NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM REPORT

295

AUTOMATED FIELD SURVEY DATA COLLECTION SYSTEM

TRANSPORTATION RESEARCH BOARD

TRANSPORTATION RESEARCH BOARD EXECUTIVE COMMITTEE 1987

Officers

Chairman

LOWELL B. JACKSON, Executive Director, Colorado Department of Highways

Vice Chairman

HERBERT H. RICHARDSON, Deputy Chancellor and Dean of Engineering, Texas A & M University

Secretary

THOMAS B. DEEN, Executive Director, Transportation Research Board

Members

RAY A. BARNHART, Federal Highway Administrator, U.S. Department of Transportation (ex officio) JOHN A, CLEMENTS, Vice President, Sverdrup Corporation (Ex officio, Past Chairman, 1985) DONALD D. ENGEN, Federal Aviation Administrator, U.S. Department of Transportation (ex officio) FRANCIS B. FRANCOIS, Executive Director, American Association of State Highway and Transportation Officials (ex officio) E. R. (VALD) HEIBERG III, Chief of Engineers and Commander U.S. Army Corps of Engineers, Washington, D.C. (ex officio) LESTER A. HOEL, Hamilton Professor and Chairman, Department of Civil Engineering. University of Virginia (ex officio, Past Chairman, 1986) RALPH STANLEY, Urban Mass Transportation Administrator, U.S. Department of Transportation (ex officio) DIANE STEED, National Highway Traffic Safety Administrator, U.S. Department of Transportation (ex officio) GEORGE H. WAY, Vice President for Research and Test Department, Association of American Railroads (ex officio) ALAN A. ALTSHULER, Dean, Graduate School of Public Administration, New York University JOHN R. BORCHERT, Regenis Professor, Department of Geography. University of Minnesota ROBERT D. BUGHER, Executive Director, American Public Works Association DANA F. CONNORS, Commissioner, Maine Department of Transportation C. LESLIE DAWSON, Secretary, Kentucky Transportation Cabinet PAUL B. GAINES, Director of Aviation, Houston Department of Aviation LOUIS J. GAMBACCINI, Assistant Executive Director/Trans-Hudson Transportation of The Port Authority of New York and New Jersey JACK R. GILSTRAP, Executive Vice President, American Public Transit Association WILLIAM J. HARRIS, Snead Distinguished Professor of Transportation Engineering, Dept, of Civil Engineering, Texas A & M University WILLIAM K. HELLMAN, Secretary, Maryland Department of Tansportation RAYMOND H. HOGREFE, Director-State Engineer, Nebraska Department of Roads THOMAS L. MAINWARING, Consultant to Trucking Industry Affairs for Ryder System. Inc. JAMES E. MARTIN, President and Chief Operting Officer, Illinois Central Gulf Railroad DENMAN K. McNEAR, Chairman. President and Chief Executive Officer, Southern Pacific Transportation Company LENO MENGHINI, Superintendent and Chief Engineer, Wyoming Highway Department WILLIAM W. MILLAR, Executive Director. Port Authority Allegheny County. Pittsburgh MILTON PIKARSKY, Distinguished Professor of Civil Engineering. City College of New York JAMES P. PITZ, Director, Michigan Department of Transportation JOE G. RIDEOUTTE, South Carolina Department of Highways and Public Transportation TED TEDESCO, Vice President, Resource Planning. American Airlines. Inc., Dallas/Fort Worth Airport CARL S. YOUNG, Broome Country Executive, New York

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Transportation Research Board Executive Committee Subcommittee for NCHRP

LOWELL B. JACKSON, Colorado Department of Highways (Chairman) HERBERT H. RICHARDSON, Texas A & M University LESTER A. HOEL, University of Virginia

Field of Special Projects Project Panel, SP20-21

CARL C. WINIKKA, Arizona Dept. of Transportation (Chairman) THOMAS E. CARLSEN, Wisconsin Dept. of Transportation GIBSON W. FAIRMAN, Consultant JACK H. HANSEN, University of Tennessee Space Institute THOMAS J. HILDRETH, Federal Highway Administration

Program Staff

ROBERT J. REILLY, Director, Cooperative Research Programs ROBERT E. SPICHER, Associate Director LOUIS M. MACGREGOR, Program Officer IAN M. FRIEDLAND, Senior Program Officer FRANCIS B. FRANCOIS, Amer. Assn. of State Hwy. & Transp. Officials RAY A. BARNHART, U.S. Dept. of Transp. THOMAS B. DEEN, Transportation Research Board

ROGER L. MERRELL, Texas State Dept. of Hwyss and Pub. Transp. KEITH O. SLATER, Minnesota Dept. of Transportation JOHN M. UNBEWUST, Colorado Dept. of Transportation GEORGE STROGIS, FHWA Liaison Representative GEORGE W. RING, III, TRB Liaison Representative

CRAWFORD F. JENCKS, Senior Program Officer DAN A. ROSEN; Senior Program Officer HARRY A. SMITH, Senior Program Officer HELEN MACK, Editor NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM 295

AUTOMATED FIELD SURVEY DATA **COLLECTION SYSTEM**

HUBERT A. HENRY and LEONARD O. MOSER ARE, Inc. Austin, Texas FRANK F. COOPER **Cooper Technology** Plano, Texas

AREAS OF INTEREST:

Facilities Design Pavement Design and Performance (Highway Transportation)

RESEARCH SPONSORED BY THE AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS IN COOPERATION WITH THE FEDERAL HIGHWAY ADMINISTRATION

5

TRANSPORTATION RESEARCH BOARD NATIONAL RESEARCH COUNCIL WASHINGTON, D.C.

SEPTEMBER 1987

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

Systematic, well-designed research provides the most effective approach to the solution of many problems facing highway administrators and engineers. Often, highway problems are of local interest and can best be studied by highway departments individually or in cooperation with their state universities and others. However, the accelerating growth of highway transportation develops increasingly complex problems of wide interest to highway authorities. These problems are best studied through a coordinated program of cooperative research.

In recognition of these needs, the highway administrators of the American Association of State Highway and Transportation Officials initiated in 1962 an objective national highway research program employing modern scientific techniques. This program is supported on a continuing basis by funds from participating member states of the Association and it receives the full cooperation and support of the Federal Highway Administration, United States Department of Transportation.

The Transportation Research Board of the National Research Council was requested by the Association to administer the research program because of the Board's recognized objectivity and understanding of modern research practices. The Board is uniquely suited for this purpose as: it maintains an extensive committee structure from which authorities on any highway transportation subject may be drawn; it possesses avenues of communications and cooperation with federal, state, and local governmental agencies, "universities, and industry; its relationship to the National Research Council is an insurance of objectivity; it maintains a full-time research correlation staff of specialists in highway transportation matters to bring the findings of research directly to those who are in a position to use them.

The program is developed on the basis of research needs identified by chief administrators of the highway and transportation departments and by committees of AASHTO. Each year, specific areas of research needs to be included in the program are proposed to the National Research Council and the Board by the American Association of State Highway and Transportation Officials. Research projects to fulfill these needs are defined by the Board, and qualified research agencies are selected from those that have submitted proposals. Administration and surveillance of research contracts are the responsibilities of the National Research Council and the Transportation Research Board.

The needs for highway research are many, and the National Cooperative Highway Research Program can make significant contributions to the solution of highway transportation problems of mutual concern to many responsible groups. The program, however, is intended to complement rather than to substitute for or duplicate other highway research programs.

NCHRP REPORT 295

Project 20-21 FY '86

ISSN 0077-5614

ISBN 0-309-04564-9

L. C. Catalog Card No. 87-72030

Price \$13.20

NOTICE

The project that is the subject of this report was a part of the National Cooperative Highway Research Program conducted by the Transportation Research Board with the approval of the Governing Board of the National Research Council. Such approval reflects the Governing Board's judgment that the program concerned is of national importance and appropriate with respect to both the purposes and resources of the National Research Council.

The members of the technical committee selected to monitor this project and to review this report were chosen for recognized scholarly competence and with due consideration for the balance of disciplines appropriate to the project. The opinions and conclusions expressed or implied are those of the research agency that performed the research, and, while they have been accepted as appropriate by the technical committee, they are not necessarily those of the Transportation Research Board, the National Research Council, the American Association of State Highway and Transportation officials, or the Federal Highway Administration, U.S. Department of Transportation.

Each report is reviewed and accepted for publication by the technical committee according to procedures established and monitored by the Transportation Research Board Executive Committee and the Governing Board of the National Research Council.

Special Notice

The Transportation Research Board, the National Research Council, the Federal Highway Administration, the American Association of State Highway and Transportation Officials, and the individual states participating in the National Cooperative Highway Research Program do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

Published reports of the

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM

are available from:

Transportation Research Board National Research Council 2101 Constitution Avenue, N.W. Washington, D.C. 20418

Printed in the United States of America

FOREWORD

By Staff Transportation Research Board The primary objective of the research covered herein was to develop a standard file format for field surveying data that would facilitate its subsequent transfer to engineering design systems. The standard file can also be used to provide uniformity in the output requirements of surveying equipment and be included in procurement specifications. Development of the standard file required an examination of the entire process of collecting, processing, storing of field surveying data, and the subsequent transfer of data to design or graphic systems. Consequently, surveyors, specification writers, and designers will find the report of interest and useful.

In the past, few transportation agencies performed comprehensive analyses of survey operations within their organizations. However, with a diversity of high-tech "total stations" and "data collectors," and various software systems now available, many agencies are faced with problems of integrating these components into their surveying operations. In addition, field survey data must be suitable for fast, efficient transfer to and from other engineering systems, such as computer-aided design and drafting programs. These issues, coupled with an increase in transportation construction projects nationwide, and an increased need for more accessible survey data, create pressure on agencies to provide "quick fix" purchases and approaches. This, in turn, can result in possible wasted time and duplicated effort, as similar, but incompatible, systems are developed and tested.

Because of the demand for field survey information in varying formats and accuracies for projects and records, there was a need to integrate the different phases in handling survey information and to automate as many tasks as possible. As an initial step in dealing with this problem, NCHRP Project 20-21, "Development of an Automated Field Survey Data Collection System," was undertaken by the joint effort of ARE Inc. and Cooper Technology. Surveying data collection and processing systems were examined and recommendations made that included as a primary feature a standard file format. This initial effort was directed at facilitating the transfer of information to engineering design and graphic systems. However, the recommendations for automating the entire data collection system and the file format are flexible, making them easily adaptable to many surveying procedures. A basis has also been provided that will allow future expansions such as for construction staking.

Appendixes G and H contain information on computer programs that were developed under Project 20-21 for demonstration purposes. All source code and example data files are available on four $5\frac{1}{4}$ -in. IBM-PC compatible floppy disks formatted double sided/double density. The four floppy disks may be obtained by sending blank disks to the Transportation Research Board, National Cooperative Highway Research Program, 2101 Constitution Avenue, NW, Washington, DC 20418.

CONTENTS

1 SUMMARY PART I

- 1 CHAPTER ONE Introduction and Research Approach Problem, 1 Objectives and Scope, 1 Technical Approach, 2
- 3 CHAPTER TWO Findings
- 5 CHAPTER THREE Interpretation, Appraisal, Application
- 5 CHAPTER FOUR Conclusions and Suggested Research
 PART II
- 6 APPENDIX A Questionnaire Results Introduction, 6 Questionnaire Contents, 6 Summary of Questionnaire Results, 6 Vendor Literature Review, 8
- 10 APPENDIX B ISIMS System/Subsystem Specifications ISIMS System Overview, 10 ISIMS Subsystems, 10
- 13 APPENDIX C Universal File Format (UFF)

SECTION I. General Description, 13 Overview, 13 Role of UFF, 14 UFF File Types, 14 UFF Record Layout, 15 Control File Description, 20

SECTION II. Detailed Command Set Descriptions for POS:, PADJ:, and ACC:, 21 Data Tag: POS, 21 Data Tag: PADJ, 28 Data Tag: ACC, 29 SECTION III. Conversion Algorithms, 31

- Horizontal Position, 31 Vertical Position, 32 Positional Adjustments, 33
- APPENDIX D ISIMS Feature Design and Installation Guidelines Introduction, 35 Guidelines to Implement ISIMS—Suggested Procedural Tasks, 36 Blank Forms and Worksheets, 38
- APPENDIX E ISIMS Installation Example Introduction, 38 Louisiana DOTD—Alpha Test Site, 47 Task Description, 47

77 APPENDIX F Survey Features and Activities

APPENDIX G User's Guide to ISIMS Demonstrators Introduction, 79 Installing the Demonstrators, 80 Executing an Application, 80 Demonstrator Similarities, 80 Generic Demonstrator Description, 80 Louisiana Demonstrator Description, 80 Wisconsin Demonstrator Description, 80 File Naming in the Demonstrators, 80 Demonstrator 20-21G Screen Listings, 80 Listings of Files Used in Demonstration, 85

101 APPENDIX H Program Documentation Demonstrator Software System Overview, 101 Program-Specific Documentation, 101

ACKNOWLEDGMENTS

The research reported herein was performed under NCHRP Project 20-21 by ARE Inc. and Cooper Technology. ARE Inc. was the prime contractor. The work done by Cooper Technology was under a subcontract with ARE Inc.

Hubert Henry, Professional Engineer, and Frank Cooper, Professional Engineer, were the principal investigators, and Leonard O. Moser was the Project Manager. Other authors of this report are: LaNelle Kahlbau, Senior Technical Assistant at ARE Inc., and Carrie L. Cooper of Cooper Technology.

The Technical Advisory Committee (TAC) was most helpful and supportive. The TAC members were: Keith Slater, District Surveyor, Minnesota Department of Transportation; Donald E. Wilbur, Chief of Photogrammetry, Pennsylvania Department of Transportation; Fred B. Bales, Assistant State Location & Design Engineer, Virginia Department of Highways and Transportation; Roger L. Merrell, Director of Au-

tomated Surveys & Electronic Services, Texas Department of Highways and Public Transportation; C. J. Tircuit, Location & Survey Engineer, Louisiana Department of Transportation and Development; Fred Murphy, Assistant Survey Engineer, California Department of Transportation.

The State of Louisiana and Mr. Tircuit provided a test site for the project, which included their support staff. Their cooperation is greatly appreciated. Mr. Thomas E. Carlsen, Mr. Gene Haferman, and the State of Wisconsin provided additional equipment for the testing of the system. Mr. Keith Slater, who has an automated survey system operating in Minnesota, was most helpful in providing an experienced view of the problems and advantages of a more sophisticated system.

Much of the work was done at ARE Inc. in Austin, Texas, under the management of Mr. Leonard Moser and his computer division staff.

79

AUTOMATED FIELD SURVEY DATA COLLECTION SYSTEM

SUMMARY

NCHRP Project 20-21 recognized the need for an automated surveying system to facilitate field data collection using total stations and data collectors. All the states were sent a questionnaire concerning their field surveying operations, present surveying equipment, and computer facilities available to their surveyors. Sixty-two percent of the states responded, which indicated strong interest in this research. The Integrated Survey Information Management System (ISIMS), as developed and demonstrated, meets the requirements of the surveying tasks defined in Project 20-21; however, other aspects of surveying need to be put into the system, such as construction staking and computer graphics interfacing.

The product of this research project, ISIMS, is a flexible data structure system that can easily be adapted to any surveying procedure. ISIMS was designed within the operating parameters of a total station (computerized theodolite) and a data collector (small computerized field notebook). Processing of satellite data or stereoplotter data was not considered, although their results can be incorporated within ISIMS. It is the opinion of the combined research team and Technical Advisory Committee that the design and demonstration of a good automated field survey system has been developed which is now ready to be applied by state DOTs and other agencies. Use of this system will also further develop ISIMS and expand its capabilities.

CHAPTER ONE

INTRODUCTION AND RESEARCH APPROACH

PROBLEM THAT LEAD TO THE STUDY

NCHRP Project 20-21 resulted from a need to efficiently transfer survey data from the field to roadway design and CADD (Computer-Aided Design and Drafting) systems. Transportation agencies strive to maximize the advantages of the advanced equipment and technology available to them in the surveying field. The project is an attempt to achieve these advantages.

Project 20-21 was the initial step in developing an Integrated Survey Information Management System (ISIMS), which is a coordinated process linking automated field survey data collection systems to a wide variety of engineering design systems, including ICES and RDS (Roadway Design System).

OBJECTIVES AND SCOPE

The objective of this research project was to define and develop an automated system for collecting, editing, and storing field survey data in a standard file format suitable for subsequent and selected electronic transfer to transportation engineering design systems. The scope of this research was to identify common surveying procedures, to create standard computer file formats, to demonstrate a system that accomplishes the objectives, and to provide documentation so that the system can easily be implemented by transportation agencies.

In essence, a language had to be created to standardize the terminology for field data that passed from any total station through any data collector and subsequently into a central repository—a universal data file for use by design systems.

TECHNICAL APPROACH

Work was accomplished in keeping with the chronological list of project activities shown in Figure 1.

Through numerous personal telephone contacts, a six-man Technical Advisory Committee (TAC) was formed. Each region of the United States was represented on the TAC so that local problems would be considered when defining a surveying system.

Surveying personnel from state departments of transportation, as well as Manitoba, Canada, and the FHWA were mailed a questionnaire to determine the procedures and equipment they used. The rapid response by most states indicated there was great interest in the research.

Manufacturers of surveying equipment and their designated representatives were contacted by telephone and letters in order to gather data on equipment currently in use. This search was intended to identify compatibilities between the equipment of various manufacturers.

Because it had an advanced surveying system tailored for its specific requirements, the Minnesota DOT was visited first. The Minnesota surveying system records were thoroughly studied in order to document problems generally found in the field as well as details handled in the office.

