclusive value of that 
destination but reduce the likelihood of choosing that desti-
nation. If 0 = 0, improved service to a destination would 
have no effect on the destination's choice. If 0 = 1, as noted 
above, the general MNL model applies to a joint destina-
tion/mode model. If 0> 1, the model overpredicts the effects 
of improved service by one mode to a destination (relative to 
the hA assumption). This may imply diversion (away from 
other destinations) to modes to that same destination that 
were unaffected by the service improvement (i.e., 0 = 
would cause equal percentage diversions from all modes and 
destinations not affected). In the language of economics, 
0> 1 may imply that two modes to the same destination were 
complements rather than substitutes (the cross elasticities 
may have the wrong sign). 

In an earlier version of the McFadden paper it was stated 
that in a nested structure containing more than two layers, 
e.g., a frequency, destination, mode choice structure, the 
coefficients of inclusive price should not decrease as one 
moves up to higher layers. McFadden has since shown that 
the condition is not necessary. The only requirement for 
inclusive price coefficients is that they lie in the 0 to 1 range. 
The final version of the paper has been modified to report this 
condition. On page 49 of the Phase II report (2), the errone-
ous version of the condition on inclusive price was reported, 
which is now corrected. 

The nested logit model (first proposed by Brand (3) and 
described in detail by Sobel (86)) is not merely a device for 
structuring a separable model such as destination and mode 
choice. Sobel proposes that the method be used to break up 
the IIA problem by first applying MNL to the modes thought 
to have dependent unobserved attributes, e.g., bus and train. 
This model is then used to develop an estimate of the "in-
clusive value," or expected utility of the "nest," which is 
then used as an alternativ e- specific variable in calibrating the 
choice between the remaining alternatives. Sobel also re-
minds the modeler to include attributes that are common to 
the nest but vary among the nest and other alternatives in the 
higher level estimation. 

The nested logit model clearly has appeal in addressing 
structural choice situations, e.g., mode/ destination /fre-
quency decisions. As a technique for addressing a correlation 
in the unobserved attributes of alternatives, the technique 
may be less attractive than a model that does not require a 
priori specification of the structure of dependence, such as 
the MNP. 

Generalized Extreme Value Model 

McFadden's (83) GEV model is an important generaliza-
tion of the nested logit model. The GEV model has not, as 
yet, been applied to an actual transportation planning study. 

The Dogit Model 

The dogit model, specified by Gaudry and Dagenais (95), 
incorporates a format somewhat similar to logit: 
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Pi  = 	
(54) 

(1 +I O) I eVj 

in which 

Pi  = probability of the i th  alternative; 
V1 = i t' alternative's systematic utility; and 
oi - 0. 

It can be shown that the dogit model is a special case of logit 
when a number of fairly restrictive assumptions on choice set 
formation hold. Under certain circumstances (when the re-
spective O f's are 0), the model collapses to the MNL for a 
subset of alternatives. The model has an apparent intuitive 
appeal in that the total share of an alternative can be shown 
to contain a fixed or captive share, irrespective of attributes 
allocated according to the logit model. These elements are 
represented by the first and second terms in the numerator of 
Eq. 54. This interpretation is only suggestive because a single 
choice for an individual is discrete and does not represent an 
allocation process. However, if repeated choices are made, 
it may be reasonable to consider an allocation process. 

Although the dogit model may be appealing as a behavioral 
model in certain very special circumstances, it is not offered 
as a general remedy for violations of the hA. Indeed, the 
most common causes of the violation of the hA are likely to 
be the blue bus/red bus problem and the presence of taste 
variations in the population, neither of which is explicitly 
addressed by the dogit model. (In fact, dogit assumes a logit 
model to explain the discretionary share.) Unless the viola-
tion is diagnosed to be a result of the "captive mode" theory, 
the practitioner is advised to deal with models such as the 
MNP that explicitly address the likely sources of the vio-
lation. 

- 

Empirical Evidence on the Validity of IIA 

It will be recalled that for a particular data set and model 
specification, two types of approaches have been used in 
testing the validity of hA. McFadden et al. (19) used the 
diagnostic tests of McFadden, Tye, and Train to examine the 
mode choice models estimated with data in the BART ser-
vice area. Most tests indicated that the hA property ap-
peared to yield reasonable results. 

The second approach is to estimate a more complex model 
such as the MNP model and to compare it with an MNL 
model (note that this is one of the diagnostic tests suggested 
by Horowitz). Hausman and Wise (78) and Albright et 
al. (81) performed this test on worktrip mode choice models 
estimated with different samples from the 1968 Washington, 
D.C., data base. Both studies showed that the MNP model 
did not fit the data substantially better than did the MNL 
model. These findings are consistent with those of McFad-
den et al. (19) on the reasonableness of the hA property for 
worktrip mode choice models. However, Hausman and Wise 
(78) showed that although the alternative models may fit the 
calibration data set equally well, they can yield substantially 
different forecasts of modal shares resulting from the intro-
duction of a new mode. This finding suggests that a data set 
other than the calibration data set may be necessary in select- 

ing among models and in completely examining the validity 
of the hA. Development of tests involving independent data 
sets (which would be an extension of Horowitz's extrapola-
tion test) might be a useful topic for future research. 

Summary 

Experience has shown that there are numerous errors that 
can substantially affect the accuracy of the disaggregate 
modeling approach. The preceding discussion has focused on 
specification errors and alternative modeling forms that do 
not require the MNL assumptions. These alternative model 
forms require increasingly sophisticated understanding on 
the part of the user and additional computational and data 
requirements for calibration and forecasting in most situa-
tions. Therefore, it is recommended that the diagnostic tests 
such as those specified in Appendix D and in McFadden, 
Tye, and Train (76) and Horowitz (73) be applied to ensure 
that these costs are warranted before departing from the 
more familiar logit format. 

AGGREGATION OF DISAGGREGATE MODEL FORECASTS 

There is presently a dispute regarding the most effective 
method of aggregating the results of disaggregate models. 
The following principal methods have been proposed: 

Random sample enumeration—a random sample of de-
cision makers is used or may be produced by Monte Carlo 
computer generation of a synthetic sample orpseudosample, 
based on knowledge of the distribution of underlying vari-
ables. 

Mathematical integration of the predictions over the 
distribution of independent variables. 

Classification, or market segmentation, where the popu-
lation is classified into cells, a forecast is made for each cell, 
and the cell forecasts are aggregated. 

The "naive" or "direct" aggregation approach, where 
disaggregate model results are applied directly to aggregate 
data. 

Each of these approaches has been employed in actual 
transportation planning and research. The Chicago Area 
Transportation Study (96) has employed the "pseudo-
sample" approach. The most obvious difficulty in employing 
this approach is, of course, the interdependence among the 
variables (for example, the socioeconomic variables are cor-
related and not independently distributed from the LOS 
variables, e.g., higher income workers may take longer 
trips). 

The "random sample enumeration" technique is the pre-
ferred technique where the researcher has access to a disag-
gregate sample. The method simply makes forecasts of logit 
shares using a random sample and aggregates across the 
sample, effectively eliminating aggregation error. Atherton 
et al. (97), for example, used this technique for evaluating the 
impacts of carpooling incentives, and the Berkeley Travel 
Demand Forecasting Project (6) used it for estimating BART 
mode shares. 
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The paper by Bouthelier and Dagan.zo (82) is an important 
advancement in aggregation methodology. The authors have 
leen creative in expanding the initial efforts of McFadden 
and Reid (32) and Westin (98). They have developed prac-
tical computer approaches to performing aggregation, or dis-
aggregate models, to produce aggregate forecasts and to cali-
brate the MNP model dependence across alternatives (the 
red bus/blue bus problem). Users should note, however, 
that its value depends on the reasonableness of assuming a 
normal distribution for most of the explanatory variables and 
assuming a significant error in using the classification (or 
market segmentation) approach, with which transportation 
planners already have experience. 

Appendix B addresses in greater detail this review of ag-
gregation methodology, and Appendix C details the CRA 
method for implementing the market segmentation tech-
nique. The greatest attention has been given to market seg-
mentation because it resembles the technique most familiar 
to planners - cross-classification. 

FINDINGS ON TRANSFERABILITY OF LOGIT TRAVEL DE-

MAND MODELS 

The analysis of urban transportation policies would be 
greatly simplified if a single disaggregate model, calibrated at 
one place and time, could be used for the evaluation of the 
current and future impacts of policies in many different 
places. Results presented in Appendix B indicate, however, 
that careless attempts to transfer and aggregate logit travel 
demand models could lead to sizable errors in the predictions 
of policy effects. This potential for error has stimulated re-
search into quantifying the magnitude of the error introduced 
in applying logit models and devising procedures for reducing 
the errors. This section reviews the findings of the research 
and compares and evaluates the methods that have been 
proposed for transferring disaggregate demand models. 

Previous Research on Transferability of Mode Choice Models 

Previous works dealing with the transferability problem 
have sought to answer the questions: Can logit travel demand 
models be transferred from one city to another without modi-
fication? If not, are modifications short of complete recall-
bration of the models feasible? The answer to the first ques-
tion appears to be: "No, at least not in general," while the 
answer to the second question appears to be "Yes, under 
some circumstances." 

The first step in understanding the transferability problem 
is to identify the reasons why a model would not be transfer-
able, i.e., reasons why a transferred model is apoor predictor 
in a new forecasting environment or why two models cali-
brated on different data sets produce entirely different esti-
mates of behavioral parameters. These reasons include the 
following: 

1. Model specification differences which may or may not 
reflect true behavioral differences—Two  models may be 
specified differently even though they purport to forecast 
consistent behavior. For example, one model may include  

income; another may include the wage rate; others may in-
clude income as a separate additive term; and another may 
divide it into the cost term. Variables may not be defined 
consistently. For example, one model may use network (ag-
gregate) level-of-service data; another uses perceived data; a 
third uses individually measured portal-to-portal values. 
Model coefficients may also vary with changes in the cost of 
living. 

Differences  in sampling procedures —Differences in 
sampling procedures can affect the model coefficients. For 
example, the corridor sampling in the 1972 CRA study in 
Pittsburgh produced a mode-specific constant with a "transit 
bias." That is, the model predicted that more persons would 
choose transit than auto when the independent (explanatory) 
variables were identical for both modes. Thus, it clearly was 
not transferable in the short run. This bias may have resulted 
from the calibration sample. Corridors with good transit ser-
vice were chosen for the sample, increasing the share of 
persons in the sample who chose that residential location for 
reasons related to the availability of transit and were "biased 
toward transit." This underlying "taste for transit" in the 
calibration sample may have reduced the models' appli-
cability to other "unbiased" populations. This, of course, 
can be a problem with any model calibrated on cross-
sectional data. 

Differences in estimation techniques and sample size, 
etc. - "Outliers" whose behavior cannot be explained in 
terms of behavioral relationships calibrated for the rest of the 
population can nevertheless have a large effect on the esti-
mated coefficients. In effect, the estimation procedure 
strains to make as much sense as possible of this apparently 
irrational behavior. This properly raises questions as to 
whether such observations should be included in the calibra-
tion sample and what weight should be given to failure to 
predict the behavior of outliers in judging whether a model 
passes a test of transferability. 

True behavioral differences—it may also be that two 
cities or groups may have different social and economic 
values influencing their choice behavior. For instance, New 
York City dwellers may have different values with respect to 
transportation than rural Midwesterners. These differences 
in taste may limit transferability from one cultural milieu to 
another. Tests of variations in tastes by Hausman and 
Wise (78) have demonstrated that they can significantly af-
fect model results. 

The fact that the various models cannot be transferred 
naively without consideration of at least some of these four 
factors is well known. Failure to account for these known 
differences between the two circumstances (calibration and 
forecasting) will lead to poor forecasts except in fortuitous 
circumstances. Apart from the fact that transferability re-
quires a substantial burden of sophisticated understanding of 
data collection, model properties, and calibration methods 
on the part of the practitioner, the relative contribution of 
true behavioral differences is unknown. These considera-
tions suggest strongly that assurances that the disaggregate 
models are transferable may be premature. 

Atherton and Ben-Akiva (68) tested the ability of a work-
trip mode choice model calibrated on Washington, D.C., 
data to explain travel behavior in Los Angeles and New 
Bedford, Massachusetts. Their model predicts the proba- 
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bility of choosing to drive alone, share a ride, or use transit 
for a worktrip. The independent variables include mode-
specific constants, in-vehicle times, out-of-vehicle times, 
and out-of-pocket costs for the three modes, income, auto 
availability, and a dummy variable indicating if the tripmaker 
is the household head. The test they performed was to use 
the specification of the original (Washington) model in cali-
brating new models with Los Angeles and New Bedford data 
and then to compare the coefficients of the new models with 
those of the old model. The comparison of the coefficients 
consisted first of statistical tests of the null hypothesis that 
the individual coefficients of the Los Angeles and New Bed-
ford models are equal to their Washington model counter-
parts. For both the Los Angeles and New Bedford models, 
only the coefficients on the auto availability variables were 
significantly different from their Washington counterparts. 
In order to determine whether the differences among coeffi-
cients that they found, whether significant or not, would 
cause much discrepancy among travel forecasts, Atherton 
and Ben-Akiva also compared the level of service elasticities 
implied by the Los Angeles and New Bedford models with 
those implied by the Washington model. As with the coeffi-
cients themselves, the elasticities by and large were similar, 
with large differences only for the elasticities with respect to 
the out-of-pocket cost variables in the Washington-New 
Bedford comparison. 

From their results, the authors concluded that the evi-
dence on the transferability of logit travel demand models is 
"encouraging," but that it is apparent that no model will be 
perfectly transferable and that procedures for "updating" (or 
adjusting) the model coefficients are required. They then 
describe and empirically test five update procedures. 

The first procedure, the "do nothing" alternative, is sim-
ply to apply the model without adjusting any coefficients. 
This alternative is the only one possible if no disaggregate 
data set of observed choices is available for the city to which 
the model is to be applied. 

The second procedure may be used if data on the aggregate 
population shares of the various modes are available along 
with data on the population averages of the independent 
variables. This procedure consists of using the population 
modal shares to adjust the "mode-specific constants" so that 
the original model accurately predicts these modal shares. 
None of the other coefficients are adjusted. 

The rationale for this approach is that since mode-specific 
constants capture the mean effects of the unobserved factors 
and these factors cannot be measured and controlled for, 
they are the model coefficients most likely to vary from area 
to area. Differences between the values of the observed attri-
butes for the two areas are presumably accounted for by 
including them explicitly in the forecasting equation. Note, 
however, that using this procedure-with areawide averages of 
the independent variables will also be correcting for forecast 
errors due to aggregation bias in the direct aggregation 
method. To correct only for transferability, the adjustment 
should be made so that the transferred model has a good fit 
for a disaggregate sample for the forecast situation. 

The third, fourth, and fifth updating procedures described 
by Atherton and Ben-Akiva all assume the presence of a 
small, disaggregate sample. The third procedure consists of 
simply using the disaggregate data set to calibrate a new  

model (as specified in the old model). Thus, all of the model 
coefficients would be recalibrated. The drawback of this pro-
cedure is that, for small samples, the coefficient estimates 
may be too unreliable. 

The fourth procedure is to use the disaggregate sample to 
recalibrate the mode-specific constants and to calibrate a 
scalar that is used to scale all of the other coefficients (so as 
to keep the ratios between them unchanged). The rationale 
for recalibrating the mode-specific constants, as in the sec- 
ond procedure, is that it is assumed that the mean effects of 
unobserved factors are likely to vary from city to city, and 
these are reflected in the adjustment of the mode-specific 
constants. The rationale for adjusting the scale of the other 
coefficients is that travelers in different cities may differ in 
the level of importance they attach to the variables in the 
mode choice equation, but it is also likely that the relative 
weights attached to these variables will be the same for all 
cities. Maintaining the scale of the coefficients assumes con-
stant tradeoffs between attributes, e.g., a constant "value of 
time" is preserved. Examination of the ratio of the cost and 
time coefficients suggests that the ratio demonstrates signifi-
cantly more stability than does the absolute value of the 
coefficients. 

Even if travelers in different cities do not differ in the 
importance they attach to the variables, a scale factor may 
still be appropriate if the variances of unobserved variables 
differ widely between cities. For example, comfort may be 
less variable in a city with all new buses than in a second city 
with a mix of old and new buses. If comfort is an unobserved 
variable, Tardiff's (30) finding suggests that the coefficients 
of a model estimated in the first city should be higher in 
absolute value by a scale factor than the coefficients of a 
model estimated in the second city. 

The fifth procedure consists of using Bayesian techniques 
to combine the coefficients obtained by the first and third 
procedures. Essentially, this procedure combines the in- 
formation contained in the original and new disaggregate 
samples by computing the updated coefficient on any one 
variable as the weighted average of the coefficient of that 
variable as calibrated in the original model and the coefficient 
as calibrated with the small disaggregate data set for the new 
area. The weights used in combining these coefficients are 
the inverses of the variances of the coefficient estimates. 

Atherton and Ben-Akiva's criteria for goodness of fit were 
the ability of the procedure to replicate existing modal 
shares, to do so separately for low and high income groups, 
and to accurately predict the effects of various policy sce-
narios, where the "true" policy effects were those predicted 
by the model calibrated on the full New Bedford sample. 
(Subsets of this sample were used to simulate the procedures 
using a small disaggregate data set.) 

In empirically evaluating the five procedures that they de-
scribed, Atherton and Ben-Akiva found that the unadjusted 
Washington model (the first procedure) fit New Bedford data 
extremely well, much better than a model calibrated on a 
small New Bedford sample (the third procedure), and so well 
that attempts to adjust the mode-specific constants (the sec-
ond procedure) slightly worsened the fit. Using a small disag-
gregate sample to adjust the mode-specific constants and 
scale the other variables (the fourth procedure) performed 
poorly, but better than an entirely recalibrated model (the 
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third procedure). The Bayesian updating technique (the fifth 
procedure) provided a very slight improvement over the 
original model. 

Research in England that is similar in spirit to the study 
done by Atherton and Ben-Akiva has been reported by 
Daly (99). He reported on an investigation of the appli- 
cability of a binary logit mode choice model, containing only 
a mode-specific constant and level-of-service variables, to 
mode choice problems in several English towns. His re-
search indicated that the models for different towns were 
sufficiently different as to prevent a model for one town from 
successfully being used in another. Also, the differences 
among the towns were such that a "global" model, i.e., a- 
single model calibrated on data pooled across all towns, did 
not adequately explain mode choice. He did find, however, 
that a satisfactory global model could be constructed by cali-
brating common coefficients for the level-of-service vari-
ables and then, for each town, adjusting the mode-specific 
constant to capture factors peculiar to that town (Atherton 
and Ben-Akiva's second procedure). 

Watson and Westin (100) studied the transferability of logit 
mode choice models among different subareas within a single 
urban area. Their data were for the Edinburgh-Glasgow area 
of Scotland, and their model, like Daly's, was a binary model 
containing level-of-service variables and a mode-specific 
constant but no socioeconomic variables. They grouped their 
data into six categories of the location of trip origins and 
destinations. The six categories were: (1) both trip ends in the 
central city; (2) both trip ends in the suburbs; (3) both trip 
ends in the area peripheral to the urban area; (4) one trip end 
in the central city and one in the suburbs; (5) one trip end in 
the central city and one in the peripheral area; and (6) one trip 
end in the suburbs and one in the peripheral area. Identically 
specified models were calibraed separately on each of the six 
subsamples. Each of the six models was then used to predict 
the mode splits of the other five subsamples. Referring to 
the three categories that contain at least one trip end in the 
central city as the central group, the authors found that the 
models within the central group predicted well among them-
selves. The noncentral group (the remaining three catego- 
ries), on the other hand, performed very poorly in their pre-
dictions for each other. Prediction between the central and 
noncentral groups (in either direction) showed mixed results 
but on balance were within reasonable bounds. 

In order to pinpoint the reasons for the poor predictions 
among the noncentral group, Watson and Westin carried out 
tests for significant differences of all coefficients taken to-
gether in pairwise comparisons of the six models. In line with 
their results on predictive ability, they found that the coeffi-
cients on the model for any noncentral group were signifi- 
cantly different from the coefficients in the model for any 
other noncentral group, but no significant differences were 
found when the central group categories were compared with 
one another. In the comparisons with one central and one 
noncentral category, half of the differences were significant 
and half were not. Watson and Westin concluded from their 
research that the ability of the model of the central group to 
cross-predict accurately was favorable to the within-urban 
area transferability of mode choice models but that results 
for the noncentral groups indicated the need to refine the 
models to take account of locational differences. 

One early application of disaggregate logit models for 
mode split, and for travel to the CBD and to non-CBD desti-
nations, also produced significant differences in estimated 
coefficient values (101). Antti Talvitie and Daniel Kirshner 
(102) have recently completed another test of transferability 
which is substantially less optimistic than previous re-
searchers. Their research, based on the use of four data sets, 
indicated that: 

Outliers can have substantial impacts on the point esti-
mates of some of the coefficients in logit models. 

Model coefficients are highly sensitive to model specifi-
cation. 

Model coefficients do not appear transferable within 
region, between regions, or over time. 

These results agree with some results of a less rigorous 
comparison of the estimated coefficients of time and cost and 
corresponding elasticities in the various disaggregate models 
of mode choice. These coefficients can differ significantly. 
To the extent these differences can be accounted for by 
known differences between the calibration and forecast data 
sets, they can be accounted for in the forecast. To the extent 
they are represented by biases in estimation or true be-
havioral differences, rather than variable definition, transfer-
ability will be doubtful. 

An example of an extremely important difference between 
situations that can generally be accounted for is changes in 
the general price level and income (inflation). Unless the logit 
model specifically indexes the cost variable (by say dividing 
cost by income or wage rate), adjustments to the variable or 
the cost coefficient will be required. The requirement for this 
adjustment may be seen by referring to the log-odds formula-
tion variable "auto cost minus bus cost." Clearly, if both of 
these variables increase by the same percentage due to infla-
tion, their difference will increase, affecting predicted mode 
split. To adjust for the change, the coefficient or the variable 
must be deflated to ensure that choice is sensitive only to 
cost differences in real terms. 

Recommended Approach 

To summarize the available evidence on the transferability 
of disaggregate mode choice models, the works reviewed 
here seem to be in close agreement that not all travelers 
everywhere exhibit the uniformity in their trip-making be-
havior that one would have hoped for, at least with respect 
to worktrip choice of mode. However, from the work of 
Atherton and Ben-Akiva and Daly, it appears that the differ-
ences that do exist are sometimes amenable to reconciliation 
by an adjustment of model coefficients and that calibration of 
separate models for every traveler group is not always neces-
sary, t least for mode split. Other research indicates that 
logit model estimation may not display robustness with re-
gard to differences in traveler tastes, data collection, or 
model specification, and can be very unforgiving of errors on 
the part of practitioners. These difficulties suggest that for 
many applications the collection of a new data set and the 
calibration of new models may be required and is a far safer 
course than attempting to transfer a model, especially for 
those without advanced training in the use of disaggregate 
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models. Several hundred new observations should be suf-
ficient to test the transferability of the models. 

In selecting one of the updating procedures to be recom-
mended in the guidelines given in this report, the considera-
tions are the ability of the procedure to perform adequately 
without an unduly heavy computational requirement. On this 
basis, Atherton and Ben-Akiva's fourth procedure, dis-
cussed earlier in this section, appears most suitable, despite 
their reservations, if the data are available. Their procedure 
uses a small disaggregate data set to adjust the mode-specific 
constants and scale the other coefficients of the original 
model so that the fit of the original model to the new data is 
improved. This procedure may be modified by substituting 
data on the aggregate choices of market segments for the 
small disaggregate data set. The principal arguments for the 
procedure are that it provides a better fit to the data on 
market segments while preserving the ratio of coefficients 
(which preserves such relationships such as the value of 
time). 

Limitations of data may make the other approaches attrac- 

tive. For example, if no data are available on the choices of 
the population prior to the policy change, the "do nothing" 
alternative must be considered. If data are available to up-
date the model, the "do nothing" alternative should be 
rejected on the strength of the evidence in favor of the hy-
pothesis that different cities have different representative 
utilities, Atherton and Ben-Akiva's results for Washington 
and New Bedford notwithstanding. Their second procedure, 
adjusting only the mode-specific constants, is attractive 
when data are available only for the aggregate choices and 
scaling of the other coefficients is unfeasible. Atherton and 
Ben-Akiva's third procedure, recalibrating the model, was 
rejected for the same reason that they found it unsuitable: the 
large standard errors of the coefficients in the recalibrated 
model make it unreliable. Finally, their fifth procedure, the 
Bayesian updating technique, was rejected because of the 
computational burden imposed by the requirement of 
variance-convariance matrices for the coefficients in the 
original and recalibrated models. 

CHAPTER THREE 

INTERPRETATION, APPRAISAL, AND APPLICATION 

INTRODUCTION 

This chapter focuses on the application of disaggregate 
approaches to travel demand analysis. In earlier chapters, 
the strengths and weaknesses of disaggregate models were 
discussed. The major conclusion emerging from reviewing 
the state of the art in disaggregate modeling is that disag-
gregate models are a valuable research tool for transportation 
planners. But they can be subject to significant errors (as can 
aggregate techniques) and require a relatively sophisticated 
understanding of the assumptions employed. The researcher 
must make a relatively heavy commitment to understanding 
what he is doing if these errors are to be avoided. Fore-
warned by this caveat, the user can be assured that disag-
gregate models will play a useful role in the transportation 
planner's repertoire of planning tools. 

Disaggregate travel demand models can be (and have been) 
applied in several different ways. They can replace one or 
more individual components of the conventional transporta-
tion planning system. Alternatively, they can be used for 
problems that are not easily addressed by conventional plan-
ning tools, e.g., analysis of Transportation Systems Manage-
ment (TSM) actions or the introduction of new transportation 
modes. They can either be computerized or used as sketch 
planning tools requiring only hand-held or programmable cal-
culators. 

EVALUATION OF SKEPTICISM REGARDING THE VALUE OF 
THE DISAGGREGATE APPROACH 

As outlined in this report, disaggregate demand modeling 
techniques have made considerable progress in recent years. 
Yet, during the course of the present project there has been 
increasing skepticism regarding the value of disaggregate 
models. This skepticism is based on a number of concerns. 
The first concern regards the issue of accuracy. Talvitie and 
Kirshner (102) found that "outliers" caused by data entry 
errors or highly unusual behavior can have significant effects 
on the estimates of the coefficients. The authors tested the 
transferability of model coefficients within regions, between 
regions, and over time and rejected it for each case. The 
authors were also troubled by the sensitivity of the estimated 
coefficients to model specification. Finally, the authors were 
troubled by the fact that 60 to 80 percent of the explanatory 
power of the models is contained in the alternative-specific 
constants and only 20 to 40 percent in the LOS and socio-
economic variables. The authors glumly inquire whether dis-
aggregate models have much to offer given the fact that 
service variables are only slightly affected by most policy 
transportation changes. 

Typical of the expression of skepticism regarding the gen- 
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erality of the usefulness of disaggregate models is the attempt 
by Gomez-Ibanez et al. (103) to transfer disaggregate elas-
ticities to evaluate auto restraint policies in the Boston area. 
The authors were dismayed to find that different studies 
produced such greatly differing elasticities, causing doubt 
about the transferability of models and concern about the 
sensitivity of the results to model specification. The authors 
review the various explanations for the differences in elas-
ticities and caution users in applying transferred models be-
cause of the apparently large differences in estimated beha-
vioral relationships. 

Different researchers using different data have reported 
significantly different coefficients for time and cost vari-
ables. This lack of consistency has greatly troubled some 
researchers, such as Gomez-Ibanez et al., who consider the 
lack of uniformity a great shortcoming of the disaggregate 
approach. On the other hand, others, such as the Office of 
Technology Assessment, U.S. Congress (104), have found 
the relative consistency of value of time (after accounting for 
inflation) to be reassuring despite the differences in coeffi-
cient values, and have not hesitated to evaluate nationwide 
energy policy using the results of disaggregate models. 

Skepticism has been especially keen regarding the value of 
large-scale attempts to substitute disaggregate models for the 
traditional four-step transportation planning process. Shunk 
and Kollo (105), representatives of the Metropolitan Trans-
portation Commission (MTC) of San Francisco, have criti-
cized the disaggregate model on the grounds that such so-
phisticated models are not appropriate for day-to-day use in 
the real world, despite their elegance or relative accuracy. 
The grounds for their complaints were the following: 

Despite the claims that the models represent traveler 
decision-making, dramatic changes in the estimated con-
stants are required to "validate" the models from the estima-
tion subsample to the aggregate data set. 

A "distance correction variable" for each of 30 districts 
was required for trip distribution, reminiscent of "friction 
factors" in aggregate models. 

The distribution models required "unique adjustment 
factors" which had to be adjusted by hand to produce rea-
sonable forecasts, rather than "responding independently." 

The mode choice models required adjustment of the 
mode-specific constant which was specific to the inter-
change. 

The model is unduly complex and costly to operate. 

The range of error inherent in forecasting with disaggre-
gate models must be considered a major disappointment. 
However, much of this error is not a result of the use of 
disaggregate models per Se, but rather results from the error 
inherent in any forecasting process. It is useful in this regard 
to consider both errors in estimating the model (e.g., sam-
pling error in estimating model coefficients) and errors in 
using the model to forecast the dependent variable (e.g., 
mode split). As discussed earlier, Horowitz (31, 73, 74, 77, 

89) has reviewed the sources of errors in the logit model, 
diagnostic tests for detecting those errors, and the conse-
quences of undetected errors. One may conclude that while 
the consequences of such errors are significant, good judg-
ment and the proper use of proposed tests will reasonably 
safeguard against most serious errors. 

APPLICATION OF DISAGGREGATE DEMAND MODELS 

It is beyond the scope of this report to provide a compre-
hensive report on experiences in the use of disaggregate 
models. In addition to the voluminous literature, some of 
which is cited in the report, Spear (56) has conducted a 
survey of applications for dissemination of experience in use 
of individual choice models. Responding to a request of re-
searchers to bridge the gap between research and practice, 
this report was written to provide transportation planners 
with a working reference on recnt experience in applying 
disaggregate models and case studies\  It is a basic reference 
document that should be on the shelf of every practicing 
transportation planner with an interest \in disaggregate de-
mand modeling. Hensher and Stopher (106) also present a 
comprehensive review of previous applications. The U.S. 
Department of Transportation has also included a logit cali-
bration package as part of its battery of modeling programs. 

Use in the Conventional Modeling System 

Because mode choice has received considerable attention 
in previous research, it is not surprising that the integration 
of disaggregate mode choice models with conventional plan-
ning tools has been among the earliest applications. Spear 
(56) presents a comprehensive review of two efforts: the 
development of a multinomial logit work mode choice model 
in San Diego and the development of multinomial logit mode 
choice models for work and nonwork trips in the Twin Cities 
area. 

Two major projects were designed to develop a battery of 
disaggregate models in actual transportation planning agen-
cies that are comparable to the aggregate four-step process. 
One recent comprehensive effort is the "Sigmo Study" (48), 
which represented the state of the art in disaggregate demand 
modeling. The group of models specifies trip generation, 
modal split, and distribution in separate steps. These steps 
are linked by use of the "log sum of the denominator" from 
the prior step, e.g., as an accesssibility term (treated nega-
tively as "resistances") in the distribution model (see Chap-
ter 2). Separate models are derived for home-based work 
(HBW) and home-based other (HBO). The models were cal-
culated using travel diary data (over 7 days) from all mem-
bers of 3,000 households, peak and off-peak networks, and 
land-use data. The multinomial logit model was the primary 
functional form. 

The overall results showed that model calibration pro-
duced estimated coefficients that generally satisfied a priori 
expectations. Validation of the model's forecasting proper-
ties was accomplished by grouping data by variables not used 
as forecasting variables (trip distance, destination sectors, 
etc.). The authors' conclusions were that for some forecasts 
the correspondence between the predicted and observed was 
"reasonable." For others, especially mode split for short 
trips, the results were "poor." 

The second comprehensive model is illustrated by Figure 
2, showing the Metropolitan Transportation Commission 
(San Francisco Bay area) model. The models are described 
in Ruiter and Ben-Akiva (107); in Ben-Akiva, Sherman, and 
Kullman (49); and in numerous working papers and manuals. 
The short-range generalized transportation policy analysis 
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Figure 2. The IvITC travel demand model system. 

(SGRP) version of the modeling system has been adapted for 
energy conservation policy analyses (108). 

Nonconventional Problem Areas 

The greatest potential for application of disaggregate ap- 

proaches may be in areas that are not currently being met by 
conventional planning methods —"short turn around" re-
sponse to evaluation of "low-capital" alternatives. In an 
interim report as part of NCHRP Project 8-13, Charles River 
Associates (2) provided a lengthy example of such an appli-
cation showing how to use the market segmentation tech-
nique as a means of aggregating the results of a disaggregate 
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model forecasting process. The particular example chosen 
was the demand for "Park-and-Ride" in Baltimore. The re-
sults of the application indicated that: (1) improvements in 
time and cost were not responsible for all of the observed 
demand for park-and-ride, indicating that behaviorally rele-
vant variables not included in the model can have a signifi-
cant impact on the forecast; and (2) lack of knowledge about 
the appropriate mode-specific variables (especially when the 
new mode is a hybrid of two existing modes) is a difficulty 
that must be addressed in applying the model to demand for 
a new mode. In Appendix B, further analysis of the park-and-
ride example is described. The results appear to be more 
encouraging. 

One interesting example of the use of disaggregate models 
to analyze the relationship between auto ownership and 
travel demand was a study of carpooling incentives using the 
disaggregate modeling approach. Atherton, Suhrbier, and 
Jessiman (97) found that incentives for carpooling result in 
modest reductions in auto travel to work. However, the 
availability of the auto at home may stimulate additional 
nonwork travel, a behavioral response specifically ac-
counted for by the model. 

Readers interested in other examples of applications 
should consult Charles River Associates, Policy Evaluation 
with Travel Behavior Models: Methodological Issues and 
Case Studies (109). This report contains analyses of the cost 
effectiveness of areawide integrated transit, transportation 
control plans, and detailed procedures for policy evaluation 
with small surveys and Census data. 

Manual Methods 

Manual methods for applying disaggregate techniques are 
generally incremental or pivot point approaches. In these 
approaches changes in modal shares are forecast based on 
changes in level of service or other explanatory variables. 
The existing modal shares are used as a base rather than 
forecast de novo. This may reduce the complexity of applica-
tion and margin for error. 

Several interesting projects have identified sketch plan-
ning tools using disaggregate models and hand-held calcula-
tors or programmable calculators. The first is incorporated in 
the "Work Sheets" in Cambridge Systematics (110). This 
approach relies on a formula for estimating a new logit share 
after a change in the transportation system, given only the 
change in the explanatory variables and the preexisting logit 
share. Letting Pi'3  = initial share ofi th alternative, PiN = new 
share of the i th alternative, LXVi = charge in utility of i th 

alternative, and using standard logit notation: 
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This formula provides the basis for a very straightforward 
method of revising modal shares: estimate the effect of the 
change of level of service on utility and insert the change in 
utility and original modal shares into the equation. An early 
application of this formula is found in a study of energy and 
mass transit by the Office of Technology Assessment of the 
U.S. Congress (104). A more recent application is Kumar's 
(111) analysis of changes in modal splits resulting from a 
proposed extension of a light rail line in Cleveland. 

Incremental logit analysis estimates changes in demand 
resulting from changes in the transportation system. In this 
sense, it is conceptually similar to the use of elasticities in 
demand forecasting and other pivot point methodologies. 

In addition to the differences in computational procedures, 
there is an important difference in the underlying assump-
tions made in methods that predict absolute levels of future 
demand versus methods that predict changes from a base 
demand. In the former case, it is implicitly assumed that the 
unobserved variables vary randomly over time. In the latter 
case, it is assumed that the unobserved variables have 
roughly the same values in the future time period as in the 
base period. Therefore, theoretical, as well as practical, is-
sues are involved in choosing between the alternative ap-
proaches. 

A study undertaken at the Massachusetts Institute of 
Technology by Manheim et al. (112) has attempted to apply 
the programmable calculator to sketch planning with disag-
gregate models and thereby extend the early Cambridge Sys-
tematics work. The object of this research is to combine the 
benefits of disaggregate modeling with the evolution of new, 
powerful, pocket programmable calculators. The MIT proj-
ect is writing programs for such calculators, using the 
"incremental logit formula" (Eq. 56) and aggregation proce-
dures discussed elsewhere in this report such as market 
segmentation. One particularly useful program uses the ap-
proach of generating a "synthetic sample" of households 
from published Census data. Examples are provided to show 
how the programs and models should be used. 

REQUIREMENTS FOR DISAGGREGATE MODEL APPLICATION 

The discussion in this and in the preceding chapter clearly 
indicates that the disaggregate modeling approach can in-
volve different types of analytical approaches, which can be 
applied to different types of problems. These different uses 
of disaggregate models require somewhat different levels of 
resources and skills from the practitioner. In this section, the 
requirements for the various types of uses are discussed. To 
facilitate the presentation, a distinction is made among (1) 
model calibration; (2) model updating; and (3) model applica-
tion. In discussing model application, a further distinction is 
made among (1) travel-based forecasts; (2) regional or sub-
regional forecasts; and (3) manual methods. 
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Model Calibration 

Much of the discussion in the earlier chapters was based on 
findings from previous model calibration studies. The practi-
tioner who is considering specification of a new disaggregate 
model for his / her area would benefit from understanding the 
conceptual, theoretical, and operational issues discussed in 
these chapters. 

Model calibration involves the following steps: (1) selec-
tion of the travel decision to be modeled, e.g., modal choice; 
(2) specification of the independent variables; (3) selection of 
the size of the calibration sample; (4) location of an existing 
data source and / or collection of a new data source that con-
tains the relevant variables; (5) statistical estimation of the 
model(s); and (6) interpretation of model coefficients and 
other summary statistics. 

The selection of the travel decision is clearly related to 
policy problems being addressed. For example, an analysis 
of high vehicle occupancy policies would require a modal 
choice model which contains high occupancy modes such as 
shared ride. In general, since modal choice models are the 
most advanced disaggregate travel demand models, they are 
likely to be applied most frequently in the near future. 

The selection of independent variables should be guided by 
the nature of the policy under consideration, theoretical con-
siderations, findings from previous studies, and data avail-
ability. Although there are some definite conclusions emerg-
ing on the specification of independent variables, there are 
differences in existing models. For example, the modal 
choice models estimated by CRA with the Pittsburgh data 
contain a relatively small number of independent variables, 
while the recommended mode choice model from the Urban 
Travel Demand Forecasting Project (6) contains a large num-
ber of explanatory variables. Thus there are no absolute 
guidelines for selecting explanatory variables. At a mini-
mum, the analysts should include variables that are sensitive 
to the policies being considered. For example, preferential 
parking policies would affect out-of-vehicle or walking times. 
Familiarity with the previous disaggregate travel demand 
studies would be very useful in aiding the selection of inde-
pendent variables. 

As indicated in Chapter Two, disaggregate travel demand 
models can be estimated with small samples. For example, in 
this project, samples of slightly more than 100 individuals 
were used in the estimation of the models based on the Pitts-
burgh data set. In the Urban Travel Demand Forecasting 
Project, various versions of the pre-BART models were esti-
mated with 161 and 771 individuals and the post-BART 
models were estimated with 635 individuals. 

The estimation of disaggregate travel demand models re-
quires a data set that contains the relevant dependent and 
independent variables. Although it is desirable to have data 
that were specifically collected for the purpose of disaggre-
gate model estimation, the use of an existing transportation 
data set may be more cost-effective. For this reason, many 
existing models have been estimated with secondary data 
sources. 

In general, information on the transportation choice (de-
pendent variable) and socioeconomic characteristics is 
available from survey data. Characteristics of transportation 
alternatives, such as modal time and costs, are often ob- 

tamed from secondary sources such as networks, land-use 
data, etc. 

Collection of a new data set is a major undertaking. 
However, the data collection costs may be justified in light of 
the fact that most existing disaggregate models were esti-
mated with data from the late 1960s or early 1970s. In addi-
tion to sample size and measurement of the variables in the 
model, which have already been discussed, the method of 
data collection is an important issue. Home interviews, 
which are a standard method of transportation data collec-
tion, are a reliable, but costly, approach. 

Telephone interviews were collected in addition to home 
interviews for the Urban Travel Demand Forecasting Project 
(6). This approach appeared to yield very favorable results. 
It was concluded that response rates and data accuracy were 
reasonably comparable to that of home interview surveys. 
The telephone interviews required about one-third the costs 
of the home interviews. 

Choice-based sampling theory implies that low-cost self-
administered survey techniques can yield reasonable results. 
For example, on-board surveys can be used to collect infor-
mation on transit users. Automobile users (single occupant 
and shared ride) can be contacted at particular check points 
and presented with mailback questionnaires. For example, 
Kayak and Demetsky (113) contacted auto users by means of 
license plate identification and CRA (114) distributed ques-
tionnaires at toll plazas. 

Statistical estimation of disaggregate choice models re-
quires a computerized estimation package. The QUAIL 
package was developed by the Urban Travel Demand Fore-
casting Project and the U.S. Department of Transportation 
UTPS package has the ULOGIT program. The National Bu-
reau of Economic Research's TROLL package has the 
LOGIT routines. Estimation of more advanced models, such 
as multinomial probit, requires specialized programs that are 
not readily available and have not been thoroughly tested. 

The basic skills required of the analyst include (1) data 
management skills so that the variables of the model can be 
entered correctly, and (2) understanding of the operation of 
the computer program in question. In general, although dis-
aggregate choice model estimation packages are specialized 
and more complicated than standard statistical packages, 
working knowledge of standard packages would facilitate the 
use of disaggregate choice modeling packages. 

Interpretation of model coefficients and summary statis-
tics is facilitated by a thorough understanding of the issues 
discussed in the preceding chapters. In general, coefficients 
are checked for proper sign. For example, cost coefficients 
should be negative, since the utility of a travel alternative 
should decrease as cost increases. Similarly, the magnitudes 
of the coefficients should be reasonably similar to magni-
tudes found in previous studies, unless there are special cir-
cumstances that indicate otherwise. For example, the values 
of time derived from the model can be compared to values 
derived from previous studies and elasticity values can be 
checked. 

Model Updating 

Several transferring and updating procedures were identi-
fied in Chapter Two. Probably the most practical procedure 
involves the adjustment of cost (and linear) terms to reflect 
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differences in the cost of living between areas and / or over 
time and adjustment in alternative specific constant terms so 
that predicted market shares match observed market shares. 

The adjustment to the cost coefficient depends on the func-
tional form of the cost variable in the model. This point can 
be illustrated with specific examples. Before presenting the 
examples, the variable INDEX is introduced, which con-
verts cost variables for the application of the model into 
dollar amounts equivalent to those of the calibration data set. 

The basic principle is that the coefficient is adjusted such 
that the representative utility does not change. That is, if C 1  
is cost measured in current dollars (application data), C O  is 
measured in dollars for the calibration data set (C 1  = C O  
INDEX), a0  is the original coefficient, and a1  the updated 
coefficient; it is desired that 

a0f(C0) = a1f(C1) 	 (57) 

wheref is the functional form for the cost variable. An imme-
diate result of this condition is that the model can be "up-
dated" by deflating C 1  for each individual by INDEX and 
setting a1  = a0. This procedure applies to all functional 
forms. 

Case 1—Linear Cost Terms. In this case, the condition 
becomes 

a1 (C 1) = a0  (C o) 	 (58) 

By expanding C 1  in terms of C O  

a1  (C 0  INDEX) = a0  (C 0) 	 (59) 

which yields 

a0  
a1 = 

INDEX 
That is, the coefficient is deflated by INDEX. This procedure 
was followed in Phase II of this study in which the cost 
coefficient of the model estimated with a Pittsburgh data set 
was deflated for application to a higher income Baltimore 
area. 

Case 2—Cost Divided by Income. As mentioned in Chap-
ter Two, cost is often divided by income in existing models. 
In this case, no adjustment in a0  may be necessary. This 
follows from the fact that income is likely to change in the 
same way as cost and, therefore, the effect of INDEX cancels 
out in the ratio of cost to income. The analyst should verify 
this for each case. If the cost/ income ratio is not relatively 
constant, some adjustments may be necessary. 

Case 3—Logarithmic Cost Term. The condition to be 
satisfied is 

a1  log C 1  = a0  log C 0 	 (61) 

Using C 1  = C 0  INDEX, 

a1  log (C 0  INDEX) = a0  log C 0 	 (62) 

This expression can be transformed to 
a1  log C 0  + a1  log INDEX = a0  log C 0 	 (63)  

terms as alternative specific variables, i.e., the cost coeffi-
cients would vary by alternative. In this case, alternative 
specific constants would have to be adjusted. In practice, 
there are apparently no existing models with alternative 
specific cost variables, so no adjustment to alternative spe-
cific constants is necessary.) 

Alternative specific constant terms are updated by adjust-
ing the terms so that aggregate shares predicted by the model 
equals observed aggregate shares. The general procedure is 
represented by the following expression (for multinomial 
logit) 

MS1 =N 
e"hi+ I e"1"  

kM 

in which 

MS1  = the share for the jth alternative; 
T 	= the sample size; 
N j 	the number of individuals in the j 1h market seg- 

ment; 
V 	= the average representative utility for alternative i in 

thej th  segment; 
a1 	= the alternative specific constant for the i th alterna- 

tive; 
VA)  = the representative utility for the "base" alternative 

(the one without a constant); 

VkJ 	= the representative utility for the k th  alternative; and 
ak 	= the alternative specific constant for the k th alterna- 

tive. 

If there are J alternatives, the expression yields J- 1 equations 
with f-i unknowns (the a1). 

Three special cases are of interest. First, if there is only 
one market segment (the whole sample), then the procedure 
involves use of the sample average representative utilities. 
Second, if N)  = I for allj, each individual is used directly in 
adjusting the constants. This procedure was used by CRA in 
updating the Pittsburgh work mode choice model for use in 
the Boston area (109). Third, the intermediate case in which 
1 <N)  < T was used is the case study of Phase II of this 
project. 

In general, solution of Eq. 64 requires an iterative proce-
dure that is very similar to that used in model calibration. 
However, for the first special case in which there is only one 
market segment, there is a direct solution. It can be shown 
that 

= log ( 
MS  

-'-) - 
(V 1  - V A) 	 (65) 

Model Application 

As noted earlier, a distinction is made among zonal based 
applications, regional or subregional applications, and 
manual methods. 

That is, one sets a = a0  and adds a0  log INDEX to the 
alternative specific constant term for each alternative. 
However, since the addition of the same constant to all alter-
native specific constants has no effect on the resulting choice 
probabilities, the a0  log INDEX term can be ignored. Hence, 
no adjustment is necessary. (It is possible to specify cost 

Zonal Based Applications 

This type of application is conceptually similar to standard 
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aggregate forecasting. Zonal based forecasts are necessary 
when the travel flows between zones are of interest. For 
example, the traditional emphasis on providing new facilities 
requires fairly specific zone-to-zone travel forecasts. The 
following steps are necessary. 

Calibrate or update an appropriate disaggregate choice 
model. 

For each zone pair, develop average values for variables 
corresponding to the independent variables of the model. 
Those variables likely include zone-to-zone average travel 
times and costs, variables such as average income and auto 
ownership for the origin zone, and attraction variables such 
as retail employment for the destination zones. 

An appropriate aggregation procedure must be used. 
Because of the errors inherent in simply using zonal averages 
in forecasting aggregate shares, the aggregation procedure 
involves additional information on the distributions of the 
variables such as the variances and covariances. 

Because forecasts are made for each zone pair, and aggre-
gation procedures are analytically complicated, computer as-
sistance is usually necessary. To examine the effects of var-
ious policies, the zonal averages for the variables are 
changed to correspond to the policy change. For example, an 
increase in gasoline taxes would result in increases in the 
costs of automobile modes for each zone pair. An example of 
policy analyses using zonal based forecasts is given in CRA 
(42). 

Regional and Subregional Applicatio.ns 

For some applications, specific zone-to-zone forecasts are 
not necessary. For example, the regionwide reduction in 
VMT and fuel consumption resulting from a reduction in 
transit fare may be the focus of a particular analysis. Two 
procedures have been developed for these types of problems. 
The market segmentation aggregation method presented in 
this report is one method. The other approach is the use of 
a disaggregte sample in forecasting (the random sample 
enumeration approach). This approach has also been called 
short-range generalized transportation policy analysis 
(SRGP). 

The essentials of the random sample enumeration ap-
proach are as follows: 

Calibrate or update a disaggregate choice model. 
Delineate the region or subregion of interest. 
Acquire a random sample of observations for the area. 

The observations must contain values for each of the inde-
pendent variables in the model. Socioeconomic variables are 
likely to be available directly from the survey. Level-of-
service variables may be derived from the survey data or 
from supplementary network or field measurements. 

Alternately, a synthetic random sample can be generated 
using the SYNSAM or interative proportional fitting meth-
ods developed for the Urban Travel Demand F'orecasting 
Project (6) and described in Appendix A. 

For each observation of the sample, insert the values of 
the independent variables into the choice model and derive 
the choice probabilities. 

Weight the choice probabilities by using the sampling 
fractions used to generate the sample. 

Add the weighted probabilities to derive the market 
shares for the entire area. 

The sample size necessary to implement this procedure is 
of the same order of magnitude as the size necessary for 
model estimation. However, if travel forecasts for subsam-
ples are desired (e.g., income groups), a larger sample size 
may be necessary to ensure that subsample forecasts are 
reliable. The effects of alternative policies are forecast by 
changing the level-of-service variable for each individual ob-
servation in the sample. For example, an exclusive lane for 
high occupancy vehicles would change in-vehicle times for 
each individual. 

The random sample enumeration procedure is described in 
detail in Appendix B of CRA (2) and in Cambridge System-
atics' five-volume report on the use of disaggregate models in 
energy policy analyses (108). 

Manual Methods 

Manual methods are appropriate for problems in which 
choice probabilities are forecast for only a limited number of 
cases. For example, forecasting the changes in model shares 
resulting from improved transit level of service between a 
homogeneous residential area and the CBD may require only 
a single application of a choice model. Manual or pocket 
calculator methods for these problems have been developed 
by CSI (108) and Manheim et al. (112). The procedure can be 
illustrated by two examples. 

Case 1—Forecasting the Effects of Auto Cost Changes 
Using a Binary Modal Choice Model. Suppose the data in 
Table 1 (and Eqs. 7 to 11) represent the travel environment 
from a homogeneous group of commuters. Because of in-
creases in tolls and parking charges, the auto cost is in-
creased to $1.25. The new modal shares are calculated as 
follows. 

V 1 	= 11-5.72 + 1.38(1) + 4.07(1)] - 0.117(0) 	(66) 
—0.0348(60) - 9.06(0.25) 

= —4.623 

V 2 	= — 0.117(7) - 0.0348(110) - 9.06(0.10) 	(67) 
= —5.553 

- e. 4.623 

P(l) = 	 (68) 
e 4.623  + e -5.553 

= 0.717 

P(2) = 1 - P(1) 	 (69) 
= 0.283 

Case 2—Incremental Logit Analysis of the Effects of an 
Exclusive Bus Lane. To perform incremental logit analysis, 
the modal shares before the policy change are necessary. 
In addition, the changes in the independent variables are 
needed. 

Consider the same base case as in Case 1. Suppose the 
original modal shares are 0.639 and 0.361 for auto and transit, 
respectively, and that the exclusive lane reduces bus in-
vehicle time by 10 mm (to 100 mm) and increases auto in-
vehicle time by 5 mm (to 65 mm). The new modal shares are: 

PA(1) = (I) e 00348 AINVIT, 

pB  (1) e 0.0348 MN VTT I + P5 1  (2) e -0.0348 MN VII' 2 
(70) 



pA(l) = 0.799e —0.0348 (5) 

0.799e —0.0348 (5) + 0.201 e —0.0348 (-10) 
(72) 

= 0.702 
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P(2) = 1 _pNt(l) 	 (71) 

in which 

= the "after" modal share; and 
PBt = the "before" modal share. 

Inserting the actual values for LINVTT 1  and pBe(j)  into 
Eq. 70 yields 

PA(2) = 1 - PN(1) 	 •(73) 
= 0.298 

It should be noted that although the model contains several 
independent variables only INVTT was used in the forecast-
ing because none of the other variables changed. 

FLEXIBILITY OF THE DISAGGREGATE APPROACH 

Travel demand models are expected to conform to two 
conflicting objectives. First, they are expected to be flexible 
to respond to the data availability, time frame, degree of 
accuracy required, and skill level of the user. On the other 
hand they are expected to be routine, low-cost, and not de-
manding on scarce high-talent resources. Clearly, the models 
must meet a test of balance between these objectives. 
Neither "canned models" nor tailor-made approaches to 
every planning problem are the answer. 

If disaggregate demand modeling is to be flexible enough to 
meet the wide range of demands, there can be no one disag-
gregate model. The appropriate tool for analysis of travel 
demand must be selected from a range of analytic alterna-
tives depending on the circumstances. The transportation 
analyst must approach the issue at hand with a flexible frame-
work that is based on the behavioral motivations of the indi-
vidual as his starting point. The framework must take into 
account the individual's motivations, the nature of the indi-
viduals in the relevant population, the information from the 
analysis that is needed for decision-making, and the evidence 
from previous research. Naturally the forecast will require 
that the analysis of the individual be extended to forecast 
group behavior. This conceptual framework is the essence of 
disaggregate behavioral demand modeling. 

Certain demand analysis will be required routinely, and 
transportation analysis can be standardized by identifying a 
common methodology and data relevant to the case in point. 
But even in these routine cases, the transportation analyst 
cannot abandon analysis and blindly follow formulas. Rather 
he must be constantly combining his standardized ap-
proaches with his common sense understanding and experi-
ence concerning the reasonableness of his analysis. 

For these reasons, this study has emphasized empirical 
and conceptual model development. The approach has been  

to analyze the fundamental impediments to understanding 
and modeling travel behavior at the disaggregate level that 
are common to all applications: data requirements, desired 
variables, specification of the model (e.g., how to consider 
mode choice, destination choice, and trip frequency in the 
same model), the desirability of certain properties of the logit 
model (e.g., the Independence of Irrelevant Alternatives). 
The results have considerably advanced the state of knowl-
edge required to implement the disaggregate conceptual 
framework to a given practical planning issue. However, the 
results should not be considered "a model" in the sense of 
a set of formulas to be routinely applied to whatever issue 
may arise. 

OVERVIEW OF TECHNICAL APPENDIXES 

This report contains six appendixes which document in 
greater detail the findings described in Chapter Two and also 
provide guidelines for implementing particular research pro-
cedures. This material is directed to the researcher and the 
advanced practitioner as background for future research and 
sophisticated application. 

Appendix A summarizes research on the approaches that 
have been proposed for dealing with the aggregation prob-
lem. Based upon this review, the market segmentation ap-
proach is recommended, as described in Chapter Two. 

Appendix B is a detailed analysis of two major issues de-
scribed in Chapter Two: transferability and aggregation. The 
potential forecasting biases that might arise from not han-
dling these problems appropriately are illustrated by means 
of several examples. 

Appendix C provides detailed guidelines for using the rec-
ommended market segmentation aggregation procedure with 
Census data. This appendix also describes new and more 
favorable findings on the application of a disaggregate work 
mode choice model to forecast travel demand following the 
implementation of a new park-and-ride alternative in Balti-
more. The original analysis of this case study was presented 
in the Phase II report (2). 

Appendix D describes the development of the disaggregate 
travel demand models presented in Chapter Two. The pre-
sentation describes preparation of the three data sets used in 
model development (Pittsburgh, Twin Cities, and Balti-
more); model specifications; and hypothesis tests involving 
alternative model specifications. The experience with the 
Baltimore data set may be of special interest because this 
data set was designed for development of advanced travel 
demand models. 

Appendix E provides an in-depth discussion of the hA 
property. The implications of hA and the consequences of 
violating the hA assumptions are discussed and illustrated 
with several examples. 

Appendix F describes a modification to the multinomial 
logit model that allows the model coefficient to be random 
rather than fixed. This modification addresses one of the 
major potential violations of hA. 
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CHAPTER FOUR 

CONCLUSIONS AND SUGGESTED RESEARCH 

CONCLUSIONS 

The research in NCHRP Project 8-13 indicates that disag-
gregate models of travel demand deserve wide application to 
transportation planning problems. They are especially rele-
vant to the analysis of policy issues not satisfactorily con-
sidered with conventional approaches, such as determining 
the effect of alternative air quality control and energy conser-
vation policies, evaluating the impact of traffic engineering 
improvements and toll policies onthe use of roads, and other 
"low capital" policy issues. 

Disaggregate demand approaches offer considerable ad-
vantages over conventional approaches in many applications 
because of substantially reduced data costs; the ability to 
predict the effects of public policy on travel demand; flexi-
bility to meet different problems, accuracy requirements, 
and response times; and improved transferability of model 
estimation results from one geographic area to another. 

This study has developed several new disaggregate de-
mand models for worktrip mode choice and shopping choice 
of mode. The estimated models have been evaluated and 
found to be highly useful in analyzing policy issues. 

An improved understanding of the Independence of Irrele-
vant Alternatives (hA) property is an important contribution 
of the study. The hA property was found not to be an in-
herent drawback to application of disaggregate modeling. 
Procedures have been developed to identify and account for 
violations of the property should they occur. 

As disaggregate approaches have gained wider accept-
ance, they have also been subjected to closer scrutiny and 
criticism. This process has resulted in several significant 
developments in recent years: 

The issue of separable (or sequential) versus joint speci-
fication of model structures (94): substantial refinement in 
understanding the differences and similarities of the two 
model forms has occurred, particularly in using the "inclu-
sive price" concept (or more properly, "inclusive value" 
when expressed as the "log of the denominator"). 

Computational efficiency in estimating the multinomial 
probit (MNP) model form (87): recent developments in ap-
plying the Clark Method to model estimation have made the 
MNP specification a practical alternative to MNL. Although 
MNP offers a more general model form, it is not clear, how-
ever, whether the increased complexity is either necessary or 
even desirable for many practical applications. 

Aggregation approaches (82): sophisticated approaches 
to apply the Clark method, a random sample (perhaps syn-
thesized), market segmentation, and Monte Carlo methods 
for integration are now practical in many applications. 

Choice-based samples (67): means are now available to 
use "on-board" surveys rather than home-interview surveys  

and nevertheless produce valid results. This development 
has important implications for efficient surveying tech-
niques. 

SUGGESTED RESEARCH 

However, there still is a long way to go in solving problems 
that are impediments to more widespread applciation of dis-
aggregate models to transportation demand forecasting prob-
lems. High on the list for priority in future research are the 
following: 

Specification of independent variables—previous re-
search has not always resulted in clear-cut findings on how 
to specify explanatory variables. For example, there are con-
flicting findings on whether level-of-service variables should 
be generic versus alternative-specific. Further research 
would be useful in resolving such issues. 

Individual vs. household level of analysis —previous 
models have explained either household or individual travel 
choices. Research on the dynamics of decision-making with-
in households, identified but not pursued in-depth in NCHRP 
Project 8-14 (11), would be useful in determining the appro-
priate level of analysis and how to incorporate the effects of 
family dynamics in travel choice models. 

Transferability—researchers have differed on the feasi-
bility of transferring a model estimated from data in one 
geographic area to a forecast in another area. 

Practical approaches to implementation—practicing 
planners are confronted with a bewildering array of complex 
modeling issues with little guidance regarding what they need 
to know. Planners need guidelines for priorities in applying 
the models, more direction from those who have developed 
the models as to what they must know before applying them, 
and better information on the likely pitfalls they will face. 
Chapter Three is a starting point for such guidelines. Also 
useful in this regard are syntheses of the findings from this 
and related projects, such as Koppelman's (115) discussion 
at the 1982 Transportation Research Board meeting. 

Model development for destination choice and trip gen-
eration—modelers are confronted with many difficult issues 
when the model is extended beyond mode choice: in particu-
lar, increased likelihood of a violation of the Independence 
from Irrelevant Alternatives property. 

The greatest need for future research appears to be in the 
area of trip generation. The violation of the hA assumption, 
as discussed in detail in Chapter Two, causes the assump-
tions of the logit model to be violated. A number of alterna-
tive modeling approaches have been suggested, such as the 
Markov process. More research should be conducted in this 
area. The failure of disaggregate modeling to achieve a sig- 
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nificant breakthrough in trip generation must be considered 
a major disappointment. 

6. Research on longer run mobility decisions-although 
there has been some research on automobile ownership and 
residential location, and the effects of these long-run deci-
sions on household travel, further research would be useful 
in developing practical policy-sensitive models for analyzing 
the impacts of automobile and land-use policies. 

Improved methods of collecting and processing disaggre-
gate data are also a concern. Delay in receipt of the final data 
set from Baltimore was a major disappointment in NCHRP 
Project 8-13. Clearly one important direction for future re-
search is to explore disaggregate model development using 
this data set, which was expressly designed for research on 
disaggregate modeling. 

A May 1978 conference sponsored by the U.S. Depart-
ment of Transportation, Federal Highway Administration, 
"Directions to Improve Urban Travel Demand Forecasting" 
(116), contains a detailed agenda of research needs for disag- 

gregate modeling which researchers also are encouraged to 
consider. 
DISSEMINATION 

A formal, coordinated dissemination program should be 
initiated to increase awareness of the advantages of disag-
gregate approaches. This dissemination program should be 
directed to the potential user in state and local transportation 
agencies and not the research community. The program 
should produce manuals and training programs, with em-
phasis on the use of the results of case studies of actual 
experience. To the extent that standardized procedures for 
analyzing travel demand can be developed, they should be 
emphasized in the dissemination program. The formal wide-
spread dissemination program directed to the ultimate user of 
the models should not begin until considerable progress has 
been made in developing new planning tools based on disag-
gregate demand analysis, and after experience demonstrating 
the new techniques has been achieved. 
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APPENDIX A 

PREVIOUS RESEARCH ON THE 

AGGREGATION OF DISAGGREGATE DEMAND MODELS 

When confronted with a policy proposal whose impacts 

are to be evaluated at an aggregate level (i.e., the effect 

on more than one individual) and a model that relates the 

behavior of interest to the policy variable (and, possibly, 

to other variables also) , the obvious approach to perform- 

ing the policy evaluation is to replace the independent 

variables in the model with their 'before and "after" aver- 

ages for the impacted population to observe the before and 

after aggregate behavior, from which the aggregate policy 

effect can be inferred. Unfortunately, if the model beino used 

is a nonlinear one, such as the loqit model, this approach will 

generally produce incorrect predictions of both the before and 

after behavior, as well as incorrect predictions of the difference 

between before and after behavior. The correct procedure with 

nonlinear disagqreqate models is: 1) to predict the before 

behavior of each individual in the population and take the 

average of these predictions; 2) to predict the after behavior 

for each individual and take the averace; and 3) to take the 

differences between these averaqe predictions to obtain the 

agoreqate policy effect. This procedure has been called the complete 

enumeration method and we will refer to the obvious approach 

of using averages of the independent variables as the direct 

aggregation (sometimes "naive") method. The predictions 

obtained by the two methods will differ, and this difference 

is the aggregation bias that is described in Appendix B. 

Included in our discussion of aggregation bias in 

Appendix B is a list of four properties of aggregation bias. 

While they can rigorously be shown to hold only under cer-

tain conditions, intuitively they can be expected to apply 

in many, if not most cases. Of these four properties, it 

is the third of these which has received the mosr attention 

in the search for methods to reduce aggregation bias. This 

property stated that the magnitude of the aggregation bias 

increases as the dispersion in the values of representative 

utility difference, V, increases. Obviously, if there were 

no dispersion in the value of V, there would be no aggrega-

tion bias. Consequently, it is this property that has moti- 

vat.ed the various approaches that have been suggested to reduce 

aggregation bias without completely abandoning the computational 

simplicity afforded by the use of the direct aggregation method. 

The following sections present several proposed methods designed 

to reduce the level of aggregation bias in forecasting with 

disaggregate demand models. 

A-1 	 A-2 	 \0 



TALVITIE'S METHOD: THE TAYLOR'S SERIES EXPANSION 

The first approximation method to be discussed is one 

proposed by Talvitie (Al) . Focusing on the binary logit 

model: 

P5(A) = 
	

(A-i) 

2+e 	- 

where P(A) is the probability that individual t will choose 

alternative A and V the value of V for individual t. Tak-

ing a Taylor's series expansion about V, the mean represen-

tative utility for the population, gives 

—1-2P(a) 

t 	 t 
P (A) = P(A) + (V -V) 	 — 

V 
+ 	(V-V) 	 + . . . (A-2) 

dV 

where the symbol "/' denotes the function evaluated at 

V. Making note of the fact that 

2 
d P(a) = 2P(a)2-P(a)1[1/2 - P(a), 	 (A-3) 

dv 

truncating Equation A-2 after the third term, and taking 

averages of both sides yields the approximation: 

P(a) = 	+ Var(V) 	 L2- 	D/2-)1 	(A-4) 

where P(a) is the average of the individual probabilities 

and Var(V) is the sample variance of the values of the re-

presentative utility. That is: 

9,  

Var(V) = 	 (A-5) 

Equation A-4 states that the share predicted by the 

enumeration method is a'rroximately equal to the share pre- 

dicted by the direct aggregation method plus a correction 
	Li 

term which depends jointly on the sample variance of V and 

the value of the share predicted by the direct aggregation 

method. This approximation takes account of the four prop-

erties stated in Appendix B. 

Talvitie's method might be extremely valuable if its 

level of computational simplicity were about the same as the 

simplicity of the direct aggregation method. Unfortunately, 

this is not the case. 

Application of Talvities method requires a value for 

Var(V), and this normally cannot be derived from aggregate 

data. One might compute Var(V) directly from a sample, but 

doing so is no easier than estimating P(A) by applying the 

the logit equation to each data point and aggregating (the 

'random sample enumeration method"). Alternately, one can 

attempt to make use of the fact that, since V = a'X, where 

X is the vector of (differences in) the independent vari-

ables and a is the vector of coefficients, then Var(V) = 

a'Zo, where 2 is the matrix of sample variances and covari-

ances of (differences in) the independent variables. How-

ever, the analyst is unlikely to know the elements of 2, 

and to estimate is no easier than computing P(A). 

Even if the analyst had estimates of the variance and 

covariance terms supplied from another source, it is unclear 

as to how these might be adjusted intuitively to reflect the 

A-3 	 A-4 



particular aspects of the population being studied. For 

example, suppose one had a model, together with the variance 

and covariance terms, estimated on a New York City sample 

and one wished to use this model in an application for Los 

Angeles. Even if the coefiictents can be assumed to apply 

equally well to the two cities, it is likely that the vari-

ances of, say, transit in-vehicle time are different for 

the two cities. Furthermore, it is unclear how the vari-

ance estimated on New York data should be adjusted to re-

flect conditions in Los Angeles. We know that it should 

be increased, but there is no way to know how much. This 

difficulty severely hinders the ready application of 

Talvitie's method by persons not knowledgeable in statis-

tical theory. Furthermore, Reid (A2) has shown that this 

procedure can result in substantial error (even larger 

than the error resulting from the direct aggregation method) 

WESTIN'S METHOD 

A somewhat different aggregation method has been pro-

posed by Westin (P.3) . Viewing the (binary) logit equation 

Pt(A) = 	
(A-6) 

I+e 

as a transformation of Vt  to 	Westin reasons that if 

the distribution in the population of the values of Vt  were 

known, then the (population) distribution of the values of 

P(A) could be derived from the transformation given by 

Equation ?.-2. Once the distribution of P(A) is known, the 

A-5 

mean of that distribution is the exact aggregate share of 

alternative A. In order to obtain a distribution for V, 

Westin makes the assumption that the vector of independent 

variables, I, is multivariate normal with a mean vector p7  

and covariance matrix Z7. Then V= a'X is univariate normal 

with mean = a' 	and variance 	cx'Zo. The distribu- 

tion of V being known, the distribution of P(A) can be de-

rived, the mean of the P(A) distribution being the predicted 

choice share. 

The advantage of Westin's procedure is that, if the 

assumption that the independent variables are multivariate 

normal is true, the choice shares predicted by his method 

are exact, i.e., aggregation bias is completely eliminated. 

The disadvantages of his approach are many, however. First, 

the independent variables may well be non-normal, especially 

truncated variables such as income. Second, the analytical 

expression for the mean of the distribution of P(A) is in-

tractable and the mean must be computed by numerical inte-

gration techniques, a nontrivial computational exerrise. 

Third, and perhaps most important, the results have been 

worked out only for the binary case. Extensions to the 

multinomial case were not presented, nor is it clear that 

they may be readily derived. 

AGGREGATION WITH PROBIT MODELS 

McFadden and Reid (P.4) have applied Westin's procedure 

to the binary probit model. For an individual, the probit 

model yields the following probability 

A- 6 



= 	 (A-7) 

where P. is the probability of individual i selecting the 

first alternative, V. is the difference in the utility 

functions for the two alternatives, and t' is the standard 

normal distribution function. If, as both Westin and 

McFadden and Reid assume, V. is normally distributed, then 

the population proportion is given by 

J V 

	

P = 	 (A-8) 
1 + 

where P. and cy are defined the same as in Westin's method 

and P is the population proportion. 

Since the procedure is very similar to Westin's method, 

it shares many of the same properties. In particular, in-

formation on the variances of the independent variables is 

needed in estimating o. . (The probit example clearly 

illustrates how heterogeneity among individuals biases pre- 

	

diction. 	If individuals were the same, 4 = 0 and the 
direct method would yield the correct predictions.) Since 

information of this nature may be difficult to obtain, the 

practical usefulness of these methods has not been complete-

ly established. 

The probit method produces aggregate shares from a nor-

mal distribution. Since this distribution is more common 

than that resulting from Westin's method (the 55  distribu-

tion), the probit approach might be preferable on practical 

grounds. Since the binary probit and logit models yield 

A- 7 

almost identical probabilities, practical considerations 

are especially important in selecting the model. 

Bouthelier and Daganzo (A5) have extended McFadden and 

Reid's method to the case of multinomial probit. They have 

also demonstrated how existing or slightly modified probit 

software can be used in estimating probit models from aggre-

gate data, e.g., zonal data. Like the binary case, infor-

mation on the variance structure of the independent van-

ables is necessary in applying this method. 

THE RANDOM SAMPLE ENUMERATION AND MARKET 

SEGMENTATION APPROACHES 

The last two aggregation procedures to be described 

represent straightforward compromises between the complete 

enumeration method and the direct aggregation method. 

These procedures are the random sample enumeration method 

and the market segmentation approach. Although he makes 

no claim to being their originator, these methods have 

been researched most thoroughly by Frank Koppelrnan (A6, A7, AS) 

The random sample enumeration method is identical to the 

complete enumeration method except that, as its name implies, 

predicted choice probabilities are computed for only a sub-

set of the population being studied. Although the complete 

enumeration method was defined as taking the average of the 

predicted probabilities for all individuals in the population, 

in practice this is, of course, impossible and the average 

choice probability of all the individuals in the calibration 

sample is calculated. In the random sample enumeration 
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method, only a subsample of the calibration sample is 

used, or, if the model is being transferred, an entirely 

different sample is used. The rationale for the random 

sample enumeration method is that not all of the precision 

required for model calibration is necessary for prediction, 

and thus only a portion of the observations need be retained 

when applying a previously calibrated model. The drawback 

of this method is that it requires a disaggregate data set, 

albeit a comparatively small one, which may not always be 

available. 

A variation on the random sample enumeration method 

has been proposed as part of the Urban Travel Demand Fore-

casting Project at the University of California (A9) 

This approach involves the use of a computer model to 

generate a synthetic representative sample of households 

(SYNSAM) based on Census data and projections of population 

and economic conditions. Once the synthetic sample is 

provided, it is used for forecasting in a manner similar 

to an ordinary random sample. 

The last aggregation method to be discussed is the 

market segmentation or classification approach. This 

approach seeks to group the data into market segments so 

that the variance of V is minimized within any group and 

maximized across groups. Reducing the variance of V within 

any segment should reduce the aggregation bias that results  

when the model is applied to the means of the independent 

variables for that market segment. Aggregate choice share 

predictions are obtained by taking the weighted average of 

the probabilities of, say, choosing auto for the various 

market segments, where the weights are the segments' shares 

of all trips. For policy analysis, aggregate predictions 

are calculated for the baseline choice shares and then 

again after the policy variables have been changed. 

The motivation for using the market segmentation ap-

proach can be seen by considering what happens if this 

approach is followed to its logical extreme, i.e., if a 

market segment is created for each individual. At this 

extreme, the market segmentation approach and the complete 

enumeration method become identical. The Objective in the 

market segmentation method is to approximate this extreme 

case with a relatively small number of segments, the assump-

tion then being made that the trips and tripmakers within 

any one segment are not significantly different enough to 

affect the results. 

There is no a priori constraint on how the segments 

are to be defined other than the desire to create relative-

ly homogeneous groups. Any grouping which successfully 

achieves a reduction in the variability of V would be a 

satisfactory market segmentation. Koppelman (AlO) has 

shown that a successful first step in defining the market 
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segments is to group the observations into segments which 

are defined on the "relevance" of the various choices. 

Thus, in a binary (auto/transit) mode split example, an 

obvious initial segmentation would be to establish one seg- 

ment for trips taken by individuals whose households do not 

have an automobile available, another segment for trips 

taken by individuals who do not have transit available (i.e., 

there is no transit stop within a reasonable walking dis- 

tance) , and a third segment containing all other trips. 

The first segment would be assumed to choose only transit, 

the second only auto, and the model could be applied to 

the third segment to determine the mode split. 

To achieve further reduction in the variability of V 

within the segment whose members have more than one choice 

available to them, the best approach appears to be to de- 

fine the segments grouping the observations so that those observa- 

tions with approximately the same values of the independent 

variables are grouped together. Recall from the discussion 

of Talvitie's approach that the variance of V could be ex-

pressed as the (weighted) sun of the variances and covari-

ances of the independent variables. By grouping similar 

values of the independent variables together, we obviously 

reduce their variances and covariances within each group 

to levels less than the entire population. 

Reid (A2) developed a procedure for reducing the 

variance in V which involves a stratification based upon 

values on V. The advantage of this procedure is that it 

involves only the single composite variable V rather than 

several variables as is typical of segmentation based upon 

independent variables. However, since standard sources 

of aggregate data such as Census data do not correspond 

closely to the utility functions of travel demand models, 

this procedure may not be usable with many existing data 

sources. 

Koppelman's results (A6) indicate the market segmen-

tation approach performed about the same or slightly better 

than other methods. Selection of an aggregation method 

must also take into account ease of implementation. On 

this basis, the market segmentation approach again appears 

to be superior. It relies only on the relative size of 

the various market segments and the average values of the 

independent variables for each segment. These are fiqures 

for which the analyst is likely to have some intuitive feel 

(or hard data) with which to improve the transferability of 

the model from one application to another. Furthermore, the 

analyst may have some special interest in some of the market 

segments per se and the market segmentation approach allows 

him to observe the effect of various policies on each of the 

market segments. Thus, in addition to knowing the total 
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predicted effect of a proposed policy, the analyst can 

ascertain the extent to which various members of the 

population are likely to be affected. 

For the reasons outlined in the preceding paragraph, 

we have elected to design a market segmentation method for 

applying travel demand models. Our recommendations for 

the particular market segmentation scheme to be constructed 

are described in Appendix C. 

REFERENCES 

Al. Talvitie, Antti. 'Aggregate Travel Demand Analysis with 

Disaggregate or Aggregate Travel Demand Models." 

Proceedings of the Transportation Research Forum, Vol. 14, 

pp. 583-603, 1973. 

Reid, Fred A. "Minimizing Error in Iagregate Predictions 

from Disaggregate Models." Transportation Research 

Record, No. 673, pp. 59-65, 1978. 

Westin, Richard B. "Predictions from Binary Choice 

Models." Journal of Econometrics, Vol. 2, 

pp. 1-16, May 1974. 

McFadden, Daniel and Reid, Fred. "Aggregate Travel 

Demand Forecasting from Disaggregated Behavioral 

Models." Transportation Research Record, No. 534, 

pp. 24-37, 1975. 

Bouthelier, F. and Daganzo, C. F. "Aggregation with 

Multinomial Probit and Estimation of Disaggregate Models 

with Aggregate Data: A New Methodological Ppproach." 

Transportation Research, Vol. 13B, pp.  133-146, 1979. 

Koppelman, Frank S. "Travel Predictions with Models of 

Individual Choice Behavior." Unpublished dissertation, 

M.I.T., Department of Civil Engineering, May 1975. 

A-13 	 A-14 	 La 



APPENDIX B 

FINDINGS: TRANSFERABILITY AND AGGREGATION ISSUES 

IN APPLYING DISAGGREGATE DEMAND MODELS 

FINDINGS ON MARKET SEGMENTATION 

Despite their advantages disaggregate models of 

travel demand, logit or otherwise, have not been widely 

used by transportation planners. Aside from the relative 

novelty of the technique, there are probably two reasons. 

First, calibration of a disaggregate model requires the 

existence of a data set containing observations on individ-

ual trips. While the amount of data necessary is consid-

erably less than that collected by the massive household 

interview su:veys conducted in many cities over the past 

two decades, the task of collecting such a data set is a 

barrier to implementation if a new data set is required for 

each application. Researchers have hoped that regularities 

in the behavior of individuals would allow a- single model 

calibrated in one place at one time to be used in applica-

tions in other places and at other times, thereby making 

the calibration of new models unnecessary. However, evi-

dence on the transferability of disaggregate models, while 

still somewhat inconclusive, precludes the universal appli-

cation of a single model. 

The second obstacle to the widespread application of 

disaggregate behavioral models is the difficulty encountered 
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in using these models to make aggregate forecasts. Policy 

makers are usually interested in the total (i.e., aggregate) 

impact of their policies. For example, suppose a policy 

analyst wishes to use a logit model which related the 

probabilities of choosing auto and bus to the costs of 

traveling by these two modes to predict the effect on bus 

ridership of a systemwide bus fare increase. The obvious 

and simplest approach would be to use the urban area average 

values of auto cost and bus fare to predict the "before' 

and 'after" aggregate modal splits. Unfortunately, this 

approach will, in general, lead to erroneous forecasts, 

even if the model being used is the correct one for the 

population being studied. The most reliable approach is 

to use the values of cost for each individual in the affect-

ed population to predict the individual probabilities and 

then to sum these probabilities. The forecasts obtained 

by the disaggregate method will be more accurate than those 

obtained by the aggregate approach because, in technical 

terms, "the average of a nonlinear function is not equal 

to the function evaluated at the averages of the independent 

variable." The difference between the forecasts obtained 

by the two approaches is known as the "aggregation bias." 

Unfortunately, the disaggregate approach requires an ex-

plicit aggregation procedure, which substantially increases 

the complexity of the analysis. 

It is important to recognize that the aggregation 

problem is inherent in the prediction problem and is not 

a problem that arises because of the disaggregate approach. 

Aggregate approaches merely "sweep the problem under the rug" 

by ignoring the aggregation error. 

Appendix C develops procedures that enhance 

the applicability of disaggregate techniques by reducing 

the impediments to their widespread application imposed by 

the problems of transferability and aggregation. In devel-

oping such procedures, a choice must be made between design-

ing procedures that can be applied in a uniform fashion, 

regardless of the policy under consideration or the environ-

ment into which the policy is to be introduced, and proce-

dures that are customized to fit the situation at hand. 

The advantage of standardization is in ease of implementa-

tion while the advantage of customization is in the accu-

racy of the fit obtained in the individual cases. Since our 

primary interest is encouraging the application of disaggre- 

gate travel demand models, 	 standardized  

approach using market segmentation. Thus, we will propose 

procedures that will enable analysts to use market segments 

with disaggregate models to evaluate a wide range of poli-

cies with a minimum of input data and computations. To 

the extent possible, these procedures will be invariant to 

the particular policy application. 

U, 
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The findings presented in Appendix C use local 

transportation data and Census and other nationally avail- 

able data to construct "market segments. 	In some respects, 

the market segmentation approach to applying disaggregate 

models is very similar to the familiar cross-classifica-

tion" method of trip generation forecasting. (See U.S. 

Department of Transportation, Federal Highway Administra-

tation, (Bl)) . Both methods involve the constructing of 

tables (or cross-tabulation) where values of the variables 

thought to determine the relevant travel behavior are di-

vided into categories. The intersection of a single cate-

gory from one variable with a category from a second vari-

able (and possibly with a category from a third variable, 

a fourth variable, etc.) defines a 'cell or market segment. 

The purpose of the market segmentation approach is differ-

ent than that of the cross-classification method, however. 

In the latter method, the number of trips per household 

per day, for example, is assumed to be correlated with the 

variables defining the cells in some unspecified fashion. 

That is, households falling in a given cell are predicted to 

make a certain number of trips, with no explicit model 

which relates tripmaking behavior to the "explanatory" 

variables. In the market segmentation approach, on the 

other hand, the behavioral model is quite explicit and 

the cells are nothing more than a convenient way'ef dis-

aggregating the population so that the model may be applied 

The discussion of market segmentation is divided into 00 

three sections. The rest of this appendix describes in 

greater detail the transferability and aggregation problems 

encountered in applying logit models. Chapter Two reviews 

previous research into the transferability problems and 

details what can be learned from these studies. Appendix C 

outlines procedures for constructing market segments 

from local data, Census, and other national data sources. 

Appendix C also describes how market segments may be em-

ployed for policy evaluation with disaggregate models. For 

readers interested in pursuing an example, the Phase II 

report (B2) illustrates the procedures by employing them in 

an actual case study of the introduction of a park-and-ride 

facility in Baltimore, Maryland. Further analysis of this 

example is presented in Appendix C. 

TRANSFERABILITY AND AGGREGATION PROBLEMS IN APPLYING 

DISAGGREGATE DEMAND MODELS 

In Chapter Two, the mathematical formulation of the 

MNL model was derived. A crucial assumption is embodied 

in this formulation of the systematic portion of the util-

ity function, namely, the parameters B ,, k=1 ..... 1< and 

do not vary, across individuals. We are thus 

assuming that all individuals have the same systematic 

utility functions, or equivalently, that all individuals 

attach the same weights to the various observed choice 
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attributes and socioeconomic characteristics. Thus, we 

would predict that individuals with identical observed 

socioeconomic characteristics who face identical choice 

alternatives having identical observed attributes (a "homo-

geneous market segment") would all have the same probabili-

ties of choosing the various alternatives. All members of 

the homogeneous market segment will not make the same choice, 

however, because the actual choices are determined by the 

random, unobserved factors (the c,.t  component) 

Transferability Problems Due to Different "Representative 

Utilities" 

Potential violations of the assumption that all indi-

viduals share a common "representative utility' function 

(V.) are one possible source of the transferability problem. 

At one extreme, it can be assumed that there is just one 

representative utility for all of the trips made by all 

tripmakers. At the other extreme is the assumption that 

representative utilities vary from individual to individual, 

and, for a single individual, that they vary from trip to 

trip. Existing logit travel demand models have made, ex-

plicitly or implicitly, assumptions which fall between these 

two extremes. The most common assumption is that, for any 

given urban area, all trips made for a common purpose are 

made by individuals having identical representative utili-

ties. Thus we have Pittsburgh worktrip models, San Francisco  

shopping trip models, etc. There is fairly strong evidence 

that representative utilities are different for trips with 

different purposes. It is not clear, however, that the 

representative utilities for trips with the same purpose 

vary across urban areas. Indeed, the thrust of the trans-

ferability issue is provided by a desire to use models cali-

brated in one city as the basis for policy evaluation in 

other cities. 

We will use the following example to illustrate the 

potential for error when an attempt is made to transfer a 

model from one city to another when, in fact, the represen-

tative utilities for the two oities are different. 

Suppose the City X Transit Authority wishes to know 

the decline in bus ridership for worktrips to be expected 

following a proposed fare increase. Currently, 27 percent 

of worktrips are made by bus. We intend to use a worktrip 

modal split model calibrated on City Y to forecast the de-

crease in bus ridership. The City Y model gives the prob-

abilities of choosing the auto drive-alone mode (as an 

alternative to the bus passenger mode) as follows: 

P(A) 
= a 

1.0_0.2TA_ 10.0CA  

1. 0 _0.2 TA _ 	. 	A 
10 CC 	-0.2T -10.00 (B-l) 

 a 

where Z(A) is the probability of choosing auto and :A ,  T8 

CA and CB  are the travel times and costs of the auto and 
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bus modes. Equation B-i can be, and usually is rewritten 

in the equivalent form: 

	

ln(-f4-- = 1.0 - 0.2T - 10.0C 	 (B-2) 

where P(B) is the probability of choosing bus (and, in this 

binary example, is equal to 1-P(A)), and T_TA_TB  and C=C-C3. 

Suppose, however, that the true model for City X is 

	

= 1.0 - 0. 04T - 2. CC 	 (8-3) 

To avoid problems of aggregation bias, to be discussed 

separately below, assume that all of the workers in City X 

have round trip travel times of 20 minutes by auto and 30 

minutes by bus. Also assume that all round trip auto costs 

are $0.70. The current systemwide bus fare in City X is 

$0.25 (or $0.50 for a round trip) and the transit authority 

proposes to raise it to $0.40 ($0.80 round trip). Since 

all tripmakers have identical values for all of the inde-

pendent variables, the individual probabilities given by 

Equations 8-2 and B-3 are the same as the aggregate shares 

of the auto and bus modes. 

Table B-i 

THE TRANSFERABILITY PROBLEM: MODAL SHARES BEFORE AND 

AFTER BUS FARE INCREASE AS PREDICTED BY TWO MODELS 

(Hypothetical Data for Round Trips) 

Mode) 	 Before Bus 	After Bus 
Variables 	 Fare Increase 	Fare Increase 

Auto Time 	 20 minutes 	20 minutes 

Bus Time 	 30 minutes 	30 minutes 

Difference in Times 
(Auto minus Bus) 	 -10 minutes 	-10 minutes  

Auto Cost 	 $0.70 	 SC. 70 

Bus Cost (fare) 	 0.50 	 0.80 

Difference in Costs 
(Auto minus Bus) 	 0.20 	 -0.10 

Modal Shares Predicted bY Two Models (Dercent of worktrios) 

"Transferred" .lodel (Eq. B-2) 

Auto 	 73 	 98 

Bus 	 27 	 2 

"True" (Eq. B-3) 

Auto 	 73 	 83 

Bus 	 27 	 17 

Table B-i gives the results of this example. The ex-

ample was chosen so that both models would accurately pre-

dict the 'before" modal split, namely 73 percent for the 

auto drive-alone mode and 27 percent for the bus passenger 

mode. The "incorrect" model predicts a decline in bus 

ridership to 2 percent of worktrips, however, whereas the 

"true" model forecasts a fall to 17 percent. 
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of course, it is not surprising to find that applying and Ben-Akiva's 	(B4) earlier favorable finding on the trans- 

an incorrect model will lead to erroneous forecasts. 	Ad- ferability of models between cities. 

mittedly, the foregoing example was exaggerated somewhat to Whatever the differences or the reasons for them, the 

highlight the potential severity of the problem. 	Neverthe- possibility that not all residents of an urban area have 

less, differences in the ratio of the parameters of the identical representative utilities is certainly plausible. 

models in this example are of a plausible order of magni- We can illustrate the potential error that can result from 

tude in terms of the models which have been calibrated, incorrectly assuming a common representative utility with 

Thus, this example indicates that the errors associated with the worktrip mode split example that was used above, 

applying an incorrect model could be substantial. Assume now, however, that Equation B-2 gives the represen- 

In the foregoing example, all workers in City X were tative utility of half of the workers in City X (Group 1, 

assumed to share a common representative utility, and this say) , the representative utility for the other half 	(Group 

representative utility was different from the common repre- 2) being given by Equation B-3. 	Suppose that we have in- 

sentative utility shared by workers in City Y. 	The differ- 
correctly assumed a common representative utility and 

ence between the two representative utilities resulted in calibrated it to be an average of the two groups: 

the forecast error. 	Forecast errors will also result, how- ln 	P(A) = 	1.0 	- 	0.12T 	- 	6.00 	 (B-4) 

ever, if the assumption that all workers in City X share a Table B-2 gives the results of this example. 	Again, 

common representative utility is itself invalid. 	It may be, both the incorrect model and the true model correctly esti- 

for example, that workers with suburban residences have different mate the baseline modal shares prior to the-policy change. 

representative utilities from workers living in the city. 	A However, the model which incorrectly assumes that all 

reason for this might be that the choice of suburban living workers share a common representative utility predicts that 

is indicative of a certain type of lifestyle that has em- the bus fare increase will result in bus ridership falling 

bodied in it a valuation of the attributes of travel dif- to 6 percent of worktrips while the correct prediction is 

ferent from valuation associated with urban living. 	Talvitie a decline to 9 percent of worktrips. 	While the incorrect 

and Kirchner 	(B3) , 	in fact, concluded that work mode choice model does yield an erroneous forecast, this example in- 

models do not appear to be transferable within regions or dicates that the error associated with incorrectly assuming 

between cities. 	This finding is in contrast to Atherton 



Table B-2 

MODEL MISSPECIFICATION: MODAL SHARES BEFORE AND 
AFTER BUS FARE INCREASE AS PREDICTED BY TWO MODELS 

(Hypothetical Data for Round Trips) 

Model 	 Before Bus 	 After Bus 
Variables 	 Fare Increase 	 Fare Increase 

Auto Time 	 20 minutes 	 20 minutes 

Bus Time 	 30 minutes 	 30 minutes 

Difference in Times 	 -ID minutes 	 -10 minutes 
(Auto minus Bus) 

Auto Cost 	 $0.70 	 $0.70 

Bus Cost (Fare) 	 0.50 	 0.80 

Difference in Costs 	 0.20 	 -0.10 
(Auto minus Bus) 

Modal Shares Predicted by Two Models (Percent of Worktrips) 

Common Utility Model 	(Eq. 8-4) 

Auto 73 94 

Bus 27 6 

Group 	I 	Model 	(Eq. 	B-2) 

Auto 73 98 

Bus 27 2 

Group 2 Model 	(Eq. 	B-3) 

Auto 73 83 

Bus 27 l7 

"True Model" (one half of Group l's share plus one half of Group 2's shar) 

Auto 	 73 	 91 

Bus 	 27 	 9 

a common representative utility for all members of a group 	 C.' 

is substantially less than the error that occurs when a 

model calibrated on one group is applied to another group 

which has a representative utility different from the first 

group (under the conditions assumed in the example) 

The two types of forecasting errors we have described 

were both caused by a violation of the assumption that all 

individuals in the sample share a common representative 

utility. In the first instance, the error arises because 

individuals in the prediction group do not share the same 

representative utility as the individuals in the calibra-

tion sample. Therefore the model cannot be transferred 

from the calibration sample to the prediction group without 

modification. In the second instance, the error arises 

because all individuals within the calibration sample itself 

do not share a common representative utility. The second 

type of error, while very similar in origin to the transfer-

ability problem, is actually a type of aggregation bias 

which we will refer to as "aggregation misspecification." 