After assimilating data on surveying equipment, collection procedures, and processing procedures, the research team designed a Universal File Format (UFF). Concurrently, a Standard Survey Data File Format (SSDFF) was developed. As the UFF was refined, it became obvious that the UFF and SSDFF were almost identical. Therefore, for this project, the two were consolidated into a single UFF—a central repository for data. This consolidation gave greater meaning to the UFF which became a repository for multiple types of survey position data:

- UFF-HVD: data collected by angle-angle-distance convention.
- UFF-XYZ: data stored in Cartesian coordinates.
- UFF-SOR: data collected by station-offset and rod reading conventions.
- UFF-SOE: data stored in station offset and elevation convention.

At the same time, the Louisiana DOT was developing an automated surveying system. The system, specialized for Louisiana's needs, was instrumental in helping to define the first set of general survey data features for a more generic automated system. The project team spent a week in Louisiana to familiarize itself with the automated surveying system and to further detail surveying problems.

The project team also visited the surveying departments of Wisconsin, New York, and Nevada, and the concepts of ISIMS were discussed. The visits were made in conjunction with other trips and projects that ARE Inc had in the areas. These states

- A. Establish the Technical Advisory Committee (TAC)
- B. Conduct a survey across all states of survey equipment and design systems
- C. Obtain vendor and design systems' documentation
- D. Communicate with TAC members
- E. Visit first State DOT (Minnesota)
- F. Finalize the first set of survey data features
- G. Prepare the preliminary design of the universal file format
- G1. Visit second state DOT (to be selected)
- H. Write the system/subsystem specifications
- I. Prepare for TAC meeting
- J. Start the computer program design and documentation
- K. TAC meeting
- L. Submit a software documentation outline to the sponsor
- M. Finalize the data collection procedure for the second set of survey data features
- N. Send package to TAC members for review and comments
- 0. Test the data collection procedure in Louisiana
- P. Finalize specifications for a generic data collection device
- Q. Beta test the survey data collection procedure subsystem
- R. Prepare for second TAC meeting
- S. Second TAC meeting
- T. Complete one path of the ISIMS software for alpha testing in Louisiana
- U. Implement ISIMS in Louisiana
- V. Perform ISIMS quality assurance testing
- W. Redocument and recode ISIMS
- X. Complete all manuals
- Y. Beta test ISIMS in a selected state
- Z. Prepare the final report
- AA. Finalize the report vis a vis sponsor comments.

Figure 1. Chronological list of project activities.

showed a strong interest in the development of ISIMS or a similar automated surveying system that would make better use of the new surveying equipment available.

The system/subsystem specifications (Appen. B) were sent to the TAC members prior to the first TAC meeting that was held at ARE Inc in Austin, Texas. The TAC meeting defined and quantified surveying needs of state DOTs. A new survey data collection device, the SDC71, was brought to the meeting by a representative of the Minnesota Department of Transportation. The SDC71 expanded the boundaries of data collection. It was the first data collector to tie successfully to several total stations and provide support. Furthermore, it was programmed to facilitate entry of survey data by prompting the operator. Because this machine constituted a great improvement in data collection, the UFF had to be critically reexamined.

Computer programs were designed and the software documentation outlined as the project progressed. The set of survey features was expanded and the data collection procedures were finalized prior to the second TAC meeting. The data collection procedures were extensively tested in Louisiana, the alpha test site, prior to finalizing specifications for a generic data collection device.

A demonstration application of ISIMS was installed and implemented in Louisiana for the second TAC meeting. Using Louisiana's equipment, 30 topographical features were collected, listed, edited, and plotted in order to complete one path of the ISIMS software. A second path was charted with cross-section data taken using Wisconsin's SDC71 (without a total station) and converted into the Road Design System (RDS) format from the UFF. For a third path, a subset of features was tested using the SDC71 data collector with a Wild TC2000 total station. Although no previous testing was done on this configuration, UFF files were created, edited, listed, and plotted in less than one hour.

The demonstration, although a success, was not perfect. The cabling between the SDC71 and the Wild TC2000 was loose and the equipment produced a random response. After the defect was discovered, ISIMS application progressed smoothly.

The UFF was modified several times in the course of the project, necessitating the modification of all documentation and programs with each change.

Wisconsin was selected as the beta test site because of its progress in implementing an automated surveying system. Wisconsin had selected a specific vendor and had established immediate needs and goals. However, Wisconsin had not realized the full potential of its equipment. The use of ISIMS opened more paths through Wisconsin's equipment. The Project 20-21 demonstrator showed that ISIMS and sophisticated data collecting equipment were compatible, and it tied the collection and processing of cross-section data into an RDS format. Project 20-21 took advantage of the work Wisconsin already had accomplished. In a like manner, Wisconsin was aided in meeting its goals and benefited from work related to developing the Project 20-21 ISIMS.

CHAPTER TWO

FINDINGS

Twenty-nine states, Manitoba, and the FHWA surveying personnel responded to the Project 20-21 questionnaire. The questionnaires revealed the following:

1. State DOTs used total stations and data collectors manufactured by many different companies. No single manufacturer prevailed.

2. By far, RDS was predominant for design. Therefore, RDS was used in the Project 20-21 demonstrations.

3. Intergraph clearly led the graphic systems in use.

4. There was no favorite manufacturer in the area of software.

5. All of those who responded were interested in receiving progress reports on the development of ISIMS.

6. Eighty percent of those who responded planned to purchase additional automated surveying equipment in the near future.

A sample of the questionnaire and tabulations of the responses are provided in Appendix A.

An in-depth study of specifications received from manufacturers of total stations and data collectors indicated the following:

1. Except for one company, manufacturers produced both pieces of equipment with interface as part of the package.

2. Present equipment had enough capability to be made compatible with ISIMS.

3. Several data collectors had a programming capability, and all interfaced with microcomputers.

4. Data collector display screens varied in size from one to eight rows with from 14 to 40 characters per line.

A vendor literature review is discussed at the end of Appendix A.

The research team's visits to Minnesota, Louisiana, Wisconsin, New York, and Nevada helped significantly in obtaining an overview of the problem and in recognizing potential pitfalls. Minnesota had an automated survey system that was operational. Survey files were being extensively used by its engineers. Most aspects of field surveying had been addressed and implemented. Minnesota's system was the most advanced and had been in use longer than any other in the United States. Louisiana was in the process of developing an automated survey system. Its feature set and comprehensive survey collection procedures were carefully studied.

ISIMS was designed around three hardware components: total station, data collector, and data processor. (Appendix B discusses in detail the ISIMS system/subsystem specifications.) Primarily, ISIMS was designed to work when using any total station with a data collector for collecting field survey information. However, ISIMS can function without a total station. Positioning information can be fed directly to the data collector. ISIMS also accommodates direct entry of position data from other sources, such as satellite readouts or manual field computations.

ISIMS can work across a wide range of data collectors. However, the choice of data collectors influences the efficiency in both establishing and operating ISIMS. The most desirable data collector is one that conforms to UFF concepts. A data collector of this type is preferred because (1) the data collection procedure does not have to be adjusted from data collector inconsistencies, vis-a-vis the UFF; (2) there is no need for data collector output to be converted to UFF (i.e., it would already be in the desired format for further processing).

A programmable data collector is desirable to perform the initial field data checking and later to avoid conversion routines. Many data collectors in use today are not programmable and surveying procedures and conversion routines must be written to accommodate them. When agencies purchase new equipment, ISIMS compatibility of the data collector to the UFF framework should be a major consideration.

Ideally, the processing of field survey data should be done in the field by the surveying crew so that mistakes can be corrected before leaving a location. The UFF provides guidance for data collector programming based on data input, data checking, and data output. Once data are in the UFF format, several software modules created by Project 20-21 are applicable.

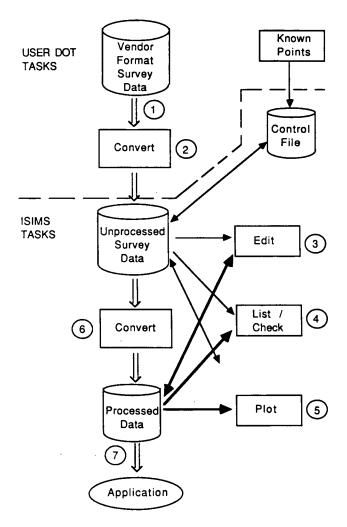


Figure 2. ISIMS data processor subsystem.

Figure 2 outlines the data flow relative to processing survey data using ISIMS. Some programs are available now as a result of this project. Because the programs were made for the project demonstration, there may be restraints on their use in statewide applications. However, the programs can easily be modified to specific user needs.

Appendix C gives a detailed three-part operating description of the UFF. The first part is a general description. The second part describes detailed command sets, and the third part explains conversion algorithms.

In order to establish an agency-tailored ISIMS two steps are necessary: (1) Define all features according to UFF specifications, and align the surveying procedures to both the data collector and the UFF. (2) Incorporate the software modules to process the data through to one's applications.

Step 1 is described in Appendixes D, E, and F. Appendix D contains guidelines for filling out the user-defined UFF data. It provides a guideline of four easy steps for implementing ISIMS, including the definition of surveying procedures for a particular data collector. Worksheets and forms are provided. Appendix E provides the example of ISIMS implementation in Louisiana. Appendix F defines a comprehensive set of features that are common among surveyors. Features that are state, county, or city-specific can be added easily.

Appendix G provides a focus for Step 2. This appendix discusses the three demonstrators—Louisiana, Wisconsin, and Generic—that were produced for this project. A menu in the Generic computer demonstrator explains the purpose of each software module available to the user and the sequence in which it is to be executed. The following is the menu that will appear on your screen.

- 1 DOWNLOAD THE FIELD DATA
- 2 CONVERT DATA COLLECTOR FORMATTED TOPO DATA TO THE UFF-HVD
- 3 CONVERT DATA COLLECTOR FORMATTED X-SEC DATA TO THE UFF-SOE
- 4 PLOT UFF-HVD OR UFF-XYZ
- 5 PRINT UFF-HVD OR UFF-XYZ
- 6 PRINT UFF-SOE CROSS SECTIONS
- 7 CONVERT UFF-SOE CROSS SECTIONS TO RDS FORMAT
- 8 EDIT DATA
- 9 CONVERT DATA FROM UFF-HVD TO UFF-XYZ
- A PRINT A FILE
- **B** INSTALL NEW SET OF FEATURES
- C CONTROL FILE DATA
- 0 EXIT THE SYSTEM

User actions related to each menu item are explained in detail in the Appendix G, Demonstrator 20-21G.

A menu is provided that allows the user to step through ISIMS for each demonstrator. It is strongly recommended that readers "walk-through" the generic demonstrator. Appendix G provides guidance for running each demonstrator.

Documentation of the programs written for demonstration purposes is presented in Appendix H. Program flow and algorithm descriptions are included. All source code and example data files are available on $5\frac{1}{4}$ -in. IBM-PC floppy disks formatted 2S-2D.

INTERPRETATION, APPRAISAL, APPLICATION

State transportation surveying agencies are enthusiastic about new equipment that facilitates the development of an automated survey system. The advent of total stations, data collectors, and microcomputers made the creation of ISIMS feasible, possible, and practical. Processing of survey data through to applications can now be made for existing systems, such as RDS, IGRDS, and INTERGRAPH. Presently, vendors are selling total stations, data collectors, and software packages that are equipment specific. That means there can be little or no interchange of software between different collection systems within a state or between states. Therefore, a need exists to put uniformity into the collection, configuring, and processing of survey data in order to further streamline the automated survey environment. Project 20-21 created ISIMS, a system with a design capable of functioning either independent of total stations or across a wide variety of total stations. UFF, which is the heart of ISIMS, provides users with survey collection guidelines that tie together existing equipment. As a result, software written to UFF specifications now can be applied across a wide range of agencies.

ISIMS should have wide acceptance because it provides manufacturers with guidelines for the types of survey data being collected by transportation agencies. The guidelines will aid manufacturers in designing a specific data collector that is UFF oriented. Furthermore, the guidelines will permit manufacturers to write processing software that can used universally by surveyors.

The "road map" ISIMS provides to states for the development and implementation of an automated survey system is a major result of this project. ISIMS presents a basic set of survey features along with guidelines that allow expansion of this set through incorporation of each state's specific data collector. States can modify the demonstration software that was written in Project 20-21, or states can produce their own software to better suit their individual needs. Appendix H contains the documentation of the programs developed for demonstration purposes. This demonstrator software provides a solid base for a particular agency's ISIMS application.

The Interactive Graphics Road Design System (IGRDS) AASHTO Development Team has coordinated its input procedure with ISIMS and accepts the UFF survey data. Our demonstrator has a module that converts UFF-SOE data into AASHTO Road Design System (RDS) format. The availability of the UFF facilitates the making of conversion routines to accommodate any application program's survey data input.

Many applications of ISIMS remain to be explored. Nevertheless, users now are able to set up an automated survey system more efficiently because the Project 20-21 guidelines exist. The study team believes that better data collectors that are UFF based will be designed and built. Improved software can be written for processing survey data because of the specifications available in ISIMS. All states can make use of new programs as they are developed. ISIMS permits the on-site data reduction of field survey information which is especially useful when surveyors are far from the home office. Survey data can easily be listed, plotted, and edited using an inexpensive personal computer, plotter, and printer before leaving a specific location. ISIMS is a product that can be expanded to suit any state's individual survey data processing needs.

CHAPTER FOUR

CONCLUSIONS AND SUGGESTED RESEARCH

ISIMS provides state DOTs and surveying equipment manufacturers with three valuable tools—a UFF, data collection guidelines, and demonstration software. By the use of these tools, as detailed in this report, many benefits can be accrued.

State DOTs can design ISIMSs that fit highly individualistic needs. They can have a universal exchange of data between agencies and equipment. And on the basis of ISIMS-UFF specifications they can more effectively choose hardware and software packages. Surveying equipment manufacturers can design and build better coordinated total station-data collector systems with improved interface and outputs for microcomputer tie-ins. Software experts can design more highly specialized programs for surveying and transfer of data. Overall, ISIMS coordinates the efforts of state DOT surveyors and road designers, survey equipment manufacturers, and software consultants.

ISIMS has numerous special features that are related to usersupported enhancement. ISIMS will need continuing support to be effective over a long term. It is desirable for an organization to assume responsibility for coordinating and embellishing ISIMS for the state users through a surveying committee and additional contracts for software development. As more advanced equipment becomes available and more knowledge is gained from actual field surveying, expansion of ISIMS should be done.

The immediate need is to develop sets of software that incorporate the UFF for surveying activities, such as project control, topography, cross sections, and construction staking.

A specifically programmed and UFF-based data collector is a viable extension of ISIMS. This modification would further define and coordinate surveying data collection procedures. As more surveying activities are incorporated into ISIMS data processing software, data-collector-based software will be created.

There are other application modules that would be worth incorporating into ISIMS software. For example, many states have expressed a desire to have the UFF go directly into the INTERGRAPH in order to produce a plot of the topographic field data immediately after it is collected. Presently, UFF feeds only to RDS.

Additional research is needed to support implementation of Project 20-21 into the real world. Areas for study include the following: 1. Refinement of the existing ISIMS/UFF through expansion of the surveying feature list and implementation of the codes.

2. Standardization for DOT applications that would establish common names for descriptor values.

3. Development of documentation and training material for education through Technology Transfer Centers for national dissemination of the project.

4. Expansion of ISIMS to all types of surveying used in DOTs.

5. Development of common specific applications or conversions that would optimize or simplify design and plan preparation, and the transfer of design data to surveyors for construction staking.

6. Development of a data collector that outputs UFF format.

7. Identification and evaluation of new surveying procedures and accuracy standards that would use radial type surveying techniques.

8. Preparation of requirements for a surveying vehicle that would address the real time verification needs of computerized field surveying. This probably would be a technology transfer effort because the seismic and military already field process data.

9. Expansion of ISIMS/UFF to include satellite survey technology (GPS). This would include investigation of GPS technology for adaptation to topographic surveying.

APPENDIX A

QUESTIONNAIRE RESULTS

INTRODUCTION

Survey Management Questionnaires, Figure A-1, were sent to 53 states, provinces, and FHWA's to gather information on specific components used in current survey operations. The results of the questionnaire illustrated much enthusiasm on the part of the member states. Thirty-one responses were used during the analysis. Some additional data were received from states but they were too late to include statistically. The state responses used are:

Alaska	Minnesota	Rhode Island
Arizona	Missouri	South Dakota
Arkansas	Montana	Tennessee
California	Nevada	Texas
Florida	New Jersey	Virginia
Georgia	New Mexico	Washington
Idaho	New York	Wisconsin
Illinois	North Carolina	Wyoming
Louisiana	Oregon	Manitoba
Maine	Pennsylvania	FHWA Colorado
Maryland		

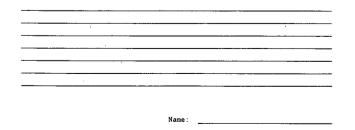
QUESTIONNAIRE CONTENTS

To assess the current status of surveying operations, the questionnaire was divided into five parts. First, it was desirable to know which vendors were chosen for total stations and data collectors. The recipients of the questionnaire were also asked to name highway design systems in use as well as the graphics systems of their choice. In addition, it was of interest to know what information management system existed in the DOTs. Finally, questions were asked for general information, such as: Would they like to receive a progress report? Would they like to be a test site? Is data reduced at a central location? Are they planning to buy survey equipment soon?

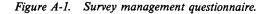
The results of the questionnaire have been processed and are shown in Figures A-2 through A-6.

SUMMARY OF QUESTIONNAIRE RESULTS

Survey Collection Equipment—Figure A-2


The information recorded about the survey collection equipment can be summarized as follows:

SURVEY COLLECTION EQUIPMENT USAGE BY DEPARTMENTS OF TRANSPORTATION


	Total Work Stations & Dat	Model No.			
,	TopCon				
	wild .				
	Lietz				
	Zeiss				
	Geodometer			*	
	Other				
	Survey Calculations (traverse adj. net working)				
	type of computer used				
	Design Systems				
	Туре	Type of	- Co	mputer 1	
	(ICES,RDS,etc.)	Computer Used		Use	d
		<u></u>			·
	<u> </u>		_		
			_		
		<u> </u>			
Ι.	Graphics System				
	Type (Integraph, Syner	com,	Туре		
	ComputerVision, Autotrol	, etc.)	Compute	er Used	
·.	Information Management S	ystems			
·.	Information Management S Type o		Databas	se	
	_	f	Databa: Management 3		1
·.	Туре о	f			
	Туре о	f			- -
	Type o Computer	f	Management S	Software	
	Туре о	f		Software	
Ger	Type o Computer	f Used 	Management S	Software	
	Type o Computer Meral Information Would you like to recei	f Used ve the progress	Management S	Software	
Ger	Type o Computer	f Used ve the progress	Management S	Software	
Ger	Type o Computer meral Information Would you like to recei reports on this project	f Used ve the progress ?	Management S	Software	
Ger	Type o Computer 	f Used ve the progress ?	Management S	Software	
Ger	Type o Computer meral Information Would you like to recei reports on this project	f Used ve the progress ?	Management S	Software	
Ger	Type o Computer heral Information Would you like to recei reports on this project Name: Address:	f Used ve the progress ?	Management S	Software	
Ger	Type o Computer 	f Used ve the progress ?	Management S	Software	
Ger	Type o Computer heral Information Would you like to recei reports on this project Name: Address:	f Used ve the progress ?	Management S	Software	
Ger 1.	Type o Computer	f Used 	Management S	Software	
Ger 1.	Type o Computer	f Used 	Management S	Software	
Ger 1.	Type o Computer	f Used 	Management S	Software	
Ger 1. 2.	Type o Computer 	f Used ve the progress ? 	Management S	Software	
Ger 1. 2.	Type o Computer 	f Used ve the progress ? 	Management S	Software	
Ger 1. 2.	Type o Computer 	f Used ve the progress ? 	Management S	Software	
Ger 1. 2. 3.	Type o Computer 	f Used ve the progress ? 	Management S	Software	
Ger 1. 2.	Type o Computer 	f Used ve the progress ? ug a test site in a central e automated	Management S	Software	

V,

Please comment on this project's objectives and how it may be useful to your automated surveying operations or procedures:

.

STATE	TOPCON	WILD	LIETZ	ZEISS	GEODOMETER	OTHER
ALASKA		Х				
ARIZONA			X			X
ARKANSAS			X	X		
CALIFORNIA		х			X	
FLORIDA					X	
GEORGIA	_ × _					
IDAHO	X	X	X			
ILLINOIS					X	
LOUSIANA		X				
MAINE			Х			X
MARYLAND	X		х			
MINNESOTA					X	X
MISSOURI			х	х		X
MONTANA			х			
NEVADA		X			X	
NEW JERSEY					X	х
NEW MEXICO						
NEW YORK	X					X
NORTH CAROLINA		X				
OREGON	1	X				•
PENNSYLVANIA					X	x
RHODE ISLAND						X
SOUTH DAKOTA						
TENNESSEE	X	X				
TEXAS	X		X	X	X	x
VIRGINIA	X					
WASHINGTON	X	х	X	X		
WISCONSIN		X			. X	X
WYOMING					x	x
A A A A A TO DA						
MANITOBA	1					

Figure A-2. Tabulation of DOT questionnaire results.

Vendor	Number of States
TopCon	8
Wild	10
Lietz	9
Zeiss	4
Geodometer	11
Nikon	1
Kern	1
Radio Shack data collector	1
Various HP equipment	8
Others	5

Also, note that 18 states have already purchased equipment from two or more vendors. From question number four of general information, it was learned that 25 of the 31 states say they are planning to buy more data collection equipment in the near future.

Thus, there is a definite interest on the part of many states in this topic and there will be a significant number of states purchasing survey equipment in the near future. Most states are buying equipment in tandem; that is, states are purchasing a total station and a data collector from the same vendor rather than purchasing an independent data collector.

The research has shown that the data collector hardware of many vendors may not be suitable relative to DOT needs with respect to this project. Because many states are buying total stations from multi-vendors, a data collector that can be used in conjunction with many different total stations is desirable.

Highway Design Systems—Figure A-3

The responses of highway design systems can be enumerated as follows:

Design System	Number of States
RDS	20
ICES	5
COGO	2
"in house"	2
Others	12

As can be seen from the responses, RDS is the predominant system and was used in the project demonstration so that most states were covered.

Graphics Systems—Figure A-4

Relative to the responses of the states, Intergraph clearly predominates the graphics systems. In fact, 23 states are using it. Since Intergraph is used exclusively with VAX machines, at least 23 states have access to a VAX. This suggests that it would be relatively easy for these states to standardize an RS-232 peripheral because they have common hardware. This would result in interface uniformity.

General Information

Figure A-5 shows that there is a wide range of vendor software being used to support engineering management. This is expected because of state size, differing host vendor models, computer facility administration, and individual preference.

Finally, from general information responses tabulated in Figure A-6, question numbers one and four indicate an active

STATE	RDS	ICES	0000	"IN HOUSE"	OTHER
ALASKA					x
ARIZONA	X				
ARKANSAS	X				
CALIFORNIA	X			X	x
FLORIDA		X			
GEORGIA	X				X
IDAHO	X				x
ILLINOIS		X			
LOUSIANA	X				X
MAINE					
MARYLAND	X		X		
MINNESOTA		X			
MISSOURI				X	
MONTANA	X				x
NEVADA	X				
NEW JERSEY					
NEW MEXICO	X				x
NEW YORK	X		X	Ī	X
NORTH CAROLINA	X				
OREGON	X				X
PENNSYLVANIA	X				
RHODE ISLAND					X
SOUTH DAKOTA	X	Γ			
TENNESSEE		X			
TEXAS	X				
VIRGINIA		I			X
WASHINGTON	I				X
WISCONSION	X	Ιx			
WYOMING	X				
MANITOBA	X	Γ			
FHWA	X				

Figure A-3. Highway design systems usage by Departments of Transportation.

interest in our project. One-hundred percent of the states who responded are interested in receiving progress reports. In addition, 16 of the 31 states are willing to commit their labor resources to this project to work as a test site. Responses also indicate that many states are interested in the results of the survey equipment review. More than 80 percent of the states responding to the questionnaire are planning to purchase more equipment in the near future.

VENDOR LITERATURE REVIEW

The purpose of the vendor literature review was to look across various data collectors and total stations to determine what actually exists in today's market and how this existing equipment will help to determine guidelines, restrictions, and/or limitations applicable to the project survey features procedure. Literature from the following vendors was examined:

	ZEISS	LIETZ	TOPCON	WILD	NIKON	KERN
data collector	REC 200 REC 500	SDR 2	FC-1	CRE3	DR-1	ALPHACORD
total station	ELTA 3 ELTA 46R	SET 3	ET-1	T2000 TC2000	DTM-1	E2 + DM 503

Upon review of the vendor and design system documentation, the project team found many data collectors quite flexible with respect to the needs in the design of project survey features procedure and universal file format (UFF). Several data collectors have programming capability. This allows flexibility in data prompting, defaulting, and checking.

STATE	INTERGRAPH	SYNERCOM	OTHER
ALASKA			×
ARIZONA	x	i	
ARKANSAS			
CALIFORNIA	X	х	
FLORIDA	X		
GEORGIA	X		
IDAHQ	X		
ILLINOIS	x		
LOUSIANA	X		
MAINE	1		
MARYLAND			x
MINNESOTA	X		
MISSOURI			
MONTANA	x		
NEVADA			
NEW JERSEY	X		х
NEW MEXICO			x
NEW YORK	X		X
NORTH CAROLINA	X	I	
OREGON	X	I	
PENNSYLVANIA	X		
RHODE ISLAND			
SOUTH DAKOTA	X		X
TENNESSEE	X		
TEXAS	x		
VIRGINIA	X	1	
WASHINGTON	x	1	
WISCONSION	X		
WYOMING	X		
MANITOBA	x	1	
FHWA	x		

Figure A-4. Graphics system usage by Departments of Transportation.

STATE	ADABAS	IMS	DMRS	OTHER
ALASKA	X			
ARIZONA				
ARKANSAS				
CALIFORNIA				X
FLORIDA		х		
GEORGIA				X
IDAHO				х
ILLINOIS		x	x	
LOUSIANA		X		X
MAINE		·		X
MARYLAND				X
MINNESOTA			X	Х
MISSOURI				
MONTANA	1			X
NEVADA	1			X
NEW JERSEY				X
NEW MEXICO	X			X
NEW YORK				
NORTH CAROLINA				
OREGON				
PENNSYLVANIA				X
RHODE ISLAND				X
SOUTH DAKOTA				I
TENNESSEE	Ţ	X		
TEXAS	X			
VIRGINIA				
WASHINGTON	X			
WISCONSION		X	X	X
WYOMING				
MANITOBA	X	Х		1
FHWA			X	X

Figure A-5. Information management system usage by Departments of Transportation.

Figure A-6. General information.

STATE ALASKA

Hand in hand with programming capability are alphanumeric characters that make programming the data collector possible. Alphanumeric characters (vs. numeric characters only) are also an aid to the surveyor. Alphanumerics will make the prompt easier to understand and allow the surveyor to enter comments as he deems necessary.

The size of the display screen is another feature worth discussing. Some data collectors have one line displays of 14 or 16 characters. These displays are restrictive relative to prompting. However, the display on 3 of the 7 data collectors researched is notably larger, thus allowing flexibility in terms of data prompting and checking. The REC 500, by Zeiss, was found to be the most flexible. The REC 500 has a display of 8 rows by 40 characters.

The data collectors were, in most cases, paired by the vendor with a total station. For example, Leitz makes the data collector SDR2 along with the total station SET 3. In addition to supplying the total station, the vendor also supplies an interface between the data collector and total station as part of his package.

During the review, one vendor (ABACUS) was found of an independent data collector. At this time, ABACUS is still in design stages and documentation is not yet readily available. More independent generic data collectors will probably soon be on the market, and these data collectors will have greater flexibility. The states should know how to take advantage of these, but it is important to know what kind of interface is supplied by the vendor to connect it with existing total stations. At this time, the review has not revealed any specifications for the interface between the total station and the data collector in tandem. It may be possible to use an RS-232C port, but we do not have the specifications necessary to conclude this. The vendor should take the responsibility of connecting his independent data collector with total stations. In fact, ABACUS has already accomplished this task. ABACUS has interfaced their data collector with four different total stations.

The data collector, must also be interfaced with microcomputers in order to finish processing the data. Careful study of vendor documentation shows that all data collectors mentioned so far are equipped with an RS-232C interface. Thus, all vendors are in compliance with the standard RS-232C interfacing specification.

In conclusion, the project data collector data entry design will be geared toward data collectors with multiline displays and programming capability. This design will not preclude the use of one-line display, nonprogrammable data collectors, but will take advantage of the capability offered by the programmable, multiline display data collectors.

ARIZONA	Y	Y	Y .	Ŷ	Ŷ
ARKANSAS	Y		Υ	Y	Ŷ
CALIFORNIA	Y			Y	
FLORIDA	Y	м		M	
GEORGIA	Y		Y	Y	
IDAHO	Y	Y		Y	Y
ILLINOIS	Y			Y	Y
LOUSIANA	Y	Y	×	Y	Y
MAINE	Y	Y	Y		Y
MARYLAND	Ŷ		Y	Y	
MINNESOTA	Ŷ			Y	
MISSOURI	Y	-		Y	Y
MONTANA	Y I	Ŷ		Y	Υ
NEVADA	Ý		Y		Y
NEW JERSEY	Y I	Y		Y	.Y
NEW MEXICO	Y	Y	Y	Y	Y
NEW YORK	Y	Y			Ŷ
NORTH CAROLINA	Y				Y
OREGON	Y I			Y	Y
PENNSYLVANIA	Y I				Y
RHODE ISLAND	Y				
SOUTH DAKOTA	Y	Y		Ý	
TENNESSEE	Y	Ý		Y	
TEXAS	Y	Υ		Y	Υ
VIRGINIA	Ŷ	Y	Y	Y	Y
WASHINGTON	Y			Y	Υ
WISCONSION	Ý	Y		Γ Υ	Y
WYOMING	Y I	Y	Y	Y	
MANITOBA	I Y		Ŷ	Y	
FHWA	Y	Y		Y	Y
QUESTION 1: Wo QUESTION 2: Wo QUESTION 3: Is s	uld you cor	nsider beir	ng a test s	ite?	Y = YES M = MAYBE
OUESTION 4: Do					

QUESTION 4: Do you plan to purchase automated survey equipment in the near future?

COMMENTS?

APPENDIX B

ISIMS SYSTEM/SUBSYSTEM SPECIFICATIONS

ISIMS SYSTEM OVERVIEW

The Integrated Survey Information Management System (ISIMS) is an automated system for collecting, editing, and storing field survey data in a universal file format (UFF).

ISIMS allows utilization of many different combinations of equipment, personnel, procedures, computer programs and systems to streamline the collection and processing of survey data for the production of engineering plans and specifications.

ISIMS consists of the three subsystems shown in Figure B-1: (a) the total station, (b) the data collector, and (c) the data processor. Also shown in the figure are the universal file format (UFF) and the applications which subsequently use the UFF. The main objective of the data processor subsystem is to convert the survey data into the UFF. The UFF is important because it allows applications to access the survey data in a common file format regardless of the specific equipment and procedures originally used to collect the data. Refer to Appendix C for a detailed description of the universal file format (UFF). An example of application usage, the conversion of UFF to RDS (Road Design System) format, is documented as a FORTRAN program in Appendix H.

ISIMS SUBSYSTEMS

This section describes each subsystem in more detail.

Total Station

The total station is the surveying instrument which measures angles and distances. This discussion will refer to an automated surveying instrument such as the WILD TC2000, although traditional surveying instruments such as transits, chains, and levels may also be used.

Data Collector

The data collector is a piece of hardware, similar to computer equipment, on which survey data, traditionally recorded in the field book, may be recorded. These data may be measurement data, such as angles and distances, as well as descriptive survey data which include survey feature identification, material, owner, and condition.

The specifications for a generic data collector are as follows:

1. Portability

The data collector may be a separate piece of equipment, or it may be an integral part of the total station. It is often desirable

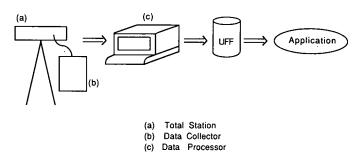


Figure B-1. ISIMS system overview.

to have a data collector that is a separate piece of equipment so that it may be used to collect data when it is not connected to the total station. The device should be small and light to facilitate carrying and attaching to the total station. A suitable size would be 8 in. x 4 in. x 2 in., with a maximum weight of 2 pounds.

Also, if the data collector is a separate piece of equipment, physical attachment to the total station is needed. The attachment mechanism, which may be provided by the vendor or the user, should allow the data collector to rotate with the total station. When attached in this manner, it will always be in a convenient position for the user, and the cable which connects the two pieces of equipment will not become twisted around the tripod.

2. Communication Protocols

a. Between the Total Station and the Data Collector. If the data collector is a separate piece of equipment, a cable is needed for connection to the total station. If the total station and the data collector are furnished by the same vendor, the cable should come packaged with one or the other. If the total station and the data collector are furnished by different vendors, requirements should be placed on one of them to provide a cable that is compatible with both pieces of equipment.

The total station and the data collector must be able to communicate with each other via the physical cable mentioned above coupled with a compatible software communications protocol. This requires that compatible communications software be installed on each system. The data collector should be able to receive information from the total station, and each user must determine if there is also a need to send information from the data collector to the total station. The total station and/or the data collector should provide the necessary transmission capabilities or should be programmable to provide such capabilities. This is not a point at which the user will interface to the system. It is unreasonable and not in the best interest of the DOTs to place limitations such as a "RS-232C type" compatability on this protocol and its hardware interface. Because this particular interface ties two "separate" pieces of hardware together to form a "product", the efficiency and durability of that connection should be a function of the vendor's design.

b. Between the Data Collector and the Data Processor. The data collector should also be able to communicate with the data processor. Again, this communication will be via a physical cable connection and a compatible software communications protocol. This requires that compatible communications software be installed on each system. The connectors and pin configurations on the cable should be compatible with the data collector on one side and with the data processor on the other. A gender switcher and/or pin switcher may be required in order to get the proper cable-to-system connections. The data collector should be able to send data to the data processor via the asynchronous RS-232C communications protocol, and each user should also be able to receive information from the data processor. The data collector and/or data processor should provide the necessary transmission capabilities or should be programmable to provide such capabilities.

3. Programmability

In addition to the potential transmission needs for programmability mentioned above, a program can also be written for the data collector to prompt the user for the appropriate information during survey data collection and to output data in the UFF. This is an optional data collector feature. There are both advantages and disadvantages to implementing prompting. The prompting scenario is slower; however, it is desirable during the learning phase and for infrequently collected and/or unfamiliar items. The user may also want to program in the option to forego the prompting after the learning phase and on form familiar and/or frequently collected items. The no prompting scenario is faster, but it puts the responsibility on the user to remember the exact format and sequence in which the data should be entered.

If the ability to use prompting is desired, the data collector should be programmable. Depending on the vendor, there may be one or more ways to program such prompting on the data collector. One way is just to program a fixed sequence of prompts per feature. Another way is to provide prompting via function keys on the data collector. These function keys may be user programmable and/or preprogrammed by the vendor. Function keys provide the user with the flexibility to have prompting for each data item but without fixed sequences for each feature.