It would not arise if we calibrated separate models for 

properly delineated subgroups of the sample or if the model 

form itself were specified to account for "taste variations" 

in the population. 
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"Aggregation Bias" 

A second kind of aggregation error is due to the fact 

that all individuals do not share common personal attri-

butes or attributes of the choice alternatives. Unlike 

aggregate misspecification, this type of aggregation bias 

can arise even if we have correctly specified our model. 

It will occur if we attempt to use the model to make pre-

dictions for a group by simply inserting into the behavioral 

model the group means of the independent variables. The 

term aggregation bias" will be used specifically to refer 

to this type of error. 

As before, the potential for error can be described 

most readily with a hypothetical example. Assume that our 

(correctly specified) model for worktrip mode choice is the 

one given in Equation B-4, which we repeat here for conve-

nience. 

P(A) 
ln(T-j) = 1.0 - 0.12T- 6.00 

As in the previous examples, assume that all individuals 

face an auto time of 20 minutes, a bus time of 30 minutes, 

and an auto cost of $0.70, all for a round trip. Now 

suppose, however, that half of the workers live in an 

outer zone" where the bus fare is $0.50 ($1.00 for a round 

trip) and the other half live in an "inner zone" with a 

$0.25 bus fare ($0.50 round trip). 

If, for those individuals living in the outer zone, we 

replace the variable T in Equation B-4 with the value -10 

(auto time minus bus time for all individuals) and we re-

place C with the value -0.30 (auto cost minus bus cost for 

individuals residing in the outer zone) we get a mode split 

of 98 percent auto and 2 percent bus. Similarly, for indi-

viduals living in the inner zone, we replace T with -10 and 

O with 0.20 for a mode split of 73 percent auto and 27 per-

cent bus. Thus, the true mode split for the entire worktrip 

population is 86 percent auto(4(93 + 73) = 86) and 14 per-

cent bus (4(2 + 27) = 14). However, if we attempt to re-

place C with its population mean value of -0.05, again re-

placing T with -20, we get a predicted mode split of 92 

percent auto and 8 percent bus. Thus, replacing the inde-

pendent variables with their average values results in the 

baseline bus ridership being underestimated by upwards of 

50 percent in this example. A graphical illustration of 

the aggregation bias is given in Figure B-l. 

At this juncture, a few points regarding aggregation 

bias should be noted. First, although we posited the ex-

istence of different values for one of the independent 

variables, namely, bus fare, to illustrate the aggregation 

bias, the aggregation bias was due to "within-group varia-

tion' in the values of the difference of the variables 

(B- 5) 
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Figure B—i 

ILLUSTRATION OF AGGREGATION BIAS 
WITH HYPOTHETICAL EXAMPLE 
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Assume: 

(1) V = 1.0. 0.12T . 6.0C 

2) P(5) 

between the alternatives (auto minus bus, in our example) 

Thus, had the individuals living in the outer zone had a 

round trip auto cost of $0.80 while the individuals living 

in the inner zone faced a $0.30 round trip auto cost, 

there would have been no aggregation bias for the model we 

have assumed since all individuals would have had a value 

for the difference in costs of -0.20. 

Secondly, the heterogeneity in the differences cf 

the independent variables causes the aggregation bias by 

creating heterogeneity in the difference between the repre-

sentative utilities of the alternatives. If we suppress the 

t subscript from Equation B-5 and define V.. to be the 

difference between the representative utility of the ith 

alternative and the representative utility of the .5th al-

ternative (V.
t7
. = V-V.), then Equation B6 can be rewritten: 

1. 

1-V 
4 

 

E a 

= ci -V.. 
1 # 	S e 

=1 
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bias indicate an error in specifying or calibrat-

ing the model. Rather, it occurs because the model is 

nonlinear and thus the population probability of choice 

(i.e., the choice share) cannot be obtained by inserting 

into the prediction equation the population means of the 

independent variables. 

The shortcut approach to obtaining the aggregate 

probability by replacing the independent variables with 

their average values will be referred to as the "direct 

aggregation" method, sometimes called the "naive method." 

The correct approach of computing the probabilities of 

each individual in the sample and taking the average of 

these probabilities to obtain the aggregate probability 

will be referred to as the "complete enumeration method." 

Not only will aggregation bias usually lead to errors 

in estimating baseline choice shares, but it can also re-

sult in incorrect forecasts of policy effects. To continue 

with our current example, in which all workers have an auto 

time of 20 minutes, a bus time of 30 minutes, and an auto 

cost of $0.70, suppose the transit authority proposes to 

increase all fares by $0.05 (or $0.10 for a round trip). 

The effects of the bus fare increase as predicted by both 

the direct aggregation method and the enumeration method 

are given in Table B-3. The direct aggregation method 

predicts that bus ridership will fall by 43 percent of 

Ifl the binary case, with alternatives A and B, say, 

we have 

P(A) = -1--i 	 (B-7) 
14-a 

where we have dropped the subscript on V since, in the binary 

case, there is only one diffeLence between distinct alterna-

tives. It is the nonlinearity in the relationship between 

the probability of choice and the representative utility 

difference, as given in Equation B-6 (or B-7) , that causes 

the aggregation bias. Thus, in our last example, had the 

residents of the inner and outer zones had different values 

for travel time differences that exactly offset the hetero-

geneity in cost differences, so that all the heterogeneity 

in V had been eliminated, there would have been no aggre-

gation bias. The likelihood of such an event, of course, 

would be remote. 

Lastly, it should be emphasized that aggregation bias 

arises only because of a desire to use a shortcut method 

to make aggregate predictions. In no way does aggregation 

a' 
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Table 8-3 Table B-3 (Continued) 

AGGREGATION BIAS: 	MODAL SHARES BEFORE AND AGGREGATION BIAS: MODAL SHARES BEFORE AND 
AFTER BUS FARE INCREASE AS PREDICTED BY TWO METHODS AFTER BUS FARE INCREASE AS PREDICTED BY TWO METHODS 

(Hypothetical 	Data for Round Trip) (Hypothetical Data for Round Trip) 

Before Bus After Bus Modal Shares Predicted by Two Methods 	(Percent of Worktrips) 
Model 
Variables Fare Increase 	Fare Increase 

Group 	I 	("Outer Zone") Before Bus After Bus 

Auto Time 20 minutes 20 minutes Fare Increase  Fare Increase 

Bus Time 30 minutes 30 minutes Direct Aggregation Method (Eo. B-4) 

Difference 	in Times -10 minutes -10 minutes Auto 92 96 
(Auto minus Bus) Bus 8 

Auto Cost $0.70 $0.70 
Group 	I 	(Eq. B-4) 

Bus Cost 	(Fare) 1.00 1.10 
Auto 98 gg 

Difference 	in Costs -0.30 -0.40 
5 2 

(Auto minus Bus) 

Group 2 	(Eq. 3-4) 

Group 2 	("Inner Zone") Auto 73 83 
Auto Time 20 minutes 20 minutes 

Bus 

Bus Time 30 minutes 30 minutes 
27 17 

Difference 	in Times -IC minutes -10 minutes Enumeration Method 

(Auto minus Bus) (1/2 Group I 	& 	1/2 Group 	2) 

Auto Cost $0.70 $0.70 Auto 86 91 

Bus Cost 	(Fare) 0.50 0.60 Bus 14 9 

Difference 	in Costs -0.20 0.10 

(Auto minus Bus) 

Table continued on fol lowing page. 
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present (before) ridership (from 8 percent of all work-

trips to 4 percent to worktrips) whereas the complete 

enumeration method predicts a decline of 38 percent (from 

14 percent of worktrips to 9 percent) 

Some general properties of aggregation bias have been 

shown by Frank S. Koppelman (B5) to hold under certain 

conditions: 

For any pairwise comparison of alternatives, the 

aggregation bias will result in the share of the dominant 

mode being overpredicted. Thus, in our worktrip mode 

split example, since the average value of V (i.e., V) is 

greater than zero, the direct aggregation method predicts 

a higher auto share (and lower transit share) than that 

predicted by the enumeration method. If V had been less 

than zero, so that transit had been the dominant mode, the 

naive method would have predicted a higher bus share (and 

lower auto share) than the enumeration method. 

The aggregation bias will be greater, all other 

things equal, when the average representative utility dif-

ference falls in the more highly curved portions of the 

logit function, roughly the range from V = -2 to V = -1 

and V = 1 to V = 2. 

The aggregation bias increases, all other things 

equal, with an increase in the variability of V. Thus, in 

our worktrip mode split example, if the different bus fares  

in the 'inner' and 'outer' zones had been further apart 

(say, $0.30 per round trip fare in the inner zone and $1.20 

per round trip in the outer zone) the errors in the fore-

casts caused by aggregation bias would have been even 

larger. 

Using "before fares of $1.20 and $0.30 for the outer 

and inner zones, respectively, and fares of $1.30 and $0.40 

as the "after" fares, the "before" and "after" modal shares 

calculated by the direct aggregation method are the same 

as in our original example since the average 'before' and 

"after" fares are still $0.75 and $0.85, respectively. 

However, the "before modal shares as predicted by the enu-

meration method are now 72 percent auto and 28 percent 

bus, and the "after" shares are 80 percent auto and 20 per-

cent bus. Thus, the decline in ridership is 27 percent of 

the prefare increase riders}p (versus a decline of 43 percent 

predicted by the direct aggregation method) . As can be 

seen, the error due to aggregation bias has increased with 

increased variation in V. 

The direct aggregation method is not a "consistent' 

estimator of the choice shares. That is, the aggregation 

bias will, in general, remain even if the sample size be-

comes infinitely large. Thus, the result in the example 

above is the same if the number of trips originating in 

each of the two zones is 100 or 1,000. 
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C., 
00 Having described the nature of the transferability 

problem and of aggregation bias, and having illustrated 

their potential magnitudes with very hypothetical examples, 

it should be noted that there is some evidence from Frank 

S. Koppelman (B6) that, for many practical applications, 

the magnitude of the aggregation error is not large when 

compared to other sources or error in model estimation and 

application (such as errors in data and model misspecification). 

This finding suggests that a simple technique for eliminating 

much of the aggregate bias would have much to offer. In 

Appendix C, we present such an approach. 
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APPENDIX C 

FINDINGS: GUIDELINES FOR USING THE MARKET 

SEGMENTATION TECHNIQUE WITH CENSUS DATA 

PROCEDURES FOR CONSTRUCTING MARKET SEGMENTS WITH CENSUS DATA 

In Appendix A, various proposed methods of aggregating 

logit travel demand models are compared. Based upon this 

analysis, it appears that the market segmentation approach 

is a promising one for developing standardized procedures 

to be used by local planners in applying logit models. In 

this appendix, general methods for constructing market seg-

ments are presented. The reader is referred also to Charles 

River Associates (Cl) and Dunbar (C2) 

The discussion -in this :ppendix is designed to be gen-

eral. Some readers may be confused by the sometimes com-

plex notation required for a general discussion. Those 

readers should refer to the rhase II interim report (C3) 

for an example of market segmentation to forecast park-and-

ride demand. Further analysis of the park-and-ride example 

is presented at the end of this appendix. 

The market segmentation approach consists of construct-

ing a cross-tabulation, where the variables defining the 

cells in the cross-tabulation are the independent variables 

(or proxies for them) in the model being applied. Each of 

the cells (or market segments) must specify that segments 

share of all trips being modeled and that segments aver-

age values of the independent variables in the model (for  

all of the alternatives) . The effect of a policy is eval-

uated in two steps. First, for each segment, the independ-

ent variables in the model are replaced with their average 

values to obtain the baseline choice shares for the segment. 

The aggregate baseline choice shares are obtained by computing 

a weighted average of these choice shares, where the 

weights are the segment shares. The second step is simply 

a repeat of the first step except that the independent 

variables are adjusted to reflect implementation of the 

policy. The effect of the policy is given by the differ-

ence between the aggregate choice shares calculated in 

the second step and those calculated in the first step. 

In this appendix we describe methods by which the data 

required for constructing market segments may be assembled. 

In the situation where the policy induces only a small 

change in the choice shares, this procedure (of taking the 

difference of before and 'after" choice shares) may not 

sufficiently eliminate the aggregation bias. In these 

situations, it is better to use the market segments to cal-

culate an aggregate slope of the logit function with re-

spect to the policy variable and to use this slope to cal-

culate the (small) change in the aggregate choice shares. 

The aggregate slope is calculated in the same manner as 

the aggregate baseline choice shares, except that, in each 

segment, the choice shares are replaced by the slope of 
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the logit function for that segment. The method by which 

logit slopes are calculated and used to predict small 

changes in choice shares will be described below. 

The market segmentation scheme will employ the follow-

ing definitions. A "homogeneous market segment" is a group 

of individuals with identical observed explanatory variables 

and parameters, i.e., possessing identical "representative 

utilities." A "market scheme" is a cell defined by a range 

of the explanatory variables chosen so that the variability 

of the representative utility (and thus aggregation error) 

is minimized (see Appendix A) . The "cell frequency" is 

the probability that a random individual falls in a partic-

ular market segment. The "market share" is the predicted 

probability that a given alternative is chosen, contingent 

on the particular market segment. 

Models to be Applied with the Market Segmentation Approach 

It is, of course, impossible to describe a particular 

market segmentation scheme to be followed in evaluating 

travel demand policies without first specifying the dimen-

sions of travel demand behavior that are the subject of 

analysis and the model to be used in performing the analysis 

There are five choice dimensions in urban travel demand 

which might, at one time or another, be of concern to local 

planners. These five dimensions are 1) the number of trips; 

2) the time of day at which they occur; 3) their origin  

and destination, 4) their mode, and 5) their route. The 

first, third, fourth, and fifth of these dimensions corre-

spond approximately to the conventional urban transportation 

planning package trip generation, trip distribution, modal 

split, and trip assignment, respectively. The second di-

mension, that of the time of day of tripmaking, is obviously 

of concern for the design of peak capacity of facilities 

and thus should be added to the dimensions of travel demand 

in the conventional planning package. Of these five dimen-

sions, it is anticipated that disaggregate models capable 

of predicting tripmaking responses with respect to the 

first four will be desired by local planners. While there 

are many urban transportation problems which have as their 

primary, if not sole, concern the selection of routes, the 

route choice problem is beyond the scope of the present 

analysis. 

Furthermore, since the models most likely will be 

short-run models, in which the locations of residences, 

workplaces, and business establishments are taken as given, 

the trip distribution dimension of travel demand choices 

will be limited to the selection of a destination for dis-

cretionary trips (i.e., trips in which the tripmaker can 

make short-run choices from among alternative destinations, 

such as the choice of which store to patronize on a shop-

ping trip). In particular, changes in land-use or other 
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long-run factors affecting origin-destination patterns will 

be ignored. 

Destination Choice Models. The problems associated with 

destination choice deserve further comment. A desirable fea-

ture of a method of applying logit models is that the method 

be equally appropriate for policy analysis at the level of the 

entire urban area or at any subarea (e.g., corridor) level. 

Unfortunately, this feature is not present in the market seg-

mentation approach with respect to destination choice. In 

general it is impossible to specify the destination alterna-

tives for all trips regardless of where they originate in the 

urban area. However, if the area level of analysis is confined 

to only a small portion of the urban area, such as a traffic 

zone or a corridor, then the analysis of destination choice 

becomes much more tractable. For this reason, the market seg-

mentation procedures to be described w:1l be primarily applic-

able to policies that affect only part of an urban area, 

although those procedures not related to destination choice 

can also be applied to the entire urban area. 

Model Specification. Because the independent variables in 

the model are used as the classifying variables in constructing 

market segments, it is necessary to specify the model to be 

used before a market segmentation scheme can be outlined. 

The analysis will assume the general form the models are  

likely to take and the important variables they probably 

will contain. 

The primary issue to be resolved before the design of 

a market segmentation scheme can begin is the decision 

whether to use a joint or separable model for nonwork trips. 

A joint model gives the probability that an individual will 

choose a combination of travel demand alternatives as a 

function of the level-of-service attributes of the various 

combinations of alternatives and socioeconomic variables. 

For instance, a joint model for discretionary trips might 

give the probability that an individual will choose a par-

ticular mode/time of day/destination combination as a 

function of socioeconomic variables and the times and costs 

of traveling by various modes at various times of day to 

various destinations. 

In a separable model, the alternatives enterino any 

equation are limited to a single dimension of travel demand. 

This is done by forming a sequence of conditional equations. 

For example, one of the equations in a separable model 

might give the probability of choosing a particular mode 

conditional on a trip being taken and on the choice of a 

particular time of day and destination. The choice of 

mode would be a function of only the times and costs of 

taking the various modes at the given time of day to the 

given destination (plus socioeconomic variables) . Another 
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types of models would impose equivalent computational burdens 

on a market segmentation scheme. However, if the policy analyst 

is only concerned with one or two of the choice dimensions, 

then the separable model offers the possibility of substantially 

reducing the computations involved by reducing the number of 

market segments required to minimize heterogeneity in the 

independent variables. 

For example, suppose an analyst is interested in making 

revenue projections for a proposed transit fare change. He or 

she is only interested in the effect on ridership of the fare 

change (and thus does not care about time of day or destination 

effects) . Furthermore, the analyst believes the trip generation 

effects of the change will be trivial. With an appropriately 

structured separable model, an analyst could obtain the pro-

jection by constructing market segments for modal alternatives 

only. With a joint model, on the other hand, the analyst would 

still have to perform all of the computations required for an 

analysis of all of the choice dimensions and then sum across the 

irrelevant dimensions to get the modal effects. Thus, the 

separable approach offers the potential, in certain circum-

stances, of sizable savings in computational effort while being 

no less general in its range of possible applications. 

of course it should be recognized that a forecast based on a 

model which only considers one dimension of travel choice will not 

capture the 'secondary' effects of a proposed policy change or 

system alternative. For instance, these secondary effects could 

equation in the same separable model might explain the 

choice of a particular time of day conditional on a trip 

being taken and on the choice of a particular destination 

but not conditional on mode. In such an equation the 

time of day choice would be a function of the times and 

costs of traveling at the various times of day to the 

given destination by all of the available modes. Still 

another equation in the same separable model would give 

the probability of choosing a particular destination 

conditional on a trip being taken, but at any time of day 

by any of the available modes. The final equation in this 

separable model would give the probability of taking a 

trip to any destination, at any time of day and by any 

mode. 

There has been considerable controversy over which of the 

two types of models, joint or separable, is preferable. 

It is not our intention to enter into the controversy here. 

On-an empirical basis, both types appear to perform ade- 

quately. Both may be derived from the same behavioral 

assumptions. Thus, for the purpose of constructing market 

segments, selection between them hinges on the determination 

of which lends itself more readily to applications using 

market segmentation. On this basis, the separable approach 

apparently is preferable. For applications involving the 

full range of travel demand choice dimensions, the two 
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be a change of destination in response to a fare change. 

Here, a fare change would not only stimulate a mode 

shift for some individuals, but also would affect the 

choice of destination. Forecasting the effect of the 

policy change with only mode choice conditional on 

destination (P(M/D)) would not reflect the change in desti-

nation. However, such secondary effects will be trivial in 

many applications. Therefore, the market segmentation scheme 

described here will be based upon the assumption that a 

separable model for nonwork travel will be used. In particular, 

it will be assumed that the separable model will follow the 

sequence: 1) mode given time of day, destination, and fre-

quency; 2) time of day given destination and frequency; 

3) destination given frequency; and 4) frequency. 

For the sake of brevity, however, this appendix addresses 

only the segmentation scheme for mode choice. Readers 

interested in an example of a separable model of choice which 

includes destination, should see the Phase II interim report 

for Project 8-13 (C3) 

The last issue to be resolved before outlining the 

market segmentation procedure is the specification of 

which variables are to be included in the models and which 

are to be used in defining the market segments. The  

market segmentation scheme described here will be based on 

variables included in models which have already been cali-

brated. Any substantial modification to these models, or 

the use of entirely different models, can be expected to 

require corresponding modifications to the market segmenta-

tion scheme. 

In the discussion that follows, all trips are expressed 

in terms of "round trips." Furthermore, variables are ex-

pressed in current monetary units. These must be inflated 

or discrepancies in the value of money over time must other-

wise be accounted for when applying the models. 

Market Segments for Mode Choice 

Modal split equations for both work- and nonwrktri.ps 

generally include, as level-of-service variables, cost, 

walk time, and measures of wait and linehaul time for each 

of the modal alternatives. The most likely candidate for 

socioeconomic variables in the mode split equations are 

household income and a measure of household automobile 

availability, e.g., the number of automobiles per licensed 

driver. 

Assuming that the variables just listed are the 

variables included in the mode split equations, a 36-cell 

segmentation has been developed for the application of the 

mode split models. These 36 cells are defined by a four- 



way cross tabulation. The four classifying variables are 

trip distance (two categories) , distance from home to public 

transportation (three categories) , income (two categories) 

and auto availability (three categories, for a total of 

2 X 3 X 2 X 3 = 36 cells). 

Trip distance was chosen as a classifying variable 

because it is highly correlated with auto operating costs 

and linehaul times and is also correlated, althouqh not 

so closely, with transit times and costs. The two cate-

gories of trip distance would be, not surprisingly, short 

trips and long trips, where any convenient measure of 

central tendency is used to separate the categories. The 

most convenient measure is probably average trip distance, 

although median trip distance probably is slightly more 

appropriate. 

Distance from home to transit was selected as the 

proxy for walk time that is most likely to be available. 

Clearly, modes other than transit with walk access have 

walk times associated with them, and walking is likely to 

be required at the nonhome end of a transit trip. However, 

it is felt that walk times are far more important for 

transit trips than other modes and that data on the dis-

tribution of trips by distance from transit stop to work-

place or shopping location would rarely, if ever, be avail-

able. A reasonable segmentation on distance from home to  

to transit would be: 1) less than three blocks; 

2) three to six blocks; and 3) more than six blocks. A 

block is assumed to be one twelfth of a mile. 

Income and auto availability were selected as classi-

fying variables because research to date indicates that 

they are significant in explaining mode choice behavior. 

Income would be divided into high-income and low-income 

categories. Although some measure of central tendency could 

be used to define the two income categories, the analyst 

may want to break the categories at a relatively low value 

of income in order to observe the impact of transportation 

policies of the poor. 

The three categories of automobile availability are 

as follows: 

Zero automobiles per driver, indicating a restric-

ted choice set for mode; 

Detween zero and one automobiles per driver, in-

dicating competition within the household for the use of 

automobiles; and 

One (or more, although few households have more 

than one) automobile per driver, indicating no competition 

for the use of the automobiles. 

The proposed market segmentation scheme is illustrated 
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in Figure C-i. The market segmentation illustrated in 

Figure C-i will be referred to as the mode spiit (market) 

segmentation. This segmentation is intended to provide 

reasonabie detail necessary for most appiications. In-

deed, for many applications substantially less detail may 

be sufficient. Circumstances in which the full 36-cell 

segmentation is likely to provide greater accuracy than 

necessary are given below. 

The entries required for each of the cells in the 

mode split market segmentation scheme given in Figure C-i 

are the percent of all trips that fall within the cell and 

the cell's average value (for each mode) of the independ-

ent variables. If such data are available directly from 

a survey conducted for the analysis, clearly these data 

should be used. If not, estimates can be derived from 

other sources. At every step where data on local condi-

tions are needed, we propose alternative reasonable values 

which may be assumed for forecasting purposes if necessary. 

We now describe a procedure by which data on cell frequen-

cies may be obtained from data sources likely to be access-

ible to planners in all urban areas. The procedure consists 

of the following four steps: 

1. Use Census data to determine the percent of house-

holds falling in each income and auto ownership market 

segment; 

Figure C- 

PROPOSED MARKET SEGMENTATION FOR MODE SPLIT ANALYSIS 

Less Than Three Blocks from 
Home to Public Transportation 

Automobile Availability 
(Automobiles per Driver) 

Zero Between Zero 	 One 

and One 	 (or pore) 

Short Long Short Long 	 Short 	Long 
Trips Trips Trips Trips 	 Trips 	Trips L 

Income 
Less 
Than $X 

Income 
More 
Than $X 

Three to Six Blocks from 
Home to Public Transportation 

Automobile Availability 
(Automobiles per Driver) 

Zero Between Zero 	 One 
and One 	 (or More) 

Short Long Short 	Long 	 Short 	Long 
Trips Trips Trips 	Trips 	 Trips 	Trips 

Income 
Less 
Than $X 

Income 
More 
Than $X  
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Figure C-1(Contjnued) 	 2. For each income group convert data on household 
(71 

PROPOSED MARKET SEGMENTATION FOR MODE SPLIT ANALYSIS 	 auto ownership to data on autos/driver using the Nation- 

wide Personal Transportation Study (NPTS) or eouivalent 

local data; 
More Than Six Blocks from 
Home to Public Transportation 

Automobile Availability 
(Automobiles per Driver) 

Zero Between Zero One 
and One (or More) 

Short Long Short Long Short Long 

Trips Trips Trips Trips Trips Trips 

Income 
ess 
han $X 

Income 
ore 
han $X 

Using NPTS and local data, determine percent of 

households in each category of transit access for each 

income and autos/driver market segment, and 

Using NPTS or local data, determine the percent 

of trips (both short trips and long trips) for each transit 

access -- income -- autos/driver market segment. 

More specifically, the steps are as follows. 

1. Distribution of Households by Income and Number of 

Ifan areawide policy is being evaluated, the joint 

distribution of households by income and auto ownership 

for the entire area can be obtained directly from Census 

data. In particular, Table H050 from the Sixth Housing 

Summary Tape of the 1970 Census of Population and Housing 

is a four-way cross-tabulation of number of households by 

11 categories of income by four categories of number of 

automobiles available (zero, one, two, and three or more) 

by four categories of race of household head by two cate-

gories of housing tenure. (As the 1980 Census data became 

available, they would be used in place of 1970 Census data.) 
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Table H050 is available for each SMSA and for each county 

within an SMSA having a population of 50,000 or more persons 

The selection of geographic area for which the table should 

be obtained depends on the locale of the policy action 

being contemplated. 

A table equivalent to Table H050 is not published for 

Census tracts and must be estimated for the subarea. The 

Census Bureau has tabulated both the marginal (one-way) 

distribution of households by income category and the 

marginal distribution of households by number of autos 

owned for every Census tract. The marginal distribution 

of households by number of autos owned is published in 

the "Census Tracts" publications of the Census Bureau (C4) 

This marginal distribution also is available from Table 

H17 of the Fourth Count Housing Summary Tapes. 

The marginal distribution of households by income is 

available from Table H117 of the Fourth Count Tapes. The 

"Census Tracts" volumes contain an income distribution of 

families, not households, which can serve as a proxy if 

the Fourth Count Tapes are not available. The biggest 

discrepancy between the income distribution of families 

and that of households is that the latter includes data on 

single person households (and households containing only 

unrelated individuals) , while the former does not. Income 

data on unrelated individuals, combined with data on the  

number of single person households, may be used to reduce 

the discrepancy. 

The marginal income and auto ownership distributions 

are used as control totals to adjust the cell frequencies 

in an income by auto ownership cross-tabulation. The ad-

justed cell frequencies serve as the estimates of the 

joint income-auto ownership distribution. The cell fre-

quencies from Table H050 or equivalent data on a similar 

population can be used to account for the fact that auto 

ownership and income are dependent. The adjustment process 

assumes that the dependence between auto ownership and in-

come for the Census tract is similar to that of the larger 

area. 

The adjustment procedure suggested by Johnson (CS) is 

as follows. We start with the situation illustrated in 

Table C-i, which represents an overlay of two tables. One 

table, the combination of Tables H17 and H117, does not 

have the percent of households for the specific combina-

tions of income and automobile availability. The other table, 

Table H050, contains the missing entries but these entries 

are for a geographic area different from the policy appli-

cation area. (All cell frequencies have been converted to 

percents.) In general, we would not expect the X''s in 

any one of the row total cells (or Xe's in any of the col-

umn total cells) in Table B-2 to be equal to the Y or Z) 
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Table C-i 

OUTPUT OF FIRST THREE STEPS IN PROCEDURE FOR CONSTRUCTING 

MARKET SEGMENTS FOR MODE SPLIT ANALYSIS 

(Entries are Percent of Households) 

Number of Automobiles Available 

Income Zero One Two 	Three or more Total1  

Less than $2,000 x X X X XR,Y 

$2,000 to $3,999 X X X X XR,Y 

$4,000 to $5,999 X X X X XR,Y 

$6,000 to $9,999 X X X X X,Y 

$10,000 to $14,999 x x x x 

$15,000 to $24,999 x x x x xR,y 

$25,000 or more X X X X XR,Y 

in the same cell since these figures are for different 00 

geographic areas. However, it is the Y's (or Z's) that 

are the correct figures for the policy application area. 

In order to get the X's in the body of the table to sum 

to the Y row totals and Z column totals, one first multi-

plies each of these X's by the quotient Y/X' for the row 

in which the X is contained. Let us label the result of 

this multiplication X1  (i.e., X1  = (Y/x1 ) 	X). Although 

the sum of the X1's in any row now will be equal to Y for 

that row, we still would not expect the sum of the X1's in 

any column to be equal to the Z for that column. Thus, the 

X1's next are multiplied by Z/X1, where 	denotes the sum 

of the cells in a column. Let X2  be the product: X2  = 

(Z/EX1)X1. Now, for the X2's, the column sums agree but 

the row sums are off again, although not as far as they 

were initially. This process of multiplying the entries in 

Total 	 X ,Z 	XC,Z 	XC,Z 	Xc,Z 	 100.00 	 each row by the quotient of the desired total for that row 

'The"X's" indicate entries available from Table H050 or some other 
source, the Ys indicate entries available from Table H117, and 
the Zs' indicate entries available from Table H17. The superscript 
"R on the"X's" indicates a row total and the superscript C 
indicates a column total 

divided by the actual sum of that row, then using the result-

ing entries to do the same for each column, then using these 

results for each row again, will eventually lead to the sum of 

the entries converging to the desired row and column totals 

(within any specified tolerance range) . in most cases, about 

six iterations should be sufficient. (An iteration is one 

series of multiplications to bring row sums into line followed 

by a series of multiplications to bring column sums into line.) 
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Simple BASIC computer programs to perform these calculations 

can be and have been written to facilitate computation. 

2. Distribution of Households by Income and Autos/Driver 

The preceding step results in a distribution of households 

by income and number of autos, not autos per driver. If a 

three-way cross-tabluation giving the count of households for 

each income-auto ownership-number of drivers category were 

available, the derivation of the income-autos per driver dis-

tribution would be straightforward. The percent of low (high) 

income-zero autos per driver households is simply the sum of the 

three-way cell frequencies for all low (high) income-zero autos 

cells. The percent of households with low (high) income and 

between zero and one autos rer driver is the sum of the three-

way cell frequencies for low (high) income households with one 

auto and two or more drivers, etc. Likewise, the percent of 

households in the low (high) income-one auto per driver segment 

is the sum of three-way cell frequencies for low (high) income 

households with one auto and one driver, two autos and two 

drivers, etc. 

Unfortunately, three-way cross-tabulations giving cell 

frequencies of households for income by auto ownership by number 

of drivers categories are not often available for a particular 

subarea and the cell frequencies must be estimated. The cell 

frequencies are estimated by multiplying the joint distribution 

of households by income and auto ownership (the output of Step 1 

above) by a conditional distribution of number of drivers,  

given income and auto ownership, obtained for a different, but 

similar, population. Data from the Nationwide Personal 

Transportation Study (NPTS) (C6) may be used for this purpose. 

The NPTS was conducted by the Census Bureau for the Federal 

Highway Administration in 1969. This survey sampled 6,000 

households across the country and obtained data on: 1) the 

number of trips taken on the day prior to the survey day; 

2) the purpose, mode, travel time, and distance of each 

trip taken; 3) the distance from home to public transpor-

tation; and 4) household socioeconomic characteristics in-

cluding income, number of automobiles available, and number 

of licensed drivers in the household. 

The required conditional distribution is computed 

from a three-way (income by auto ownership by number of 

drivers) count of households from the NPTS data. This 

three-way cross-tabluation can be restricted to those living 

in an urban area of a particular size, living in a particular 

region of the country, or living in the central city (or 

suburbs) of the urban area. Thus, data for a similar 

population are used. When the estimated cell frequencies 

for the three-way table for the application area are ob-

tained, the computation of the income-autos per driver segment 

shares proceeds as described above. 

3. Distribution of Households by Transit Access, 

Income, and Autos per Driver 

The marginal distribution of households by distance 

to public transportation is very city-specific, i.e., 
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00 
0 cities differ in the layout of their transit routes and in 

the spatial distribution of the population. Even within a 

single urban area, the different parts of the area vary in 

the accessibility of transit. Thus, the best approach to 

computing the percent of households living within each 

access to transit category is by reference to transit maps 

or an actual household survey. The contour lines for each 

transit access category around the transit routes are drawn 

on the maps. If the spatial distribution of the population 

is approximately uniform, then the percent of population 

in each transit access segment is simply the area between 

the relevant contour lines. If the spatial distribution 

of the population deviates severely from uniformity, then 

block population statistics, available from U.S. Census 

Publications (C7), may be superimposed on the map and the 

population in each transit access segment enumerated. 

The joint distribution of transit access with the 

other segmentation variables could be derived by assuming 

independence. However, an improved approach would be the 

combination of local data on the marginal distribution 

of transit access with national data on the conditional 

distribution of households by access to transit, the joint 

transit access-income-autos per driver distribution may be 

estimated by multiplying the marginal transit access dis-

tribution by a conditional distribution of the percent of  

households in each transit access category, given income 

and autos per driver. The conditional distribution should be 

for a similar population and can be obtained, for example, 

from the NTPS (C6) data by constructing a three-way cross-tabula- 

tion of the percent of households by transit access, income, 

and autos per driver. 

4. Distribution of Trips by Trip Distance, Transit 

Access, Income, and Autos per Driver 

The completion of Step 3 above results in a probability 

for a household falling in a given transit access, income, 

and autos per driver cell. The household distribution is con- 

verted to a trip distribution by use of trip generation 

rates in each cell. We multiply the percent of households 

in each cell by a pair of households to trips scalars (one 

for long trips, one for short trips) that are unique for 

each segment. Local data on the expected number of short 

and long trips per household for the appropriate purpose 

are desirable. Rates can be estimated from the NPTS data 

by counting the number of short work trips, for example, in 

each market segment (a cell in the three-way cross-tabula- 

tion using transit access, income, and autos per driver as the 

classifying variables) and dividing this number of trips 

by the number of households, and likewise for long work 

trips. When this has been done for all market segments, 

the result will be the required joint distribution of 
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trips by trip distance, transit access, income, and autos per 

driver. 

Determination of Values of Explanatory variables for 

Market Segments 

In the above four steps, a procedure for computing the 

percent of trips in each market segment was presented. Ap-

plication of the market segmentation technique also requires 

data on the average values of the independent variables for 

each segment. The average income for all low income house-

holds can be computed from Census data. The problem is 

that we need the average income of tripmakers, not house-

holds. If necessary, the household income of low income 

families can be assumed to be the same as the trip weighted 

average income of tripmakers from low income families. 

Furthermore, the trip weighted average income for trips 

by low income persons can be assumed to be invariant across 

the different categories of transit access, autos per driver, 

and trip distance. Clearly, neither of these assumptions 

is strictly true, but the error they introduce is unlikely 

to justify the effort required to relax them. 

Similar to the assumptions made about average income, 

the average value for transit access distance can be 

assumed to vary only across transit access categories --

not across income, trip distance, and autos per driver cate-

gories for a given transit access category -- and to be  

the same on a trip-weighted basis as on a household-weighted 

basis. The average on a household-weighted basis can be 

computed from the contour lines described in Step 3 

above. 

There is probably little error in assuming the average 

values of autos per driver to be 0, 0.5, and 1 for the zero, 

between zero and one, and one autos per driver categories re-

spectively. However, more precise estimates may be obtained 

by calculating the short and long trip-weighted average 

within each cell of the three-way (transit access, income, 

and autos per driver) cross-tabluatiOn of NPTS data. 

Methods for obtaining average trip distance depend on 

the policy being evaluated. If it is a policy that affects 

trips being taken to all destinations in the urban area, 

then average trip distances for trips of the appropriate 

purpose in cities of the appropriate size can be obtained 

from NPTS data. Again, it is of questionable value to 

obtain separate averages for the different categories of 

income, transit access, and autos per dirver. If the policy 

only affects some trips, then average trip distances must 

be computed on the basis of local knowledge about the trip 

patterns of the affected trips. 

The averages just described are used to estimate the 

average values of the variables in the mode choice model 

(cost, walk time, wait plus linehaul time, income, and 
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autos per driver) as follows. The averages of income and auto-

mobiles per driver are direct inputs to the model. The 

average walk time for the transit with walk access mode can 

be calculated by multiplying the average distance from home 

to public transportation (which is given in blocks) times 

1/12 (twelve blocks to the mile) and multiplying this result 

times an assumed walking speed of 19 minutes per mile. This 

result is then doubled to give the walking time of the com-

bined outbound and return trip. Average operating cost 

for the auto modes can be calculated by multiplying average 

trip distance (given in miles) by $0.035, which was calcu-

lated to be the national average of automobile operating costs 

in 1969 (see U.S. Census (C8)) . Doubling this result gives the 

auto cost of a round trip. Local planners probably can pro-

vide precise data for their urban areas for round trip 

transit fare. For the auto modes, auto travel times depend 

on roadway trip distances, and trip distances are available 

in the local data. Transit travel times are not nearly so 

closely correlated with trip distance, however. It would 

probably be best, therefore, if data on average transit 

times were specified by the local planners, although these 

data could be related to trip distance if necessary. If 

transit travel times are obtained by relating the transit travel 

times reported in the NPTS (C6) data to the trip distances, 

then the estimated walk times must be subtracted from the 

reported travel times before the relationship is computed. 

PROCEDURES FOR EMPLOYING THE MARKET SEGMENTATION APPROACH 	 00 

IN THE APPLICATION OF LOGIT TRAVEL DEMAND MODELS 

The preceding section of this paper described the con-

struction of market segments that can be used in making 

aggregate predictions of policy effects with disaggregate 

travel demand models. In this section, the procedures are 

given by which these market segments are employed in policy 

analysis. 

Reducing the Number of Mode Split Market Segments 

The first step in the application of logit travel de-

mand models using the market segmentation described above 

is the determination of whether all of the 36 mode split 

market segments (as outlined in Figure C-2) are necessary. 

There are at least two conditions which, if present, would 

indicate that a less detailed segmentation would be suffi-

cient. They are as follows: 

1. Some tripmakers are "captive' to one of the modes. 

An example would be an application where the Only two modes 

being modeled are auto (drive alone) and a single transit 

mode. In this situation, individuals without automobiles 

would be captive to the transit mode and, therefore, would 

be predicted to choose transit with a probability of one. 

Since the logit model assumes that individuals have a 

choice, it is superfluous to apply the model to these trip-

makers. These "transit captive" tripmakers correspond to 
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the zero automobile per driver cells in Figure C-i, of 

which there are 12. Thus, the number of segments to 

which the model is to be applied can be reduced from 36 

to 24 by combining these 12 transit captive' cells 

into a single cell, the 25th, to which the model is not 

applied but rather a unit probability of taking transit is 

assumed. Similarly, if the only transit mode being modeled 

is transit with walk access, then individuals living more 

than six blocks from public transportation might be assumed 

to be auto captives, allowing for the combination of all 

the "more than six blocks from public transportation" cells 

into a single cell where auto is assumed to be the only 

mode chosen. 

2. All tripmakers are homogenous with respect to one 

of the classifying variables. This condition is a very ob-

vious one. The purpose of market segmentation is to eli-

minate heterogeneity in the independent variables. Clearly, 

if there is no heterogeneity, then segmentation is unneces-

sary. An example would be applications to areas with a 

very high incidence of poverty. In this situation, the 

segmentation on income is unnecessary. Before an applica-

tion is made, the tripmakers to which the model is being 

applied should be analyzed with respect to each of the 

classifying variables in the mode split segmentation, even 

if only cursorily, to determine if there is so little 

variation in one of the variables that segmentation with 

respect to that variable is unnecessary. 

Reconciling the Modes Being Analyzed with Those Used in 

model Calibration 

It cannot be expected that the modes among which the 

planner wishes to analyze policy-induced shifts are exactly 

the same as those used to calibrate the (worktrip and non- 

worktrip) mode split models. For brevity, we will refer 

to the modes for which the planner wishes to analyze policy- 

induced modal shifts as the "prediction modes" and will re- 

fer to the modes used to calibrate the model as the "cali- 

bration modes." There may be some calibration modes in 

which the local planners are not interested, or the planner 

may be interested in special prediction modes that were 

not included as calibration modes. Mismatches of either variety 

pose problems in the use and interpretation of socioeconomic 

variables and mode-specific constants. In model calibra- 

tion it is probably preferable, for statistical reasons, 

to include a mode specific constant for all but one of the 

calibration modes. model application is easier, however, 

if the modes are grouped into, say, an auto-oriented group 

and a transit group. All the (calibration) modes within 

the auto-oriented group would be specified to have identical 

representative utility functions. In addition to the level- 

of-service variables, this identical representative utility 

function would contain a single mode-specific constant 
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41. (common to all auto-oriented modes) and the socioeconomic 

variables (e.g., income and automobile availability) . Like-

wise, all of the (calibration) modes within the transit group 

would be specified to have identical representative utili-

ties, but their representative utility function would only 

contain the level-of-service variables. 

If the models being applied have grouped modes accord-

ing to type (auto versus transit), then the procedure re-

quired for the reconciliation of prediction modes with 

calibration modes is simply the classification of the 

various prediction modes as auto-oriented or transit. If, 

on the other hand, the models being applied have included 

a mode specific constant in the representative utility of 

all (but one) of the modes, with some corresponding arrange-

ment of socioeconomic variables, then reconcilation of pre-

diction modes with calibration modes requires the matching 

of each of the prediction modes with the calibration mode 

most similar to it with respect to unobserved factors. 

Such a matching process would be largely intuitive in many 

cases. In any event, before the mode split application of 

the models can proceed, all of the prediction modes must 

be assigned a calibration mode whose representative utility 

it will be assumed to share. Clearly, the forecast is 

sounder if there is a calibration mode corresponding to 

each prediction mode. 

Transferring the Logit Model 

For reasons given in Chapter Three, the particular updating 

procedure that appears to provide the best combination of 

accuracy and ease of implementation is to adjust the mode-

specific constant(s) and scale the other independent vari-

ables. We first describe this procedure for the case where 

there are only two modal alternatives (and thus just a 

single mode-specific constant to be adjusted) . Following 

this is a description of the extension of the procedures 

when more then two modes are being analyzed. Either 

case requires knowledge of the actual modal split in each 

market segment. 

If a choice between just two modes (auto and bus, say) 

is being modeled, then the adjusted mode-specific constant 

and the coefficient scalar can be calculated by running a 

weighted linear regression using any standard regression 

package. The observations for this regression are the 

market segments constructed for the mode split analysis. 

The dependent variables in the regression are the quantities 

ln(SH at  /SHb), where  SH at is the auto share in the tth 

market segment and SHb.  is the bus share for that segment. 

The independent variables are a constant and the quantities 

where a is the vector of (original) model coeffi-

cients (excluding the mode specific constant) and X. is 
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the vector of the average values of the differences between 

auto and transit in the independent variables for the tth 

market segment. The observations in the regression are 

weighted by the segment shares (which means that the de-

pendent and independent variables, including the constant, 

are multiplied by the square root of the segment share be-

fore running the regression) . If the standard regression 

package automatically adds a constant, this feature must 

be suppressed before the regression is run. The constant 

estimated by this regression will be the constant of the 

updated model, the coefficient of V will be the scalar to 

be multiplied by the coefficients to obtain the updated 

coefficients of these other variables. 

The procedure to be followed when there are more than 

two modes (modes m1, m2, ... mr say) is similar to the 
two-mode case. one of the modes, e.g., auto drive alone, 

is arbitrarily specified as a base mode. There are M-1 

observations for each market segment. For each observa--

tion, the dependent variable is ln(SH./SHAt)  for jA, 

where A denotes the base mode. The independent variables 

are V. = 	 is the vector of original model co- 

efficients excluding the constant(s) , and 	is the vector 
11  

 of the average values of the differences between modes j 

and A on the independent variables for the tth segment. 

In addition, a constant corresponding to mode j is included  

as an independent variable if the original model contained 

such a constant. The coefficient of V jt 
 is the scale fac-

tor and the updated constants are those estimated by this 

regression. 

Forecasting modal Shares 

After completion of the model transferring procedure, 

all the ingredients necessary for forecasting the 

effects of transportation policies on modal shares are 

present. Baseline modal shares are computed for each mar-

ket segment, by evaluating the logit equation for each 

mode using the prepolicy averages of the level-of-service 

variables. The modal shares thus predicted for each market 

segment are then aggregated by weighting them by the seg-

ment shares and summing the weighted modal shares across 

market segments. Next, the policy variable is changed to 

reflect implementation of the policy, and the predicted 

aggregate modal shares are recomputed. The effect of the 

policy is, of course, the difference between the pre- and 

post-policy modal shares. 

If accuracy in the predicted change in the share of 

one of the modes is critical and if the change as predicted 

by this method is less than one tenth of the original share 

of that mode, then it is advisable to re-estimate these 

changes using the slope of the logit function. This is 

done by computing, for each marl'et segment, the slope of 

00 
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or 

logit function with respect to a policy variable, x as: 

SLOPEt  = 
P(rn)

a[Pt(mflLl_Pt(m)1 	 (C-i) a 

SLOPEt 
 = P(n)

= aEPt(m)][Pt(fl) 	 (C-2) 
m 

where a is the (updated) coefficient of the policy variable, 

and 	(,i) and p. r7i I are the predicted prepolicy shares of 

modes a and n in market segment t. Equation C-i is used 

to predict direct effects, e.g., the effect of a transit 

fare change on the transit's share. Equation C-2 is used 

to predict cross effects, e.g., the effect of the transit 

fare increase on auto's share. Once the slopes for all 

the modes have been computed for each market segment, 

the aggregate slope for each mode may be derived in the 

same manner that aggregate modal shares are calculated 

from the modal shares of the individual segments. The 

aggregate slopes are then multiplied by the change in the 

policy variable to obtain the effect of the policy: 

dP(n) 	P(n) 	CX M  
	

(C-3) 

where dP(n) is the change in the aggregate share of mode n, 

dx is the change in the policy variable, and p(n) is the 
a 

aggregate slope of the logit function with respect to 

NEW FINDINGS ON THE USE OF A DISAGGREGATE DEMAND MODEL 

TO FORECAST DEMAND FOR PARK-AND-RIDE 

In the report for Phase II of this project (C3) , a 

disaggregate worktrip model was applied to estimate modal shares 
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following the introduction of a new park-and-ride facility 

in Towson, Maryland. The performance of the model was apparently 

somewhat discouraging. In particular, when the estimated shares 

were compared to actual shares, park-and-ride demand was sub-

stantially underpredicted and auto demand was overpredicted. 

Subsequent analysis of this park-and-ride application 

indicates that the performance of the disaggregate worktrip 

model may not be as discouraging as previously believed. Two 

conclusions from the earlier analysis were that: 1) the model 

substantially underpredicted the demand for the new park-and-

ride service; and 2) the market segmentation techniques did 

not perform much better than the direct aggregation approach 

for that specific application. 

The conclusion on the performance of the model was based 

upon the assumption that the new park-and-ride lot improved the 

existing round-trip in-vehicle time (including wait time) of 

the bus with auto access mode by 13.4 minutes because of the 

new express bus service. However, no other changes in level-of-

service variables were assumed. In particular, no change in walk-

ing time for the bus with auto access mode at the new park-and-

ride lot was assumed. The conclusion on the lack of difference 

between the results of the market segmentation and direct aggre-

gation methods arose from an error in calculating the direct 

aggregation results. 

The use of alternative level-of-service assumptions and the 

correct calculations for the direct aggregation method lead to 

substantially different conclusions. If it is assumed that the 

park-and-ride lot reduces walking time for the bus with auto 
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access mode (park-and-ride) , as well as the linehaul time, the 

forecast is much improved. The following discussion presents 

a reapplication of the park-and-ride example with the above 

adjustments. The original calculations can be found in the 

Phase II Report (ç) 

Equation C-4 is the multinomial logit model used in 

the example. 

VA 

P(AUTO) = 	VA = -13.20 - 0.06426 IVT - 0.2834 WT (c-4) 

- 1.480 COST + 5.644 A/D + .3470 INC. 

V 5  

P(BUS) = 	V = -0.06426 IVT - 0.2834 WT - 1.480 COST 

VPR 

P(Park'n Ride) = e 	V= -13.64 - 0.06426 IVT 

- 0.2834 WT - 1.480 COST + 5.644 A/D + .3470 INC 

D= V + V + V eA aS ePR 

where: 

IVT 	is a combined measure of in-vehicle and wait times; 

WT 	is walk times in minutes with walk time assumed 

to be zero for the auto mode; 

COST is the cost of making a trip, measured in 1967 

dollars; 

AID 	is the number of automobiles per licensed driver 

in the household; and 

INC 	is family income in thousands of dollars, decoded 

as the midpoints of the ranges in a categorical 

income variable. 
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Table C-2 presents the relative sizes of the 12 market seg-

ments and Table C-3 gives the values of the independent var-

iables for each of the 12 segments before the implementation 

of the park-and-ride lot and the express bus service. 

These tables are from the NCHRP Phase II report (C3) . Details 

on their construction are reported there. 

After the implementation of the new service, it is 

assumed that park-and-ride in-vehicle time (IVT) is reduced 

to 75 minutes and walking time (WT) is reduced to 6.8 min-

utes. A walking time reduction of this magnitude resulting 

from a new parking lot is a plausible alternative assump-

tion to the original assumption of no advantage. 

The market segmentation aggregation technique, which 

is described earlier, is then applied, using the data 

in Tables C-2 and C-3. These resulting aggregate modal 

shares are multiplied by the 781 worktrips in this example 

to produce modal ridership figures. In addition, modal 

shares from the direct aggregation method are estimated. 

The results of the analyses are presented in Table C-4. 

Two conclusions are apparent. First, the performance of 

the model is substantially improved relative to the original 

assumptions. An implication of this result is that fore-

casts, especially of alternatives with small shares., can 

be very sensitive to the measurement of level-of-service 

changes. Second, the market segmentation approach clearly 

performs better than the direct aggregation method. In 

particular, the latter method assigns no trips to the bus 

with walk access mode. This occurs because of the averaging 
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Between three and six blocks from home to public transportation: 

Between Zero and 	 One Auto 

One Auto Per Driver 	Per Driver 

Income less than $15,000 	 0.011 	 0.015 

Income more than $15,000 	 0.006 	 0.009 

Table 0-3 

VALUES OF INDEPENDENT VARTABLES 
(Round Trips) 

Independent Variables 
Market Segments (Before No. 	26 Bus Service) 

Autos 191 COST Autos LVT 
Distance to Income Per (Auto) (Auto) Per INC (Park 	n Ride) 
Transit (Dollars) Driver  (Minut7s) (Dollars) Driver (Thousands) (Minutes) 

Less Than <15,000 0-I 5S.tt 3 12 0.50 11.7 88.4 
3 Blocks 1+ 58.0 3.22 1.02 14.7 88.4 

115,000 0-1 58.0 3.22 0.56 42.6 88.4 
1+ 58.0 3.22 1.08 42.5 88.4 

3-6 Blocks <15,000 0-I 58.0 3.22 0.48 14.7 88.4 
1+ 58.17 3.22 1.12 14.7 88.4 

>15,000 0-1 58.0 3.22 0.57 42.6 88.4 
1+ 58.0 3.22 1.10 42.6 88.4 

Greater Than <15,000 0-I 58.0 3.22 0.50 14.7 88.4 
6 Blocks 1+ 58.0 3.22 1.02 14.7 88.4 

>15,000 0-1 58.0 3.22 0.56 42.6 88.4 
1+ 58.0 3.22 1.07 42.6 88.4 

Average for direct method: 58.0 3.22 7.042] 28.68 58.4 

Table C-2 

MARKET SEGMENT SHARES FOR BALTIMORE PARK N RIDE APPLICATION 

(Percent of All Worktrips) 

Less than three blocks from home to public transportation: 

Between Zero and 	 One Auto 

One Auto Per Driver 	 Per Driver 

Income less than $15,000 	 0.010 	 0.025 

Income more than $15,000 	 0.000 
	

0.014 
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More than six blocks from home to public transportation: 

Between Zero and 	 One Auto 

One Auto Per Driver 	Per Driver 

Income less than $15,000 	 0.190 	 0.248 

Income more than $15,000 	 0.170 	 0.293 

SOUNI46: Charles River Associates (03), Table 6. 
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Independent Variables 

Market Segments  (Before No. 26 Bus Service) 

Autos COST WI TOT' COST WI 

Distance to Income Per (Park 	'n 	Ride) (Park 	n 	Ride) (Bus) (Bus) (Bus) 

Transit (Dollars) llriver (Dollars) (Minutes) 	(Minutes) (Dollars( (Minutes) 

Less Than <15,000 0-I 1.80 8.6 88.4 1.50 13.4 

3 Blocks 1+ 1.80 8.6 88.4 1.50 13.4 

>15,000 0-1 1.80 8.6 88.4 1.50 13.4 
lv 1.80 8.6 88.4 1.50 13.3 

3-6 Blocks <15,004 0-I 1.80 8.6 88.4 1.50 22.9 
IV 1.80 0.6 88.4 1.50 22.9 

>15,003 0-1 1.80 8.6 88.4 1.50 22.9 
IV 1.80 8.6 88.4 1.50 22.9 

Greater 
than 6 <15.000 01 1.80 8.6 88.4 1.50 	. 60.8 

Blocks 1+ 1.80 8.6 88.4 1.50 60.8 

>15,000 0-1 1.80 8.5 88.4 1.50 60.8 
IV 1.80 8.6 88.4 1.50 60.8 

Av<rvJ: 	Hr UirncI 	Is -lIed 1.80 tt.t 138.4 1.50 56.5 

1,11 II: 	liv 	i 111)1 	<"-  uI 	li .uu 	II 	p,,rk 	,u,,1 	ill, - 	-,vj.-, 	II,,- 	V.11 1,1:1,- 	I. 	u,vj:,c,,I 	I,, 	)"n,j,,,tvs. 
2 81 = W.:Ikisq Time, 	811cr the implen,,,,InI- io,, of park and ride service, the variable is 
reduced to 6.8 minutes. 

	

SOURcE: Charles River Associates (03), Table 12. 	 C-41 



Table C-4 

PERFORMANCE OF WORK MOOE CHOICE MODEL UNOER ALTERNATIVE 
LEVEL-OF-SERVI CE ASSUMPTIONS 

Predicted Number of Tri2s 
Linehaul and Walk 

Actual Linehaul Time Improvement Only2  Time Improvement3  
Number Market 	Corrected 	Original Market 

Mode 	 of Trips1  Segment' 	Direct4 	Direct' Segment4  Direct4  

Auto 	 564 662 	 676.5 	 659 602.5 613.9 

Bus with Auto Access 
(Park-and-Ride) 	 200 	 102 	 104.5 	 106 	 164 	 167.1 

Bus with Walk Access 	 17 	 17 	 0 	 16 	 14.5 	 0 

Total 	 781 	 781 	 781 	 781 	 781 	 781 

1 Fr-oe Table 13 of Charles River Assoc iates (03). 

2 1t is assumed that the express bus service reduces line haul time by 13.4 minutes round trip, 

'In addition to the I inehaul improvements, the park-and-ride lot is assumed to reduce walk time by 2 minutes. 

4Calcu1ated with the data in Tables C-2 and C-3. 

SOURCE: 	Charles River Associates, 1980. 
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C-44 

of the walk time variable. The overall average value of 

56.53 minutes results in a miniscule modal share prediction, 

even though walking time is quite favorable in particular 

segments. 

Therefore, we conclude that the model appears to be 

transferable from Pittsburgh, with appropriate adjustments, 

and that with careful analysis of the assumptions made about 

level-of-service changes, the market segmentation is an 

acceptable and accurate approach to forecasting with dis-

aggregate demand models. The method is Sensitive to assumptions 

about the predicted value of level-of-service variables 

however, if these changes are predicted carefully, the market 

segmentation method should forecast the impact of change 

more accurately than does the direct aggregation method. 
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APPENDIX D 

EMPIRICAL AND CONCEPTUAL MODEL DEVELOPMENT 

The results in this appendix are addressed to the research 

commmunity and are therefore highly technical. Readers not 

interested in the details of the model development are advised 

to limit their reading to Chapter 2 of this report. 

This appendix provides a selected description of the 

empirical and conceptual disaggregate demand model development 

research carried out during this project. Using disaggregate 

data from three cities, several models have been estimated. 

Mode split models for work and shopping trips using Pittsburgh 

data were reported in Chapter 2. A more detailed report of the 

research results may be found in Appendix C of the Phase I 

report. A substantial amount of the research on conceptual 

model development in that report is not reported here. 

Separate discussions of the following issues are presented 

to amplify the material presented in Chapter Two: 

Generic versus mode-specific level-of-service variables; 

Income segmentation; 

Automobile availability effects; 

Transformations of level-of-service variables; 

0 	Empirical choice set formation; and 

Lessons on disaggregate data set collection. 

The final three sections of this appendix are specific to each 

of the three data sets used in this project. Modeling efforts 

with each data set are described separately. 

1. THE DISAGGREGATE DATA SETS USED IN TNE EMPIRICAL RESEARCH 

Three data sets were used for the empirical research in 

this project. Data originally compiled from the 19E7 

Pittsburgh household interview survey and prepared for 

disaggregate analysis in line with an earlier CRA study (Dl) 

were suitable for estimation of mode, destination, and 

frequency choice models. 

A second data set, processed during this study from the 

1970 Twin Cities household interview survey, was suitable for 

logit mode split model estimation. Preparation of these data 

sets for disaggregate model estimation required augmenting the 

household-level socioeconomic and trip record information, 

contained in home interview survey files, with network 

level-of-service data; in the case of the Pittsburgh data, this 

entailed considerable modification and improvement to existing 

transportation supply data. 

The third data set was collected in Baltimore in 1977 for 

the expressed purpose of disaggregate travel modelin7. This 

data set contains home interview survey data on vehicles, 

persons, and travelers for nearly 1,000 households. For each 
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individual the data Set contains a one-day travel diary and 

extremely detailed data, including alternatives, on a selected 

trip from each household. 

Each of these data bases is described below. 

The Pittsburgh Data Base 

The data used for model estimation were derived from a 

household interview survey (HIS) conducted by the Southwestern 

Pennsylvania Regional Planning Commission (SRPC) in 1967 and 

from transportation network analysis data compiled by SRPC. 

The travel information in the HIS documents household 

questionnaire responses detailing travel activity of all 

household members over five years of age. In constructing the 

data for estimation, a random sample of households was drawn 

from two major travel corridors in the Pittsburgh area; one 

east of the Central Business District (CBD) extending to the 

city limits and the second to the suburbs in the south. Both 

corridors had relatively good transit service from suburban 

locations to the CBD. 

Trips selected for the estimation sample had to meet two 

criteria: 1) the household location had to be located within 

the defined corridors; and 2) the terminus of a reported trip 

also had to be within the defined corridors. 

A total of 115 trip records (observations) were included 

in the sample used for worktrip mode split. The shopping trip  

estimation sample contained 169 observations, of which 143 

households reported one shopping trip and 26 observations 

represented 0 (shopping) trip households. 

Table D-1 summarizes the distribution of mode and purpose 

travel patterns in the Pittsburgh data used for model 

estimation. 

The Twin Cities Data Base 

The disaggregate data used for estimating the worktrip 

mode split models were constructed from the Established 

Person-Trip Analysis File (EPTAF) available through the Twin 

Cities Metropolitan Council (D2). The EPTAF consists of home 

interview survey data, augmented with highway and transit 

network level-of-service (LOS) data. The home interview survey 

(HIS) was conducted in 1970. In all, 5,700 households were 

surveyed (a 1 percent sample), yielding a total of 45,714 

one-way, linked person-trips. 

In order to prepare the data for disaggregate mode split 

model estimation, several processing steps were undertaken. 

1. 	A subset of the trips for which transit was an available 

alternative was singled out for further analysis. This 

screening procedure effectively limited the sample to only 

those travel corridors within the Twin Cities region where 

transit service was provided. (Of the total 45,714 trips 

in the HIS, 3,640 trips were considered to have transit 

'.0 
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Table 0-I 

MODE AND PURPOSE DISTRIBUTION IN 

THE PITTSBURGH ESTIMATION SAMPLE 

Worktrip Sample 

Mode 	 Number of Trips 	 Percent of Total Trips 

Auto 	 62 	 54 

Bus 

Total 	 115 	 100 

Shopping-Trip Sample 

Mode 	 Number of Trips 	 Percent of Total Trips 

Auto 	 .78 	 56 

Bus 	 65 	 44 

Total 	 143 	 100 

Nlontravel HouseholdS: 26 

Total in Sample: 	169  

available. Less than 10 percent of the trips for which 

transit was available were actually made by transit. This 

"choice file" was constructed by the Metropolitan Council, 

based on traveler responses to the question 'Was transit 

available for this trip?'. 

Several "screening" criteria were employed to eliminate 

trip records with inconsistent or missing data. For 

example, households who failed to report income and trip 

records where LOS data were missing or incomplete were 

eliminated from the sample. After screening, 3,006 

one-way trips remained in the sample. 

Complex tour trips were eliminated from further 

processing. One-way trips were combined into round trips. 

LOS data for outbound and inbound trips were added to 

represent round trip characteristics. A total of 721 

round trips were left after this final processing step. 

Table D-2 summarizes the distribution of mode and purpose 

travel patterns in the final estimation sample. Although 

travel choices were recorded for auto driver, auto passenger, 

and public bus modes, all estimations were performed with 

binary choice (auto driver/bus) models. It is clear from 

Table 0-2 that for all the nonworktrip purposes, there were an 

SOURCE: Charles River AscciateS, 1976. 

'0 
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Table D-2 

MODE AND PURPOSE DISTRIBUTION 

IN THE ThIN CITIES ESTIMATION SAMPLE 

Auto 
Drive 

Auto 
Passenger 

Public 
Bus Total 

(Trips) 

Work 325 56 25 406 
Personal 	Business 95 14 2 111 
Medical 7 I - 8 
Social/RecreatIon 43 16 - 59 

Outdoor Recreation 5 4 - 9 
Shopping 75 16 - 91 
School 28 8 1 37 

Total 578 115 28 721 

(Percent) 

Work 80.0 13.8 6.2 100 
Personal 	Business 85.6 12.6 1.8 100 
Medical 87.5 12.5 - 100 
Social/Recreation 72.9 27.1 - 100 

Outdoor Recreation 55.6 44.4 - 100 
Shopping 82.4 17.6 - 100 
School 75.7 43.2 2.7 100 

Total 80.2 15.9 3.9 100.0 

SOURCE: Charles River Associates, 1976. 

insufficient number of transit users to allow for mode split 

model estioatiori. 

As with the Pittsburgh data base, each observation in the 

Twin Cities estimation sample contained detailed information on 

household socioeconomic and life cycle descriptors, 

characteristics of individual tripmakers, and LOS attributes of 

the chosen and rejected modes. 

The Baltimore Disaggregate Data Set 

The Baltimore Disaggregate Data Set is composed of five 

linked but separate computer files, describing 966 households, 

the vehicles owned by each household, the members of the 

household, summary origin and destination data on all trips 

taken by household members during the preceding day, and a 

detailed report on a randomly selected trip broken down into 

links, with an enumeration of all alternative modes or 

destinations for each link used within the last six months. A 

sixth file containing land-use characteristics of all origin 

and destination zones has been prepared which can be used to 

develop choice sets for destination choice model calibration. 

In order to estimate mode and destination choice models, 

several of these files must be merged. 

Two approaches to constructing a suitable modeling data 

set were identified and are discussed after a summary of the 

contents of each of the six data files comprising the Baltimore 

Data Set. 
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The household file contains information on distance to 

public transportation, expressway, and other facilities. it 

also contains information on the total number of household 

members, automobiles, and travellers as well as other household 

characteristics such as renter/owner occupied, income, type of 

dwellinc unit, and number of rooms. (For more detail on the 

data files, see Section 10 of Appendix D). 

The vehicle file describes each vehicle available to a 

household. The information includes type, make, model and 

year, passenger capacity, how far it is parked from the 

household, type of parking place, cost to park, and who usually 

uses it to go to school or work. Much of this detail would he 

useful for disaggregat auto ownership models. 

The person file contains information on each household 

member. These data include age, sex, employment, working 

hours, driving status, personal income, education, marital 

status, and language spoken. 

The trip file contains a one-day trip diary for every 

household member over age 12. It parallels what is usually 

obtained in an origin-destination survey. For each trip it 

contains origin, destination, mode, purpose, household members 

making the trip, auto occupancy, household vehicle used, time 

of start and arrival, and land use. Systems data describing 

the travel time from the centroid of the origin zone to the 

centroid of the destination zone have been appended to the end  

of each record. Originally, only the travel time for the 

selected mode, auto or transit, was available, making this file 

unsuitable for choice model estimation. Network da:a for some 

of the modal alternatives became available recently. These 

data will enable researchers to estimate mode choice models 

using the 7,000 trips described in this file. However, the 

only original choice for model calibration was the detailed 

link file. 

The detailed link file describes links of so-called 

complete round trip, for instance, from home back to home or 

from work back to work. This trip was selected at random by 

choosing a one-way trip made by a random household member. it 

contains data on the round trip and some alternatives to that 

trip. Information for each link of the round trip was obtained 

for the highway route taken or bus route number, tol costs, 

minutes to park or wait for a bus, parking facility type and 

costs, carpool cost sharing, bus fare, type of bus shelter, 

whether a seat was available on the bus, and time and distance 

in travel. 

For discretionary detailed trips, information was obtained 

on alternate modes, when the mode was last taken, possible 

alternative origins and/or destinations, alternate times of 

day, and alternate days that the trip may have been made. The 

alternatives for nondiscretionary (work/school) trips are more 

narrowly defined; no alternative tines or destinations were 
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gathered. Systems data were appended to each reported link and 

its alternatives. 

It would seem apparent that the detailed link file would 

be the better choice for a source of data for disaggregate 

choice model estimation. However, there were some limitations 

to the use of the data. Owing to the technique of identifying 

alternatives and to the observed travel patterns of households, 

only a limited number of alternatives were reported. (An 

alternative had to have been actually used in the last six 

months in order to be reported.) With respect to the household 

travel patterns observed, 135 primary respondents reported no 

travel. Consequently, only 831 detailed trip reports were 

gathered. A total of 779 alternative trips are reported. Of 

these only 418 reported alternative destinations for 

discretionary purposes and were therefore suitable for 

destination choice. Also, complex tours (or multidestination 

trips) are often covered in the detailed link data. These 

A second data set included both the 199 work-/school-trips 

for which no respondent-specific alternatives data were 

gathered and the 30 observations from the first data set. The 

199 observations are cases where the primary respondent had 

used no alternative mode for his detailed work-/school-trip in 

the six previous months. Network-level details on LOS were, 

however, available for these detailed trips on the final 

release tape. This afforded a larger sample of 

work-/school-trips for calibration purposes. Once missing data 

points were excluded, 175 observations remained in the merged 

data base. 

2. GENERIC VERSUS NODE-SPECIFIC LEVEL-OF-SERVICE VARIABLES 

Introduction 

It should be recalled from Chapter 2 that there are two 

principal advantages to using generic LOS data in disaggregate 

transport choice models: 

1. 	Generic LOS variables are consistent with economic utility 

(71 

trips are not amenable to simple logit modeling for reasons theory; and 

discussed elsewhere in this 	report. 2. 	Use of generic LOS facilitates 	forecasts of demand 	for new 

Two worktrip mode choice data sets were excerpted from the choice alternatives. 

detailed 	link file. 	One described the 30 detailed work- or The use of abstract commodity attributes 	in utility theory 

school-trips for which the primary respondent had used an was 	introduced by Lancaster 	(D3), 	and applied 	in practical 

alternative in the previous six months. (Data attrition 	using applications to numerous aggregate 	(D4) 	and disaggregate 	(Dl, 

empirical choice sets from the DETLINK file 	is 	severe.) 05, 	D6) 	travel demand model studies. 	In a mode choice modeling 

framework, 	generic LOS representation assumes that an 

0-11 	 D-12 



additional minute (or dollar) spent traveling on a bus is 

valued equafly to an additional minute (or dollar) spent 

traveling by auto. If this were not the case it would be due 

to the effects of other mode-specific attributes omitted from 

the model (e.g. comfort, privacy, or reliability.) Thus, in a 

well-specified model that explicitly accounts for all 

attributes that significantly affect choice, the use of generic 

representations of LOS is justified. 

A Test of the Hypothesis 

In practice, it is generally not possible to ascertain a 

priori whether choice models are sufficiently well specified to 

justify the use of generic LOS variables. To test the validity 

of generic LOS representation, three binary logit mode split 

models were estimated using tbe Pittsburgh work trip data base 

(as shown in Equation D-l). In the first model, generic 

variables were employed for both in-vehicle travel time and 

out-of-pocket cost. The second model employed mode-specific 

travel times and costs, while the third model included a 

generic travel time variable and mode-specific costs. 

0 0 + 01 HINC + 02 DIRCOMP + 0 3  INDCOMP 
[Nt) 

(0-1) 
+ 04  OVTT + 

model 1 01 IVTT + 02  COST  

model 2 
i0la AUTIME + 
	

TRANTIME + 

02a AUTCOST + 2t 
TRANCOST 

model 3 $l IVTT + 62a 
AUTCOST 

+ 02t TRANCOST 

where: 

p(a),p(t) = mode selection probabilities 	for auto, 

transit. 

HINC = an income-specific dummy variable defined as 1 

for travelers from households with income 

greater than $7,000, 	0 otherwise. 	A measure 

of 	income-dependent auto preference. 

DIRCOMP = 1 	if travelers household has at least as many 

autos as workers, 	0 otherwise. 	A measure of 

competition among workers for the households 

auto(s). 

INDCOfrIP = 1 if travelers household has at least as many 

autos as 	licensed drivers, 	0 otherwise. 	A 

measure of competition by nonworkers for the 

household s auto(s). 

IVTT = difference 	in auto and 	transit 	in-vehicle 

travel 	time 	(generic). 

COST = difference 	in auto and transit out-of-pocket 

costs 	(generic). 
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AIJTIHE 	= auto in-vehicle travel time. 

TRANTIME = transit in-vehicle travel time. 

AUTCOST 	= auto out-of-pocket cost. 

TRANCOST = transit out-of-pocket cost. 

0,5 	= estimated model parameters. 

Table D-3 summarizes the estimation results for the LOS 

variables included in the three models. Complete listings of 

all parameter estimates for the three models are displayed in 

Tables D-4 through D-6. 

In model 1, the estimates of both the generic travel time 

and cost parameters are of the correct sign and significant at 

the 5 percent confidence level. In model 2, the estimates of 

the parameters of transit cost and auto travel time are 

statistically insignificant and incorrect in sign. The transit 

cost parameter was also found to be insignificant in the 

estimation of model 3. 

These estimation results suggest that our mode choice 

models are not able to distinguish significantly different 

traveler valuations of travel times and costs between auto and 

transit. In fact, the hypothesis that travelers valuations of 

the LOS varibles do not differ between modes can be tested 

statistically. A well known method for testing a null 

hypothesis Hg (in our case, the hypothesis that the time and 

cost parameters are not different between modes) against an 

alternative H1 is the likelihood ratio test introduced in 

Table 0-3 
00 

TESTS OF THE VALIDITY OF GENERIC LEVEL OF SERVICE REPRESENTATION 

Model 	1 Model 	2 Model 	3 

INVTT -.044 -.041 
(-2.19) (-2.17) 

COST -2.24 
(-4.44) 

TRANTIME .057 
(2.243) 

AUTTIME .01 
(1.58) 

TRANCOST -7.95 .63 
(-1.13) (.149) 

AUTCOST -3.25 -2.25 
(-3.35) (-4.4) 

eL -23.821 22.06 23.741 
(at convergence) 

L(edeI 	1) -2 	In 3.52 .16 L(8model 	n) 

X205(25.99 X 051113- 84  

SOURCE: Charles River Associates, 1976. 
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Table 0-5 

WORKTRIP MODE SPLIT ESTIMATION 

RESULTS FOR MODE-SPECIFIC TIME AND COST REPRESENTATION 

Table 0-4 

WORKIRIP MODE SPLIT ESTIMATION 

RESULTS FOR GENERIC LOS REPRESENTATION 

P (auto) =  -5.67 + 2.39 HINC + 3.30 DIRCOMP + 2.02 INDCOMP 
tn P (transit) 	(-3.60) (2.39) 	(3.48) 	(2.12) 

-.10 OVTT - .04 INVTT -2.24 COST 
(-1.72) 	(-2.19) 	(4.44) 

MOBS 	= 115 

oz 	= 70 

L(0) = -79.71 L(e) = -23.82 

Percent Estimated Correctly = 93.04 

P(auto) = probability of choosing auto 

P(transit) = probability of choosing transit 

HINC 	= 1 if household income exceeds $7000/year; 0 otherwise 

DIRCOMP = 1 if number of autos is > number of workers; 0 otherwise 

INDCOMP = 1 if number of autos = number of licensed drivers; 0 otherwise 

OVTT 	= difference in (auto-transit) out-of-vehicle travel time (in minutes) 

INVTT = difference in (auto-transit) in-vehicle travel time (in minutes) 

COST 	= difference in (auto-transit) cost in dollars 

SOURCE: Charles River Associates, 1976.  

P (auto) P (transit) = -1.46 + 2.17 HINC * 3.55 DIRCOMP + 2.44 INDCOMP 
(-0. 41) (2.08) 	(3.26) 	(2.26) 

-.10 OVTT * .01 AUTIME + .057 TP4NTIME - 3.26 .4UTCOST 
(-1. 58) 	(0.35) 	(-2. 43) 	(-3. 35) 

- 7.95 TRANCOST 
(1.13) 

MOBS 	= 115 

= .72 

1(0)- -79.71 1(0) = -22.06 

Percent Estimated Correctly = 91.30 

P(auto) = probability of choosing auto 

T(transit) = probability of choosing transit 

HINC 	= 1 if household income exceeds $7000/year; 0 otherwise 

DIRCOMP = 1 if number of autos is > number of workers; 0 otherwise 

INDCOMP = 1 if number of autos = number of licensed drivers; 0 otherwise 

OVTT 	= difference in (auto-transit) out-of-vehicle travel time (in minutes) 

AUTIME = auto in-vehicle travel time in minutes 

TRANTThIE = transit in-vechicle travel time in minutes 

AUTCOST = auto cost in dollars 

TRANCOST = transit cost in dollars 

SOURCE: Charles River Associates, 1976. 
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Table 0-6 

WORKTRIP MODE SPLIT ESTIMATION RESULTS 

FOR MODE-SPECIFIC COST REPRESENTATION 

in P (auto) 	
471 + 2.37 HINC + 3.37 DIRCOMP +2.01 INDCOMP 

P (transit) 
(-1.63) 	(2.35) 	(3.44) 	(2.09) 

-.10 OVTT -.04 =+ .62 TRANCOST -2.25 AUTCOST 
(-1. 73) 	(-2.17) 	(.149) 	(-4. 41) 

NOBS 	= 115 

= . 70 

£(0) = -79.71 L(0) = -23.75 

Percent Estimated Correctlij = 93.04 

P(auto) = probability of choosing auto 

P(transit) = probability of choosing transit 

RINC = 1 if household income exceeds $7000/year; 0 otherwise 
DIRCOMP = I if number of autos 's > number of workers; 0 otherwise 
INDCOMP = 1 if number of autos = number of licensed drivers; 0 otherwise 
OVTT 	= difference in (auto-transit) out-of vehicle travel time (in minutes) 
.rr/TT 	= difference in (auto-transit) in-vehicle travel time (in minutes) 

TR411COST = transit cost in dollars 

AUTCOST = auto cost in dollars 

SOURCE: Charles River Associates, 1976.  

Chapter 2. Theil (07) has shown that the statistic -2 in A 

(where A is the ratio of the likelihood of the constrained 

parameter vector which falls under 110 to the likelihood from 

H1) is asymptotically distributed as x2. (This x2 distrihution 

has q degrees of freedom, where q is the number of parameter 

constraints in H0. See Chapter 2 for a discussion of the 

likelihood ratio test.) Table 0-3 displays the value of the 

likelihood ratio test statistic derived from models 1 

(constrained), 2, and 3 (unconstrained), as well as the 

critical value of the x2 distribution at the 95 percent 

confidence level. It is clear that in our application we 

cannot reject the null hypothesis that the time and cost 

parameters do not differ between modes. 

A similar finding on the statistical validity of generic 

LOS variable representation was found in estimation results on 

the Pittsburgh shopping mode split models. Table D-7 displays 

parameter estimates for a binary logit mode split shopping 

model with generic LOS representation. In Table 0-8 

mode-specific travel time and cost parameters were estimated. 

The likelihood ratio test statistic for this case was computed 

as x2(2) = 0.48, well below the critical value of x2(2) at the 

5 percent significance level (5.99). 

These findings are very encouraging. We noted at the 

outset that in models that explicitly specify all significant 

influences on travel choice, one would expect time or cost to 

D-1 9 
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Table D-8 

Table D-7 
	 SHOPPING-TRIP MODE SPLIT ESTIMATION 

SHOPPING-TRIP MODE SPLIT ESTIMATION 
	 RESULTS FOR MODE-SPECIFIC TIME AND COST LOS REPRESENTATION 

RESULTS FOR GENERIC LOS REPRESENTATION 

11. 
P (auto) 
p (transit) 	

3.18 FIINC + 4.48 APE'RDR - .55 OVTT - 0.48 INVTT 
(-3.19) 	(2.36) 	(2.07) 	(-2. 82) 	(-1. 09) 

-6. 78 COST 
(-3. 37) 

NOI3S 	= 140 
02 	= .86 

5(0) = -97.04 5(0) = -13.87 

Percent Estimated Correctly = 94.29 

P(auto) = probability of choosing auto 

P(transit) = probability of choosing transit 

h'INC 	= 1 if household income exceeds $7000/year; 0 otherwise 

APERDR = autos per licensed driver 

OVTT 	= difference in (auto-transit) out-of-vehicle travel time (in minutes) 

INVTT = difference in (auto-transit) in-vehicle travel time (in minutes) 

COST 	= difference in (auto-transit) cost in dollars 

P (auto) 
in P (transit) = -9.64 + 3.28 EIINC * 4.45 APL'RDR -.07 4UTIME 

(-2.22) (2.05) 	(1.96) 	(-1.04) 

-.04 TRANTIME - 6.18 AUTCOST -5.83 TR4NCOST 
(-0.62) 	(-2.76) 	(-0.94) 

MOBS 	= 140 
132 
	= 0.86 

5(0) = -97.04 5(0) = -13.63 

Percent Estimated Correctly = 94.29 

P(auto) = probability of choosing auto 

P (transit) = probability of choosing transit 

HINC 	= 1 if household income exceeds $7000/year; 0 otherwise 

APE'RDR = autos per licensed driver 

AUTIME = auto in-vehicle travel time in minutes 

TRANTIME = transit in-vehicle travel time in minutes 

AUTCOST = auto cost in dollars 

TR4NCOST = transit cost in dollars 

SOURCE: Charles River Associates, 1976. 

SOURCE: Charles River Associates, 1976. 
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be valued abstractly. 	The models presented here are 

admittedly weak in differentiating the comfort, safety, privacy 

and other amenity characteristics between alternative modes. 

Nonetheless, we have found that use of generic LOS variables is 

statistically justified. See Chapter 2 for a discussion of 

other findings relevant to the use of generic LOS variables. 

3. INCOME SEGMENTATION 

Introduction 

An important empirical question for disaggregate model 

estimation and application concerns the need for market 

segmentation. The issue here is that unless proper account is 

taken of identifiable and systematic variations in travel 

behavior between different types of travelers (market 

segments), the resulting models may have two (related) 

unfortunate properties: 

Some of the estimated coefficients may be biased; and 

The models will be of questionable validity in inferring 

traveler behavior for groups of individuals whose tastes 

differ from that of the sample used for estimation. 

Proper account can be taken either by estimating and 

applying different models for each identified market segment or 

by including a sufficient number of explanatory variables in 

the models to account for market segment differentiation. 

Empirical research on this project has explored the importance  

of accounting for differences in travel behavior between 

income-stratified market segments using the worktrip mode split 

Pittsburgh data base. 

Household income may be entered in a binary mode split 

model either as a pure alternative-specific variable having the 

value of income in the utility function of one mode and zero in 

the other, or as a generic variable when income is combined 

with a variable that varies from one mode to another. 

Representing income as an alternative-specific variable 

allows for an 'income shift effect," e.g., a case where higher 

income travelers have a higher preference for auto choice than 

lower income travelers (all other factors being equal). 

Combining income with a generic variable, e.g., dividing Cost 

by income, allows for a test of the hypothesis that travelers 

of different income circumstances value travel coats 

differently. 

A variety of functional forms may be specified to test the 

hypothesis of income-dependent value of time variation. The 

technique employed here, dividing travel cost by income, 

represents one possible way of "weighting" the LOS variables by 

household income. 

Figure 0-1 displays the two different types of income 

effects on traveler choice behavior. Representing income by 
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Figure D-1 

INCOME DIFFERENTIATED LOG IT RESPONSE CURVES 

both an alternative specific variable and combined with a 

generic travel cost variable generates distinctly different 

income-differentiated logit response curves. In Figure D-1 two 

such curves are shown corresponding to a low- and high-income 

traveler. The pure income shift effect is illustrated by the 

differences in the auto selection probabilities for low- and 

high-income travelers when auto costs (and all other factors) 

are equal. As shown, higher income travelers have a higher 

auto preference than low income travelers. 

To illustrate the income-differentiated valuation of 

travel cost, Figure D-1 displays the change in auto choice 

probabilities for low- and high-income travelers when auto 

costs change by the amount AC. As indicated in the figure, 

low-income travelers appear to he more sensitive to travel 

costs than high income travelers. This can he seen by 

comparing the respective changes in auto choice probabilities 

for the two income groups. For the given change :n auto costs, 

there is a greater change in the probability of auto choice for 

low-income than for high-income travelers. An empirical test 

of these hypothesized income effects in travel choice behavior 

is presented in the following paragraphs. 

p(a): probability 
of auto choice 

change in p(a) 
for high income 
travelers 

income shift effect 

change in p(a) 
for low income 
travelers 

 

high income traveler 

low income traveler 

 

C increasing auto costs 
(all other factors held constant) 

D-26 
0-25 



The Pure Income Shift Effect 

In order to test the hypothesis on the pure shift" effect 

of income on travel choice behavior, two models of mode split 

for work trips were estimated using the Pittsburgh data set. 

In model 1 shown in Table 0-9, no account was taken for the 

income status of the traveler. Model 2 illustrated in 

Table D-lO is identical to model 1 except for the addition of 

an income shift dummy variable, HINC defined as 0/1 for 

low-/high-income travelers (with $7,000 per year as the cut-off 

point). HINC was entered as the 0/1 dummy variable in the auto 

utility function and as 0 in the transit utility function. 

The coefficient of the income term is significant at the 

1 percent level and, as expected, has a positive sign. This 

indicates that higher income travelers express a higher 

preference for auto than lower income travelers. Moreover, 

comparing the predictive power of the models, model 2 

(Table D-10) has a higher percentage of corrdchly predicted 

mode choices in the estimation sample (93.04 percent versus 

91.30 percent). It is also important to note how the 

coefficients of the other variables differ between the two 

models. 
SOURCE: Charles River Associates, 1976. 

Table D-9 

WORKTRIP MODE SPLIT MODEL WITH NO 

ACCOUNT OF INCOME EFFECTS 

In P (auto) 
P (trwsit) -3.84 + 3.42 DIRCOMP + 1.15 INDCOMP 

(-3.62) (3.77) 	(1.47) 

.112 OVTT - .041 1IWTT - 2.02 COST 
(-2.22) 	(-2.21) 	(4.47) 

NOBS 	= 115 
02 
	= .66 

5(0) = -79.71 3(0) = -27.29 

Percent Estimated Correctly = 91.30 

P(auto) = probability of choosing auto 

P(trausit) = probability of choosing trcmsit 

DIRCOMP = 1 if number of autos is > number of workers; 0 otherwise 

INDCOIIP = 1 if number of autos = number of licensed drivers; 0 otherwise 

OVTT 	= difference in (auto-transit) out-of-vehicle travel time (in minutes) 

INVTT = difference in (auto-transit) in-vehicle travel time (in minutes) 

COST 	= difference in (auto-transit) cost in dollars 

In both models the intercept term is a measure of the 

"transit bias" of the sample used to calibrate the model (the 
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Table 0-10 

WORKRIP MODE SPLIT MODEL WITH A PURE 

INCOME SHIFT EFFECT INCLUDED 

P (auto) 
in p (transit) - -5.67 + 2.39 HINC # 3.30 DIRCOMP + 2.02 INDCOMP 

(-3.60) (2.39) 	(3.48) 	(2.12) 

+ -.10 OVTT - .04 INVTT -2.24 COST 
(-1.72) 	(-2.19) 	(4.44) 

NOBS 	= 11.5 

02 	= .70 

5(0) = -79.71 5(6) = -23.82 

Percent Estimated Correctly = 93.04 

P(auto) = probability of choosing auto 

P(transit) = probability of choosing transit 

HINC 	= 1 if household income exceeds $7000/year; 0 otherwise 

DIRCOMP = I if number of autos is > number of workers; 0 otherwise 

INDCOMP = 1 if number of autos = number of licensed drivers; 0 otherwise 

OVTT 	= difference in (auto-transit) out-of-vehicle travel time (in minutes) 

INVTT = difference in (auto-transit) in-vehicle travel time (in minutes) 

COST 	= difference in (auto-transit) cost in dollars 

SOURCE: Charles River Associates, 1976. 

sample was chosen from a travel corridor with a relatively high 

level of transit service). The 'transit bias" estimated for 

the low-income population (-5.67 in Table D-lO) is above that 

estimated for the aggregate population (-3.84 in Table 0-9), 

and that of the high-income population (-5.67 + 2.24 = -3.43) 

is below that of the aggregate population. The two groups are 

clearly different market segments. 

The importance of explicitly accounting for differences in 

traveler behavior among different income classes has a direct 

bearing on the validity of applying disaggregate models 

estimated on one group of data (e.g., from one city) to 

forecast travel behavior for another group of travelers. 

Ignoring income-specific travel behavior when it is important 

will result in parameter estimates that are dependent on the 

income distribution found in the sample used for estimation. 

In order to show the importance of this problem, it is 

instructive to consider the following hypothetical example 

where the parameter estimates of the two models presented 

earlier are applied to predicting the mode choices of two 

homogeneous income groups. In particular, assume that the 

characteristics of these groups are as summarized in 

Table D-ll. 
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Low-Income Group 

Number of autos in household 	 I 

Number of workers in household 	 I 

Number of I icensed drivers in household 	2 

Transit walk time 	 10 mm. 

Dif. in in-veh. time (auto-transit) 	-15 mm. 

Dif. in cost (auto-transit) 	 $1.00 

High-Income Grou 

2 

2 

10 mm. 

-20 mm. 

$1 .50 

Table 0-li 

ASSUMED CHARACTERISTICS OF TWO 

INCOME-DIFFERENTIATED HOMOGENEOUS TRAVEL GROUPS 

SOURCE: Charles River Associates, 1976. 

Applying our first model, where no income shift effect is 

incorporated, to these two household types yields transit use 

probabilities of 0.669 and 0.589 for low- and high-income 

households respectively. The second model (including the 

income variable) predicts low-and high-income household transit 

use probabilities of 0.950 and 0.395 respectively. It is clear 

that the second model, which takes account of an income shift 

effect, is more discriminating in this example in the sense 

that the mode choice probabilities are further out on the 

"tails" of the logistic function. 

Moreover, the results here indicate that predictions of 

population mode choice splits are sensitive to the distribution 

of income in the sample. Figure D-2 displays the percent 

transit of users among a sample of two homogeneous income 

groups. Our second model shows a relatively large variation in 

mode splits as a function of the distribution of income in the 

forecast sample. The two predict equal mode splits for a 

sample with 40.8 percent low-income travelers. This is 

approximately equal to the percent of low-income travelers 

(income < $7,000) in the sample used for estimation of the work 

mode split models. 

The example presented in this section is representative of 

the general problem of specification error. Omitting variables 

(in our case, income) that significantly influence the choice 

behavior of individuals may have two unfortunate consecluences: 
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Figure D-2 

POPULATION MODE CHOICE PREDICTIONS FOR 
INCOME-DI FFERENTIATED HOMOGENEOUS TRAVEL GROUPS 

0 	The estimated model will yield large forecasting errors 

when applied to a sample whose distribution of the omitted 

variable differs significantly from the estimation 

sample; and 

percent 
transit 100 
users 

80 

60 

40 

2C 

Cr 

model 2 

model 1! 

40.8% 

20 	 40 	 60 	 80 	100 

percent of low income travelers 

0 	The parameter estimates of those included variables 

significantly correlated with the omitted variable(s) will 

be biased. 