Having the data collector set up to output in the UFF is very advantageous for the processing of survey data. The data collection procedure will conform very closely to the UFF because the data collector is configured for the UFF. Thus, state DOTs will not have to design a survey procedure that both fits the UFF and fits the data collector. Also, there will be no need to write data-collector-specific software to translate data collector output to the UFF.

4. Displays

The larger the display on the data collector, the more mean-

ingful prompts and information can be displayed. When prompting is desired, the user should be able to both enter and display alphanumeric characters, but the display need not be so large that it increases the size of the data collector beyond practical use. A single line display of no less than 16 characters should be sufficient in a limited or no prompting environment. A larger display of up to 4×16 characters is more appropriate when prompting is used extensively.

5. Recording Modes

In addition to the direct transmission capability between the total station and the data collector, the user should also be able to manually enter data into the data collector. For example, the direct transmission mode would most likely be used to transfer measurement data such as angles and distances from the total station to the data collector, and the manual entry mode lends itself more to nonmeasurement attribute data such as material, owner, and condition, or to nontotal station survey jobs.

6. Storage Capabilities

In addition to providing the ability to manually enter data and to receive transmitted data from the total station, the data collector must also be able to store these data. This enables the surveyor to collect data for one or more projects while in the field, and then transfer the data to the data processor at a later time.

The actual procedures used to collect the data are an important part of the data collection subsystem. Refer to Appendixes C and D for specifications that define the information needed when collecting specific survey features and activities. Appendix E is an example of how a specific state has met these specifications utilizing their procured vendor products.

The storage capacity needs will be a function of the total survey system, the procedures of a particular state, and the vendor's data collection format and record size. Each state must determine the equipment that will be made available to the field surveyor to download the data, verify that the data have been transferred and assure that the data collected is reasonable prior to reuse of the data collector storage.

A conservative rule of thumb would be to allow 500 points collected per day. States capable of transferring data daily should allow for 1000 to 1500 points. States transferring weekly should allow for 2000 to 3000 points. To maintain productivity, a state should plan to rotate a minimum of two data collectors per field party to provide for backup and verification procedures.

7. Survey Functions

Most present data collection procedures are based on a pointby-point concept requiring downstream system intervention for the finite definition of a feature. However, there are states developing feature-oriented data collection procedures and the trend appears in that direction. This is primarily because of the eventual uses of the survey data in design systems and the building of Geographical Information Systems (G.I.S.).

The project has noted that certain functions, needed to easily collect data, are not readily available through the survey instruments without interrupting the collection of measurement data. These functional capabilities are noted as follows:

- a. Skip the connection between two points
- b. Collect the data backwards
- c. Close the data string
- d. Special point characteristic indicators
 - 1. PC (point of curvature)
 - 2. START/END curve
 - 3. Position offset
 - 4. Store elevation
 - 5. Secondary features
 - 6. Direction indicator

While most of these point characteristics can be obtained through "CODES" or multiple measurement procedures, they add time and complexity to the process.

Programmable collectors should be able to easily comply with these needs. Those total station systems where input is at the theodolite itself could provide the capability through a "function key" concept. This would allow measurement records to be terminated by different characters. The user could interpret and process the data according to the termination character. There are several other methods that appear suitable and reasonable for the vendor in future equipment design.

Data Processor

The primary purpose of the data processor is to convert the vendor-formatted survey data into a universal file format (UFF). The data processor consists of hardware and software.

The hardware is a piece of computer equipment sufficient to house the data processor software in addition to any other required system software.

The data processor software consists of the computer programs necessary to: (1) communicate with the data collector, (2) convert vendor formatted survey data to a universal file format (UFF), (3) edit UFF data, (4) list/check UFF data, (5) plot UFF data, (6) convert/merge field UFF data to processed UFF data, and (7) communicate with the system on which the application program resides if it resides on a different system.

Figure B-2 shows the general interrelationships between the files and computer programs of the data processor subsystem.

The following sections describe each component of the data processor subsystem in more detail.

1. Communication with the Data Collector

The data processor should be able to communicate with the data collector. This communication requires a physical cable connection and a compatible communications protocol between the systems. Thus, each system must have compatible communications software installed. The connectors and pin configurations on the cable should be compatible with the data collector on one side and with the data processor on the other. A gender switch and/or pin switcher may be required in order to get the proper cable-to-system connections. The data processor should be able to receive data from the data collector via the asynchronous RS-232C communications protocol. Each user

must determine if there is also a need to send information from the data processor to the data collector. The data collector and/ or data processor should provide the necessary transmission capabilities or should be programmable to provide such capabilities.

2. Convert Vendor-Formatted Survey Data to UFF

To write a conversion program, the programmer must be familiar with both the vendor file format and the UFF. Refer to Appendix H for a detailed description of the UFF. Refer to the vendor's documentation for a detailed description of a specific vendor format.

The purpose of converting all survey data to the UFF is to provide a uniform file format to other data processing subsystems. Conversion to the UFF enables the user to disregard the vendor format and equipment originally used to collect the data.

The conversion routine will vary across data collector ven-

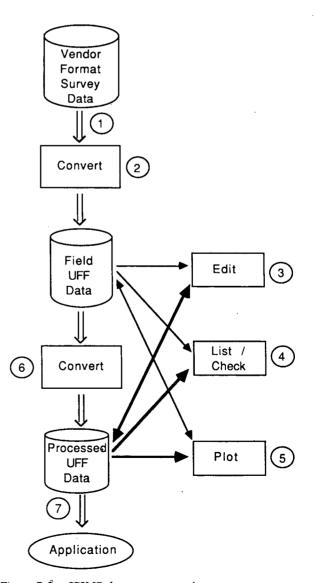


Figure B-2. ISIMS data processor subsystem.

dors, and may be unnecessary or trivial if the data collector can be programmed to store survey data in a sequence/format equivalent to the UFF. During the conversion from vendor format to UFF, a unique point identification number (ID), will be assigned to each point. However, any user assigned IDs will also be carried with the data.

3. Edit UFF Data

The edit component allows the user to manually enter and correct data in the field or processed UFF. For example, the user may want to manually enter project initiation data such as the project ID and monuments, or he/she may wish to correct some previously entered or transmitted data, once it has been listed, plotted, and checked.

It is recommended that an existing editor be used. Editors or word processing packages are readily available for most systems and provide all of the editing capabilities needed. However, the user may write a new edit program if desired.

4. List/Check UFF Data

The list component will allow the user to display and/or print a copy of the data.

The check component will perform simple data checks, such as format checking and range checking, to assist the user in finding errors in the data.

5. Plot UFF Data

The purpose of the plot component is to provide a "picture" of the data. This will aid the user in checking and correcting the data in addition to the list/check and edit routines previously described.

The plot component will provide the ability to perform a primitive plot of points and point connections along with their unique ISIMS assigned point IDs.

6. Convert Field UFF Data to Processed UFF Data

Measurement data in the UFF takes on four forms: (1) horizontal angle, vertical angle, and slope distance (HVD); (2) station, offset, and rod sealing (SOR); (3) X, Y, and Z (ZYZ); (4) station, offset, and elevation (SOE).

HVD and SOR-type data are collected in the field and as such are called field UFF data. XYZ and SOE-type data are called processed UFF data and results from conversion of HVD and SOR data respectively. The purpose of this routine is to convert data from HVD to XYZ form, or SOR to SOE form.

7. Communication with the Application System

When the application using the UFF resides on a different system from the UFF, it is necessary for the data processor system to be able to communicate with that other system. This communication requires a physical cable connection and a compatible communications protocol between the two systems. Thus, each system must have compatible communications software installed. The connectors and pin configurations on the cable should be compatible with the data processor system on one side and with the application system on the other side. The data processor should be able to send data to the application. Each user must determine if there is also a need to receive information from the application. The data processor system and/or the application system should provide the necessary transmission capabilities or should be programmable to provide such capabilities.

APPENDIX C

UNIVERSAL FILE FORMAT (UFF)

SECTION I. GENERAL DESCRIPTION

OVERVIEW

UFF consists of three file categories:

- 1. Unprocessed survey data file(s).
- 2. Processed data file(s).
- 3. Control file.

The unprocessed survey data and processed data are in uni-

versal file format (UFF) and have identical file formats. They use a data tag/data value concept with variable length records. The unprocessed survey data and processed data files are structured to accommodate several types of data location conventions. Other conventions could be easily added, such as longitude and latitude but for this project are considered a user conversion task.

The control file contains a set of known points (x, y, z) that are used to transform unprocessed survey data into processed data. The control file contains benchmarks, azimuth markers, monuments, and other control points. The file acts as an adjunct to universally formatted files. This file has a standard fixed-type format. The UFF location conventions available are as follows:

Unprocessed Data

- 1. Horizontal angle, vertical angle, slope distance (HVD)
- 2. Station, offset, rod reading (SOR).

Processed Data

- 1. X, Y, and Z coordinates (XYZ).
- 2. Station, offset, elevation (SOE).

Figure C-1 identifies the ISIMS subsystem processing for the UFF. The universal file format (UFF) incorporates the aforementioned four location conventions for survey data. Unprocessed UFF data can be HVD or SOR, whereas processed UFF data uses XYZ or SOE. The UFF specifications also include the algorithms used to convert unprocessed data to processed data. Section III of this appendix documents these conversion algorithms.

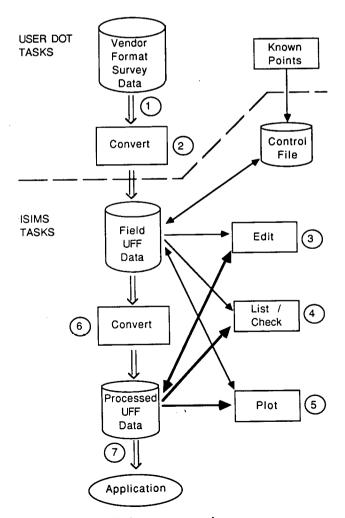


Figure C-1. ISIMS data processor subsystem.

ROLE OF UFF

The universal file format (UFF) is a structure that contains surveying data and has the following functions:

1. Creates an informational database of survey data.

2. Provides an interface between completed surveys, design systems, and other automated systems requiring survey information.

3. Acts as a common integrator for processing survey data that arc collected on varying survey equipment and using different collection procedures.

4. Aids survey data editing and processing prior to its inclusion into an informational database.

The UFF is a combination of predefined command sets together with user-defined, but UFF-structured, commands. The UFF is structured so that positioning and conversion between location conventions is well defined. On the other hand, the user has much flexibility in selecting, naming, and describing his agency's set of features and surveying conventions.

UFF FILE TYPES

The universal file format is structured to accommodate several types of data locating conventions including:

- 1. Horizontal angle, vertical angle, slope distance (HVD).
- 2. X, Y, and Z coordinates (XYZ).
- 3. Station, offset, rod reading (SOR).
- 4. Station, offset, elevation (SOE).

UFF-HVD Format

The HVD format contains the horizontal angle, vertical angle, and slope distance. This format supports radial type surveying and is one of two conventions UFF provides to the surveyor for collecting data in the field.

UFF-XYZ Format

The XYZ format contains the actual X, Y, and Z coordinates of each point in the data file. Data in this format can be used as input to design/CADD systems. Conversion of UFF-HVD data results in UFF-XYZ formatted data.

UFF-SOR Format

The SOR format contains the station number, offset, and rod reading of each point, accompanied with some Z-positioning information. This format supports the traditional station and offset surveying method for collecting cross sections and is one of two conventions UFF provides to the surveyors for collecting data in the field.

UFF-SOE Format

The SOE format contains the station number, offset, and

elevation of each point in the data file. This can be used as input to road design/CADD systems. Conversion of UFF-SOR data results in UFF-SOE formatted data.

Control File

The UFF-HVD format makes reference to points that are located in another file known as the control file. The control file contains points whose coordinates are already known. These points are used in establishing initial position.

File Examples

Example UFF files as well as data collector files are provided in Appendix G or can be listed using the demonstrator software. These are the example files.

	Louisiana	Wisconsin	Wisconsin
	TOPO	TOPO	Cross Sections
Data Collector Files	LOUIGRE3.GRE	WISCSDCX.SDC	WISCSDCX.XSC
Unprocessed UFF Files	LOUIGRE3.HVD	WISCSDCX.HVD	
Processed UFF Files Application Program Files	LOUIGRE3.XYZ	WISCSDCX.XYZ	WISCSDCX.SOE WISCSDCX.RDS
Control Files	LOUI.CNT	WISC.CNT	

Instructions for using the demonstrator are in Appendix G.

UFF RECORD LAYOUT

There are two UFF record layouts. One is for the control file and the other, the overall record format, is for all remaining file types.

Overall Record Format

Each record in the UFF file contains two parts: a data tag, followed by data values. Data tags are defined by the UFF system and serve to identify the type of record. Data values are either UFF-defined or user-defined. A colon (:) is the delimiter between data tag and data values. When there are several data values in one record, data values are separated by blanks. The following is a representative record layout.

DATA-TAG: VALUE1 VALUE2 VALUE3

The UFF was developed without regard to the units of linear measurement used. The number of significant figures and precision should be based on conditions and conventional surveying practice. As a result, there are no specifications for minimum number of significant figures on any data values or minimum number of significant figures to the right of the decimal point. In accordance with this premise, the FORTRAN code in the demonstrator programs use FORTRAN free format "reads" for all UFF records.

UFF Data Categories

In UFF all data fall into one of five categories:

Ι

Thus, there are four types of UFF files (i.e., UFF-HVD, UFF-SOR, UFF-XYZ, and UFF-SOE) and, within each file, data are put into five categories. Figure C-2 shows an overview of the UFF data structure by an illustration of its data tags. A more detailed description of these categories follows.

General information

File Type

The first record of every UFF file must be the file type record. There is only one file type record per file. Its tag is FILE:, and its possible data values are X_YZ , H_VD , S_OE , or S_OR . These are the names of the four ways in which measurement data are represented in a UFF file. They are respectively (X,Y,Z) coordinates; horizontal angle, vertical angle, and slope distance; station, offset, and elevation; and station, offset, and rod reading.

Normally, H_V_D or S_O_R data are collected in the field and then transformed into X_Y_Z or S_O_E data respectively, for entry into road design or CADD applications.

Initial Positioning Data

The format and use of initial positioning data are fixed in UFF. The types of initial positioning data allowed by UFF are fixed as well as the ancillary information needed to well define each type of positioning. Different file types require different initial positioning information. The UFF-HVD and the UFF-SOR each requires several different initial positioning commands, whereas the UFF-XYZ and the UFF-SOE require none and one, respectively. Each initial positioning command is made up of several data records. The data tag of the first record in a command is always POS: followed by its descriptive name. Ancillary information is then entered on successive data records.

Feature Information

Feature information is divided into three major categories and several minor categories as follows:

- 1. Feature name
- 2. Feature descriptive data
 - 2a. Geometry information
 - 2a1. Geometry type
 - 2a2. Multipoint paramaters
 - 2a2a. Related feature identification
 - 2a2b. Connectivity
 - 2a2c. Curvature
 - 2a2d. Closure
 - 2a2e. Backward data collection
 - 2b. Descriptors
 - 2c. Comments
- 3. Measurement (point) related data

- 3a. Measurement data
- 3b. Measurement descriptors
- 3c. Position adjustment information
- 3d. Include Z?
- 3e. Diameter
- 3f. Comments

The range and diversity of this feature information are intended to make the UFF as broad and flexible as possible. Often, only the feature name, geometry type, and corresponding measurement information are mandatory for a given feature. The user may further define the feature with additional data tags according to specific DOT needs.

Feature Name. The user can develop and determine an entire set of features by filling out the feature form (see Appen. D). UFF-feature-related information is structured by the categorization shown previously, and the specifications that follow. The intent in UFF is to allow the user the flexibility to define all survey features within the UFF. This flexibility extends over different types of total stations, data collectors, and surveying procedures. Feature Descriptive Data. There can be nine user-defined descriptors for each feature as well as several UFF-defined descriptive data. Following the instructions in Appendix C allows user-defined descriptive data to be included. In addition, there are the UFF-defined descriptive data; among these are geometry typing and multi-point feature parameters.

Measurement (Point) Related Data. This category of data is also divided into user-defined information and UFF-defined information. There are nine user-defined measurement descriptors. To define these descriptors use the forms shown in Appendix D. The UFF-defined measurement-related data includes measurement data, position adjustment information, elevation use indicator, and circle diameter.

General Information

General information is structured as feature information except there is no measurement-related data. In other words, general information is composed entirely of literal descriptors. There

Data Tag: Value	Data Tag Description	+ Data Cate- gory	Predefined ISIMS Values(vvvv)?	Use HVD	relative XYZ	to file ty SOR	pe	pplicable only to Multi- Point Features
FILE: VVVV	File Type	FT	Y Y	Required	Required	Required	Required	
	rife type	[*]	-	Najurreu	Neguited	Reduited	redutter	4
POS: vvvv PP: vvvv	Initial positioning name Initial positioning descriptor(s)	P P	¥	Required	N/A	Required	Optional	
ACC: VVVV CC: VVVV	Accuracy indication Accuracy descriptor(s)	A A	Y	Optional	N/A	N/A	N/A	
FEAT: VVVV	Feature name	F	N	Required	Required	Required	Required	
GM: VVVV	Geometry Type	F	Y Y	Required				
ID: VVVV	Related feature identification	F	N	Optional	N/A	Optional	N/A	Y
CR: VVVV	Ourve indicator	F	Y	Optional	Optional	Optional	Optional	Y
BK: VVVV	Backwards data collection	F	Y	Optional	N/A	Optional	N/A	Y
CL: VVVV	Closure	F	Y	Optional			Optional	
FF: vvvv _*	Feature descriptor(s)	F	N	Optional	Optional	Optional	Optional	-
SK: VVVV	Connectivity of points	F	Y	Optional				
CIRD: VVVV	Circle diameter	F	N	Optional				LĮ
Z?: vvvv	Valid Z?	F	Y	Optional		Optional	N/A	
CM: VVVV	Comment	F	N	Optional				
MM: vvvv _*	Measurement descriptor(s)	F	N	Optional			Optional	
PADJ: VVVV	Position adjustment name	F	Y	Optional	Optional	Optional	Optional	4
aa: vvvv _*	Position adjustment descriptor(s)	F						
X_X_X_: vvvv**	Measurement data	F	N	Required	Required	Required	Required	1 1
INFO: VVVV	General information name	I	N	Optional	Optional	Optional	Optional	L
II: vvvv	General information descriptors	I	N		-	-		
CM: VVVV	Comments	I	N	Optional	Optional	Optional	Optional	L I

* PP: Represents any of several descriptor tags. These tags are pre-defined by ISIMS, along with the name corresponding AA: to the POS:, PADJ: and AOC: tags respectively. Per command set there can be several descriptor records, each with OC: different tags.

FF: Represents any of several descriptor tags. These tags are defined by the user when he installs ISINS (see Appendix MM: D). The FF: tags are feature name dependent. The II: tags are information name dependent. Per FEAT: or INFO: II: record there can be several descriptor records each with different tags.

** X_X As indicated by the FILE: data tag, one of four measurement data tags can be used here. They are H_V_D:, X_Y_Z:, S_O_R: and S_O_E:.

*** vvvv The value corresponding to the data tag.
+ See previous page for category definition.

Figure C-2. ISIMS data tags and their description.

are two types of general information data tags. One is for unstructured comments (CM:), and the other is for user-defined and structured comments (INFO:). Each of these commands is applicable to any file type.

Record Description by Data Tag

File Type Commands

There is only one file type command and that is a one record command whose data tag is FILE:. The first record of every UFF file has a FILE: data tag. This record describes the location convention used for all measurement or positional data in the file. This record appears only once per UFF file. Its possible values are as follows:

FILE:Record	Description
FILE:X_Y_Z	Positional data will be described as X,Y,Z, coordinates, where Z is optional.
FILE:H_V_D	Measurement data will be described as hori- zontal angle, vertical angle, and slope distance.
FILE:S_O_E	Positional data will be described as station, offset, and elevation.
FILE:S_O_R	Measurement data will be described as station, offset, and rod reading.

Positioning Command Sets

To initiate the collection of survey data, the surveyor must determine the type of data he is going to collect, the applicable parameters for collecting that data, and the horizontal and vertical position of the point from which he is going to collect the data. This information is communicated to UFF through the POS data tag. The data values for the POS tag, and their associated descriptor tags and descriptor values, are listed below. The following specifications are for each of the data tag values. The specifications describe the descriptor tags and values, identify rules and defaults, and provide sample code formats.

DATA TAG: POS:

What follows is a table stating all POS: command sets. A more detailed description of these command sets can be found in Section II of this appendix.

POS: Value	Descriptor Tag	Description	Required Y/N	Default
SETUP		Set up on a known point		
	OP	Known point to set up on	Y	
	BS	Known point to back- sight on	Y	
•	H_V_D	Backsight measure- ment-distance not used	Y	—
USETUP		Set up on an unknown point		
	OP	Unknown point to set up on	Y	—
	BS	Known point to back- sight on	Y	—
	FS	Known point to fore- sight on	Y	

POS: Value	Descriptor Tag	Description	Required Y/N	Default
	H_V_D_	Backsight measure-	Y	
HFORE	H_V_D	ment Foresight measurement Establish a benchmark	Y	
	FS	Unknown point to foresight to	Y	
	H_V_D	Foresight measurement	Y	—
BSVERT		Backsight to a vertical benchmark		
	BM	Benchmark elevation backsighted	Y	—
	PR	Prism height	Y	_
OPVERT		Set up on a vertical benchmark		
	BM	Elevation of the occu-	Y	
	HI	pied benchmark Height of the instru- ment	Y	_
ALIGN	ALIGN#	Indicate the alignment Alignment number	Y	_
BSLVL		Backsight to a vertical benchmark using a level		
	RR BM	Rod reading Benchmark elevation	Y Y	_
OPLVL		Set up on a vertical benchmark using a level		
	BM	Benchmark elevation	Y	—
VEODE	HI	Height of instrument	Y	
VFORE	RR	Establish a benchmark using a level Rod reading at fore-	Y	_
	BM	sight New benchmark con- trol point	Y	—

Positon Adjustment Commands Sets

UFF provides the user with the capability to describe point measurement characteristics. Similarly it is also necessary that UFF be capable of adjusting individual point locations. During the course of a project, it becomes necessary or convenient to locate a feature, or point within a feature, at some offset of the actual location. It may also be necessary to modify an elevation of a point. This specifically applies to the location of underground features. Using PADJ: command sets, these types of position adjustments are possible. All position adjustments apply only to the next point being measured.

DATA TAG: PADJ:

What follows is a table stating all PADJ: command sets. A more detailed description of these command sets can be found in Section II of this appendix.

PADJ: Value	Descriptor Tag	Description	Required . Y/N	Default
OFFSET		Horizontal offset		
	OFFDIST	Offset distance	Y	·
	ANG	Angle with vertex at the prism between the feature and the in- strument	N	90°
DEPTH		Vertical offset		
	DEPTH	Depth	Y	_

Accuracy Command Sets

UFF provides the user the ability to improve the accuracy of a position by closing the horizon. Accuracy command sets apply only to data collected in the HVD location convention. Accuracy command sets apply equally as well to H_V_D : records within a POS: command set as to a H_V_D : records within a feature.

DATA TAG: ACC:

What follows is a table stating all ACC: command sets. A more detailed description of these command sets can be found in Section II of this appendix.

ACC: Value	Descriptor Tag	Description	Required Y/N	Default
HORIZON		Set horizon closing calcula- tion parameters		
	DIST	Indicates distance calculation method	Ν	FIRST
	ANG	Indicates angle calculation method	Ν	AVG
	HTOLR	Angle tolerance for each clo- sure	Ν	10 sec.
	ATOLR	Tolerance for the average of angles	N	10 sec.
HREPS		Close the horizon First closing:		
	I_H_V	Invert on foresight measure-	Y	_
	H_V	Foresight on backsight mea- surement	Y	
	I_H_V	Each subsequent closing: Invert on backsight measure- ment	N*	_
	H_V_D	Foresight on foresight mea- surement	N*	-
	I_H_V	Invert on foresight measure- ment	N*	
	H_V	Foresight on backsight mea- surement	N*	-

* The four records in this command set are subsequent closings of the horizon. If they are used, they must appear as a set and be written in the order shown in this table.

Feature-Related Commands

FEAT. FEAT: is the feature name data tag. Its purpose is to provide a name for the feature(s): Each FEAT: record must have one data value which is a user-defined name. This name is alphanumeric. Examples of features are trees, sidewalks, traffic control boxes, curbs, and water meters, respectively. Refer to Appendixes D and E to see how a user can define a set of features for his needs.

GM. GM: is the geometry type data tag. Every feature has a default geometry type that is defined at installation. All GM: values are UFF defined and are shown below.

Data Record	Description	
GM:SINGLE	The feature is composed of object(s) that are drawn as unconnected points.	
GM:MULTI	The feature is composed of object(s) that are drawn as points connected by line segments or curves.	
GM:CIRCLE	The feature is composed of circles whose centers are the measurement points and whose diameters are defined by the	

Data Record	Description
GM:3PTCIR	CIRD: data tag. All points on the circle lie at the center's elevation. The feature is composed of circles which are defined by sets of three consecutive measurement points.

ID: ID: is the related feature ID data tag. This record is used when one feature is collected across multiple setups or there is any other intervening information collected. Any information with the same feature name and related feature ID belongs to one and the same feature. It is the user's responsibility to assign related feature ID's in an appropriate manner.

SK: SK: is the point connectivity data tag. On multipoint features, consecutive points are assumed to be connected, even across FEAT: records with the same related future ID. Insertion of a SK:SKIP record between two management points in a multipoint feature means that these two points are not connected. SKIP is the only acceptable SK: data tag value.

BK: BK: data tags indicate that a set of consecutive points in a multipoint feature has been collected in reverse order. BK: data records occur in pairs, with all enclosed measurement points being collected in reverse order. These records are only applicable in UFF-HVD and UFF-SOR files and are removed upon conversion to the UFF-XYZ and UFF-SOE, respectively. There are two acceptable BK: data tag values.

Data Record	Description	
BK:START	Start collecting data backwards at the next point.	
BK:END	Stop collecting data backwards after the next point.	

There can be no FEAT:, POS:, or INFO: records between a BK:START and a BK:END record pair. Connectivity, curvature, and closure apply after backwards data have been transformed into forward data.

CL: The CL: data tag indicates that a multipoint object is closed. That is, the first and the last points of the object are connected. There is only one type of CL: data record and that is CL:CLOSED. Nonuse of this record assumes that the object is not closed. One feature can be described across several FEAT: records having the same name and related feature ID. In this case, closure applies once to the entire feature rather than once per FEAT: record.

Z?: The Z?: data tag indicates whether clevation for points in the UFF-HVD and UFF-SOR files is to be calculated. There are two acceptable Z?: data tag values.

Data Record	Description
Z?:YES	Subsequent measurement points have valid el- evations.
Z?:NO	Subsequent measurement points do not include elevation.

When a Z?: record is not explicitly mentioned, then Z?:NO is assumed. The implications of this record applies across features.

CR: The CR: data tag indicates that a curve is just starting or ending on a multipoint feature. CR: data records occur in pairs and indicate that the connections between all enclosed measurement points are curves rather than the default of line segments. There are four acceptable CR: data tag values.

Data Record	Description
CR:START CURVE	At the next point start to connect points with curves.
CR:END CURVE	Stop connecting points with curves after the next point.
CR:START ARC	At the next point start to connect points with arcs of circles.
CR:END ARC	Stop connecting points with arcs of circles after the next point.

The algorithms used to draw the curves or arcs are not part of the UFF description and so are application specific.

CIRD: The CIRD: data tag is used in conjunction with GM:CIRCLE. A circle is defined by a diameter and a center point. Consequently, in the file there are pairs of CIRD: and measurement records, which define the diameter and center of the circle respectively. The perimeter of these circles is at the same elevation as the center.

 H_V_D : The H_V_D: record holds a point number and measurement data and is only used in UFF-HVD files. The form of the record is:

H V D:ppppp DDDD MM SS.S dddd mm ss.s xxxxx.xxxxx

where:

<u>r</u> rrr	= point number = horizontal angle in degrees, minutes
dddd mm ss.s	and seconds = vertical angle in degrees, minutes and
	seconds = slope distance
Y Y Z. The X V	7: record holds a point number and mea-

 X_YZ : The X_YZ: record holds a point number and measurement data and is only used in UFF-XYZ files. The form of the record is:

where:

ppppp xxxxxxxxx.xx	= point number = X coordinate
ууууууууууу. у у	= Y coordinate
	= Z coordinate. A zero Z coordinate implies
	no valid Z coordinate.

 S_O_R : The S_O_R: record holds a point number and measurement data and is only used on UFF-SOR files. The form of the record is:

S O R:ppppp ssssss oooo.oo rrrr.rrr

where:

ppppp	= point number	
SSSSSS.SSSSS	= station number	
0000.00	= offset (negative implies left)	
rrrr.rrr	= rod reading	

 S_O_E : The S_O_E: record holds a point number and measurement data and is only used in UFF-SOE files. The form of the record is:

S O E:ppppp ssssss.sssss oooo.oo eeeeee.eee

where:

ppppp	=	point number
SSSSSS.SSSSS	=	station number
0000.00	=	offset (negative implies left)
eeeeee.eee	=	elevation (a zero elevation implies there is no
		elevation)
		, ,

PADJ: The purpose of the PADJ: command sets is to make horizontal or vertical adjustments to the subsequent measurement point. These command sets are used only in the UFF-HVD and UFF-SOR files. There are two PADJ: data tag values, OFFSET and DEPTH. The description of the PADJ: command sets has been described previously in this appendix, as well as in Section II of this appendix.

Measurement Descriptors

There are, at most, nine measurement descriptors that are used across all features. Both the data tags and values for these descriptors are user defined at installation (see Appen. D and Appen. E). Measurement descriptor data apply only to the following measurement point.

Feature Descriptors

There are, at most, nine feature descriptors for every userdefined feature in UFF. Both the data tags and values for these descriptors are user defined at UFF (see Appen. D and Appen. E) installation. Feature descriptor data apply to all subsequent measurement points until the next FEAT: record. In a UFF-HVD file, feature descriptors apply to subsequent measurement points in the order in which those points were collected (and are situated in the file). This is relevant when BK: records are in the file.

General Information Commands

The following table describes the two types of general information commands. See Appendixes D and E for additional examples and also instructions on how the user can define his own general information commands.

Data Record	Description
CM:cccccccc	Allows the user to enter any unstructured comments or notes. The cccccccc is the comment.
INFO:nnnn aaaa:jjjj bbbb:kkkk : : hhhh:mmmm	nnnn = The name of the type of information to be given. The user defines a set of such names at installation. aaaa = descriptor data tags. The user bbbb defines these tags at installation ; for each and every name.

Data Record	Description	
······	hhhh	
	jjjj = descriptor data values kkkk	
	:	
	mmmm	
	For example, INFO:ENVIR	
	DATE:xxxx	
	TIME:xxxx	
	TEMP:xxxx	
	HUMID:xxxx	

CONTROL FILE DESCRIPTION

Control File Record Format

The control file is in a fixed record length format. It serves to maintain a set of known points and their coordinates for a specific project. These points are generally used to establish horizontal and vertical control surveys and act as control points for other supporting surveys when they are reoccupied throughout the life of the project.

Using the points in the control file, the surveyor collects the raw survey data in a UFF-HVD or UFF-SOR file type. The appropriate horizontal and vertical positions are computed and stored in one of the processed data file types.

Points in the control file are referenced in the UFF-HVD format by the POS:SETUP and POS:USETUP command sets. In the descriptions of each type of positioning, points in the control file are referred to as known points. The OP:, BS: and FS: records give the actual reference point numbers of these known points as contained in the control file.

Each record in the control file contains the following field.

Reference Point Number

The reference point number is a unique number used as reference for each point in the control file. Reference point number is located in columns 1-4 of the record.

Azimuth Marker Point Number

When this point number is used in conjunction with a reference point number, then the azimuth angle in this record is that angle formed with the occupied point at the fulcrum—one ray fixed to the south and the other directed toward the backsight point. If the backsight point number is blank, then the azimuth angle should be blank.

Type of Control Point

This field indicates whether the point is a monument (M), a traverse adjusted point (A), or a calculated point (C).

Type of Control Point Type Description M Monument point

C Calculated poin A Adjusted point	1.1	nionament pome
A Adjusted point	С	Calculated point
	Α	Adjusted point

X Coordinate

The X coordinate of the reference point is located in columns 10-21 of the record. This field is required.

Y Coordinate

The Y coordinate of the reference point is located in columns 23-34 of the record. This field is required.

Z Coordinate

Columns 36-47 contain the Z coordinate of the point. This field is not required and is only for documentation. In UFF-HVD and UFF-SOR, Z coordinates rather than control numbers are entered directly into POS: command sets.

Azimuth Angle

If an azimuth angle exists for this point, it will be located in columns 49-60 of the record in the DDDD MM SS.S format.

Comments and/or Description

Columns 61-140 can be used for comments or descriptive information for each point. This is not a required field.

CONTROL FILE RECORD LAYOUT		
Columns	Description	Req'd
1-4	Reference point number	Y
5-8	Azimuth marker point number	Ν
9	Occupied point type	Ν
10-21	X coordinate of reference point	Y
23-34	Y coordinate of reference point	Y
36-47	Z coordinate of reference point	Ν
49-60	Azimuth angle	Ν
61-140	Comments and/or description	Ν

POS:/Control File Relationship

For a POS:SETUP command set if the OP: control point and the BS: control point match a control file record's reference point number and azimuth marker point number respectively, then the (X,Y) and azimuth angle of that record are used for setup. If there is no match such as this, but there are two records in the control file whose reference point numbers match the OP: control point and the BS: control point, respectively, the two control record (X,Y) values are used for the occupied point and the backsight point. If there is still no match, there is a problem of either inadequate control data or improper control point input.

For a POS:USETUP command there must be two records in the control file whose reference point numbers match the FS: control point and the BS: control point, respectively. Then the two control record (X,Y) values are used to calculate the position of the occupied point.

Control File Creation

The control file is generally created in one of three ways: (1) an extraction from a state-wide control point database selecting known horizontal control points, benchmarks, and azimuth markers; (2) manually input into the control file through the data entry procedure; and (3) collected during the data collection process as survey data. Resulting coordinates are transferred to the control file manually or automatically.

SECTION II. DETAILED COMMAND SET DESCRIPTIONS FOR POS:, PADJ:, AND ACC:

In Section I of this appendix, positioning (POS:), position adjustment (PADJ:), and accuracy (ACC:) command sets are stated and briefly described. This section provides a detailed description of each of these types of command sets.

DATA TAG: POS

The first record of every positioning command set begins with the POS: tag, and is followed by the name of the positioning command. Following any POS: record are several associated descriptor records whose form and purpose vary across different positioning commands.

Descriptor Record Formats

Several of the descriptor records have multiple formats. Possible formats are shown below and pertain to all UFF records in this appendix.

In this appendix, when a POS: descriptor record is shown, any of the foregoing formats for the given descriptor record are allowed. All other POS: descriptor records have one value, and the value is numeric unless otherwise specified.