Our tentative results presented here suggest the 

importance of improving model specification. Data that are 

somewhat difficult to collect and forecast accurately (e.g., 

income) may still be employed in some proxy fashion to improve 

the predictive ability of disaggregate choice models. 

It also should be noted that income data are often 

difficult to collect accurately. In the sample used to 

estimate the models presented earlier in this section, nearly 

half of the respondents refused to report their family income. 

In these cases, the interviewers estimated household income 

(based on quality of the housing unit, subjective evaluations 

of the cost of furnishings, etc.). While the income data are 

somewhat suspect in measuring income precisely, their ability 

at least to distingish between 'low' and 'high" wage earners 

proved to be significantly explanatory of choice behavior. 
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Income Effects on the Valuation of Travel Time and Cost 

In addition to testing for the significance of an "income 

shift effect on mode split travel behavior, the Pittsburgh 

work and shopping mode split models were used to investigate 

the effect of income on commuter's valuations of travel times 

and costs. In this instance, the models took the form as shown 

in Tables 0-12 and D-13 for work and shopping mode choice 

respectively. 

It may be noted from Tables 0-12 and 0-13 that auto 

availability is measured by the single term autos per worker 

(APERW) rather than the two separate auto availability terms 

DIRCOMP and INDCOMP used in the models presented earlier in 

this section. Because of the high correlation between 

household income and automobile ownership, it was not possible 

to obtain significant parameter estimates of both worker 

competition (DIRCOMP) and nonworker competition (INDCCMP) auto 

availability effects when income was entered in the travel cost 

variable. Section 4 of this appendix will discuss in detail 

the effects of auto availability on mode choice behavior. 

Income now enters the model both as an alternative-

specific auto preference shift term and as a generic variable 

combined with the travel cost term. The variable C/INC (travel 

cost divided by income) is intended to reflect the hypothesis 

Table 0-12 
00 

WORK MODE SPLIT MODEL WITH INCOME-DIFFERENTIATED 

TRAVEL COST TERM 

P (auto) 
in p (transit) = 5.72 + 1.37 HINC + 4.07 APERW - .117 OVTT - .0348 INVTT 

(3.78) 	(1.44) 	(3.74) 	(-2. 18) 	(-1. 88) 

- 9.06 C/INC 
(-4. 28) 

11055 	= 115 

= .68 

L(0) = -79.71 £(8) = -25.13 

Percent Estimated Oorrectly = 93.04 

P(auto) = probability of choosing auto 

P(transit) = probability of choosing transit 

HIIcC = I if household income exceeds $7000/year; 0 athercise 

APERW = autos per worker 

OVTT 	= difference in (auto-transit) out-of-vehicle travel time (in minutes) 

INVTT = difference in (auto-transit) in-vehicle travel time (in minutes) 

C/INC = difference in (auto-transit) cost in dollars divided by income code 

(see Table D-15) 

SOURCE: Charles River Associates, 1976. 
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Table 0-13 

SHOPPING MODE SPLIT MODEL WITH INCOME-DIFFERENTIATED 

TRAVEL COST TERM 

in P(transit) 
P(auto) = -8.79 + .3.16 APERW + 2.05 h'INC - .44 0VTT - .04 INVTT 

	

(-4.36) (2.99) 	(2.06) 	(-3.73) 	(-1.58) 

-15.01 C/INC 
(-3. 70) 

COBS = 140 

02 = 77 

5(0) = -97.04 	5(8) = -22.19 

Percent Estimated Correctly = 94.29 

P(auto) = probability of choosing auto 

P(transit) = probability of ohoosing transit 

AFERW = autos per worker 

HISIC = I if household income exceeds $7,000/year; 0. otherwise 

OVTT = difference in (auto-transit) out-of-vehicle travel time (in minutes) 

INVTT = difference in (auto-transit) in-vehicle travel time (in minutes) 

C/INC = difference in (auto-transit) cost in dollars divided by income 

(see Table 0-16)  

that travelers with different income circumstances value travel 

costs differently. Thus, this form allows for a separate 

measure of travel time and cost elasticities and value of time 

by income group. As noted earlier in this section, several 

different forms of weighting' LOS terms by income may be 

employed to test this hypothesis. 

In both the shopping and work mode split models, all 

parameters were of the right sign and significant at the 10 

percent level. In order to interpret these estimation results 

in terms of their implied income-differentiated travel 

behavior, it is convenient to derive respective value of time 

measures obtained from the mode choice models. 

The derivation of the value of time (VOT) measure from a 

logit mode split model is straightforward if VOT is interpreted 

as the marginal rate of substitution between travel time and 

travel cost for consumer indifference between two alternative 

modes. We set the total derivative of the choice probability, 

Pi to zero: 

dpt = 0 = d 	 = 	 (D-2) 

SOURCE: Charles River Associates, 1976. 	 p. 	Dp. 
dt + - dc = 0 
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Thus, 

:3 pi  

	

dc 	 a.p1(l-p

dt 	

.) 
VOT = 	= 	

= --- = 	INC 	 (D-3) 

INC 

where: 

pi 	= probability of choosing mode i; 

Vi 	= the utility function associated with mode i; 

dt,dc = travel time and cost differentials, respectively; 

at 	= coefficient of the travel time variable; 

mc 	= coefficient of the travel cost variable; and 

INC 	= household income. 

Using the parameter estimates from the work and shopping 

mode split models in Equation 0-3, Table D-14 summarizes the 

value of time measures for two representative income groups, a 

high-income household (with assumed income of $16,000 per year) 

and a low-income household (with assumed income of $8,000 per 

year) . Income was entered in the work and shopping mode split 

models with a code value. See Tables 0-15 and D-16 for the 

respective income codes used in the two models. 

The results indicate that value of time is an increasing 

function of household income for both work and shopping mode 

choice behavior. This finding is consistent with the 

hypothesized income-differentiated travel responso behavior 

displayed in Figure 0-1. 

Table 0-14 

VALUE OF TIME MEASURES FOR WORK- AND SHOPPING_TRJPS* 

(1967 Dollars per Hour) 

Low-Income Households High-Income Households 
(income=$8,000/year) 	(income=$16 ,000/year) 

Work Mode Split 	 $0.92 	 $1.38 

Shopping Mode Split 	 $1.26 	 $2.76 

*For in-vehicle travel time. 

SOURCE: Charles River Associates, 1976. 
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Table 0-15 
Table 0-16 

INCOME CODES USED IN IIODELS ESTIMATED 	
INCOME CODES USED IN MODELS ESTIMATED 

WITH THE PITTSBURGH WORK DATA BASE 	
WITH THE PITTSBURGH SHOPPING DATABASE 

Code Household Income RangeJ1 7  Dollars) 

I < $3,000 

2 $3,000 - $4,999 

3 $5,000 - $6,999 

4 $7,000 - $9,999 

5 $10,000 - $14,999 

6 $15,000 - $19,999 

7 $20,000 - $24,999 

8 $25,000 - $29,999 

9 $30,000 or more 

Code* Household Income Range (1967 	Dollers) 

.5 < $3,000 

4.0 $3,000 - $4,999 

6.0 $5,000 - $6,999 

8.0 $7,000 - $8,999 

8.5 $9,000 - $9,999 

12.5 $10,000 - $14,999 

	

17.5 	 $15,000-S19,999 

	

22.5 	 $20,000 - $24,999 

	

27.5 	 $25,000 - $29,999 

	

35.0 	 $35,000 or more 

SOURCE: Charles River Associates, 1976, 
	 *Code is the midpoint of the corresponding income range. 

SOURCE: Charles River Associates, 1976. 
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4. AUTO AVAILABILITY EFFECTS ON MODE CHOICE 

It has been a frequent finding of empirical research on 

disaggregate demand modeling that household automobile 

ownership significantly influences mode choice to work (Dl, 

D8). There are two basic problems with the use of auto 

ownership variables in mode choice models. 

Travel decisions are not independent of household mobility 

decisions. Consequently, parameter estimates of auto 

ownership variables in disaggregate mode choice models 

will probably be biased. 

o 	It is not so much the number of autos in a household as 

the availability of an auto at the time a trip is made 

that influences not only mode choice, but also decisions 

on where, when, and how often to travel. 

Research on this project has focused on the latter issue 

-- understanding the distinction between automobile ownership 

and automobile availability, and how these factors influence 

travel behavior. In the short run, improvements in the 

performance of disaggregate demand models can be gained by 

improving their representation of auto availability effects. 

The larger question of modeling the interaction of household 

location, automobile ownership, and household travel remains as  

a long-range research issue. The Baltimore data set does offer 

the opportunity to evaluate this issue in some ways, but was 

beyond the scope of this project. 

In understanding the influence of automobile availability 

on travel behavior, it is useful to introduce the notion of 

competition for use of a car within the household. Generally, 

the greater the number of drivers in a household, the greater 

will be the competition for use of the household's automobiles. 

(This is a short-run analysis in the sense that we are 

considering the number of autos in the household fixed.) 

Stated another way, as the competition for use of a household's 

automobile(s) increases, the probability that an auto is used 

for any given trip should decrease. This is particularly true 

for a household's worktrips where there is little flexibility 

on when the trip can he made. For other types of trip purposes 

(e.g. shopping), competition for use of the household's autos 

may be resolved by adjusting the timing as well as the choice 

of mode for travel. 

The original work mode split models appearing in CRA (Dl) 

incorporated a variable measuring automobiles per worker in the 

household. This definition partly accounts for worktrip 

competition for use of the household's automobiles for 

worktrips. As expected, the parameter estimate of this term 

was positive suggesting that (other factors held constant): 
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a 	An increase in the number of automobiles increases the 

probability of auto mode choice for work travel; and 

a 	Conversely, if an additional household member enters the 

work force, the probability that any given worker uses 

auto for his worktrip decreases. 

A Revised Model Specification 

A revised specification of the work mode split models 

using the Pittsburgh disaggregate data set was estimated in 

this project to assess the effects of both worker and nonworker 

competition for use of a household's automobiles. In this 

context, we refer to worktrip competition as the number of 

workers in a household who may make exclusive use of the 

household's auto(s) for their worktrip. Nonworktrip 

competition expresses the possibly mutually exclusive uses of 

the household's auto(s) between licensed workers and licensed 

nonworkers. 

Formally, we define 

DIRCOMP = worker competition effect: 1 if the number of 

autos in a household is greater than or equal to 

the number of full-time workers; 0 otherwise; 

and 

INDCOMP = nonworker competition effect: 1 if the number 

of autos is greater than or equal to the number 

of licensed household residents; 0 otherwise. 

To see how these variables express the competition for use 

of a household's autos, consider the following household types 

shown in Table D-17. In the first household type, there is 

only one licensed driver. His use of the car for the worktrip 

does not compete with other household members' potential need 

for auto driving. From the definitions above, the values of 

both INDCOMP and DIRCOMP are 1 in this case. Household type 2 

is representative of nonworker auto competition. Although 

there is still only one worker and one auto, this household has 

a second licensed driver. In this instance, the variable 

INDCOMP assumes the value of 0. Finally, household type 3 

characterizes a case of both worker and nonworker competition. 

This household's one auto must he shared between two licensed 

workers and one additional licensed nonworker. The estimated 

model incorporating these two auto availability/competition 

variables is shown in Table D-18. 

The estimation results are consistent with our a priori 

expectations of the effects of auto availability. The 

parameter estimates of DIRCOMP and INDCOMP are positive and 

significant (at the 5 percent level) suggesting that both 

worker and nonworker competition for auto use within a 

household affect work mode choice. Moreover, it is apparent 

that the direct competition of two workers for one auto is more 
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Table 0-17 Table 	0-18 

HOUSEHOLD TYPES DIFFERENTIATED BY AUTO AVAILABILITY WORK MODE SPLIT MODEL WITH INCLUSION OF 

AUTO USE COMPETITION TERMS 
Number 

Number 	Number of Value Value 
Household 	of 	of 

Type 	Autos 	Workers 
Licensed 
Drivers 

of 
DIRCOMP 

of 
INDCOMP 

p (auto) 
In = -567 9 2.39 HINC + 3.30 DIRCOMP + 2.02 INOCOMP 

P (transit) 
(-3.60) 	(2.39) 	(3.48) 	(2.12) 

I 	I 	 I I I I + -.10 OVTT 	- .04 INVTT 	-2.24 COST 
(-1.72) 	(-2.19) 	(4.44) 

2 	 I 2 I 0 

3 	1 	2 3 0 0 
'JOBS 	= 115 

02 	
= . 70 

0(0) = -79.71 0(0) = -23.82 

Percent Estimated correctly = 93.04 

P(auto) = probability of choosing auto 

P(transit) = probability of choosing transit 

HINC 	= I if household income exceeds $7000/year; 0 otherwise 

SOURCE: Charles River Associates, 1976. 	 DIRCOMP = 1 if number of autos is ~ number of workers; 0 otherwise 

INDCOMP = 1 if number of autos = number of licensed drivers; 0 otherwise 

OVTT 	= difference in (auto-transit) out-of-vehicle travel time (in minutes) 

IOVTT = difference in (auto-transit) in-vehicle travel time (in minutes) 

COST 	= difference in (auto-transit) cost in dollars with auto costs 
computed at 3 cents per mile 

SOURCE: Charles River Associates, !976 
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Table 0-19 

MODE CHOICE PREDICTIONS FOR THREE DIFFERENT 

AUTO OWNERSHIP HOUSEHOLD TYPES 

Mode Split Estimates for Three Household Tvoes 

Household Type I: No Competition for Use of Auto by Primary Worker 

Household Type 2: Competition for Use of Auto by Primary Worker 

Household Type 3: Secondary Worker and Nonworker Competlton 

for Use of Auto by Primary Worker 

PREDICTED MODE SPLITS 

(Estimated at Sample Average) 

Percent Change of Auto 
Probability fron 

Auto* Transit Household Type 1 Case 

Household Type 	I 0.71 0.29 - 
Household Type 2 0.44 0.56 0.47 

Household Type 3 0.02 0.98 0.19 

*Dri ver_on ly auto trips. 

SOURCE: Charles River Associates, 1976 

significant in determining work mode choice than indirect 

competition for household auto use by nonworkers as evidenced 

by the relative magnitude of the parameter estimates of DIRCOMP 

and INDCOMP. This finding is consistent with our earlier 

comments on the flexibility of scheduling nonwork travel around 

availability of the households autos. 

In order to focus on the effects of auto availability on 

work mode choice, the estimated model was applied to the three 

prototypical households shown in Table D-17. Values of the LOS 

variables in this analysis were taken at the sample averages of 

the Pittsburgh data base. The results of this analysis are 

summarized in Table D-19. Two points should he noted here: 

Both worker and nonworker competition for use of household 

autos influence work mode choice; and 

Failure to account for either effect may Seriously alter 

mode split forecasts. The use of a single measure of 

autos per worker, for example, would fail to differentiate 

between the circumstances of the household type 1 and 2 

(see Table 0-17). Our analysis here has shown that this 

omission is important. 

While more research is needed to account fully for the 

interaction of household mobility and travel decision 

processes, our research has indicated that models for 
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predicting (short-run) mode choice can be improved by 

incorporating better indicators of automobile availability. 

This finding must, of course, be balanced against the increased 

data burden in aggregate forecasting to identify the percentage 

of the population that falls in the three categories of 

household types. 

5. ALTERNATIVE SPECIFICATIONS OF THE LOGIT MODELS 

Introduction 

In Chapter 2 it was noted that LOS variables (e.g., travel 

time, cost, etc.) could be introduced in a variety of complex 

transformations (e.g., logarithms, ratios, etc.) to represent 

different travel behavior hypotheses. 

One such transformation that was tested in models 

estimated on the Pittsburgh mode split data base was a 

logarithmic transformation of the travel (in-vehicle) time and 

cost variables. Behaviorally, this transformation corresponds 

to the hypothesis that a traveler's sensitivity to absolute 

changes in travel time and cost decreases for longer (or more 

expensive) trips. For example, for a 10-minute travel time 

difference between auto and transit when auto travel time is 20 

minutes, the logarithm of the time difference is 0.405. The 

same 10-minute time differential when auto travel is 50 miutes 

yields a log time differential of only 0.812. Thus, the 

logarithmic transformation tends to "deflate" LOS differentials 

between auto and transit for longer trips. 

Estimation Results for the Two Model Forms 
ON 

Tables 0-20 and D-21 summarize the estimation results for 

two binary mode split models estimated with the Pittsburgh 

disaggregate data set. Both models have identical 

specifications except for the representation of in-vehicle 

travel time and travel cost. In the model in Table 0-20 these 

variables entered linearly, while in Table D-21 travel time and 

cost entered logarithmically. In both specifications, all the 

estimated parameters were of the correct sign and significant 

at the 5 percent level. However, the linear LOS specification 

yielded a slightly better goodness of fit as measured by the 

respective coefficients of determination, 2  and the percent 

of correct predictions. (See Chapter 2 for a detailed 

discussion of these model evaluation measures.) For the linear 

LOS specification model, 2  was equal to 0.70, and 93.04 

percent of the observed mode choices in the estimation sample 

had a predicted mode selection probability greater than 50 

percent. This compares to P 2  of 0.63 and 90.43 percent 

"correct" predictions for the model with logarithmic LOS 

representation. 

The differences in the goodness of fit measures of the two 

model forms are not significant. Accordingly, the estimation 

results do not strongly support either hypothesis on the 
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Table 0-20 
	

Table 0-21 

	

WORKTRIP MODE SPLIT ESTIMATION 
	

WORKTRIP MODE SPLIT ESTIMATION 

RESULTS FOR LINEAR REPRESENTATION OF 
	

RESULTS FOR LOGARITHMIC REPRESENTATION 

	

IN-VEHICLE TRAVEL TIME AND COST 
	

OF IN-VEHICLE TRAVEL TIME AND COST 

P (auto) in P 
(transit) 	

•6. 47 + 2.05 HINC + 3.12 DIRCOMP + 1.67 INDCOMP 
(-3.60) (2.39) 	(3.48) 	(2.12) 

-.10 OVTT - .04 INVTT - 2.24 COST 
(-1.72) 	(-2.19) 	(4.44) 

NOBS 	= 115 
02 
	= .70 

3(0) = -79.71 3 (9) = -23.82 

Percent Estimated Correctl = 93.04 

P(auto) = probabi I 	ty of choosing auto 

P(transit) = probability of choosing transit 

HINC = 	I 	if household Income exceeds $7000/year; 0 otherwise 

DIRCOMP = I 	if 	number of autos 	Is > number of workers; 	0 otherwise 

INDCOMP = 	I 	if 	number of autos = number of 	licensed drIvers; 	0 otherwise 

OVTT 	= difference in (auto-transit) out-of-vehicle travel ti-e (in ninutes) 

lOVES 	= differende in (auto-transit) in-vehicle travel time (in 'Hul-es) 

COST 	= difference in (auto-transit) cost in dollars 

P(auto) in p transit = 6.47 + 2.05 HINC + 3.12 DIRCOMP + 1.67 INDCOMP 
(-4. 36) (2.37) 	(3.44) 	(2.15) 

- 0.11 OVTT 	-2.03LOGTIME -1.34 LOOCOST 
(-2.07) 	(-2.39) 	(-3.74) 

NOBS = 115 

.63 

3(0) = -79.71 3(8) = -29.39 

Percent Estimated Correotl-y = 90.43 

= uroia, ii liv of choon jr.1  auto 

P(transit) = probability of choosing transit 

HINC 	= I if household income exceeds 97000/year; 0 otherwise 

DIRCOMP 	= I if number of autos is > number of workers; 0 otherwise 

INDCOMP 	= I if number of autos = number of licensed drivers; 0 otherwise 

OVTT 	= difference in (auto-transit) out-of-vehicle travel time (in minutes) 

LOCTIME 	= log of difference in (auto-transit) travel time in minutes 

LOGCOST 	= log of difference in (auto-transit) cost in dollars 

SOURCE: Charles River Associates, 1976.  

SOURCE: Charles River Associates, 1976. 
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marginal valuation of travel times and costs (namely, constant 

marginal valuation versus decreasing marginal valuation of 

travel times and costs). On a priori grounds, the hypothesis 

of decreasing marginal valuation of travel time and costs is 

appealing. A 10-minute travel time difference between auto and 

transit may be more a significant factor in determining mode 

choice for a one-nile journey to work than for a 40-mile 

worktrip. However, the range of travel times and costs in the 

sample used for our model estimation was limited. (For 

example, the average transit travel time in the estimation data 

sample was 55.7 minutes with a standard deviation of only 

29.02. For transit cost the average and standard deviation 

were .63 and .11 respectively.) Within this range the data do 

not provide a powerful test of the hypothesis of decreasing 

marginal valuation of LOS. 

Properties of the Two Model Forms 

While the overall goodness of fit does not differ 

appreciably between the two model forms discussed above, 

predicted mode selection probabilities and elasticities of 

demand with respect to travel times and costs appear to be 

highly sensitive to the specification of variables. This can 

be seen by referring to Table D-22 which presents predicted 

probabilities and travel time elasticities for the two models 

Table 0-22 

TRAVEL TIME ELASTICITIES FOR 

TWO ALTERNATIVE MODEL SPECIFICATIONS* 

Log Form 	 Linear Form 

Auto Travel Time 
In Minutes 	

pa 	 11P It 	a 	
p t a a 	 a a 

10 0.899 -0.205 0.834 -0.073 

20 0.685 -0.640 0.764 -0.210 

30 0.488 -1.040 0.675 -0.433 

35 0.411 -1.197 0.624 -0.583 
40.675** 0.340 -1.342 0.564 -0.787 

45 0.295 -1.423 0.516 -0.966 

50 0.253 -1.519 0.461 -1.196 

60 0.189 -1.648 0.354 -1.719 

70 0.146 -1.736 0.260 -2.297 

*Evaluated at the sample means of the independent variables. 

**Represents sample average of the auto travel time variable. 

SOURCE: Charles River Associates, 1976. 
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evaluated at the sample mean values of the independent 

variables with a parametric variation of the auto travel times. 

Auto mode choice probabilities (denoted as pa in Table D-22) 

are generally higher for the linear LOS model than for the 

logarithmic model form. Conversely, for most of the range of 

auto travel times, the elasticities of auto mode choice with 

respect to auto travel time (denoted as npa ta in Table D-22) 

is greater in the logarithmic LOS model. The same pattern may 

be observed with respect to auto cost variation (see 

Table D-23). The linear LOS model generally predicts higher 

auto choice probabilities with a somewhat "flatter logit 

response function over most of the range of the variation in 

travel times and costs found in the estimation sample. 

6. EMPIRICAL CHOICE SET FORMATION 

The Baltimore Disaggregate Data Set (BDDS) included a novel 

experiment in developing choice sets for disaggregate demand 

modeling. most disaggregate demand models estimated to date 

have relied upon the analyst to assign choice sets to 

individuals and develop LOS values for alternatives not chosen. 

In the BDDS detailed trip reports respondents were queried 

about alternatives to the detailed round trip. LOS data were 

gathered and reported for alternatives actually chosen during 

the previous six months. We have termed this approach 

empirical choice set formation.  

Table D-23 

TRAVEL COST ELASTICITIES FOR 

TWO ALTERNATIVE MODEL SPECIFICATIONS* 

Auto Travel Cost 
In Dollars 

Log 

Pa 

Form 

flPaICa 

Linear 

a 

Form 

Pa ICa  

0.30 0.740 -0.350 0.879 -0.081 

0.60 0.528 -0.635 0.788 -0.286 

1.80 0.432 -0.765 0.703 -0.534 

0.90 0.393 -0.817 0.654 -0.700 

1.00 0.360 -0.862 0.602 -0.895 

1.070** 0.340 -0.890 0.564 -1.050 

1.20 0.306 -0.935 0.491 -1.374 

1.30 0.283 -0.965 0.435 -1.651 

1.70 0.216 -1.056 0.239 -2.910 

2.00 0.181 -1.103 0.138 -3.877 

*Evaluated at the sample means of the independent variables. 

**Represents the sample average of the auto travel cost variable. 

SOURCE: Charles River Associates, 1976. 
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This section describes our findings on the empirical 

approach. In general, this approach does not appear to be an 

efficient way to collect data. The reasons why it is not 

efficient are illuminating. First, there is comparatively 

little variability in travel behavior. Second, when travel 

behavior does vary, it often varies in nonstandard ways (e.g. 

the alternative to driving is not simply transit but a 

combination of shared ride and transit). Our discussion of 

this process starts with a brief description of the BDDS 

alternatives identification process, followed by a discussion 

of the findings from the detailed link file and a Statement of 

conclusions. 

ODDS Alternative Generation Process 

In collecting the ODDS, a one-day trip diary was collected 

for every household member. One of these household members was 

randomly selected to be the "Primary Respondent." One trip 

from the primary respondent's diary was randomly selected for 

detailed reporting. From this detailed report the interviewer 

asked questions to generate alternatives to the detailed trip. 

This process for choice set formation is decrihed below. 

Trip Selection for Detailed Reporting. Once the 

interviewer completed the diary with the primary respondent, he 

selected a one-way trip for detailed reporting. There were  

four steps to the trip selection process. First, the 

interviewer counted the total number of one-way trips by the 

primary respondent for work/school, shopping, visiting friends, 

or related purposes. These were referred to as "special' trips 

Second, he totaled'the number of "other" one-way trips 

(Trips for the purpose of returning to home or work were 

excluded.) Third, he used a special random number table 

similar to Table D-24 and selected the appropriate category of 

trip, S or T. 

Detailed Trip Report. The Detailed Trip Report (DTR) 

investigated this single randomly selected trip in great 

detail. First, the interviewer asked about all other one-way 

trips associated with this trip necessary to chronicle a 

complete 'round trip" from home or work (school). Complete 

round trips were always recorded in the DTR. 

The unit of analysis for the DTR was the link. A link was 

considered any part of a trip wherein one mode was used. When 

mode changed, one link ended and another began. Every one-way 

trip contained at least one link and could he composed of many 

more. For instance, the walk to a bus stop from home would be 

one link, the ride on the bus another link, the walk after 

debarking a third link, etc. Because the DTR trip was reguired 

to both leave and return to home or work/school, the reported 
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Table D-24 

SALE TRIP SELECTION TABLE 

Number 
of Number of Special Trips 

Other" 
Trips 0123456789101112131415 

0 - S S S S S 	S 	S 	S 	S 	S S S S S S 

1 IS S S S SS 	S 	S 	S 	S S S S T T 

2 ITT T S S 	S 	S 	SS 	S S S S S S 

3 1 5 S(' S s 	s 	s 	s 	s 	s s s s s s 

4 TI ST SS T 	S 	S 	S 	S S S S S S 

5 IS S 55151 S 	S 	S I S S S S 

6 ITS S SITS S 	S 	S S S S S S 

7 IS S S S S 	S 	S 	IS 	I S S S S S 

8 ITT SISSSSS S S S S S S 

9 III ISIS S 	ST 	S S S I S S 

10 1 1 I S S I 	S 	S 	S 	S 	S I I S S S 

The circled cell above (3,3) has a probability of getting a I: 

- 	3 _3 _1_ 
- (4x3) 	- 	- 	- 0.2 

+3  

Since the entry is an 5, we can conclude that the random number which was 
generated for that cell was greater than 0.2. 

SOURCE: Charles River Associates, 1978.  

round trip could have been a chain of trips or a complex tour. 

A trip chain occured whenever one or more purposes were 

accomplished by stopping at several locations enroute before 

returning to the home or work origin. 

In practice, the trip selection process yielded three 

basic types of trips for DTR collection: 

The home-based work-/school-trips including all links on 

the round trip between home and work/school including 

stops for shopping and other purposes made enroute between 

home and work/school; 

o 	The work-based trips including all links of a round trip 

for any purpose starting and ending at work/school; and 

O 	Home-based other trips including all links of a round trip 

for any nonwork/-school purpose. 

For each link, the interviewer determined the origin, 

mode, route, perceived travel and distance time on the link, 

destination, and arrival time. If a private automobile was the 

mode for the link, the interviewer asked about tolls, unparking 

time (for drivers), waiting time (for passengers), parking time 

and cost. If it was a shared ride by auto, the interviewer 

determined how costs were shared. For transit links, the 

respondent provided data on perceived waiting time, fares, seat 

availability, and covered shelters at transit stops. 
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Once data were collected for each of the links, the 

interviewer asked the respondent if he had carried packages or 

other articles, and if so, whether a car or taxi was necessary 

or whether the choice of mode was otherwise affected. If the 

chain included a shopping trip, the interviewer obtained an 

expenditure estimate. 

Identification of Alternatives. The alternative 

identification process consisted of a hierarchy of questions 

about the Detailed Trip designed to identify alternative modes 

for all links, alternative trip configurations for trip chains, 

and alternative destinations for non-work-/school-trips. All 

alternatives that the primary respondent had actually used in 

the last six months were selected for detailed reporting using 

the Alternative Trip Report (ATR). 

Work-/School-Trips -- The interrogatory sequence for 

identifying alternatives is shown in Figure D-3. If the DTR 

trip was a simple home-based work-/school-trip, the interviewer 

inquired about alternative modes used to make this trip. He 

recorded all identified alternatives and marked those used 

during the previous six months (V-5b). If the DTR was part of 

a chain, the line of questioning was more complex. The 

interviewer first sought to identify alternatives that 

maintained the same trip sequence but used alternative modes  

(V-3c). For discretionary trips in the chain he asked about 

the possibility of serving these trip purposes with a simple 

home-based trip (V-3e). If the chain included more than one 

work/school location, the interviewer asked about alternative 

chains using different modes between the two work/school 

locations (V-3g). He also explored the possibility of 

traveling to the second work and school location directly from 

home (V-3i). Each of these different alternatives used during 

the last six months was marked for the ATR. The interviewer 

also identified alternative destinations for discretionary 

links (V-3f) and explored the possibility of transit 

alternatives for respondents with auto-dominated travel 

patterns (V-7), but these alternatives could not be selected 

for the ATR. 

Non-Work-/School-Trips -- The interrogatory scheme for 

non-work-/school-trips is shown in Figure 0-4. If the DTR trip 

was a simple round trip, the interviewer inquired about 

alternative modes to that destination for that purpose (VI-56). 

If the DTR trip was part of a chain, the interviewer asked 

about alternative modes for some or all trips in the chain 

(VI-2c). He also asked if the destinations had ever been 

visited in an alternative sequence (VI-2e). He then determined 

if the DTR destination had ever been visited as a simple 
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Figure D-3 

IDENTIFICATION OF ALTERNATIVES FOR HOME-BASED 

WORK-/SCHOOL-TRIPS (BDDS) 

sno
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For all 
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yes 	
trips except visiting, 
serve passenger and 
accompany driver, 

ever go to other 
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Transit 

one 
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directly to 
and from workl 

school 

yes Itn 

/5k / 
/

Solicit and recordS 
alternative 

yes 

modes used in 

yes  

6 I 	7a 

Yesterday's 	no / 	Record 
mode usual? / 	transit 

alternatives 

yes 

Possible 
Record usual to return by 

no 
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yes 
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1 Recorded 

I Solicit and record alternatives  
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yes 
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Solicit 
alternative 
modes 
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!__1......  c  
Record 
alternatives 	I 
used in last / 
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alternative 
modes? 
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yes 

For each 
discretionary 
trip in chain, 

ever make this 
trip direct 
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Solicit 
alternative 
modes 

/ Record 	/
V-3i — — — Y— — — — 

I 	alternatives 	 / 
no 	 /Solicit and record/ 

L 	 / 	in / 

SOURCE: Charles River Associates Incorporated, November 1980. 
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Figure D-4 

IDENTIFICATION OF ALTERNATIVES FOR NON-WORK-I 
SCHOOL-TRIPS (BDDS) 
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home-based trip. If so, he asked about alternative modes for 

this simple trip (VI-5b). For both chains and simple tours, he 

asked about alternative destinations for this trip purpose 

(VI-7c). He also asked about the mode(s) used for alternative 

destinations (VI-7d) and possible transit alternatives for 

persons with auto-dominated travel patterns (VI-6); however, 

these alternatives could not be selected for the ATR. 

Data collected during the process of identifying 

alternatives using Forms V or VI are stored in the household 

file. Much of this data was miscoded or otherwise scrambled 

during transcription and may he permanently lost. 

Alternative Trip Reports. A separate ATR form was 

completed for each alternative trip identified during the 

alternative identification process. The ATR is virtually 

identical to the DTR. Complete round trips are reported. The 

unit of analysis for the ATR is the link. 

Summary. Thus, the BDDS detailed and alternative trip 

reporting process was designed to generate empirically based 

choice sets for estimation of disaggregate demand models of 

mode and destination choice. The results of this process as 

shown below, however, were less than encouraging. 

Findings 

Table D-25 shows the contents of the detailed link file 

data on alternative trips. It is noteworthy that of the 966  

households interviewed, 135 took no trips on the travel day; of 

the remaining 831 households, only 577 identified an 

alternative to the chosen trip. For the 577 households who 

were identified in the household file as having an alternative 

to the chosen trip, CRA only found ATRs for 389 households. 

More than one alternative could be recorded for a single 

respondent, explaining how 389 households could have 779 

trips. 

As can be seen from the Table D-25, most of the 

alternative trips fall into three categories -- al:ernative 

modes for simple work- and nonworktrips (or simple alternatives 

to chains), and alternative destinations for discretionary 

trips. There are insufficient cases in the data set to model 

the other types of alternatives. 

Table D-26 shows the mode for each of the links in the 

detailed link file. Most of the links were by auto, bus, or 

walk. It is not clear that there are sufficient cases with the 

other modes chosen or as alternatives to enable them to be 

included in the choice Set for mode choice models. 

Sources of Bias. The procedures for selectinc the primary 

respondent and the detailed trip and for identifying the 

alternatives have ramifications for mix of trips and 
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MODE FOR LINKS 

Table 	D-26 

IN RODS DETAILED LINK FILE 

Number Percent 

Auto driver 1,736 40.8 

Auto passenger 859 20.2 

Walk 997 23.4 

Bus 505 11.9 

Taxi 71 1.7 

Bike 49 1.2 

School bus 19 0.4 

Motorcycle 19 0.4 

Boat 2 0.0 

TOTAL 4,257 999* 

Table 0-25 

NUMBER OF ALTERNATIVE TRIPS REPORTED IN 
THE BDDS BY TYPE AND NUMBER OF LINKS 

Number of Links 

Alternative Types 2 3 4 5 6 	7 8 	Total 

Alternative mode for work chain -- -- 2 -- -- 	-- -- 	2 

Alternative mode for work chain -- 
some links removed 6 -- -- -- -- 	-- -- 	6 

V. 	Simple worktrip -- alternative mode* 85 7 19 1 5 	-- 	. -- 	117 

VI. Alternative modes for nonwork chain 2 9 2 -- 1 	-- -- 	14 

VII. 	Alternative Order of Links in 
nonwork chain 3 2 -- -- -- 	-- -- 	5 

VIII. 	Alternative modes simple nonwork 195 5 12 -- 4 	1 -- 	217 

IX. 	Alternative destinations 382 1. 15 1 7 	-- 1 	418 

779 

This also may be a simple alternative to a complex tour. 	 *Rounding error. 

SOURCE: Charles River Associates, 1980. 	 SOURCE: Charles River Associates, 1980. 

D-68 

D- 70 



alternatives found in the data set. Since a primary respondent 

was randomly selected first, and only then was a trip randomly 

selected from his trip summary, trips by persons who made few 

trips on the travel day were more likely to be selected for 

detailed reporting than were trips by persons who made many 

trips. 

This can be made clearer by a simple example. Suppose 

household contains only two members, John and Mary. John only 

went to market on the travel day whereas Mary went to work and 

to her welding class. John and Mary have equal probabilities 

of being selected as primary respondents (0.5). If John is 

selected as the primary respondent, there is a 100 percent 

chance his market trip will be selected for detailed reporting. 

In Mary's case each of her trips has only a 0.50 chance of 

selection. Consequently, the marginal probability of her trip 

to welding class being selected for reporting is 0.25 whereas 

John's market trip has a 0.50 chance of selection at the outset 

of the household interview. The full ramifications of this 

selection bias for trips by less frequent travelers in the 

household has not been explored. We believe it may reduce the 

representativeness of the sample but does not preclude the 

estimation of consistent disaggregate demand model parameters. 

A comparable selection bias arises from the trip selection 

process once the primary respondent was chosen. Since an 

individual one-way trip for any purpose was selected as the 

basis for compiling a "complete round trip" for detailed 

reporting, the probability that chains or tours would be 

selected for detailed reporting was enhanced by a factor equal 

to the number of links in the chains. 

Complex Tours. Related to this problem on the 

overrepresentation of chained trips is a simplification in the 

alternative identification process. The alternative 

identification process broke complex chains into simple 

alternatives but did not identify complex alternatives to 

simple trips. Consequently, the data set contains a certain 

number of 'apples and oranges" cases, where the trip taken 

served two or more purposes but the trip alternative served 

only one. 

Multiple Modes. In order to estimate models of 

single-purpose round trips, CRA collapsed the links in the 

detailed and alternative trips into single data vectors 

representing the entire round trip. The mode and purpose 

variables were collapsed into dummy variables to preserve 

information to select specific alternative types. This raised 

a new problem with the occasional cases where the detailed trip 
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or alternative used a relatively unorthodox mix of modes, such 

as auto passenger to work and bus back home. Since the state 

of the art offers little guidance to the modeler in these 

cases, CRA also eliminated these alternatives from analysis. 

Similarly, CRA also eliminated alternatives using infrequently 

used modes such as boat, bicycle, and taxi, since insufficient 

cases were available to create a data base with these 

alternatives. 

Worktrip Mode Choice. In order to estimate a model of 

work mode choice with three alternatives, auto, walk, and 

transit, CRA edited the contents of the detailed link file to 

develop a data set containing worktrip DTRs and one or more 

ATRs that met the simple criteria required by the simplified 

assumptions of traditional travel choice models. These 

screening criteria included: 

No mode switching within round trips; 

No multiple purpose trips; 

No round trips that do not end at the original origin; and 

3 

	

	One or more alternatives identified to the selected round 

trip. 

With respect to modal alternatives, only one ATR and the 

DTR were sufficient for inclusion in the final sample. 

(Strictly speaking, two ATRs would be required but some logit 

packages allow for missing values in the choice set.) The 

final data set that met these criteria contained only 30 usable 

observations from an original data set of 966 interviews. 

Clearly, this particular empirical approach to choice set 

formation is not data-efficient. 

Conclus ions 

Two competing conclusions can be drawn from this 

experience. The first conclusion would be that clearly the 

alternatives generation process used in collecting the F3DDS was 

flawed and contributed to the attrition of travel data. The 

second, more radical conclusion would be that the simplifying 

assumptions made in most disaggregate demand models are so 

abstracted from the reality of individual travel patterns that 

it is difficult to find individuals in the real world whose 

true choice process conforms to that supposed by modelers. 

While it is tempting to accept the latter possibility, the 

explanation of the problems may be found in the unworkability 

of using the interview process to generate choice sets in the 

manner employed in the BDDS. 

7. DISAGGREGATE DATA SET COLLECTION: 

LESSONS FROM THE BALTIMORE EXPERIENCE 

The Baltimore Disaggregate Data Set was intended to break 

new ground both in the quality and type of data available for 
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disaggregate demand models. It was designed with the aid of at 

least 50 active reseachers in the transportation field and 

benefitted from the advice of some of its most experienced 

pracititioners (this is more fully described in Section 10 of 

this appendix). It is not clear that the data set realized its 

promise. Our detailed familiarity with the BDDS is confined to 

the detailed link (DETLNE) file. The scope of critical 

comments therefore will be accordingly limited. 

Our comments are divided into two broad areas: issues of 

quality control and issues of nuestionnaire design. The first 

area covers problems of accuracy that have plagued the project 

and would have created difficulties, even in the absence of 

design problems. We also include documentation and user 

accessibility problems under this heading. The second area is 

substantive and reflects on what we have learned about 

questionnaire design and content for disaggregate travel data 

sets. 

Quality Control (Editing) 

Interviewers executed various field edit procedures as the 

data were first collected. However, it is evident that the 

public use tape required a more sophisticated editing procedure 

to eliminate errors not found in the initial edit. When the 

data were originally coded, quality control consisted of  

checking for extreme values on a variable by variable basis. 

In addition, CRA performed further checks for within-record or 

within-household inconsistencies. As a result, while 

individual variables may all appear to have reasonable 

distribution, because of joint distribution many pafrs of 

variables could still contain inadmissable combinations. Among 

the apparent coding and other problems, we have found the 

following. 

Inconsistent identification (ID) fields are reported in 

the pointers that link travel and personal records. In 40 

percent of all the cases for the household and detailed 

link files these pointers did not natch (this problem was 

later resolved). 

' 	Inconsistent ID fields are reported in the persnn file 

(this problem was later resolved). 

O 	Several individuals are reported as having spent negative 

amounts of time at a destination, i.e., the time of 

arrival of the first trip is later than the time of 

departure of the immediately subsequent trip (many of 

these problems were resolved) 

O 	In the regular working hours questions, some individuals 

leave work before they arrive. 
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Bus fares are reported for some links that supposedly used 

an auto mode. 

Many questions were answered when the questionnaire 

indicated that the questions should not have been asked. 

O 	There were several persons who could not be confidently 

assigned to households. This would limit researchers' 

abilities to impute the household composition of any of 

the households in the data set (this problem was resolved 

by FHWA). 

Travel times and distances are reported for each link in 

the DETLUK file; the ratios of these times and distances 

often implied implausible travel speeds. 

DETLNK also reported perceived values, and of course 

respondents frequently badly misestimated distance 

traveled. 

o 	There were duplicate records in the DETLNK file. it 

appears the the duplicates were intended to We 

Corrections, but both the original and corrected records 

ended up on the tape. Without access to the 

questionnaires it was not possible to determine which 

record was correct. 

Apparently records are missing in the coded files: in the 

DETLK file more persons do not return home at the end of 

trip than seems reasonable given the other information we 

have. 

0 	Age should not be inconsistent with education, but the 

data report 12 year old children with graduate degrees. 

In some cases the complex relational design of BDDS may 

have promulgated inconsistency problems. This possibility 

should be recognized in planning data set collection efforts. 

Critical checks that may be more difficult to design could be 

included with help from the agent designing the questionnaire. 

Baltimore was chosen as the site for collecting the FHWA 

disaggregate data set, in part because it had recent high 

quality systems data for the highway and transit networks. Yet 

the distribution of some network times and distances are not 

believable. There are 5-hour bus rides, implied vehicle speeds 

ranging from 2 to 960 miles per hour, individuals living 99 

miles from the nearest highway or transit network node, and so 

forth. CRA and FHWA worked closely to resolve many of these 

problems. 

Currently, the BDDS is a relatively "clean' and consistent 

set of travel records. Much of the efforts in the third phase 

of this project were devoted to straightening out the logical 

and editing problems of the original BDDS release. 
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Questionnaire Design 

This section will discuss guidelines for future surveys of 

travel data based on the Baltimore experience. 

Sample Attrition. Sample attrition from the alternative 

trip generation process is the most salient problem in the 

survey design for disaggregate demand modeling. DTRs were 

obtained for trips randomly selected from four trip categories. 

Dividing the sample in this way obviously limits the number of 

trips available for modeling any one purpose. In addition, 

only 389 of 966 households reported any alternative trips. 

This is disappointing. The questionnaire appears to probe 

systematically for trip alternatives, but ATRs were only 

completed if the primary respondent reported using an 

alternative mode or destination to satisfy the purpose of the 

DTR in the last six months. This limit of six months 

undoubtedly contributed to sample attrition.*  The "other" 

*whethér  using a longer time period would on balance have 

produced better alternative data is a design question. 

Respondents resent being pressed for details that are hard to 

recall or strike them as having a hypothetical nature. Another 

related design choice was the decision to base perceived 

alternatives on actual previous use, but, obviously, reporting 

of trip detail implies recollection of actual experience.  

category includes trips for unusual purposes. Insufficent data 

were gathered for them to be modeled separately; they cannot be 

included in data sets for modeling different trip purposes. 

Complex Tours. The inclusion of chained trips in the data 

set, discussed above and in previous sections, also contributed 

to this data attrition problem since the models we are working 

with deal with single-purpose round trips that are not part of 

chains. Future attempts to gather data systematically for 

disaggregate modeling should review with special care the 

problem of defining and generating alternatives. Some approach 

other than interviewing for retrospective data may be 

required. 

Fatigue. It also should be recalled that alternative trip 

reporting came at the end of a very long interview. 

Interviewer and respondent fatigue may have contributed to the 

apparently small number of alternatives identified. Fatigue 

may explain the discrepancy mentioned above, between the 577 

households reporting alternative trips according to the 

household file (as determined earlier in the interview) and the 

389 households for which we found ATRs in the DETLN< file. (At 

some future time, it may be desirable to explore uses of the 

information about the reported availability of alternatives --

mode, destination, etc. -- for the 188 households for whom we 
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believe, 	at this time, ATRs were not collected.) 	ATRs were 

necessarily completed at the end of the interview. 	Of course, 

information. 	First, 	the survey gathered link-by-link 

information on the actual selected round trip 	(DTR) 	including 

given the care with which alternatives of all kinds were the time and cost dimensions of each link. 	Second, 	a series of 
solicited, we may be confronting a limitation in respondents questions followed, 	designed to identify alternatives to the 

capacity to absorb and respond to the concept of a trip DTR. 	Third, 	a full alternative trip report required 

alternative under direct questioning, link-by-link information on each eligible alternative. 

Multiple LOS Measures. 	The ODDS aimed to provide This careful but possibly confusing design yielded 	little 
objective and perceived time and cost information, 	in rather additional information. 	Only 18 households answered 

full detail, 	on both actual and alternative trips. 	With affirmatively to questions generating alternatives to chained 

respect to perceived data, 	the detail was requested to separate trips. 	Less 	than half of all households reported alternative 

in-vehicle travel time 	(IVTT) 	from out-of-vehicle travel time trips, at 	all. 

(OVTT) 	and from implicit out-of-pocket costs. 	However, Trips versus Links. 	As a further suggestion, 	we note that 
perceived IVTT is missing from the public use tape. 	Objective over 90 percent of 	the one-way trips 	in the data set were 

information would allow reseachers to estimate different composed of a single link. 	It might be more convenient 	to 

disaggregate demand models using objective or perceived systems organize the data on a trip basis, 	with a separate 	file 	for the 
data and compare the difference in parameter estimates, households having multilinked 	trips. 

Inclusion of objective data was intended, 	but some of the Specific Recommendations. 	The following changes are 

objective systems information was lost in the transmission suggested 	for future data collection efforts. 

process or conceivably was never acquired. G 	The primary respondent should be drawn from the over 16 

Confusion. 	The complexity of the survey instrument and age group rather than the over 12 age group. 

the data it sought probably contributed to the high rate of ' 	Questions about employment status should be drawn from the 

nonresponse to the alternative trip questions. 	The instrument Current Population Survey of the Bureau of the Census so 

contained three separate components for gathering this that the various categories would have definitions 

compatible with those of the Department of Labor and the 

Census Bureau. 

0-81 
D-82 



9 	The marital status question should be sufficiently 

detailed and should use categories borrowed from the 

Census. 

9 	A distinction should be made between earnings 

(compensation for labor) and income (which includes 

unearned income and transfers). The earnings figure is 

necessary to determine a shadow price of time; future 

instruments should try to determine a persons wage or 

salary as well as income. 

3 	The coding of the length of residence should be 

continuous, instead of having the top category be more 

than two years. 

Special attention to travel time and cost should have 

resulted in a follow-up question to extra long times or 

extra high costs to insure accuracy of outlying 

observations. For example, for time to park or time to 

unpark, a follow up asking why the time was so long could 

have been asked for durations over 20 to 30 minutes. 

Conclusions 

The Baltimore Disaggregate Data Set was a bold experiment 

in transportation planning data collection. In the context of 

an experiment it was a considerable success. Many valuable 

lessons have been and will be learned from the data source. 

However, such an ambitious approach to data gathering is not 

recommended for the calibration or adjustment of planners' 

applied choice models. It is simply too complex. Rather, for 

applied purposes the data should be collected with a short and 

simple questionnaire. Accurate systems data should be used for 

LOS measures. 

The empirical choice set formation process seems to have 

been too complicated for respondents. However, it may have 

yielded more useful data if it had been structured differently. 

For instance, if it only focused on worktrips and developed 

ATRs whether or not the alternative was ever chosen or only 

sought destination alternatives for discretionary travel, the 

data may have been more robust. 

8. ESTIMATION OF THE PITTSDLJRGH SHOPPING-TRIP NODE 

The Shopping Mode Choice Model 

The shopping-trip mode choice model represents a 

conditional probability structure of auto and transit choice. 

The estimation sample consists of 140 observations randomly 

drawn from specific travel corridors in the Pittsburgh 

metropolitan area. As in the worktrip mode split analysis 

discussed earlier, mode choices were limited to auto driver and 

bus (with walk access). The LOS data reflected travel 
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conditions for the time of day the shopping trip was actually 

taken. Since few of the observations represented peak-hour 

shopping travel to the CBD, the auto LOS reflected generally 

uncongested travel speeds with minimal parking charges (if any) 

at the shopping destination. Bus LOS in this sample was 

generally poorer than in the worktrip estimation sample, since 

most trips encountered off-peak, longer service headways. 

Estimation results for the shopping-trip conditional 

probability mode choice model are summarized in Table D-27. 

The model specification includes three LOS variables: 

(transit) walk access time, auto and transit in-vehicle travel 

times, and modal costs divided by income. A pure income shift 

variable, HINC, and a term representing household autos per 

licensed driver were included as socioeconomic descriptors. 

Although the model specification of the shopping mode split 

model is similar to the work mode split model, no deliberate 

attempt was made to parallel the two. 

The parameters of all the variables in the shopping mode 

split model were of the correct sign and significant at the 95 

percent level. The relative magnitudes of the parameters for 

transit walk (OVTT) and in-vehicle travel time are on the order 

of eight to one, suggesting that travelers find walk access 

considerably more onerous than in-vehicle travel time on a 

shopping journey. 
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Table D-27 

ESTIMATION RESULTS: SHOPPING MODE SPLIT MODEL 

In P (auto) 
P (transit) 	-6.63 + 2.16 HINC + 2.03 APE'RDR -.34 OVTT -.04 INVTT 

(-4. 62) (2.48) 	(2.13) 	(-3. 71) 	(-2.02) 

-13.50 C/INC 
(-3. .54) 

NOBS 	= 140 
02 	= .71 

L(0) = -97.04 5(8) = -28.26 

Percent Estirncted Correctly = 92.86 

p(auto) = probability of choosing auto 

p(transit) = probability of choosing transit 

HINC 	= I if household income exceeds $7000/year; 0 otherwise 
APE'RDR = autos per licensed driver 

OVTT 	
= difference in (auto-transit) out-of-vehicle travel time (in minutes) 

INV1T = difference in (auto-transit) in-vehicle travel time (in minutes) 

C/INC = difference in (auto-transit) cost in dollars divided by income 
code (see Table D-16) 

SOURCE: Charles River Associates, 1976. 
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As in the work mode split model, the coefficient of the 

income shift variable was positive, indicating that, all other 

factors equal, high-income travelers exhibit a preference for 

auto travel. Auto availability as represented by the term 

autos per licensed driver (APERDR) also positively influenced 

auto mode choice. 

The model correctly predicted the mode choice of 92.86 

percent of the travelers in estimation sample. The overall 

goodness of fit of the model is good as indicated by the 

coefficient of determination, 2  equal to 0.71. 

9. MODEL ESTIMATION WITH THE TWIN CITIES DISAGGREGATE 

DATA SET 

Introduction 

Mode split model development reseach was undertaken using 

data collected in the Twin Cities (TC) metropolitan area to 

accomplish the following objectives. 

To assess the feasibility of applying a disaggregate 

demand modeling framework to metropolitan area household 

interview survey (HIS) data augmented with aggregate 

network LOS data. From the standpoint of ensuring the 

practicality of the disaggregate model approach our 

experience with the TC data base represents the types of 

problems that may be encountered in the great number of 

urbanized areas where little or no data exist that are 

specifically designed for disaggregate analysis. 

To evaluate the quality and usefulness of HIS data in 

order to recommend improved procedures for collecting and 

forecasting disaggregate data. 

To explore further variable selection issues for 

disaggregate model specification. 

O 	To explore further sample design issues as they affect 

parameter estimation and model application. 

To investigate the transferability properties of 

disaggregate demand models. 

Research findings on each of these topics will be discussed in 

turn below. 

Feasibility of Using Home Interview Survey Data for 

Disaggregate Model Estimation 

In several respects, the Twin Cities (TC) data base 

available through the Metropolitan Council was better suited 

for disaggregate model estimation and analysis than the travel 

data commonly available in most urban areas. In particular, 

the TC data base had already augmented the traditional HIS 

household and trip data with aggregate network LOS information 

for both highway and transit. Moreover, the TC data set was 

already partitioned into a subsample of trips for which transit 

was available. Nonetheless, the following problems were 

encountered in preparing the data for logit estimation: 
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The trip data represented one-way travel, requiring finding are two-fold. 	First, 	lack of sufficient data in a 

processing to link up round trips; given metropolitan area for estimating nonwork mode choice 

The network LOS data represented 24-hour average travel models places increased importance on investigating the 

times rather than peak and off-peak travel times.; transferability of disaggregate demand models 	(from cities with 

LOS data were available only for transit and "highway; sufficient data to estimate disaggregate demand models for 

thus, 	no LOS data were directly coded for carpools, 	taxis, several trip purposes 	to cities like Minneapolis/St. 	Paul). 

or other modes; and Second, the low patronage rates of certain modes for nonwork 

Some household descriptors useful in demand analysis trip purposes suggest that if models are ever to be estimated 

(e.g., 	number of licensed drivers) 	were not collected, to explain this choice behavior, 	changes in data collection 

Starting with an initial base of 3,640 one-way trips by procedures must be undertaken to sample more heavily from areas 

all modes and purposes, 	the data, were screened and processed, where transit is relatively heavily used 	(cluster sampling). 

resulting in 721 linked round trips available for logit It should be stressed that a lack of significant nonauto 

estimation. 	The mode and purpose breakdown of the linked trips ridership at present does not obviate the need 	for mode choice 

was presented earlier in the Table D-2. 	Of 	the 721 trips, 	00.2 models. 	Such models are required 	in order to gain a better 

percent were by the auto-drive mode, 	15.9 percent by the understanding of why current services are little used as well 

auto-passenger mode, 	and 3.9 percent by the transit mode. 	The as providing a tool to assess the market potential of new 

overall auto-transit split was 693 	(96.1 percent) 	auto and 	28 transport services. 

(3.9 percent) 	bus. 	The 	721 	trips 	included 	406 work trips, 	ill Quality and Usefulness of Existing HIS 	Data 

personal business 	trips, 	8 medical trips, 	68 social/recreation Some of the problems with existing HIS data and network 

trips, 	91 shopping trips, and 37 school trips. LOS data for disaggregate model estimation have already been 

One immediate finding here was that for all nonworktrip cited. 	Experience to date with both the Twin Cities and 

purposes, 	there were too few transit trips to allow for Pittsburgh data bases have brought to focus several weaknesses 

disaggregate demand model estimation. 	The implications of this with existing disaggregate data. 	On the hasis of our 

experience, we have prepared a number of recommendations to 

guide future disaggregate data collection efforts. 
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The principal recommendations can be summarized in four 

basic categories. 

	

1. 	Improvements in the quality of the LOS data to be used in 

disaggregate model estimation: 

Use of household-specific rather than zonal average LOS 

data; and 

o Use of peak and off-peak data rather than some measure 

of average daily conditions. 

	

2. 	Improvements in the definition of the feasible choice set 

for individuals: 

More precise knowledge of the destinations and modes 

considered by the traveler at the time of his trip 

rather than assumptions based on judgment. 

	

3. 	Improved sampling procedures: 

Cluster sampling to ensure a- diversity of traveler 

choices. 

	

4. 	Improved definitions of trip purpose categories and mode 

alternatives. 

Variable Selection Issues 

Findings. The Twin Cities data base has been used to 

estimate several alternative specifications of binary choice 

(auto/bus) work mode split models. These modeling efforts, in 

addition to our work on the Pittsburgh mode split models, have  

provided further insight into the factors that significantly 

influence travel behavior. In qualitative terms, the empirical 

findings suggest the following. 

An expanded range of socioeconomic descriptors may be 

significant in explaining mode choice behavior. Income, 

life cycle indicators, sex, and auto ownership have all 

proved to be significantly explanatory of mode choice. 

O 	Travelers' responses to travel time changes deDend on the 

way in which the time is spent. In terms of iricreasing 

value of time, travelers appear to be most sensitive to 

in-vehicle travel time, waiting time, and walk access time 

in that order. This finding generally confirms estimation 

results obtained on the Pittsburgh disaggregate data set. 

However, in empirical research with the Twin Cities data 

set, transit wait time proved to be a significant variable 

in its own right. As might be expected, the Twin Cities 

estimation results suggest that travelers view increases 

in transit wait time as being more onerous than increases 

in transit in-vehicle time. 

The relative valuations of the cost of alternative modes 

depend on the income of the traveler. As expected, the 

higher a traveler's income, the less significant is the 

cost difference between modes in determining his choice 
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behavior. Here again, this finding was consistent with 

estimation results on the Pittsburgh work mode choice data 

set. 

Description of the Variables. The types of variables 

employed in the binary choice mode split model included 

socioeconomic variables to account for differences in 

travelers tastes and LOS variables to measure the relative 

impedances of the auto and transit modes. In particular, four 

socioeconomic variables were included to investigate the 

effects of household life cycle, sex of the traveler, auto 

availability, and income on mode, choice behavior. 

The inclusion of life cycle variables is based on the 

hypothesis that households have different underlying travel 

behavior depending on"their present stage of life. Life cycles 

may be broadly defined in terms of the marital status, age, 

number of children, and occupations of the household members. 

Households in differing stages of life may be considered as 

distinct market segments. There are two reasons why travel 

hehavior may differ according to life cycle status. First, 

values and tastes may differ between life cycle groups. For 

example, a household composed of elderly retirees would 

probably value comfort and convenience modal attributes more 

highly than a household in a younger (age) life cycle. Second,  

household travel patterns differ and result in competition for 

use of the household's autos. For example, in households with 

preschool children, a nonworking adult household member may not 

have the opportunity to travel often, thus "freeing up" the 

household's automobile for use by a primary worker. 

We may view worktrip modal choice decisions being made in 

the context of interdependent household travel pattern 

adjustments (D8). Modal choice decisions are based, to some 

extent, on the availability of automobiles for individual trip 

use and on the nature of competing uses for the household's 

autos by all household drivers. Life cycle segmentation is one 

means of identifying the effect of any systematic differences 

in travel patterns by different household types on worktrip 

modal choice. 

A single life cycle indicator was employed in the mode 

split models estimated with Twin Cities data, a dummy variable 

whose value was 1 (in the utility function of the auto mode) if 

the household was a young married couple (household head under 

45 years of age) with one or more children under five years of 

age, and 0 otherwise. From, our earlier Comments on differences 

in household travel patterns, it was expected that this 

variable would positively influence the probability of auto 

choice for worktrips. 

00 
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A second socioeconomic variable in the model represented 

the sex of the traveler. As with household life cycle 

indicators, the sex of a traveler may influence mode choice 

behavior because of differences in values and tastes and/or 

differences in the intrahousehold allocation of automobile use 

among household members. 

The number of automobiles relative to household size and 

composition was entered in the model as the single variable 

autos per (household) resident. The Twin Cities household 

interview survey did not collect information on the number of 

workers or the number of licensed drivers per household. 

The fourth socioeconomic variable employed in the worktrip 

mode split models was household income. It was hypothesized in 

this appendix that income might influence traveler mode choice 

in both a pure (auto preference) shift effect and through 

differences in the value placed on travel times and cost. The 

presence of a pure income shift effect was not statistically 

significant in models estimated on the Twin Cities data. 

However, the effect of income on travelers' valuations of LOS 

was represented by the variable cost divided by income. This 

representation is based on the hypothesis that, all other 

factors equal, a high-income traveler is less sensitive to cost 

differences between modes than is a low-income traveler. 

The LOS variables employed in the model distincuished 

between three individual components of door-to-door travel 

time: in-vehicle (linehaul) time, walk access time, and wait 

time. The latter variable was computed as one half the average 

bus headway for transit travel and zero for auto travel. The 

walk access time (for both transit and auto) assigned to each 

individual represented a measure of zonal average access in the 

households residence zone. Similarly, in-vehicle travel times 

were coded as zone centroid to zone centroid average travel 

times. 

Travel time data were not stratified into peak and 

off-peak conditions. Rather, the data were representative of 

average daily conditions. Since most worktrips occur in peak 

hour periods, the travel time recorded in the Twin Cities data 

set probably underestimates actual conditions for the majority 

of travelers. 

The travel cost variable recorded round trip bus fares for 

the transit mode and parking plus operating costs for auto. 

The cost variables were divided by an income code to reflect 

income-dependent cost valuation differences. 

Presentation of the Model. Table D-28 summarizes the 

basic form of mode split model specification estimated with the 

Twin Cities disaggregate data set. The estimation results, 

'S 
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Table 0-28 

SPECIFICATION OF THE MODE SPLIT LOGIT 
MODEL FORM ESTIMATED WITH THE TWIN 

CITIES DATA SET 

Mode-Specific Auto 
Constant 	 Life Cycle Sex Availability 

Variables Appearing i 	 i 	If 	household I 	if 	traveler autos in the Auto head 	Is under Is male; 	0 	if per 
Utility Function 45 with a child traveler 	is household 

under 5; 	0 female resident 
otherwise 

Variables Appearing 
in the Transit 
Utility Function 

Walk 
Access 	 Wait In-Vehicle Travel 
Time 	 Time Time Cost 

Variables Appearing round trip 	 0 round trip auto round trip auto in the Auto 
Utility Function 

walk time 
to 	from and 

In-vehicle travel operating plus 
time parking cost 

parking dividend by 
lots income 

Variables Appearing 	round trip 	round trip bus wait 	round trip bus 	 round trip 
in the Transit 	 to and from 	time (computed as 	 in-vehicle travel 	bus fare 
Utility Function 	 bus stops 	112 avoraqe headway 	time 	 divided by 

each route used) 	 Income 

SOURCE: Charles River Associates, 1976. 
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coefficients, t-statistics, and other goodness-of-fit measures 

are shown in Table 0-29. All the estimated coefficients have 

the anticipated sign and four of the six are significant at the 

90 percent level. The coefficients of the LOS variables (time 

and cost) are, as expected, all negative, although the 

resulting value of time measures are somewhat higher than might 

be expected. The results confirm our hypothesis on the 

relative valuations of the individual components of 

door-to-door travel time. The value of (transit) wait time is 

50 percent higher than the value of in-vehicle time. Walk 

access time is valued even higher; three times greater than the 

value of transit wait time. 

The parameter estimates of the socioeconomic variables all 

conformed in sign to our a priori expectations. Auto 

availability, as represented by the variable autos per 

household resident, had a positive and significant (at the 95 

percent level) coefficient, indicating that the greater the 

number of autos relative to household size, the greater the 

probability of auto use for the worktrip. 

The life cycle variable also had a positive parameter 

estimate. This result corroborates the previously noted 

hypothesis that in households with preschool children, the 

intrahousehold competition for use of household auto(s) during 

Table 0-29 

WORKTRIP MODE SPLIT MODEL 
ESTIMATION RESULTS: 

TWIN CITIES DATA SET 

P(auto) 
in P(transit) =95 + 2.23 APERR # .93 SEX # .72 ECECLE - .02 INVTT 

(-1.05) (2.12) 	(2.02) 	(1.31) 	(-1.08) 

-.09 OVTT - .03 WAITT - .64 C/INC 
(-2.49) 	(-1.00) 	(-1.11) 

NOBS = 350 

p 2 	= .68 

L(0) = 242.60 	L(8) = -78.24 

Percent 	Estimated Correctly = 93.14 
P(auto) = probability of choosing auto 
P(transit) = probability of choosing transit 

4PER.R = autos per resident 

SEX 	= I if male; 0 if female 
LCYCLE = 1 if household is young nurried couple (household head under 45) 

with child under 5; 0 otherwise 

INVTT = difference in (auto-transit) in-vehicle travel time (in minutes) 

OVTT = difference in (auto-transit) out-of-vehicle travel time (in minutes) 

W.4ITT = wait time (for transit) in minutes 

C/INC-difference in (auto-transit) cost in dollars divided by income code 

SOURCE: Charles River Associates, 1976. 
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the day may be less than in other household types. 

Consequently, households with children under the age of five 

exhibited a higher auto preference for work travel. 

The sex of traveler variable, defined as 1 if male, 0 if 

female in the auto utility function, also had a positive and 

significant coefficient estimate, suggesting that, all other 

factors equal, males have a higher probability of auto use than 

females for worktrips. This result may indicate that in 

multiworker households, the male household member makes more 

frequent use of the auto for worktrips than does the female. 

Sample Design Issues 

Our empirical research using the Twin Cities and 

Pittsburgh disaggregate data sets has raised three issues 

concerning the effects of sample design on the efficiency and 

bias properties of resulting logit model parameter estimates. 

Specifically, the three issues concern the modeling 

implications of the following: 

Corridor sampling, where the sample is drawn randomly only 

from corridors where transit service is good relative to 

the region as a whole; 

Nonrandom sampling, where the probability of all members 

of a population within a specified area being in the 

sample is not equal. In this case the mode split in the 

estimation sample will not be representative of the area 

or corridor as a whole; and 

Stratified sampling, where the population is divided into 

subgroups on the basis of one or more (independent) 

variables and each group is sampled randomly at different 

sampling rates. 

Each of these issues is discussed below in the context of the 

empirical research conducted during the projecL. 

Corridor Sampling. The Pittsburgh disaggregate data 

sample was drawn randomly from a prespecified travel corridor 

where the quality of transit service was good relative to the 

region as a whole. This sampling procedure may yield biased 

parameter estimates in a mode choice model due to the 

interactions with land-use choices. 

Biased parameter estimates may be caused by the presence 

of significant correlations between included and omitted 

(unobserved) variables in a choice model. If transit lovers, 

whose preferences are explained by factors omitted in the 

specification of a choice model, tend to locate in areas where 

good transit service is provided, corridor sampling may indeed 

lead to biased estimates. 

To the extent that a disproportionate number of travelers 

with these types of (unobserved) transit preferences tend to 
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locate in well serviced transit corridors, mode choice models 

estimated on data from these corridors may have two related, 

unfortunate properties. 

G 	The node-specific constant may exhibit a transit bias." 

This estimated constant represents the average effect of 

omitted factors in the mode split model specification. As 

such, applying the estimated model to mode split forecasts 

in other areas where there is not a concentration of 

"transit lovers," may lead to overestimates of transit 

patronage. 

0 	Some of the coefficients of the LOS variables may be 

biased. This will occur if an unobserved attribute, e.g., 

preference for transit because of personal tastes, is 

correlated with an observed attribute, e.g., travel time. 

In this example, the resulting travel time coefficient 

would be overestimated. 

Nonrandom Sampling. This type of procedure involves 

sampling on the dependent choice variable. (Manski and Lerman 

(D9) refer to this procedure as choice-based sampling.) An 

example of nonrandom sampling would be the collection of 

disaggregate data from a prespecified number of on-board 

transit surveys and roadside (auto) interviews. In such cases,  

the relative shares of transit and auto users in the sample 

would not be representative of the modal split in the region as 

a whole. 

In general, nonrandom samples will produce parameter 

estimates in a logit choice model that are different from 

parameters estimated on a random sample. The differences in 

parameter estimates will probably be most pronounced for 

mode-specific constant (MSC) terms and any other variables 

highly correlated with the MSC(s). 	)Manski and Lerman (09) 

report that McFadden has proved that MSC terms are inconsistent 

in logit models with a full set of MSC)s). Therefore, in large 

samples, differences in parameter estimates are essentially 

confined to MSC terms. 

The Twin Cities data base was employed to investigate the 

importance of nonrandom sampling on the differences in the 

resulting model parameter estimates. Table D-30 displays the 

parameter estimates of a binary work mode split model estimated 

on three alternatively constructed samples from the Twin Cities 

data. The definitions of variables and functional form of 

these models are the same (except for the omission of the life 

cycle and transit wait time variables) as described earlier in 

Table D-28. The first model was estimated on the entire random 

sample of 350 work trips (of which 25 trips were by transit). 
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Table 0-30 

MODE SPLIT MODEL PARAMETER ESTIMATES 
FOR RANDOMLY AND NONRANDOMLY DRAWN SAMPLES 

(Standard Errors in Parentheses) 

Model 	1 Model 2 Model 	3 

Number of transit users 25 25 25 

Number of auto drivers 325 150 15 

Mode-specific 0.42 -1.26 -2.87 
constant term (u.79) (0.88) (1.18) 

1.03 1.08 1.84 
Sex (0.45) (0.52) (0.65) 

.54 1 .93 2.50 
Autos per resident (0.84) (0.95) (1.10) 

-0.014 -0.012 -0.012 
In-vehicle travel 	time 0.0l) (0.01) (0.013) 

-0.737 0.835 -0.484 
(Out of pocket cost)/incorne (0.55) (0.79) (0.91) 

-0.038 -0.025 -0.038 
Walt time (0.03) (0.03) (0.04) 

-0.088 -0.088 -0.089 
Access time (0.03) (0.03) (0.03) 

SOURCE: Charles River Associates, 1976. 

(The sample was drawn only from areas where transit was 

available. Nonetheless, within these corridors the sampling 

was random.) The second and third models retain all 25 transit 

trips from the larger sample, but include only a subset of the 

total number of auto users (see Table D-30). As such, the two 

latter samples are nonrandom; our procedure has artificially 

enriched" the data with transit users. 

In comparing the parameter estimates from the three 

models, as expected, the MSC term becomes increasingly negative 

(exhibiting transit bias) as the proportion of transit users in 

the estimation samples increases. It also may be noted that 

the parameter estimates of the LOS variables are relatively 

insensitive to the mode choice composition of the estimation 

sample. This may indicate that in the Twin Cities data base, 

LOS coefficients are more transferable than the SISC. 

Stratified Sampling. One of the problems encountered in 

estimating models with the Twin Cities data set was that few of 

the observations represented "traders' -- travelers whose 

travel Cost by one mode was higher and travel time lower than 

the Competing mode (or vice versa). For most of the 

observations, auto was the dominant mode in all LOS 

characteristics. This partly explains the reason for the 

relatively low t-statistics on the coefficients of the LOS 

variables shown in Table D-29. 
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The effect of a limited variation of the independent (LOS) 

variables in the estimation sample on the goodness of fit of 

the estimated logit model is, shown schematically in Figure D-5. 

As noted above, for most of the observations in the Twin Cities 

data set, the LOS data were "clustered" in a region where the 

auto mode was favorable (cheaper and faster) to transit. This 

is indicated in Figure D-5 by the circled cluster of data 

points representing a particular LOS variable (time or cost). 

As shown, when the independent variables and choices (93 

percent of the travelers in the sample chose auto) have limited 

variation, several different log-it response curves may "fit" 

the data relatively closely. 

These comments suggest that future data collection efforts 

should consider a cluster sampling technique wherein a wide 

variation in the independent LOS variables would be ensured. 

As shown in Figure D-5 (by the data clusters in the boxes), 

having data over a wider range of the independent variables may 

serve to provide a better estimate of the logit response 

function. 

10. MODELING WITH THE BALTIMORE DISAGGREGATE DATA SET 

Introduction 

This section describes disaggregate modeling research for 

the Baltimore Disaggregate Data Set (BDDS). The discussion is 

Figure D-5 

SCHEMATIC REPRESENTATION OF THE EFFECT OF LIMITED 
VARIATION IN THE INDEPENDENT VARIABLES ON 
GOODNESS OF FIT OF THE LOGIT MODEL 

level of service variable 
(auto favorable -") 
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broken down into several subsections. First, it discusses the 

data interests of disaggregate modelers that prompted the data 

collection effort. In the second section computer data files 

are described, followed by a discussion of how the data files 

were reorganized to estimate mode choice models. A conceptual 

model of mode choice is presented in the fourth section, 

followed by a discussion of model specification. The final 

section presents empirical results. 

This section has two Objectives: first, to introduce 

researchers to the BDDS as a tool in disaggregate modeling 

research; and second, to present the results of CRAs demand 

modeling work with the BDDS. 

The BDDS was collected during May and June of 1977. It 

describes 966 households and the travel of all responsible 

members of these households for a 24-hour period. The data set 

consists of six separate files tied by common identification 

numbers. The separate files describe the households, their 

vehicles, the household members, trip summaries for all 

household trips, detailed links (including alternatives) for a 

randomly selected trip, and the land use in each Baltimore  

transportation zone. This set of data files affords many 

opportunities to model choice behavior of interest to 

transportation analysts and planners. 

Data collection and file development was sponsored by the 

U.S. Department of Transportation's Federal Highway 

Administration. The research objective was to interview 1000 

households and obtain one-day summary records of all trips 

taken in a 24--hour period for all household members over 12 

years of age located in these households. In addition, one 

individual 16 years of age or over was selected at random as 

the 'primary respondent." Trip details by link were obtained 

for a single round trip selected at random from a single 

individual's trip summary. Alternatives to this detailed trip 

were identified by asking the primary respondent about his 

alternative travel for this purpose in the last six months. 

Data Interests of Disaggregate Modelers 

At the outset of developing the disaggregate data set, CRA 

undertook a major effort to solicit recommendations on the 

household survey from researchers in the field of disaggregate 

travel demand modeling to ensure that the data set would 

reflect the needs of a variety of researchers with different 

approaches and hypotheses to test. 

It is convenient to classify the results of the 

investigation into six categories: socioeconomic; neighborhood 

and housing; auto ownership; basic trip record; alternative 

trip record; and nonworktrips. 
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Socioeconomic Data. Most emphasized the need for complete 

data on the household's life cycle stage. It was agreed by 

most respondents that data should be collected for all 

household members. In general, most researchers seemed to be 

interested in collecting the usual socioeconomic data already 

known to be useful in modeling travel behavior. 

Neighborhood and Housing Descriptors. Many researchers 

did not consider detailed housing and neighborhood descriptors 

to be of much value in modeling travel behavior, but most 

researchers attached some importance to structure type (e.g., 

one-family, duplex, etc.). Since few neighborhood and housing 

descriptors were included in the set, it should not be much 

more useful than existing data sources are to those economists 

and planners using transportation data sets to model housing 

demand. 

Auto Ownership. Most indicated a strong interest in 

knowing the number and types of vehicles owned and/or available 

to the household to develop measures of auto availability. A 

majority indicated interest in having information on the 

household's home parking situation, particularly the type of 

parking (garage, street, lot, etc.) and distance to the parking 

location. 

Basic Trip Record. Most researchers agreed on a core of 

important items for inclusion in the basic trip record  

including trip purpose and times of departure and arrival. For 

each link, items included mode of travel, route, and activity 

at start and end of link. Perceived travel time and cost data 

were considered important. 

Alternative Trip Record. The most consistent comment made 

by researchers about alternative trip data was the difficulty 

of collection. Nonetheless, many indicated an interest in 

collecting it. Some researchers feared that asking the 

traveler for his perceptions of travel times and costs for all 

of the combinations of possible alternatives for a given 

discretionary trip (mode, destination, time of day, route) 

would make the survey instrument unmanageable. They suggested 

a compromise of asking the traveler what the alternatives were 

and then computing the LOS data from a systeo network. Some 

researchers also felt that the current state of the art in 

modeling discretionary trips was not sufficiently developed to 

warrant the collection of alternatives for discretionary trips. 

As was described in Section 6 of this Appendix, many of these 

fedrs were realized. 

Nonworktrjp Purpose. Researchers were asked to indicate 

which nonworktrip types were most interesting to them. Three 

types of nonworktrips were mentioned most often: grocery 

shopping, other shopping, and recreational. 
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A number of respondents made the point that the existence 

of multipurpose trips make it difficult to concentrate on 

selected trip types. For instance, a journey from home to a 

friends house, then on to a department store, then over to 

pick up the children from school, and back home again would be 

difficult to classify for trip purpose; yet this pattern is not 

uncommon. Attempting to separate this type of trip into its 

component parts and considering each part as a distance trip 

may well distort the time and character of the travel 

behavior. 

The home interview and systems data collected by the 

survey effort are located in six separate computer files. The 

files are organized to efficiently utilize storage space; there 

are a minimum of blank records. The files are not organized to 

be immediately loaded into a logit package and to estimate 

coefficients. There are pointers in each file that allow the 

user to reference observations across files. This section will 

briefly describe each of the data files. It will then describe 

how the files were merged to create a file for estimating mode 

choice models. For more detail on each file, the reader is 

referred to the BDDS User's Guide (DlO). 

The Household File. This file is the hub file of the data 

set. In FLIWA/CRA clean-up efforts, not all this data was 

screened for quality. It contains each household's census 

tract and block as well as the sampling strata, household 

number, and sample weight as calculated by CRA for the entire 

sample. It contains the number of persons in the household, 

the total number of travelers and the total number of persons 

eligible as respondents. Also, it contains the number of the 

primary respondent. The household file also contains the data 

on distances to the nearest public transit, arterial, and 

expressway; home tenure; household income; dwelling type; and 

number of rooms. 

Some questions from the Detailed Trip Report were asked 

only once of the primary respondent -- here packaqes carried? 

Tools? If so, did they make a car or taxi necessary? How much 

was spent on shopping trips? These responses are provided in 

the household file. 

The remaining variables in the household file are the 

responses to the alternative trip identification process. 

These data were not screened in clean-up efforts. 

The Vehicle File. The vehicle file data on each vehicle 

include: vehicle type, Wharton model code, year of 

manufacture, ownership, seating capacity, regular commuting 

use, regular driver(s), parking place and cost, and conditions 

of availability for employer-owned cars. 
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The Person File. This file contains data on each person 

in the household including the person number, age, and sex. 

The file also contains the number of one-way trips made by each 

person and four variables describing physical handicaps, if 

any. 

The remaining variables in the file include employment 

status, occupation, industry, wage earner or salaried, work 

hours, and work time flexibility. The file also includes 

length of residence at present address, former residence, 

possession of drivers license, when person last drove, person 

income, educational attainment, marital status, race, and 

fluency in English. 

The Trip File. This data file contains the household 

number, the person number, and the trip number. It also 

contains the trip type, origin and destination, trip purpose, 

mode, and household members making the trip. For automobile 

trips it contains the number of persons in the vehicle. The 

file contains the departure and arrival times, a frequency 

estimate, and the land use of the destination. From the coded 

network, the file contains centroid-to-centroid travel time and 

distance by chosen mode. It also contains highway and transit 

zone-to-zone network data for each trip recently appended by 

FHWA. 

The Detailed Link File. The file contains a variable 

uniquely identifying each link by household, alternative type, 

and link within the alternative. There is also a variable 

indicating the question that generated the alternative trip. 

It will be recalled that there are nine different types of 

alternative trips identified in the BDDS. 

For work-/school-trip: 

Alternative modes for chains -- all discretionary trips 

retained in chain; 

Make discretionary trips(s) in chain as separate 

home-based trip(s); 

Alternative mode for trip from one work/school location to 

a second work/school location; 

Make trip to second work/school location in chain as a 

separate home-based trip; and 

Make home-based work-/school-trip from DTR by alternative 

mode or make work-/school-trip of chain as a separate 

home-based trip. 

For non-work-/school-trips: 

Alternative modes for chains -- all trips retained in 

chain, same order; 

Alternative chain configuration and modes -- all trips 

retained in chain; 
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Make home-based trip from DTR by alternative mode or make 

the DTR trip of chain as a separate home-based trip; and 

Alternative destination. 

The remaining variables describe the link. For automobile 

links they include the number of occupants on alternative 

links, tolls, unparking and parking time, parking type and 

cost, and cost sharing data. For transit alternatives there is 

a wait time estimate, fare, shelter, and seat availability. 

For all alternatives there is perceived travel time and 

distance, the origin and destination census tract, block and 

traffic analysis zone, as well as systems data describing 

transit wait time, trip distance, and travel time. The file 

contains other zone-to-zone network data appended recently by 

FHA. This recently added data is at the trip level of detail 

rather than the link level. 

Zone File. The sixth data file includes information on 

population, land use, and employment in each of the 

transportation zones in the Baltimore planning network. 

Data Manipulation 

It should be apparent to the reader from the discussion 

above that the public use tape of the Baltimore Disaggregate 

Data Set is not a single data file from which choice models can 

be simply estimated with a minimum of preprocessing. Rather,  

extensive data manipulation and analyses were required. This 

section briefly describes the edits and merges that were 

required to develoip two mode choice data sets from the 

detailed link file. 

It will be recalled that the detailed link file (DETLINK) 

contains link-level data on a single round trip (DTR) and data 

on up to five different classes of alternatives to that trip 

(ATRS) for worktrips (four alternative types for nonworktrips). 

It also will be recalled that many DTRs did not have 

coresponding ATR5; many DTRs were complex tours and some DTRs 

and ATRs used combinations of modes (e.g., bus-out, walk-back) 

or exotic or rare modes (e.g., horse, boat, bike). Given the 

state of the art and the configuration of the data, it was 

necessary to identify usable trips (e.g., none of the 

complications mentioned above) and collapse those link records 

into round trips. 

There were only sufficient observations available in 

DETLINK file to investigate three dimensions of choice: 

work-/school-trip mode choice, discretionary trip mode choice, 

and discretionary trip destination choice. Very few 

alternatives were identified by the other six alternative 

identification schemes. 
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First Approach. Using the DETLINK file as a base, CRA 

compressed link-level data to develop summary round trip 

information. The new file, INDEX, is organized by household 

and round trip: household information, detailed trip 

information, alternative trip information (for up to seven 

alternatives), and a single code to identify whether the 

observations included an alternative trip. The information on 

detailed and alternative trips (up to seven ATRs) consisted of 

codes identifying: 

The last mode used by the tripmaker; 

The number of one-way trips in each round trip record; 

The number of mode switches within one-way trips; 

The number of mode switches between one-waytrips; 

The number of links in each round trip record; 

The occurrence of a trip that did not return to the 

original origin; 

The occurrence of an alternative round trip that did not 

originate at the same location as the detailed round trip 

(ATRS only) ; and 

The question number that identifies the alternative trip 

type (ATRS only).* 

*Alternative trip records only. 

The INDEX file was processed to create a new file, 

INDEX.EDITED. It contained only observations with at least one 

alternative trip. Cases that met the following criteria were 

excluded from further analysis: 

No alternative trip; 

Detailed trip mode was not auto driver, auto passenger, 

public transit or walk; 

All the alternative trips were by modes other than auto 

driver, auto passengers, public transit or walk; and 

The alternative type was ineligible (alternative types: 

1, 2, 3, 4, 6, or 7 -- see Detailed Link File description 

in previous section). 

The INDEX file contained 833 records, which fell into the 

following categories: 

No alternative trip (N=444) 

Detailed trip mode not applicable (N=21); 

All alternative trip modes not applicable (N=8:; 

Ineligible alternative type (N=2); and 

Retained and copied to INDEX.EDITED (N=358). 

The 358 observations in the new file were not 

trouble-free. However, the new file included all observations 

with at least one tractable alternative to a work-/school- or 

nonworktrip. Many of these observations had one or more of the 

following troublesome characteristics: 
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Trips that do not return to the initial origin or one or 

more alternatives does not have the same origin as the 

detailed record; 

Chained trips; 

Trip records with mode switching within one-way trips; 

and 

Trip records with mode switching between one-way trips. 

A code was developed and appended to each observation in 

the INDEX.EDITED file which identified the absence or 

occurrence of each condition listed above. The joint 

frequencies for these conditions are presented in Table D-31. 

On the other hand, records with the above problems are not 

necessarily useless for mode choice models. For instance, the 

problem may occur in only one of several alternative trips, 

with remaining alternatives suitable for modeling. Therefore, 

CRA identified these observations with a suitable DTR and at 

least one simple alternative trip. Such records would 

constitute the households to be used in modeling. 

First, CRA determined which of these cases are flawed due 

to irregularities in the DTR and eliminated them from the data 

set for mode choice modeling. Second, CRA identified those 

records with a problem condition in each of the alternative 

trip reports (ATRS). Trips with no useful ATRS cannot he used. 

Table D-3 

PROBLEMS WITH DETAILED AND ALTERNATIVE TRIPS 
BY TRIP TYPE: DETAILEI) TRIP FILE (RODS) 

Trip Type 

Nonwork 
Work/Shopping Nonwork Mode and Nonwork 

Mode Mode Destination Destination 
Problem Alternative Alternative Alternative Alternative Total 

Simple trips 38 22 44 63 167 

Between trip mode switch 19 6 3 3 31 

Within trip mode switch 5 1 6 

Chained trip 12 20 34 39 105 

Does not return home 1 -- 1 1 3 

Between and within trip 
mode switch -- -- 2 1 3 

Chained trip and between 
trip mode switch 6 9 4 12 31 

Chained trip and within 
trip mode switch 1 -- 1 -- 2 

Doesnot return home and 
chained -- -- 1 2 3 

Table continued on following page. 
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Table 3-3! 

PROBLEMS WITH DETAILED BUD ALTERNATIVE TRIPS 
BY TRIP TYPE: DETAILED TRIP FILE (RODS) 

Trip Type 

Nonwork 
Work/Shopping Nonwork Mode and Nonwork 

Mode Mode Destination Destination 
Problem Alternative Alternative Alternative Alternative Total 

Chained trip, within and 
between trip mode switch 4 1 1 -- 6 

Does not return, chained, 
between trip mode switch -- -- -- 1 1 

TOTAL 86 58 91 123 358 

Salvageable observations were those with a simple detailed trip 

and at least one alternative trip with no complicating 

factors. 

SOURCE: Charles River Associates. 1980. 
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In the final analysis, only 30 cases had adequate data and 

sufficient alternatives available to afford a model of worktrip 

mode choice with auto, transit, and walk alternatives. No 

meaningful results could be generated from such a small data 

set. Consequently, CPA used an alternative apprcach to 

constructing alternative LOS data for simple worktrip DTRs. 

This approach is described below. 

The Alternative Approach. The second data set was created 

using all simple work/school detailed trip records regardless 

of whether there was an alternative mode ATR in the DETLINI< 

file. The second data set initially contained 229 

observations. After correcting for missing data points, 175 

observations remained in the data set. LOS data were not 

available for modal alternatives, so CPA generated the LOS data 

for appended FI-IWA network skims. All LOS data are at the 

zone-to-zone level of detail. 

CRA calculated LOS for three modes: auto, transit, and 

walk. 
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When walk was the chosen mode, the LOS data were hand 

coded by FHWA from a map. When walk was not the chosen mode, 

CRA assumed that the coded highway zonal distance approximated 

the walk distance. All walk times were calculated from these 

distances assuming an average constant walk speed of three 

miles per hour. 

CRA combined auto driver and auto passenger into one 

uniform auto mode. The generated data would not reflect a 

difference in LOS between auto driver and auto passenger. 

The LOS data calculated for each mode are distance, cost, 

and travel time. Other LOS data included out-of-vehicle time 

for transit, a variable for whether the trip was too short to 

use transit, and whether transit was readily available or 

required automobile access. 

Other variables included in the data set are household 

person identification numbers, mode of trip, and the dependent 

variable representing mode choice. The socioeconomic variables 

are described in the following section. 

The socioeconomic variables were drawn from both the 

household file and the person file. The data items included 

employment related variables, length of residence at present  

address, previous residence, demographic data such as age, 

race, marital status, educational attainment, whether the 

respondent had a current driver's license, when he last drove, 

both household and personal incomes, the existence of physical 

disabilities affecting walking, driving, or use of public 

transportation, tripmaking behavior, residence data (dwelling 

type, own/rent, etc.), number of people residing in the house, 

traveling in the recording day, the number of vehicles in the 

household, trip purpose, whether the respondent carried any 

items that affected the travel method, whether transit is a 

possible alternative, and if not would person consider driving 

to a transit line. 

Using this data, CRA was able to estimate models of 

worktrip mode choice. CRA's preliminary results with these 

modeling efforts are described below. 

Conceptual Model 

There are several considerations that theoretically 

influence an individual's choice among automobile, bus, and 

walk as modes for worktrips. Each of these considerations is 

briefly described below. 
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Level of Service. The automobile, bus, and walking modes 

are very different ways of getting to and from work. The 

automobile offers the greatest level of comfort, door-to-door 

service, and great flexibility and versatility for changing 

travel plans. It is also relatively costly, with a substantial 

initial fixed cost and moderately high operating costs. There 

also may be costs associated with storing the automobile at 

origins and destinations when not in use. Motorists cannot 

always park at their doorstep. Consequently, there may be 

access time costs associated with getting to the car. In 

relation to other modal alternatives, the auto is often the 

speediest way of getting to work as well as the most 

comfortable. Finally, the automobile allows travelers to carry 

substantially more baggage than would be possible with other 

modes. 

The bus is an automotive mode for pedestrians. In 

relation to the automobile, it offers less comfort and 

convenience at a lower total cost. Unlike the auto, the 

transit patron does not have to cover the costs of storing the 

vehicle at home and work and usually only pays a portion of the 

total costs of providing service. On the other hand, there can 

be substantial time spent waiting for transit and transferring 

between vehicles and routes. Once in the vehicle, the transit  

bus is seldom as speedy as an auto. Transit routes are often 

less direct than the route an individual would take with the 

car. Transit service is seldom door-to-door, so there are 

often substantial access times to transit from the ultimate 

origin and destination. It is generally difficult to carry 

more than a minimum of baggage on public transit. 

Walking is the oldest form of human locomotion. For short 

distances it is often the easiest and most convenient way to 

travel. However, as travel distances increase, walking becomes 

too slow and tiring to effectively compete with mechanized 

modes. Even small amounts of baggage can be very burdensome on 

a long walk. 

Household Characteristics. Several characteristics of the 

traveler's household may affect his mode to work. The overall 

level of wealth and/or household income would influence the 

traveler's evaluation of time spent traveling. It also would 

have an indirect impact on his travel options. On average, 

wealthier homes would have more and better automobiles 

available. Competition in the household for automobiles would 

increase with ratio of licensed drivers to autos available. 