Description

where: cccc is a control point number

OP:C cccc

Format

FS:C cccc BS:C cccc

BM:C cccc

OP:P xxxxx.xxxx yyyyyy.yyyy zzzzz.zzz FS:P xxxxxx.xxxx yyyyyy.yyyy zzzzz.zzz BS:P xxxxxx.xxxx yyyyyy.yyyy zzzzzz.zzz BS:A dddd mm ss.s

BM:Z zzzzz.zzz

H_V_D:ppppp DDDD MM SS.S ddd mm ss.s xxxx.xxxxx

where:

xxxxxx.xxx is the X coordinate;

yyyyyyyyy is the Y coordinate;

dddd mm ss.s is the azimuth angle in degrees, minutes and seconds

where: zzzzz.zzz is elevation

where: ppppp = point number; DDDD MM SS.S = horizontal angle in degrees, minutes and seconds; ddd mm ss.s = vertical angle in degrees, minutes and seconds; and xxxx.xxxx = slope distance

DATA TAG: POS DATA TAG VALUE: SETUP

The SETUP tag defines to UFF the procedure used by the surveyor to collect radial survey data, where he sets up the instrument on a known point and backsights on a known point or azimuth.

The SETUP data tag has two horizontal positioning descriptor tags, OP and BS. OP identifies the known point on which the instrument is setup or occupies. BS identifies the known point as the point which is being backsighted. SETUP is applicable to UFF-HVD files.

The SETUP data tag has vertical positioning descriptor tags, VERT, PR and HI. The VERT record indicates that vertical positioning is to be activated, and whether the known vertical benchmark is at the backsight or occupied point. If the benchmark is at the backsight then PR descriptor information is needed. If the benchmark is at the occupied point, then PR and HI descriptor information is needed. PR is the prism height. HI is the height of the instrument.

ISIMS uses the last SETUP, or USETUP tag as the active coordinates of where the instrument is located. All coordinate, distance and angle calculations are associated with this active instrument location.

related to POS:	Description
POS : SETUP	Set up on a known point and back-
OP:pppp	sight to a known point or azimuth
BS:pppp	angle.
VERT : nnnn	A POS:SETUP record must be followed
PR:rrrr	by OP:, BS: and H_V_D records, and
HI : hhhh	optionally by VERT:, PR: and HI:.
H_V_D:ppp hhh vvv ddd	The data value of OP: indicates the
	position of the occupied point. The data
	value for the BS: data tag indicates
	the position of the backsight point.
	If vertical positioning is wanted, then
	descriptor records VERT:, PR: and
	(possibly) HI: are needed. The PR: data
	value is the height of the prism. The
	HI: data value is the height of the
	instrument. VERT: data records are:
	VERT:OP = vertical benchmark is the
	occupied point
	VERT:BS - vertical benchmark is the
	backsight point
	The Z-coordinate of the vertical bench-
	mark must be located by using the OP: or
	BS: descriptor record, respectively.
	A single H_V_D measurement record is
	required to record the horizontal
	circle reading.

EXAMPLE:

Set up instrument on a known point (PT #10), backsight on known point 1. (PT #8). RECORD #1 POS:SETUP RECORD #2 OP: C 10 RECORD #3 BS: C 8 RECORD #4 H_V_D: MEASUREMENT-ANGLE REQUIRED 2. Set up instrument on a known point (PT #10), backsight on known azimuth (PT #7). RECORD #1 POS: SETUP RECORD #2 OP: C 10 BS: C 7 RECORD #3 RECORD #4 H_V_D: MEASUREMENT - ANGLE REQUIRED Set up instrument on a known point, backsight on known azimuth (PT 3. #7). The vertical benchmark is the occupied point whose elevation is 785.3. RECORD #1 POS:SETUP OP: P 14.73 101.24 785:3 BS: C 7 RECORD #2 RECORD #3 RECORD #4 VERT: OP RECORD #5 HI: 4.5 RECORD #6 PR: 5.0 RECORD #7 H_V_D: MEASUREMENT 4. Set up instrument on a known point, (PT #10), backsight on a known point (PT #7) whose Z-coordinate is also known. The vertical benchmark is the backsight elevation which is in the control file. RECORD #1 POS: SETUP OP: C 10 RECORD #2 RECORD #3 BS: C 7 RECORD #4 VERT: BS RECORD #5 PR: 5.0 RECORD #6 H V D: MEASUREMENT

۱
 <u>_</u>

DATA TAG: POS DATA TAG VALUE: USETUP

The USETUP tag defines to UFF the procedure used by the surveyor to collect radial survey data, where he sets up the instrument on an unknown point and triangulates between two known points. The horizontal positional coordinates for the unknown point are calculated and may be stored in the control file as a known point.

The USETUP data tag has three horizontal positioning descriptor tags, OP, BS and FS. OP identifies the location of the unknown point on which the instrument is setup or occupies. BS identifies the location of the known point which is being backsighted. FS identifies the location of a known point which is being foresighted. The OP value is the surveyor defined point number of the point with unknown (x, y) coordinates. When OP has no value, the coordinates need not be stored in the control file but will be used to perform calculations for shots during this setup. USETUP is applicable to UFF-HVD files.

The USETUP data tag has vertical positioning descriptor tags, VERT, PR and HI. The VERT record indicates that vertical positioning is to be activated, and whether the known vertical benchmark is at the backsight, foresight, or occupied point. If the benchmark is at the backsight or foresight then PR descriptor information is needed. If the benchmark is at the occupied point, then PR and HI descriptor information is needed. PR is the prism height. HI is the height of the instrument.

ISIMS uses the last SETUP, or USETUP tag as the active coordinates of where the instrument is located. All coordinates, distance and angle calculations are associated with this active instrument location.

UFF records related to POS:	Description
POS:USETUP OP:ppp BS:bbbb FS:ccc VERT:nnnn PR:rrrr HI:hhhh H_V_D:ppp hhh vvv ddd H_V_D:ppp hhh vvv ddd	<pre>Set up on an unknown point and sight two known points. This record must be followed by OP:, BS:, FS: and two H V_D: records, and optionally by VERT:, PR: and HI:. The OP: data value indicates the position of the occupied point. The BS: data value indicates the position of the back-sight. The FS: data value indicates the position of the foresight. If vertical positioning is wanted, then descriptor records VERT:, PR: and (possibly) HI: are needed. The PR: data value is the height of the prism. The HI: data value is the height of the instrument. VERT: data records are: VERT:OP = vertical benchmark is the occupied point VERT:BS = vertical benchmark is the foresight point VERT:FS = vertical benchmark is the foresight point The Z-coordinate of the vertical bench- mark must be located by using the OP:, BS:, or FS: descriptor record, respectively. Two H_V_D: measurement records are required to measure the angle at the unknown point and the two distances to the known points. The first H_V_D is always the backsight; and the second is the foresight. One turns clockwise from backsight to foresight.</pre>

EXAMPLE:

Set up instrument on an unknown point, identify it as PT #10, backsight on known point (PT #8) and foresight on known point (PT #15).

RECORD	#1	POS:USETUP
RECORD	#2	OP: C 10
RECORD	#3	BS: C 8
RECORD	#4	FS: C 15
RECORD	#5	H V D: MEASUREMENT - ANGLE AND DISTANCE
RECORD		H_V_D: MEASUREMENT - ANGLE AND DISTANCE

DATA TAG: POS DATA TAG VALUE: HFORE

The HFORE data tag value allows the surveyor to measure to a new control type point, calculate its coordinates, and store the new point in the control file. The HFORE data tag value identifies the surveyor defined point number in the control file. HFORE requires a previous SETUP, or USETUP data tag value to be acceptable.

The HFORE data tag value itself identifies the point in the control file that is to be added to the file or the point amended to include an elevation. If an (x,y) coordinate pair already exists for that point, an additional record should be created as a calculated type control point. HFORE is applicable to UFF-HVD files.

UFF records related to POS:	Description	
POS: HFORE FS:pppp H_V_D:ppp hhh vvv ddd	Foresight to and establish a control point. This record will be followed by an FS: record whose data value is the new control point number of the foresight. A single HVD measurement record is required. Angle and distance is required.	

EXAMPLE:

 Set up instrument on a known point (PT #10), backsight on a known point (PT #8), and foresight on a new point to be identified as point #20.

RECORD #1	POS: SETUP
RECORD #2	OP: C 10
RECORD #3	BS: C 8
RECORD #4	H_V_D: MEASUREMENT
RECORD #5	POS : HFORE
RECORD #6	FS: C 20
RECORD #7	H_V_D: MEASUREMENT

 Set up instrument on an unknown point (PT #11), backsight on a known point (PT #8), foresight on a known point (PT #10), and foresight on a new point to be identified as point #20.

RECORD #1	POS: USETUP
RECORD #2	OP: C 11
RECORD #3	BS: C 8
RECORD #4	FS: C 10
RECORD #5	H_V_D: MEASUREMENT
RECORD #6	H V D: MEASUREMENT
RECORD #7	POS:HFORE
RECORD #8	FS: C 20
RECORD #9	H_V_D: MEASUREMENT

DATA TAG: POS DATA TAG VALUE: BSVERT

The BSVERT tag defines to UFF the information necessary to compute elevations as the surveyor collects survey data. BSVERT is used when collecting elevations only with a theodolite. BSVERT allows the surveyor to carry elevations forward from a backsight vertical benchmark.

The BSVERT data tag has two descriptor tags: BM, and PR. BM identifies the location of the backsight benchmark (BM). PR defines the prism height on the field rod. BSVERT is applicable to UFF-HVD files.

UFF uses the last BSVERT or OPVERT as the active elevation parameters for determining elevations. ISIMS computes elevations for UFF-HVD data when the BSVERT or OPVERT data records are present.

UFF records related to POS:	Description
POS:BSVERT BM:zzzz PR:rrr H_V_D:ppp hhh vvv dd	Establish vertical control for the setup. The POS: BSVERT record will be followed by a BM: record whose d. data value indicates the elevation at the benchmark. The PR: data value is the prism height. A single H_V_D measurement record is required as a backsight to initiate vertical positioning.

EXAMPLES:

 Set up instrument on a known point (PT #10), backsight on a known BM (PT #7), the prism is set at 3 ft.

RECORD #1	POS:SETUP
RECORD #2	OP: C 10
RECORD #3	BS: C 8
RECORD #4	H_V_D: MEASUREMENT
RECORD #5	POS : BSVERT
RECORD #6	-BM: C 7
RECORD #7	PR:3.0
RECORD #8	H_V_D: MEASUREMENT

DATA TAG: POS DATA TAG VALUE: OPVERT

The OPVERT tag defines to UFF the information necessary to compute elevations as the surveyor collects survey data. OPVERT allows the surveyor to adjust the point he is setup on by the height of the instrument.

The OPVERT data tag has two descriptor tags: BM and HI. BM identifies the location of the occupied point. HI defines the height of the instrument: OPVERT is applicable to UFF-HVD files.

UFF uses the last OPVERT or BSVERT as the active elevation parameters for determining elevations. ISIMS computes elevations for UFF-HVD data when the BSVERT or OPVERT records are present.

UFF records related to POS:	Description
POS:OPVERT BM:zzzz HI:hhhh PR:rrr	Establish vertical control for the setup. The POS: OPVERT record will be followed by a BM: record whose data value indicates the elevation of the occupied station. HI is the height of the instrument. FR is the prism height.

EXAMPLE :

1. Set up instrument on a known point (PT #10) with a known elevation and a height of instrument of 3.56 ft.

RECORD	#1	POS : SETUP
RECORD	#2	OS: C 10
RECORD	#3	BS: C 8
RECORD	#4	H_V_D: MEASUREMENT
RECORD	#5	POS:OPVERT
RECORD	#6	BM: C 10
RECORD	#7	HI: 5.0
RECORD	#8	PR: 3.0

DATA TAG: POS: DATA TAG VALUE: ALIGN

The ALIGN: tag is used to identify an alignment. This designation defines the particular alignment in which any following station-offset data is notated. This will be an important interface to outside engineering computer systems. ALIGN is used in UFF-SOR and UFF-SOE files.

UFF records related to POS:	Description
POS:ALIGN ALIGN#:aaaa	Describes the alignment upon which subsequent station and offset pairs are based. aaaa - alphanumeric alignment number. Data following this descriptive tag has to relationship to the previous data.

DATA TAG: POS: DATA TAG VALUE: BSLVL

The BSLVL tag defines to UFF the information necessary to establish or maintain the elevation of the instrument when collecting data by the SOR convention. BSLVL allows the surveyor to carry elevations forward from a backsight benchmark or known elevation of a backsight.

The BSLVL tag has two descriptor tags BM and RR. BM identified the location of the benchmark. BM is an optional data tag, applicable only if the backsight is a benchmark. When BM is used, it's associated elevation overrides any carried elevation. RR is the rod reading at the backsight. BSLVL is applicable in UFF-SOR files.

BSLVL or OPLVL precedes all S_O_R records and is needed after every move of the instrument.

UFF records related to POS:	Description
POS:BSLVL	Establishes the height of the level.
BM:zzzz	zzzz = known elevation of benchmark.
RR:rrrr	<pre>rrrr = rod reading at that elevation point.</pre>

EXAMPLES:

1. Backsight to a benchmark called point number 10.

RECORD #1	L: POS	:BSLVL
RECORD #2	2: BM:	C 10
RECORD #3	3: RR:	5.0

2. Backsight to a benchmark called point number 10. Shoot a few cross section points, then move the instrument to an arbitrary place, turn on the last cross section shot, and shoot a few more cross sections.

RECORD	# 1:	POS: BSLVL
RECORD	# 2:	BM: C 10
RECORD	# 3:	RR: .5.0
RECORD	# 4:	FEAT:XSEC
RECORD	# 5:	<pre>S_O_R: MEASUREMENT</pre>
RECORD	# 6:	S_O_R: MEASUREMENT (turning point)
RECORD	# 7:	POS: BSLVL
RECORD	# 8:	RR: 7.3
RECORD	# 9:	FEAT:XSEC
RECORD	#10:	S_O_R: MEASUREMENT
RECORD	#11:	S_O_R: MEASUREMENT

DATA TAG: POS: DATA TAG VALUE: OPLVL

The OPLVL tag is used to establish or maintain the elevation of the instrument when collecting data by the SOR convention. OPLVL allows the surveyor to adjust the benchmark elevation he is set up on by the height of the instrument.

The OPLVL tag has two descriptor tags BM and HI. BM identifies the applicable in UFF-SOR files.

OPLVL or BSLVL precedes all S O R records and is needed after every move of the instrument.

UFF records relatcd to POS:	Description
POS:OPLVL	Establishes the height of the level.

POS:OPLVL	Establishes the height of the level.
BM:zzzz	zzzz = known elevation of benchmark.
HI:rrrr	<pre>rrrr = the height of the instrument.</pre>

EXAMPLES :

1. Set up on a benchmark of elevation 97.32

POS:OPLVL BM: Z 97.32 HI: 4.5

2. Setup on a benchmark called point number 10.

POS: OPLVL BM: C 10 HI: 4.5

DATA TAG: POS DATA TAG VALUE: VFORE

The VFORE tag is used to establish a benchmark when collecting data by the SOR convention.

The VFORE tag has two descriptor tags RR and BM. RR is the rod reading at the newly created benchmark. BM is the control point number to be assigned to the benchmark. VFORE is applicable to the UFF-SOR files.

UFF records related to POS:	Description	
POS:VFORE RR:rrrr BM: C cccc	Establishes a benchmark and optionally allows assignment of a control point number to the benchmark. rrrr - rod reading at new benchmark (foresight) cccc - control point number of benchmark (fore- sight) to be used for future referencing.	

EXAMPLE:

.

1. Set up on a benchmark of elevation 47.2 and then foresight to a point which will now be referred to as control point 72.

5

POS:OPLVL
BM:Z 47.2
HI: 4.5
POS: VFORE
RR: 10.23
BM: C 72

.

DATA TAG: PADJ

UFF provides the user with the capability to describe point measurement characteristics. Similarly, it is also necessary that ISIMS be capable of adjusting individual point locations. During the course of a project, it becomes necessary or convenient to locate a feature or a point descriptor for multi-shot feature at some offset of the actual location. It is also necessary to modify an elevation of a point. This specifically applies to the location of underground features. All adjustments apply only to the next point being measured.

The PADJ: command sets make horizontal or vertical adjustments to the subsequent measurement point. These command sets are used only in the UFF-HVD and UFF-SOR files. There are two PADJ: data tag values, OFFSET and DEPTH.

UFF provides the PADJ:vvv command set data tag, OFFSET, for adjusting the horizontal position and the data tag value, DEPTH, to adjust vertical position. Another tag IGNORE, tells the station to ignore the next measurement record.

DATA TAG: PADJ DATA TAG VALUE: OFFSET

The OFFSET data tag value is used to adjust the horizontal position of a particular measurement. There are two descriptor tags, OFFDIST and ANG that describe the distance and angle of the adjusted location. The adjustment is always measured from the point measured in the field to the feature.

OFFDIST descriptor tag defines the offset distance. ANG is the angle, whose vertex is at the measured point, that turns from the instrument to the feature in a clockwise direction. OFFSET can accompany measurement records in the H_V_D and S_O_R file formats. The X Y Z and S O E files will reflect the adjusted coordinates for actual feature location. The POS: OFFSET command set will apply only to the following measurement record. Figure C-3 illustrates the use of OFFSET.

```
UFF records
related to PADJ:
```

Description

PADJ:OFFSET		
OFFDIST: 0000		
ANG: dddd mm ss.s		

OFFSET defines a horizontal offset adjustment. oooo is the offset distance. dddd mm ss.s is the angle between the line of sights from the offset point to the feature and the total station (this angle is expressed in degrees, minutes and seconds.)

DATA TAG: PADJ DATA TAG VALUE: DEPTH

The DEPTH data tag value is used to adjust the vertical position of a particular measurement. The DEPTH tag defines the distance vertically that a point is to be adjusted. DEPTH is applied to an elevation by subtracting the depth from the elevation.