Individual Characteristics. There are several 

characteristics of the individual that help determine his 

choice of auto, transit, and walk to work. With respect to 
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automobile travel, a driver's license is helpful, but not 

essential, because one can be driven by a friend or family 

member. Personal income can also determine one's access to a 

household vehicle. We would expect "breadwinners" to fare well 

in competition for scarce family cars and for teenagers with 

part-time jobs to be more likely to walk to work. Work 

conditions can also determine mode choice. With respect to 

transit, other personal characteristics may also influence mode 

choice. These may include attitudinal factors, i.e., that 

transit is not a practical alternative. They may also include 

the overall level of individual mobility. Transit may not be 

practical for travelers who make many trips during the day. 

In considering the pedestrian alternative, age and 

physical condition are obvious considerations. Younger, more 

vigorous persons should find walking less onerous. Persons who 

work and live in the central city would also be more likely to 

walk since the costs of travel by other modes would be more 

unfavorable. 

Model Specification 

There are variables in the BDDS estimation data set that 

measure each of the factors described above. These variables 

are briefly described below, along with a discussion of how 

each variable should be specified in the representative utility 

function for each alternative in the logit model. 

Automobile Level of Service. Out-of-pocket costs for auto 

travel are measured by zone-to-zone automobile travel distance 

from the 1977 coded Baltimore zonal network times a factor 

representing average city mileage per gallon of the 1977 

Baltimore fleet (11.98 mpg) and the 1977 average Baltimore fuel 

cost (62.5 cents per gallon). 

Travel time is measured for in-vehicle time from the 1977 

highway network zone-to-zone travel times. 

Auto access time and parking costs are discussed under 

household characteristics. 

Other factors affecting the utility of the automobiles for 

worktrips are unobserved in the estimation data set. These 

include comfort, convenience, and capital costs. The impact of 

these factors is absorbed in a mode-specjfic constant term. 

Transit Level of Service. Out-of-pocket costs for a 

transit trip are measured by transit fare derived from the 1977 

zonal network. 

Travel time for transit can be broken into two components: 

in-vehicle travel time (IVTT) and out-of-vehicle travel time 

(OVTT), both of which are derived from the 1977 network. 

Distance to the nearest transit stop was measured in the 

BDDS using respondents perceptions. This perceived distance 

can be included in model specification as an alternative 

measure of OVTT. 

D-128 	 D-129 



A mode-specific constant is included to pick up the 

effects of unobserved attributes of transit such as comfort and 

convenience. 

Pedestrian Level of Service. The financial costs of the 

walking are virtually zero and are entered as such into the 

evaluation of the cost coefficient for the three modes. 

Walking distance was measured from maps for chosen 

alternatives and imputed from network highway distances for 

rejected alternatives. An average speed of three miles per 

hour was assumed for all pedestrian trips to measure walking 

travel time. Walk time is included in the utility function for 

the pedestrian alternative as IVTT. (An alternative 

specification might include walk time as equivalent to transit 

OVTT.) 

Household Characteristics. Household wealth can be 

measured by a proxy. This proxy is the number of rooms in the 

household. Household income is a measure of wealth and current 

liquid household assets. 

The ratio of total household vehicles to total household 

travelers represents the competition for automobiles within the 

household. One would expect that as this ratio increased, the  

probability that a walker would use an automobile for his 

worktrip would also increase. 

Auto access time and parking costs can be measured by a 

proxy measuring residential densities. This proxy, dwelling 

type, describes the household on a continuum from single family 

home to high rise apartment. One would expect home-end costs 

of parking and automobile access to increase with higher 

residential densities. 

Individual Characteristics. Variables in the estimation 

data set measure all the theoretically pertinent 

characteristics that determine an individual's evaluation of 

his worktrip mode alternatives. A driver's license dummy 

variable is included in the data set to partially reflect 

availability of the automobile mode. The ratio of personal 

income to household income should reflect individual status in 

competition for a limited fleet of household autos. As this 

ratio increases one would expect the individual's priority in 

auto competition also to increase. 

Respondents were asked if they carried any packages or 

tools that influence their choice of mode. This baggage 

variable helps determine mode choice. 

Workers who make many trips during the day may attach a 

higher utility to the automobile in order to keep their busy 
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schedule. The number of trips in the respondents' day can be 

included in model specifications to measure the impact of 

frequent travel on worktrip mode choice. 

Respondents were asked if transit was a possible 

alternative for their worktrip. Transit must be perceived as 

feasible to be used. We would expect negative responses to 

this question to have a large negative impact on the 

individual's utility for transit. 

Age would have a profound effect on the evaluation of the 

walking alternative. One would expect older respondents to 

have a greater disutility for walking. 

Summary. The specified model for worktrip mode choice 

(automobile, bus, and walk) includes the following LOS 

variables that are specified generically: (estimated 

coefficients do not vary among alternatives) cost and 

in-vehicle travel time. Transit out-of-vehicle travel time and 

distance to the nearest transit stop are only entered in the 

transit utility function. 

A large number of households aiid individual 

characteristics are included as socioeconomic variables. The 

values of these variables do not vary across alternatives. 

Consequently, separate coefficients are estimated for 

automobile and transit. (No socioeconomic coefficients are  

estimated for walk. It is the base case. The auto and bus 

coefficients represent variations from the base case.) The 

socioeconomic variables include: rooms in the home (wealth), 

household income, possession of drivers license, personal 

income as a proportion of household income, whether baggage is 

carried, total trips on travel day, work schedule flexibility, 

perception of transit as a practical mode, dwelling type, and 

age. 

Age is specified as a polynomial since it is not imagined 

that there is a direct linear relation between age and the 

utility of different modes such as walking and transit. 

Rather, in the case of walking, for instance, one would expect 

the utility of walking to be relatively high over a large age 

span and then decrease markedly with the Onset of old age. Age 

is thus entered twice in the utility equations; once as a 

simple age value and once squared to allow for a parabolic 

function. 

Findings 

The results of the worktrip mode choice model are shown in 

Table D-32. The model was estimated with 175 worktrips (120 

automobile, 28 transit, and 27 walk). The model properly 

predicts mode choice for 91.4 percent for all observations. 

With respect to the estimated LOS coefficients, the 

following observations should be noted. First, the cost 

UI 
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Table D-32 
	

Table D-32 (Continued) 

BDDS WORKTRIP MODE CHOICE MODEL PRELIMINARY ESTIMATION RESIJLTS 
	

BOOS WORKTRIP MODE CHOICE MODEL PRELIMINARY ESTIMATION RESULTS 
(1-statistics in Parentheses) 
	

(I-statistics in Parentheses) 

VA = 16.43 - 0.09 AUTOI VII + 9.07 AGASCOST + 0.56 ROOMS 
(1.13)(-3.48) 	 (3.09) 	 (0.99) 

+ 4.92 DRIVLIC - 0.22 PIPERHHI + 9.09 CARSPERT 
(1.04) 	(-0.05) 	 (2.15) 

- 0.30 HHINC - 2.51 AGE + 0.05 AGESQ 

	

(1.42) 	(1.87) 	(2.12) 

VT = 15.44 - 0.09 TRANIVTT + 9.07 TRANFARE + 14.46 MIPEROVTT 
(1.07) (3.48) 	 (3.09) 	 (3.64) 

+ 0.26 ROOMS + 3.35 DRIVLIC - 0.64 PIPERHHI 
(0.45) 	(0.72) 	(0.14) 

7.41 ARSPERT - 0.33 HHINC - 2.61 AGE 

	

(1.73) 	 (1.55) 	(1.95) 

+ 0.05 AGESQ 
(2.12) 

VW  = 0.09 WALKTIME 
(3.48) 

NOBS = 175 

p2  = 0.81 

C 2 
	0.76 

L(0) = 177.61 	L(C) = 135.81 	L() = 33.23 

Percent Estimated Correctly = 91.4 

NOTES: 

VA = Estimated representative utility of auto; 

VT = Estimated representative utility of transit; 

VW  = Estimated representative utility of walk; 

AGASCST = Automobile fuel cost (in dollars); 

TRANFARE = Transit fare (in dollars); 

AUTOIVTT = Automobile in-vehicle travel time (in minutes); 

TRANI VII = Transit in-vehicle travel time (in minutes); 

MIPEROVTI = Ratio of travel distance (in miles) to transit out-of-vehicle 
travel time (in minutes);  

WALKTIME = Walk time (in minutes); 

ROOMS = Number of rooms in the household; 

HHINC = Household income (in thousands of dollars); 

ORIVLIC = Drivers license dummy (1 = yes); 

PIPERHHI = Ratio of personal income to household income; 

CARSPERT = Ratio of household automobiles to household travelers; 

AGE = Respondents age (in years); and 

AGESQ = Respondent s age squared. 

Notes and source on following page. 	 SOURCE: Charles River Associates, 1980. 
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coefficient has a counterintuitive positive sign. We 

hypothesize that this anomaly results from the fact that the 

generally inferior alternative, walk, is also costless. 

Second, the coefficient for in-vehicle travel time is negative 

and significant as would be expected. A third LOS term was 

included in the transit utility function representing the ratio 

of total travel distance to out-of-vehicle time (walking, 

waiting, and transferring). One would expect that a traveler's 

evaluation of the transit alternative would improve as this 

ratio grew larger. The estimated coefficient for this term is, 

in fact, large and significant. 

With respect to household variables, wealth, as measured 

by the number of household rooms, is positively related to the 

utility of motorized modes, but not significantly so. The 

estimated coefficient for income has the theoretically wrong 

sign. It is negative, but not significant. This could 

represent a collinearity problem that should be investigated in 

later specifications and estimations. The ratio of household 

autos to travelers, CARSPERT, is an auto availability measure 

that is both positive and significant in the automobile utility 

function. 

With respect to personal attributes, the total number of 

daily trips and carriage of baggage were excluded from the  

model since they contributed very little to its explanatory 

power. Retained variables include a drivers license dummy and 

personal income as a proportion of household income. The 

drivers license variable was positive but not significant in 

the automobile utility function. This may reflect the fact 

that the automobile alternative includes auto passengers. 

The ratio of personal to household income represents a 

power variable in competition for household transportation 

resources. The estimated coefficient for this variable has the 

theoretically wrong sign in the automobile utility function and 

does not differ significantly from zero. It probably should be 

dropped from later specifications. 

The coefficients for the age variables are significant for 

both the automobile and transit alternatives. They are very 

similar in both these utility functions. This suggests that 

age should be more properly included in only the walk utility 

function. This will be tried in later specifications. 

Analysis of the age/age-squared expression indicates a 

parabolic function with a minumum in the neighborhood of age 

25. This indicates that, all other things held constant, the 

utility of walk as a worktrip mode peaks at around age 25 when 

workers are still young and vigorous. 
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Table D-33 

BDDS WORKTRIP MODE CHOICE MODEL: ALTERNATIVE OVTT SPECIFICATION 
- 	 (T-statistics in Parentheses) 

Alternative OVTT Specification. Table D-33 reports 

results of an alternative specification for walk time in the 

model. In this alternative specification, walk time is 

included as access time (OVTT) rather than linehaul time 

(IVTT). The predictive power was reduced substantially. The 

log likelihood at convergence increased from 33.23 to 42.92. 

This implies that walkers value time spent walking as 

productive travel time rather than onerous time spent waiting 

to get going. 

hA Test. Table D-34 displays the results of a binomial 

logit estimation run with 125 observations from the estimation 

data set. Only the automobile and transit alternatives were 

used in the choice set (100 respondents chose auto; 25 chose 

transit). The reduced model correctly predicted node choice in 

the estimation data set for 92.8 percent of all respondents 

(p 2  = 0.68). There is no significant difference in coefficient 

estimates betwen this model and the full model reported in 

Table D-32. The cost coefficient remains largely positive and 

significant. Based on these results we cannot prove the 

hypothesis that a hA model misspecification due to a 

correlation in the unobserved attributes of the motorized modes 

is causing the anomalous positive cost coefficient. 

Comparison with SUN? Buffalo Findings. Talvitie, et al. 

(Dll) also attempted to estimate work trip mode choice models 

with data from DETLINK file. They also obtained 

VA 	-0.57 - 0.05 AUTOIVTT + 2.96 AGASCST 
(6.06) (2.33) 	(2.07) 

+ 0.59 ROOMS + 1.92 DRIVLIC + 0.73 PIPERHHI 
(1.15) 	(0.64) 	(0.23) 

+ 6.50 CARSPERT - 0.13 HHINC - 0.99 AGE + 0.02 AGESQ 
(2.29) 	(0.95) 	(1.13) 	(1.32) 

VT = 6.65 - 0.05 TRANIVTT - 0.07 TRANOVTT + 2.96 TRANFARE 
(0.66) (2.33) 	(3.68) 	(2.06) 

+ 0.17 ROOMS + 0.84 DRIVLIC + 0.20 PIPERHHI 
(0.35) 	(0.28) 	(0.06) 

+ 3.38 CARSPERT - 0.15 HHINC - 1.10 AGE + 0.02 AOESQ 
(1.21) 	(1.13) 	(1.22) 	(1.41) 

VW 
 = 0.07 WALKTIME 
(3.68) 

MOBS = 175 

= 0.76 

= 0.68 

L(0) = 177.61 	L(C) = 135.81 	L(0) = 42.92 

Percent Estimated Correctly = 89.4 

Notes and source on following page. 
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Table D-33 (Continued) 

BDDS WORKTRIP MODE CHOICE MODEL: ALTERNATIVE OVTT SPECIFICATION 
(T-statistics in Parentheses) 

NOTES: 

VA = Estimated representative utility of auto; 

VT = Estimated representative utility of transit; 

V = Estimated representative utility of walk; 

AGASCST = Automobile fuel cost (in dollars); 

AUTOIVTT = Automobile in-vehicle travel time (in minutes); 

TRANIVTT = Transit in-vehicle travel time (in minutes); 

TRANOVTT = Transit out-of-vehicle travel time (in minutes); 

WALKTIME = Walk time (in minutes); 

ROOMS = Number of rooms in the household; 

HHINC = Household income (in thousands of dollars); 

DRIVLIC = Drivers license dunn' (1=yes); 

PIPERHHI = Ratio of personal income to household income 

CARSPERT = Ratio of household automobiles to household travelers; 

AGE = Respondents age (in years); and 

AGESQ = Respondents age squared.  

SOURCE: Charles River Associates, 1980  

Table 0-34 

BOOS BINOMIAL WORKTRIP MODE CHOICE MODEL: IIA TEST 
(1-statistics in Parentheses) 

VA = 2.95 - 0.09 AUTOIVTT + 8.41 AGASCST - 0.19 ROOMS 
(1.11) (3.05) 	 (2.85) 	(0.71) 

+ 1.59 DRIVLIC + 0.04 HHINC + 0.83 PIPERHHI 

	

(1.66) 	(0.93) 	(0.66) 

+ 1.58 CARSPERT 
(1.65) 

VT = -0.09 TRANIVTT + 13.59 MIPEROVTT + 8.41 TRANFARE 

	

(3.05) 	 (3.42) 	 (2.85) 

NOBS = 125 

= 0.68 

	

L(0) = 86.64 	L(e) = 27.32 

Percent Estimated Correctly = 92.8 

NOTES: 

VA = Estimated representative utility of automobile; 

V1  = Estimated representative utility of transit; 

AUTOIVTT = Automobile in-vehicle travel time (in minutes); 

AGASCST = Automobile fuel cost (in dollars); 

ROOMS = Number of rooms in the household; 

DRIVLIC = Drivers license dumny (1=yes); 

Table continued on following page. 
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counterirituitive signs for the coefficients of at least one of 

their LOS variables (cost divided by income and time) in all 

specifications tested. They were, however, able to estimate 

models with plausible coefficients when the choice sets were 

constructed from the trip file (standard origin-destination 

data) . These findings suggest that there may be problems with 

the DETLINK data for purposes of choice model estimation. 

These difficulties are in addition to the high degree of 

attrition in constructing choice sets (only 175 worktrips from 

a data set containing 966 households). 

Table 0-34 

BDDS BINOMIAL WORKTRIP MODE CHOICE MODEL: hA TEST 
(T-statistics in Parentheses) 

HHINC = Household income (in thousands of dollars); 

CARSPERT = Household automobiles per traveler; 

TRANIVTT = Transit in-vehicle travel time (in minutes); 

MIPEROVTT = Travel distance + transit out-of-vehicle travel time; and 

TRANFARE = Transit fare (in dollars). 

SOURCE: Charles River Associates, 1980. 
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APPENDIX E 

THE INDEPENDENCE OF IRRELEVANT ALTERNATIVES 

PROPERTY OF THE MULTINOMIAL LOGIT MODEL 

This Appendix provides an analysis of the Independence 

of Irrelevant Alternatives (IIA) property of the multinomial 

logit model. The IIA property is perhaps the most contro-

versial issue in the application of disaggregate demand 

models and has been alleged to be a substantial impediment 

to implementation. For this reason, this study devoted 

considerable attention to analyzing the property. 

The basic conclusion of the analysis is that the IIA 

assumption is not an inherently undesirable assumption of 

the logit model. However, the diagnostic tests de'reloped 

in Phase I (El) should be applied when a violation of the 

independence assumption is suspected. If the test confirms 

that a violation is likely, modifications of the model should 

be performed to account for the violation. These modifica-

tions are discussed in Chapter 2. 

This appendix has approached the problem of the IIA 

by accepting the basic framework of the multinomial logit 

model and modifying the model, the form of the data, or 

the estimating approach to account for violations of the 

model's assumptions. For a discussion of alternative 

modeling approaches which do not assume IIA, see Chapter 2. 

This appendix proceeds in the following manner: dis-

cussion of the significance of the IIA property; examina-

tion of the reasonableness of the IIA property; and classi-

fication of possible violations into two cases. Readers 

interested in a more detailed discussion of the IIA property 

should refer to the Phase I Interim Report (El), or McFadden, 

Tye, and Train (E2) . The Phase I CRA report 

contains an extensive analysis of the consequences of a 

violation of the independence property, diagnositic tests 

for identifying a violation, remedies for a violation, a 

test of the assumption using actual data, and a discussion 

of the relationship between partitioned (sequential, con-

ditional) models and the independence assumption. 

Much of the detailed analysis of the IIA property has 

not been included in the final report because of space limi-

tations. The principal conclusions of the earlier report 

may be summarized as follows. 

Violation of the IIA property will generally result 

in biased estimates of the model coefficients and erroneous 

forecasts of modal shares. The direction of error depends 

on the specific source of error (see CPA (El) for a de-

tailed classification of the types of errors and direction 

of bias) 

Detailed statistical tests are proposed using re-

stricted choice sets and application of the 'universal 

logit model" to the full data set. 

C.' 
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where P = probability of choosing ith alternative (e.g., 
aN 

mode); 

e = base of natural logarithms; 

= function (usually linear) of the LOS of ith 

alternative and the SEC of the individual; and 

N = number of alternatives in the choice set. 

It is clear that this choice model assumes that the 

ratio of probabilities of choosing any two alternatives is 

invariant to the attributes (or even existence) of a third 

alternative: 

-/ i 
P.  
i_a 
P. 	V. 

This is the hA property of the MNLmodel, and it is one of the 

most important assumptions made by the model. 

The hA property states that if two modes are available 

and a new mode is introduced, the ratio of the probabilities 

of the two old modes will be unchanged regardless of the 

probability of choice for the new mode. For example, if the 

new mode will be chosen with probability of 0.10, and each 

old mode had 0.50 probability before the introduction of the 

new mode, the probability of each of the old modes will be 

3. Improved model specification to make the hA 

valid is often the preferred remedy. In other cases eli-

mination of a dependent mode in the choice estimation pro-

cess may eliminate the bias. The "maximum model," the 

Cascade Model," and the "dominance model,' discussed in the 

Phase I report, have been superseded by other model speci-

fications discussed in Chapter 2. 

1. THE SIGNIFICANCE OF THE INDEPENDENCE OF IRRELEVANT 

ALTERNATIVES (hA) PROPERTY 

The IAA in Models of Individual and Group Behavior 

The multinomial logit (MNL) model of travel demand 

assumes that an individual will choose among alternatives 

with probabilities based on the attributes of the choices 

(level of service, or LOS) offered and the socioeconomic 

characteristics (SEC) of theindividual: 

V. 
Z. 

P i - N V. 
I a  
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0.45 after the new mode is introduced, thus preserving the 

one-to-one ratio of probabilities, 

Translated to the behavior of homogeneous groups, the propeiy 

greatly facilitates the forecasting problem for a new mode. 

If 100 persons have the same levels of SEC and LOS 

which are included in Equation E-1, the demand for 

a new mode can be calculated (under certain conditions) by 

adding another term to the denominator of Equation E-1 and 

recomputing all choice probabilities. The new probabilities can 

then be multiplied by 100 to estimate the demand for each mode. 

If the old modes formerly shared the market equally and the new 

modes probability was 0.10 for each individual in the market 

segment, the predicted mode demands would be 45, 45, and 10. 

The IIA "Problem' 

The example that has troubled many critics of the IIA 

property is the classic "blue auto/red auto' case, i.e., the 

"new mode problem." This example has been modified from the "blue 

bus/red bus" example familiar to students of the MNL model to 

permit a new irrelevant auto mode rather than a new irrelevant bus 

mode. The familiar "blue bus/red bus" example appears to increase 

bus LOS when the new mode is introduced. 

Suppose, for example, that the blue auto and bus mode each 

capture 50 percent of a given travel market as shown in 

Table E-l. Assume that a new auto mode is introduced with 

exactly the same service attributes as the old auto mode 

except that the auto is painted a different color, red (to 

which the patrons are indifferent). We assume that the auto 

is leased for this trip only, to abstract away from auto 

ownership questions and competing demands for the auto. We 

expect that the true modal shares will now be 1/2, 1/4, 1/4 

for bus, the first auto alternative, and the second auto 

alternative respectively.*  However, the ordinary MNL 

model will forecast that each of the three modes cap-

tures one-third of the market (see column 2) , which is 

clearly a poor forecast. The Independence of Irrelevant 

Alternatives property of the MNL model is clearly the reason; 

the property requires that the ratio of the bus share to the 

first auto mode share should be unaffected by the introduc-

tion of a new mode. In this example the ratio is 1.0. When 

we add a new auto mode, the IIA property requires that we 

reduce the bus share from 1/2 to 1/3 to keep constant the 

ratio of bus mode share to the first auto mode share. 

*No  bus users will switch to the new mode and auto users 

will split evenly between the two auto modes. 
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Table E-1 

THE BLUE AUTO/RED AUTO PROBLEM 

(Percent of Market) 

1 2 3 

True and MNL Predicted MNL True 
Mode Choice Mode Choice Mode Choice 

(Binary Choice) (3 Modes) (3 Modes) 

Bus 50 33 50 

Blue Auto 50 33 25 

Red Auto 0 33 25 

Total Percent 100.0 100.0 100.0 

E-7 

If the problem were confined to this simple example, 

there would be no problem. The new auto mode is. clearly 

"irrelevant" and should not be listed as a mode. But what 

if we were to introduce "express bus" or the "auto passenger" 

mode? How "independent are they? Clearly, the extreme 

case in the example points to a "gray area" where the demand 

forecast for a 'new mode" or forecasting the effect of a 

change in service could be seriously imperiled by incorrectly 

applying the hA property. 

What the hA Property Does Not Say 

It is extremely important to note that the hA property 

translates from the probability of the individual to predicted 

market shares in a group of people only when applied to an 

aggregation of "homogeneous" individuals with identical spec-

ification of the choice Structure (i.e., Equation E-l) and 

identical observed Socioeconomic attributes and LOS. (The 

differences between the behavior of individuals in this 

market are due only to random independent unobserved LOS and 

socioeconomic attributes not included in the model.) The 

hA property will not apply after the homogeneous market 

segments have been aggregated to represent the market as 

a whole. 

The hA property, like the MNL model itself, is not 

preserved through aggregation in a heterogeneous population. 

Much of the criticism of the hA property is based on the 

incorrect assumption that the MNL specification permits the 
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hA property to predict the demand for a new mode for a 

heterogeneous population, composed of individuals with un-

equal choice probabilities, LOS, and SEC. The hA property 

of the MNL model does not hold for mode shares in such a 

heterogeneous population. 

Although "mode shares" and "probability" will be used inter-

changeably in the following discussion of the hA, the property 

does not apply to aggregate mode shares in general. When the term 

"mode shares" is used to illustrate the hA property, it is 

assumed that the market is composed of persons with identical 

choice probabilities and measured socioeconomic attributes, 

LOS, and specification of Equation E-l. 

To take a specific example, the MNL model does not in 

general predict that if a new mode is introduced to a popula-

tion composed of different market segments, with different 

socioeconomic characteristics and different level—of--ser-

vice attributes, that equal percentages will be drawn 

from both auto and transit users to the new mode. Rather, 

the model predicts, when summed over market segments, as we 

expect, that if the new mode resembles transit in its 

measured attributes, the percentage of transit users in the 

heterogeneous population switching to the new mode will be 

greater than the percentage of auto users. 

This principle may be illustrated by an example. Table 

E-2 illustrates the case where a population of 200 

is composed of two homogeneous market segments of 100 

persons each. For the purpose of illustration, we 

assume the choice environment of observed attributes is 

identical for all persons within each segment but differs 

substantially between the two market segments. Segment 1 

is "auto oriented," splitting 90/10 in favor of auto. Seg-

ment 2 is "transit oriented," splitting 90/10 in favor of 

transit. 

A new mode is introduced, "dial-a-bus," and it is pre-

dicted by the MNL model to capture 5 percent of the first 

market share and 15 percent of the second market share. 

The ratio of auto market share to bus market 

share is preserved within each homogeneous market segment, 

and the MNL predictions emerge in columns 4, 5, and 6. We 

note that the overall ratio of bus mode share to auto mode share is 

not constant after the new bus mode is introduced, but falls 

from 1.0 to 0.91 for the entire population (8694 = 0.91). 

Although the same percentage diversions occur from 

bus and auto to dial-a-bus within each homogeneous market 

segment (e.g., in segment 1, 5 percent of both bus and auto 

patrons switch), the predicted diversions from auto and bus 

are not the same for the population as a whole. Of the 

100 total bus patrons in the binary choice situation, 

C-, 
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Table E-2 14 percent (100-86) were predicted to switch to dial-a-bus. 

EFFECT OF THE INDEPENDENCE OF IRRELEVANT ALTERNATIVES PROPERTY However, only 6 percent of total auto users were predicted 
ON A FORECAST OF BEHAVIOR IN A POPULATION OF HETEROGENEOUS MARKET SEGMENTS 

to switch to the dial-a-bus. 
(Persons) 

It is important to note that if the HA property is 

MNL Mode Share Predicted MNL Mode Share 
violated for each of the homogeneous market segments, the MNL 

Mode (Binary Choice) (3 Modes) 
model will make poor forecasts for each of the market segments 

1 2 3 4 	 S 6 

Market Market Market 	Market and for the market as a whole. 	Although the hA property 
Segment Segment Total Segment 	Segment Total 

I II Market I 	II Market is not preserved through aggregation over homogeneous market seg- 

Bus 10 90 100 9.5 	76.5 86.0 
ments to represent a heterogeneous market (i.e., the ratio 

Auto 
Driver 90 10 100 85.5 	8.5 94.0 of probabilities will not remain the same after aggregation 

Dial-a- over the homogeneous market segments) , forecasts of the 
Bus 0 0 0 5.0 	15.0 20.0 

Total entire market will be erroneous if the property is violated 
Persons 100 100 200 100.0 	100.0 200.0 

for each market segment. 	Put differently, aggregation will 

not generally offset the effects of a violation of the hA 

property for individual market segments. 

Importance of the hA Issue 

The hA property of the MNL model is Obviously a key 
E-1 1 

assumption of the model. 

1. 	The urban transportation planning community has 

been particularly interested in the problems of forecasting 

demand for "new modes" -- such as jitneys, carpooling, 

dial-a-ride, subscription carpooling, and other varieties 

of "demand responsive" and 'paratransit" systems. However, 

the applicability of the MNL model to forecasting demand for a new 

mode" depends critically on the validity of the hA property of the 
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model. As shown above, the IIA property can be questionable 

in hypothetical problems involving new modes. Clarification 

of this issue is obviously critical to applying the MNL 

model to this planning problem. 

The controversy concerning the Independence of 

Irrelevant Alternatives property of the MNL model of dis-

aggregate travel demand extends to issues beyond the model's 

applicability to new modes. Progress in resolving the ques-

tions raised by this issue is essential to securing general 

acceptance of the disaggregate method by practitioners of 

demand modeling and transportation systems planning. In 

fact, some researchers consider this property of the model so 

undesirable that they seriously question the usefulness and. 

applicability of the MNL model to any travel demand forecast-

ing problem. 

The IIA property is a critical factor in resolving 

other controversies relating to the use of the MNL model. 

In particular, it is a key factor in designing data 

collection methods and estimation procedures that avoid bias 

in model calibration that may otherwise result in using 

cross-section data. The relationship between the IIA and 

the other properties is discussed below.  

2. PRINCIPAL CONCLUSIONS REGARDING THE INDEPENDENCE OF 

IRRELEVANT ALTERNATIVES PROPERTY 

The validity of the IIA property of the MNL model has been 

identified as one of the most important issues to be 

addressed in disaggregate demand modeling (E3). The 

present study has concentrated on identifying (1) the 

assumptions of the MNL model that cause it to have 

the IIA property, (2) the basic underlying reasons why 

the IIA property could be violated in a particular 

application, (3) the consequences of a violation of the 

IIA property, (4) tests to diagnose a violation, and 

(5) corrective measures for modifying the MNL model if 

the IIA property has been violated. Detailed discussion 

of the latter three items is presented in the Phase I. 

Interim Report (El) . The research has produced the 

following conclusions. 

1. The IIA property of the MNL model is not an 

inherent drawback of the MNL model, but is an 

assumption that is frequently reasonable and 

desirable. 
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Comment 

The hA property is not preserved through aggregation 

to describe the behavior of aggregates of heterogeneous 

market segments. The hA property of the constancy of the 

ratio of the market shares of two modes with the introduc-

tion of a new mode does not hold for a large population of 

heterogeneous people, with different alternatives and dif-

ferent socioeconomic variables and tastes. 

The lip. property is based on the assumption that the 

attributes of the transportation system and 

individuals that are not included in the 

analysis (the omitted attributes) do not 

have systematic effects which distort the 

model results. 

Comment 

Intuitively, the hA property is analogous to the 

assumption of independent error terms" or disturbances 

employed in regression analysis. Unless the researcher has 

a priori or empirical confirmation that the omitted attri-

butes have a systematic effect on the results, the agnostic 

assumption of the hA may be perfectly reasonable in many 

applications. 

Systematic effects of unobserved attributes 

are an important possible source of a violation 

of the independence assumption. 

E-1 5 

The hA assumption can be violated in two 

basic ways: the unobserved attributes have 

common values in two or more alternatives 

(the "blue auto/red auto problem), or 

unobserved attributes have a systematic 

relationship with observed attributes. 

Comment 

A Case 1' violation of the independence assumption 

occurs when two alternatives have common unobserved at-

tributes, such as when a mode has unobserved comfort 

or safety levels that are similar to those of another 

mode and the independent unobserved attributes are 

relatively insignificant. A "Case 2" violation of 

independence occurs when an unobserved attribute is car-

related with an observed attribute. For example, it 

may be the policy of the transit authority to place the 

most comfortable (unobserved attribute) buses on the 

routes serving the longest trips (observed attribute), 

passengers may locate their residences to take advantage of 

preferable levels of observed attributes in modes that are 

preferred for unobserved taste reasons, and passengers may 

have substantial differences in their valuation of the 

observed attributes for unobserved taste reasons. These 

systematic effects of unobserved attributes are incon-

sistent with the independence assumption. These two violations 

will be referred to as Case 1 dependence and Case 2 dependence 

in the remainder of the appendix. 
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independence assumption when it is true. CRA has designed 

diagnostic tests to test the reasonableness of the inde-

pendence assumption. Based on research in this project 

(see the Phase I Report (El)) the most powerful tests were 

performed on restricted data sets, e.g., calibrating the 

MNL model for a two-mode choice setting and comparing the 

results with the model calibrated in the three-mode choice 

setting. Research performed by Horowitz (E4) expanded 

on this finding and should be consulted by the practitioner 

desiring to apply these tests. Readers should also see 

McFadden, Tye, and Train (E2) 

If the diagnostic test indicates that the hA 

assumption is invalid, corrective measures are 

available to take the dependence into account. 

If the independence assumption is invalid, the alterna-

tive corrective measures are to improve the model specifi-

cation so that the dependence is eliminated, change the 

model calibration procedure to account for the dependence, 

or to change the model to allow for dependence. Improved 

model specification to make the hA assumption reasonable 

is the preferred remedy when it is feasible. Research in-

dicates that the Fully Competitive Model" and the "Cascade 

Model" do not correct for a violation of the IIA. Research 

also indicates that arbitrary nonbehavioral modifications 

of the MNL model to eliminate the hA property on a priori 

grounds will frequently make matters worse. Preferred 

When the hA assumption is unreasonable, the 

MNL model cannot be applied without error. 

The error may be large or small depending on 

the circumstances. 

Comment 

If the MNL model is calibrated on data that do not 

satisfy the hA property, the results generally will be 

biased estimates. This bias will not be overcome by in- 

creased sample size. If the MNL model is used to forecast 

demand for a new mode when the hA property is violated, 

demand for the new mode will generally be overstated. In 

examples of a violation of the independence assumption resulting 

from dependence between observed and unobserved attributes, 

the calibration procedure will impute to the observed attri- 

bute both its independent effect and the effect of the un- 

observed attribute with which it is correlated. Frequently, 

the effect will be to estimate elasticities of observed 

attributes that are too large. 

Because the reasonableness of the hA property 

is dependent on the circumstances, diagnostic 

tests that identify when the assumption is 

reasonable and unreasonable should be applied. 

Comment 

There are costs to assuming the independence property 

when it is false and there are costs to rejecting the 
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approaches, such as multinomial probit, are discussed in 

Chapter 2. 

3. AN EXAMINATION OF THE REASONABLENESS OF THE 

INDEPENDENCE OF IRRELEVANT ALTERNATIVES PROPERTY 

Introduction 

The MNL model is founded on a well-defined set of 

assumptions concerning the choice behavior of the individual 

and concerning the method by which the behavior of the 

individual can be extrapolated to predict the behavior 

of groups. The approach of this Study is to investigate 

the IIA property by returning to the fundamental assumptions 

of individual behavior inherent in the model. If the assump-

tions of the individuals behavior inherent in the MNL 

model are violated, the IIA property will generally be 

invalid. To correct for the invalid assumptions, the preferred 

approach is to modify those assumptions of individual behavior 

as necessary to account for the violation, and infer what 

new models of group behavior follow from the amended assump-

tions of individual behavior. This approach is distinctly 

different from unsuccessful attempts to deal with a violation 

of the IIA property that arbitrarily modify the MNL model 

of group behavior without identifying the assumption of the 

model of individual choice that has been violated. 

Intuitively, the IIA assumption plays a role in the MNL 

model which is analogous to the assumption of 'independent 

error terms' (or "disturbances') in least squares regression. 
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The IIA assumption implies that factors that are omitted 

from the analysis ('unobserved attributes' in the MNL ter- 

minology) do not systematically affect the outcome, but 

are independent random factors. 

One possibly important source of a violation of the 

IIA property is systematic variations in unobserved attributes 

across alternatives. This source is correlation between alterna- 

tives on important "left out" variables resulting from model 

misspecification. An example might be the fact that 'local bus" 

and "express bus" modes have precisely the same level (perhaps) 

of comfort and other unobserved attributes and differ only 

in terms of travel time. If so, the assumption that the 

unobserved attributes of these two alternatives are uncorrelated 

is clearly violated. The rosult is biased and inaccurate 

model predictions. 

In the section below, we develop examples that illus- 

trate intuitively why the assumption of independent unob- 

served attributes is critical to the MNL model. We will 

formally link the IIA assumption to the theoretical model of 

individual behavior inherent in the MNL model and discuss 

reasons why the IIA property is likely to be satisfied in 

many applications. 
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The Relationship Between the Role of the Unobserved Attri-

butes of Alternatives and the Independence of Irrelevant 

Alternatives Property 

Chance, unobserved determinants of behavior, and the 

laws of probability play an important part in the formula-

tion of the MNL model. The MNL model assumes that actual 

traveler choices are based on two types of factors: 

'Observed" attributes of the traveler and the 

attributes of the choices he is offered, (these 

are identified and included in the model); and 

"Jjnobserved" attributes, which may also influence 

decision making (these are not identified, measured, 

and included in the model). 

The MNL approach specifically considers that behavior 

of individuals is random and cannot be predicted with cer-

tainty. Only the average behavior of groups with similar 

observed attributes and facing similar choices can be pre-

dicted with any confidence. If we observe an individual with 

certain attributes and facing certain choices, we can only say 

that he will choose the first alternative with probability 

of (say) 0.75 and the second with probability 0.25. We 

cannot predict the actual choice, which is random. 

Translating these assumptions to group behavior, the 

MNL model says that of 100 subjects with identical ob-

served attributes relevant to the choice, 75 will (on 

average) choose the first alternative and 25 will choose the 

second. A very important implication of this example is 

that, as all 100 subjects had the same observed attributes 

and faced the same choices, the split of this population 

between the two alternatives was determined erclusively by 

the "unobserved" attributes (e.g., personal idiosyncracies) 

Since all subjects had the same level of observed attributes, 

the differences in behavior were determined solely by dif-

ferences in unobserved attributes. 

The MNL model explicitly assumes that unobserved attri-

butes of choice alternatives affect choice in a norisystematic 

manner. When behavior does not satisfy the hA property, 

it may be because unobserved attributes of two alternatives 

are similar (or, more generally, statistically correlated) 

By itself, similarity of observed attributes will not cause 

a violation of the hA property. 

All models of behavior must make some assumption as to 

how behavior is affected by factors that are not included 

in the analysis -- the "unobserved" attributes. Most 

models of behavior, whether in transportation or else- 

where, make the simplifying assumption that unobserved attri-

butes are random and unsystematic. In general, this assumption 
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is reasonable: if the analyst thought that an unobserved 

attribute was important and systematic in its influence, he would, 

if feasible, include it in his analysis as an observed attribute. 

The previously cited example can be used to illustrate 

why the similarity of unobserved attributes is an important 

cause of a violation of the hA property. Table E-1 illus- 

trates a mode choice problem where we confront the traveler 

with three modes -- a bus, a blue auto, and a red auto. 

We assume that all three modes have the same observed levels 

of service (e.g., time and cost), that all three are 'inde- 

pendent alternatives (an incorrect assumption), and that 

the traveler is indifferent to the two colors. We also 

assume that there is no "auto bias" or "transit bias"; 

if the service levels are equal, the population would truly 

split evenly between the auto mode and the transit mode (this 

assumption is not essential to the problem and will be 

relaxed below). 

In column 1 we consider a binary choice between a bus and 

a "blue auto." The MNL model correctly predicts that the 

population will split evenly. Because the observed attributes 

were identical for the two modes, the choice of individuals 

was determined exclusively by the unobserved attributes. 

In the second column, the MNL model is used to predict 

the e€fect of the new mode, "red auto." Since all three 
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modes had the same level of observed attributes, and there 

was no "auto bias" or "transit bias," the MNL model assigned 

each one third of the market. Note that the ratio of mode 

shares of bus and "blue auto" do not change as required by 

the hA property. A key assumption of this forecast 

is the incorrect assumption that the new auto mode was 

"independent. 

Column 3 illustrates that we expect that a blue auto 

is not "independent" of a red auto and that the only effect 

of introducing the new mode is to shift half the blue auto 

drivers to red auto drivers (i.e., a random choice among 

colors) and leave bus demand unchanged. 

What reason do we have for assuming that the two 

auto modes are not "independent"? Clearly, the reason has 

nothing to do with the observed attributes -- they are 

the same for all three modes. The observed attributes 

of the "red auto" are no more similar to the "blue auto" 

than to the bus. However, it is obvious that the "blue 

auto" and "red auto" are identical in their unobserved at-

tributes (comfort, status, convenience, ubiquity, etc.) 

and both are very dissimilar from bus in their unobserved 

attributes. The lack of independence of the new auto mode 

is a lack of independence of the unobserved attributes. 

The above example assumed a 50/50 mode split and 

identical levels of observed attributes of choice to direct 
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attention away from the observed attributes and to concentrate 

on the unobserved attributes. Table E-3 illustrates that 

if the 50/50 assumption is relaxed, the forecasting error 

due to a violation of the hA is still present. If we assume 

that the auto mode share is 80 percent due to a service 

differential or "mode bias," the MNL model will incorrectly 

predict a decline from 20 to 11.11 percent of the market 

share for the bus mode so that the blue auto to bus share 

ratio remains at 4 to 1. Again, the problem is that the 

unobserved attributes of the two auto modes are not indepen-

dent (although it is not as obvious in this example because 

the two auto modes have observed attributes different from 

the bus mode). 

Assumptions of the Multinomial Logit Model and the Independ-

ence of Irrelevant Alternatives Property 

Discussion of Basic Approach. The hA property of the 

MNL model may be expressed in two ways: 

For the individual, the ratio of probabilities of 

choosing any two alternatives is invariant to the 

attributes (or existence) of other alternatives; and 

For a homogeneous market segment" (i.e., composed 

of persons facing identical alternatives and having 

identical socioeconomic attributes and an identical 

TABLE E-3 

THE BLUE AUTO/RED AUTO PROBLEM 

(Percent of Market) 

True and 
MNL 	 Predicted MNL 	 True 

Mode Choice 	 Mode Choice 	 Mode Choice 
(Binary Choice) 	 (3 modes) 	 (3 modes) 

Bus 	 20 	 11.11 	 20 

Blue Auto 80 44.44 40 

Red Auto 0 44.44 40 

Total 	 100.0 	 100.0 	 100.0 
Percent 

E-25 	 E-26 



structure of choice frequencies (e.g., Equation E-l) 

the ratio of market shares of two alternatives is 

invariant to the attributes (or existence) of other 

modes. 

The hA property ordinarily will be violated wheneVer 

the assumptions of the MNL model are violated. The 

approach will be to specify exactly what the MNL model 

assumes regarding the choices of individuals and relate 

that individual choice model to the MNL forecast of the 

mode shares for a population. If the MNL model incorporates 

an unwarranted assumption regarding the choices of an individ-

ual, poor forecasts of population market shares may result. 

Conversely, incorrect forecasts of market shares create a 

presumption that the model of individual choice was invalid. 

Accordingly, in the next section we consider in detail the 

relationship between individual choice behavior and the ob-

served choice frequencies in the population. 

Assumptions of the Binary Logit 4odel. The binary logit 

model hypothesizes that the probability that an individual 

will choose a given alternative in a choice situation is 

given by 

V(X.,$) 

= 
2 V(X.,S) 
Ee 	a 

j=1 

where: 

Pi  = probability of choosing i th alternative; 

e = base of natural logarithm; 

X. = vector of attributes of the jth alternative 
a 

(such as time and cost of a mode) 

S = vector of socioeconomic variables; and 

V(Xj S) = a function (usually linear) of the attri- 

-butes of the alternatives and socioeconomic 

variables. 

A model such as Equation E-2 is a specification of selection 

probabilities. Researchers using models of this type have 

used basically two approaches. The first is to deal directly 

with the selection probabilities and to develop models 

that produce a good fit to the observed choice frequencies 

among the alternatives in a sample. The other alternative, 

characterized especially by Block and Marshak (E5) and further 

developed by McFadden (E6) and others, is to hypothesize that 

the selection probabilities are based on an explicit model 

of individual choice behavior. Following the latter approach, 

it will be shown that any undesirable properties of the model 

of selection probabilities result from violations of the 

implicit assumptions of the individual choice behavior 

model. Modification of the assumptions concerning the 

individual choice behavior leads to models of selection 

(E-2) 
V(X.,S)-v(x. S) 

1i-e 	2 
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probabilities which may have more desirable properties. 

This approach suggests methods for testing the reasonableness 

of the assumptions of the MNL model. 

The chief findings of the McFadden (E6, E7) approach 

that relate the selection probabilities to the underlying 

theory of individual choice, are as follows: 

There is in general a direct relationship between 

the assumed model of individual choice and the 

properties of the model of selection probabilities; 

In particular, the binary logit model of population 

selection probabilities can be shown to be consis-

tent with a theory of sampling from a population 

of utility-maximizing consumers, where 

the utility of an alternative is decomposed into a 

component based on attributes observed by the 

sampler and a component based on attributes unob-

served by the sampler; and 

If we assume (a) the utility of an alternative is decomposed 

into a nonrandom component which is a linear function of 

observed attributes of the choice set and the individual, 

and a random utility component which is a function of 

unobserved attributes; (b) the unobserved random utility 

components are independently and identically distributed; 

and (c) the subject is assumed to choose the alternative 

with the highest utility; a necessary and sufficient 

condition for the logit model is that the unobserved 

random utility components of the alternatives be 

Weibull distributed. 