The DEPTH command set will accompany the measurement records in the H V D or S_O_R file formats. The X_Y_Z and S_O_E file formats will reflect the adjusted value of the feature's actual elevation.

The POS:DEPTH command will apply only to the following measurement record.

UFF records related to PADJ:	Description
PADJ : DEPTH	

DEPTH:dddd

dddd is the depth and is subtracted from the measurements elevation.

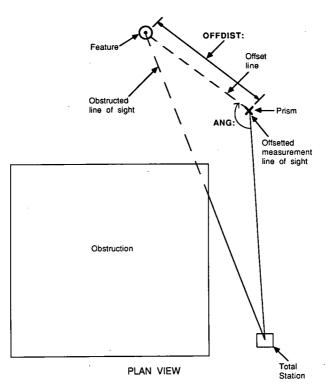


Figure C-3. PADJ:OFFSET illustration.

DATA TAG: ACC

The ability to obtain better location measurement accuracy is accommodated in the UFF by the use of the ACC: command sets. There are two ACC: command sets ACC:HORIZON and ACC:HREPS: The first provides the parameters for different calculation options and tolerances while closing a horizon. The second does the actual closing of the horizon.

DATA TAG: ACC DATA TAG VALUE: HORIZON

The HORIZON command set determines the accuracy criteria for distance and angular measurement data. HORIZON allows the user to determine the type of calculations used while closing a horizon and, also, to specify the acceptable angular tolerances for horizon closure.

HORIZON has four descriptor tags: DIST, ANG, HTOLR and ATOLR. With DIST, the user indicates whether the calculated distance to a given position is an average or is the first distance shot while closing the horizon. Similarly, with ANG the choices for calculating angles is by averaging or using the first applicable angle. HTOLR defines the angular tolerance acceptable to the user for horizon closure (two successive angles = 360°). ATOLR defines the angular tolerance of the average of an angle being repeatedly measured. HORIZON applies to UFF-HVD data files, and its information is applicable to all subsequent HREPS command sets until another HORIZON to seconds and 10 seconds, respectively.

UFF records related to ACC:	Description
ACC:HORIZON DIST:nnnn ANG:nnnn HTOIR: ss.s ATOLR: ss.s	 Defines the procedure for distance and angle calculation when turning angles. nnnn - FIRST; use first value only. nnnn - AVG; use average value. DIST: applies to distance measurements. ANG: applies to angle measurements ss.s is angular tolerance (in seconds). HTOLR: is the acceptable angle tolerance for each horizontal closure. ATOLR: is the acceptable tolerance for average of angles measured at a point.

29

DATA TAG: ACC DATA TAG VALUE: HREPS

The HREPS command set is used to close the horizon. With HREPS angles may be turned as many times as the user wishes. The HREP command set always applies to the foresight measurement and its associated backsight.

HREP uses descriptor records in sets which quantify each closure. To close the horizon the first time the I_H_V : (invert on the foresight) and H_V : (foresight on backsight) descriptor records are used in this sequence. For each subsequent closure of this same foresight point, four descriptor records are used in this order: I_H_V (invert on backsight), H_V_D : (foresight), I_H_V (invert on foresight), and H_V (foresight).

HREP is applicable to UFF-HVD data files and is usually applied to HFORE: foresights (establish benchmarks) or on a USETUP: (setup on an unknown point and short two known points). HREP is not confined to these foresights, however, and can be applied to any feature related H_V_D: record. HREP uses parameters established in the HORIZON command set.

UFF records related to ACC:	Description
	HREPS closes the horizon.
	The first closure employs the first two descriptor
ACC: HREPS	records.
I_H_V: xxx	Invert on the foresight.
H_V: xxx	Foresight on the backsight.
	Subsequent closures each employ the next four
	descriptor records in the order shown here.
I_H_V: xxx	Invert on the backsight.
H_V_D: mmm	Foresight on the foresight.
I_H_V: xxx	Invert on the foresight.
H_V: xxx	Foresight on the backsight.
	mmm is the usual set of four H_V_D data values:
	point number, horizontal angle, vertical angle and
	slope distance (angles in degrees, minutes and seconds).
	xxx is the same as mmm except the slope distance value is ignored in calculation.

EXAMPLES :

 Close the horizon once while establishing a benchmark. Occupy control point 12, backsight to control point 10 and foresight to new control point 99.

RECORD	#1	POS:SETUP	
RECORD	#2	OP: C 12	
RECORD	#3	BS: C 10	
RECORD	#4	H_V_D: MEASUREMENT	- ANGLE REQUIRED
RECORD	#5	POSTHFORE	-
RECORD	#6	FS: C 99	
RECORD	#7	H_V_D: MEASUREMENT	
RECORD	#8	ACC: HREPS	
RECORD	#9	I_H_V: MEASUREMENT	- ANGLE REQUIRED
RECORD	#10	H_V: MEASUREMENT -	ANGLE REQUIRED

 Close the horizon three times on a USETUP. Foresight on control point 12, backsight on control point 10 and establish a new control point 99.

RECORD	#1	POS:USETUP	
RECORD	#2	OP: C 99	
RECORD	#3	FS: C 12	
RECORD	#4	BS: C 10	
RECORD	#5	H V D: MEASUREMENT	(FORESIGHT)
RECORD	#6	H V D: MEASUREMENT	(BACKSIGHT)
RECORD	#7	ACCTHREPS	. ,
RECORD	#8	I_H_V: MEASUREMENT	- ANGLE REQUIRED
RECORD	#9	H V: MEASUREMENT -	ANGLE REQUIRED
RECORD	#10	I_H_V: MEASUREMENT	- ANGLE REQUIRED
RECORD		H V D: MEASUREMENT	• • • • •
RECORD	#12	I_H_V: MEASUREMENT	- ANGLE REQUIRED
RECORD		H_V: MEASUREMENT -	
RECORD	#14	I_H_V: MEASUREMENT	
RECORD	#15	H V D: MEASUREMENT	- ANGLE REQUIRED
RECORD	#16	I_H_V: MEASUREMENT	- ANGLE REQUIRED
RECORD		H_V: MEASUREMENT -	
			•

SECTION III. CONVERSION ALGORITHMS

HORIZONTAL POSITION

Horizontal position computations are based on total station theodolite measurements. The system expects the following information in an H_V_D : measurement record.

- Horizontal circle
- Vertical angle
- Slope distance to the foresight
- Azimuth angles measured off of a line parallel to the xaxis, and in the positive X (easterly) direction (see Fig. C-4).

POS:SETUP Command Set

The following steps are used to compute the horizontal position resulting from a foresight measurement:

- Step 1. Retrieve (X,Y) coordinates of the occupied point (OP) and the backsight (BS), (OP_x,OP_y) and (BS_x,BS_y) , respectively
- Step 2. Compute backsight azimuth (BSAZI)
- Step 3. Compute clockwise angle between BS and the foresight (FS)
- Step 4. Compute foresight azimuth (FSAZI)
- Step 5. Compute horizontal distance from OP to FS
- Step 6. Compute foresight coordinates (FS_x, FS_y)

Step 1—Retrieve (X, Y) Coordinates of OP and BS. The known (X, Y) points for the OP and BS are retrieved from the control file or input through the POS:SETUP command set.

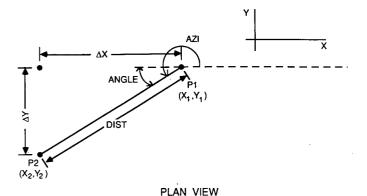
Step 2—Compute Backsight Azimuth. Refer to Figure C-5 for illustration. Refer to Figure C-4 for calculation of the backsight azimuth (BSAZI) in Figure C-5, where: P1 = B, P2 = A, AZI = BSAZI, $(X_1, Y_1) = (OP_x, OP_y)$, and $(X_2, Y_2) = (BS_x, BS_y)$.

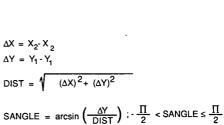
Step 3—Compute Clockwise Angle Between BS and FS. Refer to Figure C-5.

$$angle(ABC) = M_2HA - M_1HA$$

This computation is the difference in the measurement block recorded as the backsight (M_1HA) in POS:SETUP and a recorded foresight measurement block (M_2HA) .

Step 4—Compute Foresight Azimuth. Refer to Figure C-5.


$$FSAZI = BSAZI - angle(ABC)$$


where: angle(ABC) = the clockwise angle between BS and FS; if FSAZI < 0, FSAZI = FSAZI + 360° .

Step 5—Compute the Horizontal Distance from OP to BS. Refer to Figure C-5. The slope distance, M_2 DIST, measured as measurement #2 is broken into horizontal and vertical components. The horizontal component (HDIST) is computed as follows:

$$HDIST = sin(M_2VA) \times M_2DIST$$

Step 6—Compute Foresight Coordinates. Refer to Figure C-6 for the computation algorithms. The foresight point (FS_x, FS_y)

CANGLE = $\arccos\left(\frac{\Delta X}{DIST}\right)$; 0 < CANGLE < Π ANGLE = |SANGLE| = |CANGLE|

Conditional statements used in AZI ca

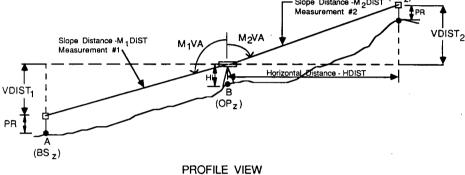
Figure C-4. General azimuth calculation.

is not part of the POS:SETUP command set. It is calculated by using subsequent H_V_D : records in FEAT: and HFORE: command sets.

POS:USETUP Command Set

The following steps are used to complete the horizontal position of the occupied point. Both the backsight and foresight must be known points.

- Step 1. Retrieve (X,Y) coordinates of BS and FS, (BS_x,BS_y) and (FS_x,FS_y), respectively
- Step 2. Compute the horizontal distance and azimuth between BS and FS
- Step 3. Compute horizontal distance(s) from OP to BS and OP to FS
- Step 4. Compute the clockwise angle between BS and FS
- Step 5. Compute backsight azimuth
- Step 6. Compute occupied point coordinates (OP_x, OP_y)


Step 1—Retrieve (X, Y) Coordinates of BS and FS. The known (x,y) points for the BS and FS are retrieved from the control file or input through the POS:USETUP command set.

Step 2—through Step 6. Refer to Figure C-7 for illustration and explanation of POS:USETUP on a step-by-step basis.
 Y
 C
 (FS_X,FS_y)

 KABC
 FSAZI
 FSAZI

 A
 (OP_X,OP_y)
 FSAZI

 B
 (OP_X,OP_y)
 FSAZI

LEGEND:

 $\label{eq:PR} \begin{array}{l} \mathsf{PR} = \mathsf{Height} \ \text{of Prism} \\ \mathsf{HI} = \mathsf{Height} \ \text{of instrument} \\ \mathsf{VDIST}_{\mathsf{D}} = \mathsf{Vertical} \ \text{distance} \\ \mathsf{Measurement} \ \text{data:} \\ \bullet \ \mathsf{Horizontal} \ \mathsf{circle} \ (\mathsf{M}_{\mathsf{D}}\mathsf{HA}) \end{array}$

- Vertical angle (M_nVA)
- Slope distance (Mn DIST)
 - where the subscript "n" is the measurement number.

Figure C-5. Compute foresight position.

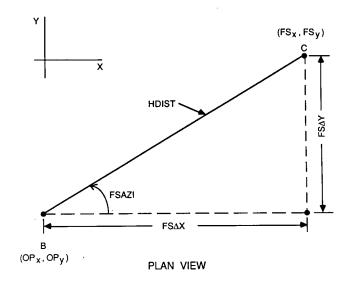
- bHDIST = horizontal distance between BS and FS ACAZI = azimuth from BS to FS aHDIST = horizontal distance between OP and FS cHDIST = horizontal distance between OP and BS angle(CAB) = angle turning from FS to OP with the BS as the vertex angle(ABC) = clockwise angle turning from BS to FS with the OP as the vertex
- ABAZI = azimuth from BS to OP

Once the occupied point (OP_x, OP_y) is calculated, then subsequent foresight points (FS_x, FS_y) can be calculated for $H_V_$. D: records in FEAT: and HFORE: command sets. The algorithm used is the same as the POS:SETUP algorithm.

POS:HFORE or any H_V_D: Record in a FEAT: Command Set

Refer to Figure C-6 for computational algorithms. The measurement block associated with HFORE is measurement #2 in the formuli.

VERTICAL POSITION


Vertical position can be calculated using either a theodolite or a level. The level is used to measure vertical position only, whereas the theodolite can measure vertical and horizontal simultaneously, or be restricted to one or the other.

To compute the elevation at any foresight, the following steps will occur:

Step 1. Compute the elevation at the instrument (IELEV) Step 2. Compute the forward or turn-point elevation (PTELEV)

The POS: command sets accomplish step 1. Upon subsequent H_V_D : (or S_O_R:) records for FEAT:, HFORE:, or VFORE: command sets, step 2 is calculated.

To establish elevation of the instrument, the POS:BSLVL and POS:OPLVL command sets are used with levels. POS:BSVERT and POS:OPVERT command sets are used with a theodolite when only vertical position is being calculated. To calculate instrument elevation when a theodolite is being used to measure both horizontal and vertical position, the VERT:, BM:, PR: and

$$\begin{split} \mathsf{FS}\Delta X &= \mathsf{HD}\mathsf{IST}^* \cos(\mathsf{FS}\mathsf{AZI})\\ \mathsf{FS}\Delta Y &= \mathsf{HD}\mathsf{IST}^* \sin(\mathsf{FS}\mathsf{AZI})\\ \mathsf{FS}_X &= \mathsf{OP}_X + \mathsf{FS}\Delta X\\ \mathsf{FS}_Y &= \mathsf{OP}_Y + \mathsf{FS}\Delta Y \end{split}$$

Note: FSAZI is calculated in Step 4 and illustrated in Figure C-5.

Figure C-6. Compute foresight coordinates (FS_x, FS_y) .

HI: descriptor records of the POS:SETUP and POS:USETUP command sets are used.

Instrument elevation calculation in POS:SETUP and POS:USETUP mirrors that in POS:BSVERT and POS:OPVERT.

POS:SETUP with VERT:BS = POS:BSVERT POS:USETUP with VERT:BS = POS:BSVERT POS:USETUP with VERT:FS = POS:BSVERT where measurement 2 replaces measurement 1 POS:SETUP with VERT:OP = POS:OPVERT POS:USETUP with VERT:OP = POS:OPVERT

Similarly, instrument elevation calculation in POS:BSLVL and POS:OPLVL mirrors POS:BSVERT and POS:OPVERT, respectively, where $V_n DIST = 0$ and prism height (PR) is replaced by backsight rod reading (ROD₁).

PR = prism height

IELEV = elevation of instrument

HI = height of instrument

BM = benchmark elevation (either at BS or OP)

 $VDIST_n$ = vertical distance at measurement n

 $M_n DIST =$ slope distance at measurement n

- $ROD_n = rod reading at measurement n$
- PTELEV = forward or turn-point elevation

POS:BSVERT Command Set

Refer to Figure C-5, PROFILE VIEW.

 $VDIST_1 = M_1DIST \times cos (M_1VA)$ IELEV = BM + PR - VDIST_1

POS:OPVERT Command Set

Refer to Figure C-5, PROFILE VIEW, where BM is the benchmark elevation at OP.

$$IELEV = BM + HI$$

POS:BSLVL Command Set

Refer to Figure C-8, where BM is the known elevation at BS.

$$IELEV = BM + ROD_1$$

POS:OPLVL Command Set

Refer to Figure C-8, where BM is the known elevation at OP.

$$IELEV = BM + HI$$

POS:VFORE, POS:HFORE or Any Unknown Foresight Elevation

When used with BSVERT or OPVERT, the z value or elevation calculations will take the vertical angle and distance measured into consideration. Refer to Figure C-5, PROFILE VIEW, and note that the resulting elevation is computed as:

 $PTELEV = IELEV - ROD_2 - VDIST_2$

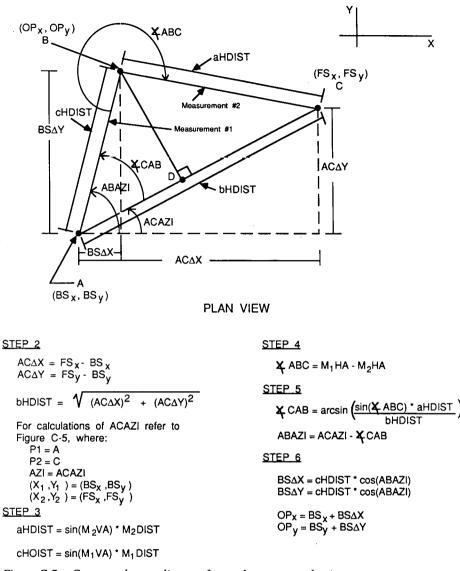
When BSLVL and OPLVL act as the vertical control setup, PTELEV is calculated as above, with $VDIST_2 = 0$.

POSITIONAL ADJUSTMENTS

Both horizontal and vertical positions may be adjusted according to PADJ:vv command tags. These tags and algorithms used to adjust a point are as follows:

PADJ:OFFSET

The horizontal position is adjusted by the PADJ:OFFSET command set OFFDIST and ANG are given through values of the command set. The following steps are taken:


Step 1. Compute the (x,y) position of the offset point (0)

Step 2. Compute offset azimuth (OFFAZI)

Step 3. Compute actual feature coordinates (F_x, F_y)

Step 1—Compute Position of the Offset Point. See Figure C-9. See Figures C-4, C-5, and C-6 for algorithms to locate a foresight position (FS_x, FS_y) .

Step 2—Compute Offset Azimuth—OFFAZI. $OFFAZI = FSAZI + 180^{\circ} - ANG$

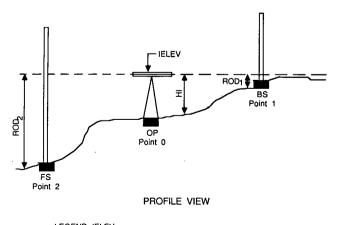


Figure C-8. SOR UFF convention.