In short, the logit model may be derived by assuming 

that consumers maximize utility, that a component of the 

utility of each alternative cannot be observed because it 

depends on unobserved attributes, and that the random components 

of utility are independent Woibull distributions. If the observed 

selection probabilities are not consistent with those predicted 

by the model, then the key MNL assumption of independent unobserved 

attributes of choice across the alternatives is an obvious place 

to look for an explanation. 

The critical role played by the unobserved attributes 

of the choice alternatives may be illustrated in the case of 

the binary logit model which is linear in parameters. The 

utility of the individual for the i th alternative is assumed 

to be a function of the observed attributes of the alternative, 

his observed socioeconomic characteristics, and an unobserved 

component. The unobserved component represents the effect of random 

taste variations, omitted choice attributes, and omitted 

socioeconomic variables: 

U. = U.(X.,S,..) 	 (E-3) 
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where: 

U. = utility of i 
th alternative; 

X. = vector of observed attributes of i th  alternative, 

(X 1 . . 

S = vector of observed socioeconomic characteristics; and 

= utility component due to random and/or omitted influences. 

As a special case assume the utility is linear: 

U.= 	
i- 1 X.i  + 
	

t 2 
X.

2 	i, 
+ct.

1 1  S +c. .  

where: 

= 	.th attribute of the i th  alternative; 

= coefficient of j th attribute; 

S1  = first socioeconomic variable; 

s 
i1 I 

S = contribution of first socioeconomic variable 

to utility of i th  alternative; and 

= unobserved utility component of i th  alternative 

We assume that U. is chosen if and only if it has greater 

utility than any other alternative. In the case of binary 

choice, the first alternative is chosen if and only if 

U1>U 2. However, as long as there are random components, 

and E.
2' 
 there is no certainty that an alternative will 

be chosen even if its observed utility component is known to 

be greater than the observed component of the other alterna-

tive ; the size of the unobserved components could be suffi-

cient to produce a choice that is inconsistent with the  

ranking based on the observed component. We define V 2  and 

V 2  to be the utility due to the effect of observed components: 

VI = 1X11 
# B 2h12 4. o.11S1 	 (E-5) 

22I 
+ B2122  + ct21S1  

Because of the unobserved determinants of choice, the choice 

of the individual cannot be known with certainty based on 

the observed components. However, we do know that alterna-

tive number one will be chosen if the observed utility com-

ponent of number one dominates that of number two and this 

is not offset by the differences in unobserved components, 

or if the unobserved components of number one sufficiently 

dominate those of number two so that the lesser observed 

utility of number one is compensated by its greater unobserved 

utility. That is 

U 1  >U 2  

implies V1+1>V2 	
2' 

or 	V 1-V2>c 2-c1  

Because e and c2  are random variables, the event 	is 

also random. The probability that it occurs is given by: 

(E-4) 
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P(U 1>U 2 ) 	P(V1-V2>c2-c1) 	 (E-6) 	 The conventional notation for the binary logit specifica- 

= P(E 2-c1<V) 	 tion in odds ratio form may be derived by letting 

where V-V 1-V 2  

To determine the probability that U 1  is selected over 

U 2 , we must know the probability distribution of the cs. 

We assume that E. has the reciprocal exponential, or Weibull 

distribution: 

-t 
p(c.'zt) = 

P 1  = P(1J 1>U 2) 

Pi = 	i  - v i+e 

-v 
p1+p1e = 

i 	V 

McFadden (E7) has proved the Weibull distribution 

is both necessary and sufficient to produce a logit cumulative 

probability distribution for the population selection pro-

babilities when the model of individual choice is given by 

I 	\ 
loP 	= v_-v1_v2=61(g1g21)+2(x.x) 

Equation E-6, where the c. are independent: 
	 + ( 11-o21 )S1 	 (E-8) 

The proof of the relationship between the assumed 

P(U 1>U 2) = P(c2-c1<V) = 	. 	 (E-7) 	 models of individual choice and resulting models Cf selection 

probabilities is extremely important to our investigation of 

the hA property. It suggests that an important source of a 

violation of the hA property could occur when the unobserved 

components of the utilities are not distributed by the independent 

Weibull distribution. Probing the reasonableness of the assump-

tion of the independence of the unobserved componer.ts is the 
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key to understanding the effects of violating that assumption. 

From this understanding we can develop tests to determine 

whether the independent Weibull assumption is reasonable and 

develop remedies for cases where the assumption is violated. 

A theory of the selection probabilities of a sampled popu-

lation has been developed from a theory of individual choice. 

In the theoretical model, the individual always chooses the 

alternative with the highest utility. The observed frequency 

distribution of choices for a sampled population is determined 

by the random, unobserved components that affect each alterna-

tive's utility for that individual. The randomness is only 

perceived by the observer and is due to inadequate knowledge 

of the determinants of behavior. Our model does not state that 

an individual assesses the utility of each alternative 

according to the observed attributes of the choice and then 

proceeds to choose an alternative randomly with prcbability 

of the choices determined by the V.. 

The Multinomial Logit Model. The multinomial logit 

(MNL) model is a generalization of the binary logit case and 

in general is distinguished mainly by the number of alterna-

tives. As before, 

U. = V.(X.
V 
 S) + e. 

	

V 	V 	 V 

	

P. 
V 	

e. = P[-c.<V(X.
V
,S)-V(X

2
. S)] 	ji 

V.(x.,$) 
V V 

e 	 (E-9) 

	

i. 	N V.(x.,$) 
a 

j=1 	
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The odds, or ratio of probabilities of any two choices, are 

given by the hA property: 

V. (x .S) 

	

P. 	 V V 

	

V 	 a 

	

= 
2 	

V.(X.,$) 	• 	 (E-lO) 
a a 

In the case where the V are linear 

( 

	

log 	
. 

(X. - aX. )+ 	(X - jX )+... 
_

P 	

1 	VI 	l 	2 i2 	2 

	

+ (o21-a21)S1. 	 (E-ll) 

Forecasting Properties of the Model Due to the hA Property. 

Two very important features of the model follow from the in-

dependence property, Equation E-lO. 

1. Equality of the cross elasticities. 	Suppose a third 

mode improves in desirability relative to the first two modes. 

The percentage diversions from the first two modes must be 

identical to preserve the constancy of the ratio of the selection 

probabilities for the first two as required by the hA. Conse-

quently, the cross elasticity of all other mode shares with res-

pect to a change in the attributes of a given mode must be equal. 

(Cross elasticity here is defined to be the percentage change 

in a mode share, using the prior share as base, resulting from 

a 1 percent change in the attribute of another mode.) 
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This property is illustrated by the formula for cross-

elasticity in the MNL model. (See Ben-Akiva (E8), p. 184.) 

= 	k 
X ik 
	 (5-12) 

where 	= elasticity of the jth  probability with respect 
ik  

to the k th  attribute of the i th alternative. 

It is clear from the expression that the cross- 

elasticity coefficient is the same for all alternatives; it 

is independent of the index j. If an improvement in dial-

a-ride service reduces the probability of an individual 

choosing auto by 10 percent, it is also assumed according to 

the hA property to reduce the probability of choosing 

transit by 10 percent. 

2. The "new mode property". If a new mode enters 

the market, its probability of choice is given by the logit 

specification. Since all probabilities add to 1 after the 

new mode is introduced, and since the hA property requires 

the odds ratio of the old modes to remain unchanged, the 

percentage reduction in probability of choice for each old 

mode must be the same, and must be exactly equal to the pro-

bability of choosing the new mode. 

The A Priori Reasonableness of the hA Property 

One's intuitive reaction to the two forecasting con-

sequences of the hA property is to assume that the hA prop-

erty is inherently undesirable. After all, it is not diff i-

cult to devise examples where the model nonsensically predicts 

the ratio of mode shares to be unchanged when common sense 

says they should change. The most frequently cited example 

is the red auto/blue auto case cited above. 

To understand why the MNL model forecasts poorly in 

the red auto/blue auto example, we must first establish 

what assumption of the MNL model was invalid. Clearly the 

key assumption was that the unobserved components of utility 

were independently distributed with the Weibull distribution. 

Intuition tells us that the assumption of independence of 

unobserved components is critical. For example, the problem 

in the red auto/blue auto case is clearly the assumption of 

independence: the unobserved components of utility for the 

blue auto and red auto were perfectly and positively correlated 

(as were the observed- components), since they were viewed 

as equivalent alternatives. 
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If the source of the problem is dependence (or correlation) 

in the unobserved attributes of the alternatives, several conse-

quences are immediate. First, the problem may be most obvious 

in the pure case of the blue auto/red auto example, but it could 

exist in a lesser degree in other, more-difficult-to-diagnose 

examples. Second, the two forecasting consequences of 

the hA property, the "new mode problem," and the "equality 

of cross elasticities," appear superficially to be per Se 

undesirable properties in any forecasting situation. Since 

they derive from the assumption of independent Ei, it might 

be inferred that a fundamental assumption of the logit model, 

independence of the s., must be rejected a priori as arbi- 

trary and unreasonable. If so, the logit model itself may 

be an arbitrary and unreasonable model of behavior. 

However, researcfl on the hA property and its relationship to 

possible systematic effects of unobserved attributes indicates 

that the hA property probably can be shown to be reasonable 

and desirable in many applications. The two forecasting proper- 

ties of the model (the equality of cross-elasticities and the 

new mode property) will often be desirable and reasonable prop- 

erties. Indeed, as shown below, it is desirable that models 

be specified so that the hA property is reasonable rather 

than to reject the property as inherently undesirable. 

On the other hand, the practitioner cannot always cavalierly  

to the simple case of the red auto/blue auto example, and may 

be manifested in a number of subtle ways. 

Considering the hA property as reasonable and desirable in 

many circumstances is not merely making a virtue of a neces-

sity. To see that the hA assumption may be reasonable, we note 

first that the hA property applies to the probabilities of 

choice of an individual and can be extended to the mode shares 

of a population only when that population is homogeneous'; 

each individual has the same probability of choosing each 

alternative because all possess identical socioeconomic attributes 

and attributes of choice. Within a 'homogeneous" market segment, 

the actual split of individuals into two choices in a population 

facing the same observed choice attributes and observed socio-

economic variables is dictated totally by the unobserved com-

ponents. Since all individuals possess the same observed attri-

butes, the actual split of the population is dictated by the 

random unobserved components. 

In such circumstances, it would be more appropriate to 

question how a departure from the hA assumption could be 

justified. Within such homogeneous market segments where the 

hA may apply, the researcher has ordinarily, as it were, 'used 

up" his knowledge of the determinants of choice in specifying the 

observed attributes, which make no contribution to explaining 

00 

assume the property to be satisfied. Nonindependence is not confined 
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the differences in choice behavior within this homogeneous 

group. If a new mode is introduced to this homogeneous market 

segment, the researcher has no basis for predicting in advance 

that more patrons will be diverted from one mode than another. 

Just as the researcher had no knowledge of why particular individuals 

selected the old modes, neither can he say which individuals 

or group of individuals will be more likely to switch to the new 

alternative. 

To help clarify these points, we take an example where mode 

C is introduced to a homogeneous population (with common observed 

variables) split between modes A and B. We pose the following two 

questions. 

Question One. In applying the MNL model to the entire homo-

geneous population, we get the same results as if we had first 

split the population into those who chose A in the binary choice 

situation and those who chose B in the binary choice situation 

and applied a binary model to the choices between A and C and 

between B and C separately. Is this reasonable? 

The assumption may well be reasonable. The assumption of 

the hA is tantamount to saying that within a homogeneous popula-

tion, the researcher can infer no knowledge from an individuals 

selection of A over B or B over A that is relevant to predicting 

his probability of switching to C. The hA assumes that the 

initial choice between A and B for an individual is dictated by 

unobserved attributes. If the researcher has knowledge of some 

attribute or taste which the individual who chose A in the binary  

case possesses which was not possessed by the individual who 

chose B, which could be used to predict a differential response 

of the two groups to C, the researcher would have included 

that, determinant of choice in the observed attributes. However, if 

he had included that distinguishing characteristic of the two 

groups as a measured attribute, the two groups would no longer 

be homogeneous with respect to the observed attributes, and the 

hA property would not hold. The very fact that an attribute 

affecting choice is not included as an observed attribute 

creates a presumption that its affect is random. If a 

differential response of the two groups (those who choose 

A and those who choose B in the binary choice) can be predicted 

on the basis of some differential attribute of the two groups, 

the two groups are no longer homogeneous and the hA no longer 

applies. 

Question Two. The MNL model also predicts the same percentac'e 

diversion to the C alternative from both those who chose A in 

the binary choice situation and those who chose B (because of 

the "new mode' property) . Is that reasonable? 

The 'new mode' property is arbitrary, but any other assump- 

tion often cannot be justified. The original split of individuals 

between A and B resulted from differing unobserved attributes 

among a population with identical observed attributes of alternatives 
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and socioeconomic variables. If the observer has no knowledge 

of why particular individuals chose A and others chose B in 

the binary choice situation, he certainly has no basis 

for determining that one individual who originally chose A is 

more likely than another who originally chose B to be diverted 

to the third mode. 

The assumption of identical percentage reduction in both 

old mode selection probabilities is arbitrary. But it is 

based on the fact that knowledge of the choice process for a 

homogeneous group generally permits no alternative. The re- 

searcher may have "used up" all his information on factors sys- 

tematically affecting choice when he specified the model and 

this is incorporated in the estimated mode shares for the popu- 

lation. Where all identically situated individuals in a group 

face the same observed attributes, any attempt to depart from 

the hA assumption requires knowledge of the dependence structure 

of the random utility components which may not be available. 

"Belling the Cat" 

The assumptions of the MNL model reveal an inherent paradox 

in asserting axiomatically that the hA assumption is unreasonable. 

The model assumes that the actual mode splits are not systematicall 

affected by unobserved factors and the random components of 

utility are therefore independent. The paradox of asserting 

a violation of the hA property due to systematic unobserved 

attributes (in the absence of a statistical test of depend-

ence) is that the researcher must know enough about the 

unobserved attributes to know that they are systematically 

affecting choice but not enough to specify the attributes 

and include them as observed attributes. Frequently, if the 

observer knows that the random components of utility are not 

independent because of some systematic unobserved effect, he 

also may know enough to devise a method to make the 

systematic unobserved component into an observed component 

and the offending element of dependence would be eliminated 

from the unobserved component. 

The hA property is not inherently unreasonable: it should 

be the goal of the researcher to quantify and include evary known 

systematic effect so that the random effects are independent. If 

the unobserved utility components are not independent, one solu-

tion is to use the knowledge of dependence to improve the model 

specification so that unobserved components will be random. 

If the hA is unreasonable because of the systematic effects of 

omitted factors, the researcher should modify his behavioral 

model to consider the systematic omitted factor and thereby 

make the assumption reasonable. Making the hA property 

a reasonable assumption should be an important objective of 

travel demand modeling. But solving the problem by specifying 

more systematic influences does not eliminate the hA property; 

it merely makes it reasonable. 
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Case 1: Correlation of Unobserved Attributes Across Alternatives 

One type of violation of the independence of un-

observed attributes is clear. As Figure E-1 illustrates, the 

correlation of the unobserved utility components is suspected 

when there is a strong correlation of the observed utility com-

ponents. It was the correlation of the observed components 

that made the correlation of the unobserved components easy to 

detect. 

It is clear that we can extend the example to the case 

where the unobserved attributes are correlated but the observed 

attributes are not. For example, an "express bus" may have dif-

ferent observed attributes from a "local bus, but similar 

unobserved attributes. This type of correlation is 

more difficult to detect than the classic case in Figure E-l. 

Table E-1 (above) illustrates that a violation of the 

IIA assumption in the red auto/blue auto case causes the MNL 

to underpredict transit ridership. Figure E-2 indicates that 

the effect of positive correlation of unobserved at-ributes for 

auto is to generate observed mode shares for transim that are 

higher than those predicted by the MNL response curve (using the 

correct parameter for the attribute) for every level of the bus 

attribute. The systematic tendency for the MNL model to under-

estimate the demand for transit in the example directly follows 

from the specification of the MNL model: adding a new irrelevant 

The hA property is frequently reasonable because 

it reflects the researchers inability to know how omitted 

factors influence choice. There are, however, cases 

where a violation of the independence assumption is possible 

and the dependent omitted factors cannot be measured and 

included in the model. The blue auto/red auto problem was 

one such example. The existence of taste variations in the 

population that are not captured by socioeconomic attributes 

is another. Generally, these cases must be identified empiri-

cally and not on the basis of the 'inherent unreasonableness 

of the hA assumption." For these cases, the model should 

be generalized to consider how the structure of dependence 

among unobserved attributes affects choice. In the next sec-

tion the cause of such dependence is identified. 

4. VIOLATIONS OF THE INDEPENDENCE ASSUMPTION 

The MNL model assumes that the unobserved attributes of 

choice do not vary systematically, i.e., they are independent. 

Violation of the independence assumption may arise for two 

important reasons: 

Case 1: Correlation of the unobserved components 
of utility among the alternatives (such as common 
unobserved attributes among choices) and 

Case 2: Observed and unobserved attributes of utility 
are not independent of one another. 

88 
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Figure E-1 
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auto mode must reduce the estimated bus mode share for all levels 

of bus attributes. 

Case 2: Dependence Between Observed and Unobserved Attributes 

The MNL model assumes that the observed attributes of 

the choice alternatives are exogenously determined for each 

individual (who takes them as given), and that the unobserved 

attributes (omitted LOS, SEC, and taste variations are independently 

distributed over alternatives and identically distributed across 

individuals. This assumption that unobserved attributes are 

independent of observed attributes can be violated in three 

ways. 

Correlation* Between Observed and Unobserved LOS: 

Competition Among Modes and Supply Responses. Suppose that 

in an auto-bus mode split, the transit agency tends for competi-

tive reasons to put newer and more comfortable buses in corridors 

where the auto has the greatest relative time advantage. In 

this example, the difference in comfort is dependent on time 

*'Correlation' in this context means 'empirical dependence' and 

is meant to apply to both statistical correlation of random 

variables and functional dependence of a random variable with a 

nonrandom variable. The usual interpretation of the observed 

attributes is that they are nonrandom.  

differences between the modes. If comfort were an omitted 

attribute in the logit model and if the true relationship between 

time differences and mode choice were used for forecasting, the 

tendency would be to underestimate the demand for transit in the 

market segment with relatively good transit travel times (see 

Figure E-3). 

on the other hand, if the most comfortable buses were put 

in the areas where the bus time advantage was best, the results 

would look like Figure E-4. 

Correlation Between Unobserved Tastes and Observed 

Attributes: "Endogenous Determination" of SEC and LOS. The 

MNL model assumes that the observed LOS for modes is distributed 

randomly across the population -- the independent variables are 

"exogenous." However, consumers generally do not take the travel 

choice environment as given, but mold it according to their 

tastes. For example, automobile Ownership is ordinarily not taken 

as a given socioeconomic attribute by the consumer, but is chosen 

in a manner that is highly correlated with unobserved taste 

variations that affect mode choice. High levels of auto owner-

ship are statistically related to unobserved tastes which are 

predisposed to the choice of auto; these tastes affect mode 

choice in addition to their effect through auto Ownership. 

The classic case of this "cross-sectional bias" is consumers 

who make home and workplace location decisions based on the level-

of-service offered by their preferred mode. Thus, persons who 

prefer transit may be more likely to live near transit stops. 

Conversely, automobile aficionados may choose to live in a place 

that minimizes highway access time. 

50 
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Figure E-3 	 Figure E-4 
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Figure E-5 illustrates an example of dependence of ob-

served and unobserved determinants of choice.  As indicated in the 

example above, consumers may have substantial unobserved varia-

tions in taste that lead them to choose travel origins and destina-

tions that maximize LOS on their preferred mode choice alternative. 

For instance, consumers who strongly prefer the auto for unobserved 

taste-related reasons embody desirable levels of the observed 

attributes relative to the other mode choice alternatives, 

e.g., consumers who strongly prefer the auto for unobserved 

taste reasons may locate their residences with disregard for the 

observed attributes of transit service; "transit-prone con-

sumers will do just the opposite. Persons who face choice 

alternatives favorable to auto and transit will therefore 

be "biased" toward those respective choices for reasons 

other than the level of the observed attributes. 

The result of such location decisions is to create 

dependence between the observed attributes and the 

unobserved attributes of choice;  the observed attributes 

are "endogeneous." When this happens due to location decisions, 

the result will be a systematic tendency to underforecast 

the demand for modes with superior attributes in a given 

location.* 

*Assuming that the model was calibrated on data that did 

not incorporate the correlation of observed and unobserved 

attributes. Conversely, in model calibration there is a tendency 

to overestimate consumers' responsiveness to changes in LOS under 

these circumstances. 
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An example of the effects of an endogeneous LOS variable 

is provided in Figure E-6. Assume that persons who have 

preferences for auto due to unobserved taste variations tend 

to have relatively high auto LOS (the "auto biased" probably 

suburban, population) and those who have preferences for 

transit due to unobserved taste variations tend to have rel-

atively low auto LOS (the "transit biased," probably urban 

population). The heavy line indicates the mode shares that 

would be predicted by the MNL model if the unobserved com-

ponents were independent. However, observed selection fre-

quencies of the "auto biased" population will tend to fall 

above the MNL response curve in the area of the attribute 

levels favorable to auto choice. These observations are 

marked by X's to the right. 	Similarly, the 'transit prone' 

population will tend to generate observed choice frequencies 

below the MNL response curve in the region favorable to tran-

sit choice. 

Incidentally, the figure also illustrates that the MNL cali-

bration procedure will fit a curve (dashed line in figure) 

with too high a coefficient (too much slope) if taste varia-

tions are excluded from the model specification. The popu-

lation's response to changes in the observed attributes will 

be exaggerated. In effect, the estimation procedure will 

be biased upward because the variations in choice due to 

unobserved taste variations are imputed to the variations in 

observed LOS with which they are correlated. 
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Figure E-5 

STRUCTURE OF CORRELATION BETWEEN OBSERVED AND UNOBSERVED UTILITY COMPONENTS 
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Figure E-6 

THE EFFECT OF CORRELATION OF OBSERVED AND UNOBSERVED 

UTILITY COMPONENTS ON OBSERVED MODE CHOICE FOR AUTO 

Probability of 
Auto Mode Choice 

Aggregation Error. It has been demonstrated in Table E-2 

that the hA property is not preserved through aggregation. A 

special case is where two market segments, e.g., with differing 

values of time, are combined and treated as a homogeneous group. 

The result is a violation of the IIA property, and the consequences 

are formally equivalent to the omission of an attribute which is 

correlated with included variables, as shown in Figure E-7. In 

this case the omitted attribute may be thought of as the variation 

in the value of time for the individual from the average for the 

group. 

This observation is an extension of the 'left Out variable' 
observed 
selection 	fr-ecuencies of problem common to all modeling techniques. 	That is, an important 
pooulation with 	'auto bias" 

explanatory variable left out of a model equation will always reduce 

the explanatory value of the model. 	However, the results of the 

model will not be biased unless the omitted variable is correlated 

observed 
selection frequenCes ogit respo nse curve with an explanatory variable included in the model. 	In this case 

of 	population with 
assuming true parameter 

as" and independent, 	unobserved "picks the included variable 	up" some of the impact of the omitted 
components 

variable on the dependent variable. 

case 2 dependence should not be confused with the simple case 

of "mode bias." 	A "pure mode bias" is the result of an omission of 

J an attribute (or attributes) 	that systematically varies across the 

Desirable Auto Attribute alternatives but is not highly correlated with an observed attri- 
Relative to Transit Attribute 

bute. 	For example, "comfort" may be systematically rated higher 

in the auto mode and not be a quantified element of utility. 	As 

long as comfort is not correlated with the observed attributes 

(say time and cost) , the comfort effect is picked up in the mode- 

specific constant and not imputed to the observed attribute. 
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Figure E-7 

MODE SHARES FOR AGGREGATE OF TWO MARKET SEGMENTS AND 

THE PREDICTED PROBABILITY FOR INDIVIDUAL WITH AVERAGE 

VALUE OF TIME 

Expected Mode 
Shareand 

Probability of 
First Alternative 

5. CONCLUSIONS ON THE REASONABLENESS OF THE INDEPENDENCE ASSUMPTION 

This Section briefly describes circumstances that tend 

to reduce the problem of dependence among the observed 

attributes of choices and choosers and thereby reduce the 

severity of hA violation problems. The existence of at 

least some degree of dependence among the unobserved components 

appears almost certain on a priori grounds: 

Groups of alternatives will have important 

common omitted variables which vary systematically 

(Case 1); and 

Consumers will locate themselves so that the 

observed attributes of choices which are preferred for 

nonobserved taste reasons will rate high; important un-

observed attributes will be correlated with observed 

attributes; the sample will not have identical tastes 

probability of choice 
predicted by the average 
value of time and the 
MNL model 

Excected mOde share 
for the aggregate market 

toward observed attributes; and consumers will not 

take as given certain socioeconomic variables such as 

auto ownership (Case 2). 

The above comments suggest that independence is likely 

to be a common occurrence. Fortunately, a number of 

factors operate to help reduce the correlation in many 

situations. 

0 	Time of Mode I - Time of Mode 2 
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Multinomial Choice Situations May Tend to Break Up the 

Correlation 

Posing the problem of hA as a "new mode" problem suggests 

that it can occur because adding new modes may create correlation 

between the unobserved components. The commonly cited example 

leads to the presumption that the Situation is most likely to 

occur in situations of many options. However, adding further 

choice alternatives may tend to break up the dependence. 

Thus, in many cases a large number of independent alternatives 

will often tend to minimize the errors due to systematic cor-

relation of unobserved attributes in two alternatives. 

This very important point contravenes the intuitive 

impression that modeling a choice among many alternatives is 

more likely to create hA problems than modeling a few 

alternatives. Modeling a binary dhoice is no guarantee 

that the independence assumption will not be violated. 

Neither can one assume that increasing the number of al-

ternatives necessarily exacerbates the problem. In fact, 

we may speculate that more alternatives may help break up the 

structure of dependence. 

Correlation of Observed Attributes Does Not Necessarily 

Imply Correlation of Unobserved Attributes 

The presence of correlation in the observed 

components of two alternatives by no means is 

sufficient to guarantee correlation of unobserved com-

ponents. In fact, the independence of the unobserved 

components may be the very reason for the existence of 

the two alternatives. For example, two shopping des-

tinations may have similar observed components (such 

as distance and size) , but be completely independent in 

unobserved utility components. 

Correlated Unobserved Attributes May be Unimportant 

Relative to independent Unobserved Attributes 

The presumption that a dominant unobserved 

attribute (e.g., comfort) will emerge to VioLate 

the independence assumption often will not be 

true. Positively correlated unobserved attributes often 

tend to be balanced out by negatively correlated un-

observed attributes. An attribute which is positively 

evaluated by some subjects will be negatively evalu-

ated by others. 

The Distribution of the Attributes Among the Population 

May Mitigate the Effects of Dependence 

The forecasting error due to biased parameter 

estimates greatly depends on where on the logit response 
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curve the forecast is required. Figure E-8 illustrates 	 Figure E-8 

that the absolute error in forecasting a mode share for 	 UNDERESTIMATE OF THE MNL RESPONSE CURVE 

Case 1 is low in the tails. If the mode share is large, 	 IN THE BLUE AUTO/RED AUTO EXAMPLE  

the percentage error will be small as well. 

Much of the Bias Due to the Omission of Systematic 

Attributes will be Absorbed by the "Mode-Specific 

Constant" 

In the Case 1 violation, the mode-specific constant is 

the most "dominant" trait among the modes and tends to absorb 

much of the bias. Therefore, the behavioral coefficients on 

attributes will be less affected. 

-1.0 	 0 	0.4 	1.0 	Desirable Bus Attribute 
Relative to Auto 

SOURCE: Charles River Associates, (El). 
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APPENDIX F 

A MULTINOMIAL LOGIT MODEL WHICH PERMITS 

VARIATIONS IN TASTES ACROSS INDIVIDUALS 

Note: This appendix appeared earlier as a CRA work- 

ing paper by N. Scott Cardell and Bernard J. Reddy. 

The multinomial logit model has proved to be quite useful 

in analyzing a number of transportation problems, such as the 

effects of introducing new travel alternatives or of altering 

the characteristics (such as price or frequency of service) 

of existing alternatives. The muitinomial logit model does, 

however, have some drawbacks, most of which can be traced back 

to the independence of irrelevant alternatives assumption. 

A discrete choice model developed recently by researchers 

at Charles River Associates (the CRA hedonics model) extends 

the logit model to permit variations in tastes across individ-

uals. This model generalizes the work of Quandt (Fl) , extends 

the logit work of McFadden (P2), Domencich and McFadden (F3), 

and others, and is closely related to recent work on the multi-

nomial orohit model by Rausman and Wise (P4), Albright et al., 

(P5), and Daganzo, Bouthelier and Sheffi (F6). 

The disaggregate logit, probit, and CRA hedonics models are 

based on the assumption that an individual faced with a choice 

among competing alternatives selects the one that yields the 

highest level of utility. All three models further assume that 

the individual utility function is linear in the attributes of 

F-i 

the alternatives, that these attributes can be level of service 

variables or interactions between level of service variables 

and household characteristics, and that the utility function also 

contains an additive error term. That is, the utility an indi-

vidual receives from alternative i can be written as: 

k1 Xik k + 	 (F-i) 

where: 

U.= the utility of alternative i; 

X. = the attributes; 

= the unknown parameters; and 

7- 
= the error term for alternative i. 

Unless otherwise stated in this paper, the superscript denoting 

a given individual will be suppressed. 

The three models diverge at this point. The logit model 

assumes that the B are constant across individuals and that 

the E are independent Weibull random variables. This last 

assumption, as McFadden has demonstrated, is equivalent to the 

independence of irrelevant alternatives assumption. The probit 

model assumes that the s. are multivariate normal random 
7- 

variables, and the versions we will discuss also assume that 

the 	are normal random variables that are independent of the 

c.. This implies for a given individual that the B can still 

be considered fixed across alternatives. The multivariate normal 

assumption for the ci implies that these error terms need not be 

independent. The CRA hedonic model assumes that the c. are 
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independent Weibull random variables, just as the logit model 

does, but it further assumes that the S. are random variables 
1. 

with any specified, well behaved distribution. 

IMPLICATIONS OF RANDOM PARAMETER MODELS 

Before examining the complexities that the random para-

meter models introduce, a discussion of their relevance is in 

order. What advantage does a model that explicitly allows 

for variations in tastes offer over the logit model, which has 

proved so valuable in applied transportation research? 

A good argument can be made a priori for the proositicn 

that tastes do vary across a population. Some people may 

weight their transit times much more heavily than their transit 

costs, while others may not. To the extent that this behavior 

is related to factors such as household income, the specifi-

cation of the logit model may capture some of these effects, 

However, it may not capture them all. 

These variations in tastes have important implications for 

the logit model, because they imply a failure of the independence 

assumption. For example, suppose that a given individual places 

a higher than average weight on out-of-vehicle travel time (OVTT), 

and that this individual is faced with a choice of two transit 

modes and one auto mode for travel to work. Suppose further 

that the two transit modes have similar OVTT5 that are higher  

than that for the auto mode. The higher than average OVTTs and 

the higher than average weight on OVTT would combine to create 

a large common component in the error terms for the two 

transit modes. Statistically this translates into correlation 

between the error terms, causing the independence assumption 

to be violated. 

This can be seen algebraically quite easily. Write 6 as 

L 	+ S. , where 6 k 	 k 
is the exoected value of S and k, is its -  

deviation from the mean. Then the individual utility from 

alternative 	can be written as: 

V. = 	K. S, * ( 	K. Ea t S # kk 	t  

where the term in parentheses is the total error term for alter-

native i. Call this term e q.. Assur.iing that the S. are inde-

pendent of the c ., the covariance between e. and a can be 

written as: 

K 	- 	 K 	- 

	

Ccv(e ., e .) = 	K.. 5, + 	.)( I 	K '
,
k 	< B, + 

 

K K 	 -- 

	

= 	K.. K. E(B 6,) + E(c.r.). 
k=1 m=j i: 	k 

If E is independent of E . and the 6 are independent, this 

simplifies to: 
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Table F-i A 	 - 
Cov(e., e.) = 	

X.k , 	k X..  E(82 
k=2 	

). 	 (F-4) 	
SUMMARY OF MARKET SHARES WITH A 

The term E(6k2) is simply the variance of 6 k, If the parameters 

of the individual utility function are not fixed, these variances 

will be positive; so the covariance between the total error 

terms for any two alternatives generally will be nonzero. If 

the 5's are not independent, the covariance expression will 

have more terms but still will be generally nonzero. 

How important are variations in taste likely to be 

in practice? Hausman and Wise (F4) estimated a simple trans-

portation demand model in which a statistically significant 

variation in parameters is measured, particularly for OVTT 

and for travel cost relative to income. CRA (87, F8) has 

estimated a demand model of choice among automobile models in 

which variations in the marginal utilities are substantial, 

particularly those for automobile turning radius. In addition, 

both CRA and Hausman and Wise present examples in which the ran-

dom parameter models produce forecasts that are not only very 

different from those of the logit model, but also more believable. 

A summary of some forecast results obtained with the CRA 

hedonics model is presented in Table F-i. An aggregate model of 

the market shares of automobile models was estimated and an 

artificial aggregate forecast was made, based loosely on the 

results of the estimation. The automobile buying public was 

assumed to be faced originally with a choice among 20 automobile 

NEW ALTERNATIVE 

(Percent of Total) 

New Share 
Original 

Alternative Share Logit CRA 

1 - 19.68 13.02 

2 24.50 19.68 13.02 

Others 75.50 60.64 73.96 

SOURCE: Charles River Associates 	"Methodology for Predicting 

the Demand for New Electricity Using Goods" Cambridge, MA, 

1977, p.  26. 
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models. When a new alternative (Number 1) identical to the 

second alternative is introduced, the market shares of these 

two alternatives are the same, in both the logit and the CRA 

hedonics models. However, the total market share of the first 

two alternatives increases considerably in the logit model but 

only slightly in the CRA hedonics model. This indicates that 

in some cases the CRA hedonics model can cope well with the 

red auto-blue auto problem. The reason that the combined market 

shares of the models in question increase at all is that the 

CRA hedonics model still makes the independence of irrelevant 

alternatives assumption at the individual level. That is, the 

CRA hedonics model assumes that the characteristics of the new 

good are identical with those of the existing good, but that 

the error terms for the two are independent. This is likely 

to be a reasonable assumption in some instances but not in others 

The probit model can assume that the error terms are identical, 

independent, or correlated. 

Random parameter models seem best suited for applications 

to problems in which an individual is faced with a number of 

goods with widely differing, easily quantified characteristics. 

Automobile market shares illustrate this point well. Purchasers 

of automobiles in the United States are faced with a choice 

among over 100 models, including major options like engine 

size. Many automobile characteristics can be quantified easily, 

such as gas mileage, acceleration, turning radius, and interior  

room. Others cannot, such as "luxury" and amount of sound-

proofing. In all, however, choice among automobile models 

seems to be an excellent application for random parameter 

models. 

Many problems in travel demand also seem well-suited for 

random parameter models such as the mode choice for worktrip 

model estimated by Hausman and Wise (F4) . Travel modes offer indi-

viduals tradeoffs among such variables as in-vehicle travel time, 

out-of-vehicle travel time, and travel costs. It seems reasonable 

a priori that different individuals might weigh the importance 

of these variables in different ways, and the estimates pre-

sented by Hausman and Wise support this view. 

COMPLEXITY OF LOGIT AND RANDOM PARAMETER MODELS 

Now that the value of the random utility models has been 

demonstrated, our attention will turn to the computational dif-

ferences between these models and the logit model. 

In all three models the probability that an individual 

will choose alternative i is the probability that the utility 

from alternative i is greater than the utility from the other 

alternatives. That is, 

Pi = P(Ui>Ui 	Vi+i). 
	 (F-5) 

All three models use these choice probabilities to estimate the 

parameters with maximum likelihood techniques. Some of the 
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computational advantages and disadvantages of the three 

models can be observed immediately by examining the expressions 

for the choice probabilities. For the logit model the proba- 

bility that alternative 	will be chosen can be written simply 

as: 

x 
X.B. 

k=2 

	

	

(F-6) 

=: XB 

The corresponding expression for the probit model is conceptually 

straightforward, although much more difficult to evaluate: 

X.-X. 
P. = 	- 	 de 	 e -) ': 	e n 	F-  7 i• 	j 	 j  

where 	is the multivariate normal density function with mean 

zero and variance-covarjance matrix Z. Although this expres- 

sion can be simplified somewhat, it requires the evaluation of 

a multivariate normal integral of order N-1 (where N is the 

number of alternatives) . Hausman and Wise (P4) evaluate this 

integral directly, while Albright et al. (F5) have suggested a Monte 

Carlo approach, and Daganzo, Bouthelier, and Sheffi (P6) have 

suggested an approximation method first studied by Clarke (P9) 

in another context. 

F-9 

The CRA hedonics model results in a form with elements 

of both of these expressions. First define: 

	

= 	

(F-B) 

L e 

	

The variable 	' 	is simply the logit choice probability, 

given that the parameter vector is E. The choice probability 

for the CRA model then can be written as: 

(F-9) 

where 	...... ) is the probability density function of the 
parameters of the individual utility function. This expression 

implies that the choice probability in the CRA hedonics model 

is simply the expected value of the choice probability of the 

logit model, where the expectation is made over the parameters. 

As a result, the logit model is a special case of the CRA 

hedonics model. The expression above requires the evaluation 

of a multivariate integral of order X. the number of parameters. 

If the parameters of the utility function are constant, the 

choice probabilities in the CRA hedonics and logit models are 

identical. 
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The Monte Carlo methods used to estimate the CRA model 

will be described briefly. The researcher specifies a distri- 

bution function for the parameter vector 	such as normal, 

log-normal, or exponential. Any distribution that is sufficiently 

well-behaved so that the cumulative distribution function can be 

calculated easily can be used. Many otherwise ill-behaved dis-

tributions, such as the Cauchy, could be specified. After the 

distribution is specified a number of drawings from that distri-

bution are made, based on the values of the means, variances, and 

covariances of the 's in the current iteration. The 	are 

used to aproximate the choice probabilities T..  This approach 

is conceptually and computationallv straichtfoard, although it 

is somewhat time consuming. 

PROPERTIES OF THE CP.A HEDONICS MODEL 

Although the CPA hedonics model makes the independence of 

irrelevant alternatives assumption at the individual level, 

the fact that the coefficients of the attributes can vary across 

individuals enables the CPA hedonics model to avoid several of 

the problems of the logit model. The red auto-blue auto problem 

already has been mentioned and will not be discussed further. 

An implication of the logit model is that at the individual  

level the cross-elasticities of the choice probabilities are 

equal. That is, 

= 	
: 	X.. = 	

(F-lU) 

t, z 

This is not true of the CPA model, in which the cross elasticity 

is: 

where the integral is the K dimensional integral described 

earlier. This expresision is not independent of alternative 

so the cross elasticities generally are not equal. 

Because the probit and CPA hedonics models both permit 

variations in tastes across individuals, a comparison of some 

of their properties is in order. First, the CPA hedonics model 

assumes that the Eil  the component of the error term which does 

not result from the randomness of the parameters, is indepen-

dently distributed across alternatives. The probit model 

permits the c. to be correlated, which means that in theory the 

NJ 
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probit model can handle virtually all causes of failure in the 

independence assumption. It is difficult to assess the practical 

significance of this greater generality of the probit model. 

The random parameter feature of the CRA hedonics model can 

account for an important type of correlation across error terms, 

but it cannot account for all. For example, suppose all transit 

modes are uncomfortable, but no measure of comfort appears as a 

level of service variable. Then this unobserved variable 

problem will cause the error terms for the transit modes to be 

correlated, but the CRA model will not capture this correlation 

and therefore its use will be inappropriate. In theory the pro-

bit model can be used to calculate this correlation. If such 

correlations do exist, then the probit model or different gener-

alizations of the logit model should be used. A version of the 

logit model which permits such correlations across alternatives 

has been developed by one of the authors of this appendix. This 

version is essentially an error components method for the Weibull 

distzibution and is compatible with the CRA hedonics model. 

This problem, however, may be more theoretical than prac-

tical. If the probit model is estimated with nonzero corre-

lations between the ei, forecasts of the model when a new 

alternative is introduced will have to Specify the correlation 

of the c for the new alternative with those for the existing 

alternatives. In practice, many users of the probit model are  

likely to assume that the . are uncorrelated, thereby avoiding 

this problem. If the E, are assumed to be uncorrelated, then 

the probit model offers no more generality in this regard than 

does the CRA hedonics model. If, on the other hand, there is 

reason to believe that the E . are correlated, then the CRA 

hedonics model is not applicable. 

Another area of interest is the specification of the dis-

tribution of the parameters of the individual utility function. 

The probit model requires that they be normal random variables, 

while the CRA model permits then to have any well-behaved dis-

tribution. This is a clearcut advantage of the CRA model, for 

a variety of reasons. A normal random variable can be either 

positive or negative, so the probit assumption implies that 

parameters will be positive for some individuals and negative 

for others. This may not be unreasonable in some cases, but 

it is difficult to imagine situations in which an individual 

enjoys spending money on transportation to work. In some cases 

this 'problem will be minimal. The estimated variance of the 

distribution of a parameter might be very small relative to the 

estimated mean, which would imply that the parameter in question 

would have the "wrong" s-gn for only an insignificant fraction 

of the sample. In other cases this problem will be more severe, 

particularly those in which parameter distributions are highly 

skewed with relatively small means. 

t'J 
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It appears that the parameter assumptions of the CRA 

hedonics model are much more flexible than those of the probit 

model. 

The assumption in the CRA hedonics model that the c. are 

independent Weibull variables rather than independent normals, 

as they are in the probit models most likely to be estimated, 

should matter little. The normal and Weibull distributions 

are quite similar, except in the extreme tails, so there is 

little reason on theoretical or empirical grounds to select 

one distribution over the other. Hausman and Wise (P4) compare 

mode share forecasts based on a logit model and a probit model 

in which the total error terms are independent, that is, in 

which the 6 are fixed and the c. are independent. Both before 

and after the introduction of a new mode, the modal split fore-

casts of the two models were virtually identical. This indi-

cates that if the E. are independent there may be little reason 

to assume that they have one distribution rather than the other. 

Large-scale comparisons of the costs of estimation with 

the probit and CRA models have not been made, but some evidence 

is available. The two most promising versions of probit are those 

of Hausman and Wise (P4) and of Daganzo at al. (P6) . The Hausman-

Wise approach is highly accurate but somewhat limited, because 

computation costs increase rapidly with the number of alterna-

tives. The Daganzo at al. approach reduces the computation 

costs considerably, but the accuracy may decline with a large  

number of alternatives, because the quality of the successive 

approximations deteriorates as the number of alternatives 

increases. The computation costs of the CRA model do not depend 

greatly on the number of alternatives, but they increase rapidly 

as the number of parameters increases. The CRA model would have 

advantages over the Hausman-Wise model in problems with a large 

number of alternatives (more than five) and a small number of 

parameters (less than seven) while the Hausman-Wise model would 

have advantages in problems with a large number of parameters 

but a small number of alternatives. Both models would be quite 

expensive to estimate on problems with a large number of both 

alternatives and parameters. 

POSSIBLE FUTURE RESEARCH 

At present the CRA hedonics model has been programmed only 

for application to aggregate logit problems (i.e., market shares) 

with the parameters of the utility function estimated as indepen-

dent normal or log-normal variables. Current work on the model 

includes reprogramming it for application to disaggregate data 

and expanding the options for specifying the distributions of 

the parameters. This work is relatively straightforward and 

should meet no major difficulties. 

one of the most important uses of the CRA hedonics model 

might be for problems in which the individual utility function 

tJ 
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is nonlinear in its parameters. For example, economic theory 

might imply that household income and the monetary cost associ- 

ated with alternative i should appear in the individual utility 
B2Y - 

function as a composite variable of the form B, log 
- 

The parameters B and 82  could be specified as log-normal vari-

ables (or whatever) and estimation would take place exactly as 

described earlier, with only a few minor differences. 

In general the individual utility function can be written 

as 

U ; 	V(X., I) + C., 	 (F-12) 

in which case the choice probability conditional on the para- 

meters then becomes 

v(X, B) 

(8) = 	
v(X,B) 	 (F-13) 

The expression for the choice probability does not change, remain- 

multinomial logit model which permits correlations between the 

s... Such a model would offer as much or more generality in 

estimation than would the probit model. Its computation costs 

might exceed those of the approximation method for estimating 

the multinomial probit model, but its accuracy is likely to be 

greater as well. 

The development of models as sophisticated as the multi-

nomial probit and CRA hedonics models highlights the importance 

of collecting data sets of sufficiently high quality to take 

advantage of the sophistication of these models. Similarly, 

dynamic adjustment or diffusion processes should be studied in 

more detail, particularly as they concern the choices of resi-

dence location, automobile ownership, and travel mode. 

70 

i ng 

Pi = J, P(8) f(i)di, 	 (F-14) 

except for the different construction of the F(B). ihe only 

other changes required in the model are those concerning the 

derivatives of the likelihood function with respect to the 

parameter means and variances. These must take explicit account 

of any nonlinearities in the individual utility function. 

Another area for further work would be the combination of 

the CRA hedonics model with a generalized version of the 
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