Step 3—Compute Feature Position. See Figure C-6.

 $F_x = FS_x + OFFDIST \times cos(OFFAZI)$

 $F_y = FS_y + OFFDIST \times sin(OFFAZI)$

where: (F_x, F_y) is the feature coordinate pair, and OFFDIST is the horizontal distance between feature and prism.

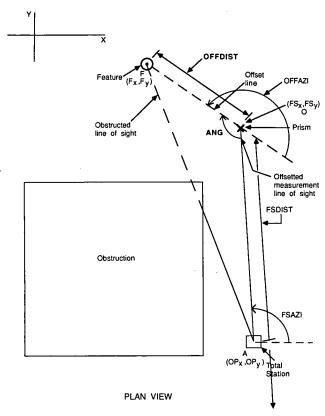


Figure C-9. Horizontal position adjustments.

APPENDIX D

ISIMS FEATURE DESIGN AND INSTALLATION GUIDELINES

INTRODUCTION

One of the objectives of this project is to provide a system that will allow a transportation agency to install an automated survey system and to develop that survey system centered around their own equipment and procedures. ISIMS accomplishes this objective and allows each agency the capability to incorporate its own set of features and their associated information.

This appendix provides an agency with the guidelines needed to incorporate agency feature-specific information into ISIMS. When an agency elects to use ISIMS as the primary survey system, the developer using ISIMS will need to:

• Know the agency's surveying equipment, survey tasks, and data processing capabilities and limitations.

• Know the universal file format (UFF) and control file capabilities and syntax.

• Define an agency-specific ISIMS, maintaining compatibility across data collection procedures, data collectors, and the UFF.

• Incorporate, design, write and/or embellish ISIMS software modules.

To assist in satisfying these needs, a set of suggested tasks has been devised to accomplish the development and implementation of ISIMS. These tasks are as follows:

- A. Know the agency's surveying equipment, survey tasks, and data processing capabilities and limitations.
 - A.1. Become familiar with agency survey equipment and system.

- A.2. Determine survey tasks to be implemented.
- A.3. Identify data processing facilities.
- B. Know the universal file format (UFF) and control file capabilities and syntax.
- C. Define an agency-specific ISIMS, maintaining compatibility across data collection procedures, data collectors, and the UFF.
 - C.1. Establish control file procedures.
 - C.2. Establish data collection procedures for POS:vvv command sets.
 - C.3. Prepare a feature/activity code list.
 - C.4. Establish data collection procedures for FEAT:vvv and INFC:vvv command sets.
 - C.5. Prepare feature-specific specifications.
 - C.6. Establish data collection procedures for features.
 - C.7. Prepare program design for converting each feature from the agency's data collection format to the UFF convention.
- D. Incorporate, design, write and/or embellish ISIMS software modules.

A series of worksheets and forms has been developed to support an agency in following the foregoing tasks. These supporting documents will be very helpful when installing ISIMS. Worksheets and forms provided are as follows:

- Feature Description Form (Form D-1)
- Information Description Form (Form D-2)
- Feature Worksheet (Form D-3)
- Info Worksheet (Form D-4)
- Feature Attribute Form (Form D-5)
- Point Attribute Form (Form D-6)
- Data Collector to UFF Worksheet (Form D-7)
- Conversion Program Guidelines Worksheet (Form D-8)

These forms are located at the end of this appendix. In addition, the installer should also refer to Appendixes C and E. Appendix C documents the universal file format (UFF). Appendix E provides illustrations of the use of the procedures and forms used for the demonstration of ISIMS in Louisiana.

The following sections describe the ISIMS installation procedural tasks further. Use of these task-by-task descriptions, together with the blank forms and worksheets, provides a structured approach to implementing an automated survey system.

GUIDELINES TO IMPLEMENT ISIMS—SUGGESTED PROCEDURAL TASKS

Task A.1—Become Familiar with the Agency Surveying Equipment and System

- Step 1. Become familiar with the survey instrument's capabilities and limitations to record data.
- Step 2. Become familiar with the data collector capabilities and limitations, its ability to input and manipulate data collected in the field and the output format of the data collector.
- Step 3. Become familiar with the data transmission capabilities of the data collector, as well as the cabling and interfacing requirements to communicate with another computer using RS-232C protocol.

Task A.2—Determine Survey Task(s) to be Implemented

- Step 1. Access agency survey tasks and determine needs and benefits to prioritize survey task implementation.
- Step 2. Implement a selected system based on needs, implementation time and/or educational requirements.

SURVEY C	HECK LIST
I. Control Surveys	B. Utility
A. NGS	C. Topographic
B. Project	1. Natural
1. Horizontal	2. Manmade
2. Vertical	D. Drainage
II. Engineering Surveys	III. Cadastral Surveys
A. Alignment	A. Boundary
1. Horizontal	B. Property
a. Design	a. Design
b. Staking	b. Staking
2. Vertical	IV. Construction Surveys
a. TBM Establish-	A. Staking
ment	B. Cross-Section
b. Profile	V. Hydrographic Surveys
c. Cross-Section	A. Construction
d. Contour	B. Maintenance
	IV. Bridge Surveys

Task A.3—Identify Data Processing Facilities

Step 1. Identify computer facilities for editing processors.
Step 2. Identify computer facilities for maintaining the UFF.

Task B—Know the Universial File (UFF) and Control File Capabilities and Syntax

- Step 1. Read Appendix C.
- Step 2. Execute the generic demonstrator computer program as documented in Appendix G.
- Step 3. Reread Appendix C. Think especially about data collection inferences relative to identifying multipoint feature facilities (e.g., circles, curvature, backwards collections, skip, related feature ID and closure). Understand the significance of control point number and azimuth point number in the control file and the use of control file information in the POS: command sets.

Task C—Define an Agency-Specific ISIMS, Maintaining Compatibility Across Data Collection Procedures, Data Collectors, and the UFF

This task has seven subtasks (C.1 through C.7) which assume that the data collector is not preprogrammed to output UFF. When the data collector does not output the UFF, then read all subtasks C.1 through C.7.

If the data collector is preprogrammed to output UFF, only subtasks C.3 and C.5 need to be completed. At this point, feature description can be verified upon input to the data collector. Use of information compiled in subtasks C.3 and C.5 should be an installation requirement of the data collector.

If the data collector is going to be programmed by the agency to output UFF, all subtasks apply to the data collector program design. The information compiled in subtasks C.3 and C.5 will be used to verify field-inputted feature descriptions.

Task C.1—Establish Control File Procedures

- Step 1. Select one or more of the following procedures for creating the control file.
 - a. An extraction from a statewide control point database selecting known horizontal control points, bench marks, and azimuth markers.
 - b. Manual input into the control file through data entry procedures.
 - c. Survey data collected and processed through ISIMS and the control points created as output into the control file.
- Step 2. Become familiar with the control file format and understand how it operates.
- Step 3. Develop procedures and computer programs necessary to create the control file if steps 1.a and/or 1.b are selected.
- Step 4. If step 1.c is selected, include control point creation as a feature in Task C.7.
- Step 5. Develop computer programs to handle control file record creation and updating.

Task C.2—Establish Data Collection Procedures for POS:vvv Command Sets

- Step 1. Become familiar with UFF specifications (see Appen. C).
- Step 2. Select the POS:vvv command sets that are applicable to the survey task selected in Task A.2.
- Step 3. Complete the Data Collector to UFF Worksheet (Form D-7) for each command set.

Task C.3—Prepare Feature Code List

- Step 1. Select features that are applicable to the survey task selected in Task A.2.
- Step 2. Complete the Feature Description Form (Form D-1) and Information Description Forms (Form D-2). Features differ from information in that measurement points must be associated with features and cannot be associated with information. See Appendix E for examples.

Task C.4—Establish Data Collection Procedures for ISIMS Definition FEAT:vvv Command Sets

- Step 1. Select the FEAT:vvv command sets that are applicable to the survey task selected in Task A.2.
- Step 2. Complete the Data Collector to UFF Worksheet (Form D-7) for each command set.

Task C.5—Prepare Feature-Specific Specifications

- Step 1. Complete a Feature Worksheet (Form D-3) or INFO Worksheet (Form D-4) for every feature tag identified in Task C.3.
- Step 2. Complete the Feature Attribute Form (Form D-5) for the worksheets in Step 1.
- Step 3. Complete the Point Attribute Form (Form D-6) for the worksheets in Step 1.

(See Appendix E for examples of completed Forms D-3, D-4, D-5 and D-6.)

Task C.6—Establish Data Collection Procedures for Features

- Step 1. Detail the X_Y_Z: or S_O_E: file convention for each feature in column 6 of the Data Collector to UFF Worksheet (Form D-7). This represents the feature-oriented data file that will interface to outside applications.
- Step 2. Detail the H_V_D: or S_O_R: file convention for each feature in column 6 of the Data Collector to UFF Worksheet (Form D-7). This will represent command sets as they are input into ISIMS. A good understanding of ISIMS processing is required.
- Step 3. Detail the field survey data collection records for each feature in column 7 necessary to create the H_V_D: or S_O_R: format detailed in Step 2 above.

The H_V_D : or S_O_E: format in Column 6 of the Data Collector to UFF Worksheet (Form D-7) defines *output* specifications for the user's data collection to ISIMS conversion program.

Column 7 of the Data Collector to UFF Worksheet (Form D-7) defines the *input* specifications for the user's data collector to ISIMS conversion program.

Task C.7—Prepare Program Design for Converting Each Feature from the Agency's Data Collection Format to the UFF Convention

- Step 1. Copy column 7 from the Data Collector to UFF Worksheet (Form D-7) to column 1 of the Conversion Program Decision Table (Form D-8).
- Step 2. Copy column 6 from the Data Collector to UFF Worksheet (Form D-7) to column 3 of the Conversion Program Decision Table (Form D-8).
- Step 3. Complete column 2 by describing the correlation between the input in column 1 and the output in column 3 of Form D-8.
- Step 4. Submit Form D-8 for programming.

Task D—Incorporate, Design, Write and/or Embellish ISIMS Software Modules

• Step 1. Review demonstrators 20-21G, 20-21W, and 20-21L (see Appen. G) and corresponding program documentation (Appen. H).

- Step 2. Pick the computer(s) that will do the survey data processing.
- Step 3. Fill modules 1 and 8 (see below) with communications and editor software, respectively.
- Step 4. Rewrite (or possibly modify) programs for modules 2 and 3 to suit agency needs.
- Step 5. Modify module 5 to accommodate the agency's particular plotter.
- Step 6. Embellish any module. For example, module 9 could be modified to delete commands BCK: and ID:. Also, make minor coding changes due to differences in FORTRAN 77/BASIC across computers.
- Step 7. Add modules, specifically, those that transform UFF data to a roadway engineering application or CADD format.

ISIMS - INTEGRATED SURVEY INFORMATION MANAGEMENT SYSTEM GENERAL DEMONSTRATOR MENU

DOWNLOAD THE FIELD DATA CONVERT DATA COLLECTOR FORMATTED TOPO DATA TO UFF-HVD CONVERT DATA COLLECTOR FORMATTED X-SEC DATA TO UFF-SOE Plant uff-HVD OR UFF-XYZ PRINT UFF-HVD OR UFF-XYZ PRINT UFF-SOE CROSS SECTIONS OWNERT UFF-SOE CROSS SECTIONS TO RDS FORMAT
3 CONVERT DATA COLLECTOR FORMATTED X-SEC DATA TO UFF-SOE 4 PLOT UFF-HVD OR UFF-XYZ 5 PRINT UFF-HVD OR UFF-YZZ 6 PRINT UFF-SOE CROSS SECTIONS
4. PLOT UFF-HVD OR UFF-XYZ 5. PRINT UFF-HVD OR UFF-XYZ 6. PRINT UFF-SOE CROSS SECTIONS
5. PRINT UFF-HVD OR UFF-XYZ 6. PRINT UFF-SOE CROSS SECTIONS
6. PRINT UFF-SOE CROSS SECTIONS
 CONVERT UFF-SOE CROSS SECTIONS TO RDS FORMAT
8. EDIT DATA
9. CONVERT DATA FROM UFF-HVD TO UFF-XYZ
A. PRINT A FILE
B. INSTALL NEW SET OF FEATURES
C. CONTROL FILE DATA

BLANK FORMS AND WORKSHEETS

The blank forms and worksheets provided on pp. 39 through 46 are reproduced to a larger scale than warranted for illustrative purposes, for convenience of the user who may wish to utilize them in implementing the procedural tasks described earlier in this appendix.

APPENDIX E

ISIMS INSTALLATION EXAMPLE

INTRODUCTION

The Louisiana Department of Transportation and Development (LaDOTD) uses a centralized design concept at its headquarters in Baton Rouge. The long-term objective of the LaDOTD is to shorten the time frame between project approval and use of the facility by the public. The key to accomplishing this objective is the development of Computer Integrated Design (CID). Conceptually, CID is based on the premise that the creation of a set of plans is the result of an informational database and engineering decisions.

The hub of this plan will be a Plan Preparation System that consists of a database created from computer design systems and engineering decisions. DOTD's initial effort toward the development of the hub, is the surveying module of that system, in particular the digital collection of survey information. DOTD utilizes a Wild TC2000 and GRE3 as its survey total station and data collector. The data are processed by the DEC VAX computer for editing, a GIS-type database is created from the edited data, and then the graphics and attribute linkage is generated for manipulation and display.

The data collection system has been designed to optimize the field surveyor's ability to collect data and includes location, geometric description, physical characteristics, and ownership data. Although the concept is to "create a field book," present procedures include the use of the field book where the field book provides the optimal solution. The survey development addresses control-type surveys and topographic surveys. Some characteristics of the system are:

1. Features requiring straight-line and curve data (curbs) have their points of curvature noted without interruption of the measurement process.

FEAT Value*	FEATURE DESCRIPTION

Form D-1: Feature Description Form

* This is the one to six character alphanumeric name of the feature that the surveyor intends to input into the data collector and that will then be used to identify the feature.

INFO	INFORMATION DESCRIPTION
VALUE*	
	、
· ·	
	I

Form D-2: Information Description Form

*This is a one to six character alphanumeric name corresponding to the INFO: tag (a feature without measurement points/general information), that identifies that piece of general information.

FORM D-3: FEATURE WORKSHEET

<u>FEATI</u>	JRE				
MANDA	ATORY DATA				
	FEAT:				
	GM:	SINGLE	CIR		
<u>ORIG</u>	INAL DATA	MULTI		CIR <u>OFTEN?</u>	
	Z?: CIRD: PADJ: OFFSET PADJ: DEPTH		YES YES YES YES	NO NO NO NO	
	FEATURE DESCRI	PTORS			
	1)				6)
	2)				7)
	3)				8)
	4)				9)
	5)				
	MEASUREMENT DE	<u>SCRIPTORS</u>			
	1)				6)
	2)				7)
	3)				8)
	4)				9)
	5)				
	FOR GM:=MULTI		USED	OFTEN?	
	ID:		YES	NO	
	CR:		YES	NO	
	SK:		YES	NO	
	CL:		YES	NO	
	BK:		YES	NO	

FORM D-4: INFO WORKSHEET

INFO _____

MANDATORY DATA

INFO:

OPTIONAL DATA

INFO DESCRIPTOR TAGS

1)	6)
2)	7)
3)	8)
4)	9)
5)	

Pasture	Acceptable Feature	Feature				
Feature Name	Descriptor Tags	Descriptor Descriptions	values	definition	Reg'd Y/N	Default
			- -			

Form D-5: Feature or Information Attribute Form

Acceptable Point	Point Descriptor	Acceptable Values			
Descriptor Tags	Descriptions	Values	Definition	Reg'd Y/N	Default
	· .				
					·

Form D-6: Point Description Form

Data Tag: _____

Form D-7. Data Collector to UFF Worksheet

TAG		DESCRIPTOR	2	DESCRIPTION	UFF	FIELD DATA
VALUE	TAG	DEFA	ULT	OF DATA COLLECTION	DATA	COLLECTION
		SYSTEM	DOT	REQUIREMENTS	FORMAT	PROCEDURES
Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7

The H_V_D or S_O_E format in Column 6 of the Data Collector to UFF Worksheet defines *

output specifications for the user's data collection to ISIMS conversion program.
 ** Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the user's data collector to ISIMS conversion program.

Form D-8. Conversion Program Guidelines Worksheet.

FIELD DATA COLLECTION PROCEDURES	CORRELATION	RAW SURVEY UFF DATA FORMAT
-		

.

•

2. Continuous-type (curbs) features are integrated into one element over multiple instrument setups.

3. Continuous features can have data collect forwards or "backwards" on any setup.

4. Selected continuous-type features (fences, underground utilities) can be interrupted to collect "secondary" or service lines.

5. Adjacent features that have a common boundary and symmetry (curb and sidewalk) may be collected like a single feature.

6. The horizontal position of selected elements can be located using offset procedures.

7. There is automatic closure between the first and last point of a feature, even when the feature is the continuous type.

The LaDOTD survey subsystem is similar to ISIMS in its objective, but it is vendor specific, using WILD survey equipment as the data collector and their INTERGRAPH VAX as the processor. However, this offered the project an excellent opportunity for validating and demonstrating the generic concept. Through comparing results, the project is able to obtain a reasonable level of quality assurance.

The alpha test collected raw topographic survey data using Louisiana's data collection procedures on their TC2000 total survey station. The same data were processed through the Louisiana survey subsystem and ISIMS. This provided a necessary assurance that ISIMS was meeting not only its conceptual objective but a computational one as well.

LOUISIANA DOTD-ALPHA TEST SITE

This appendix contains an example of ISIMS as it is installed in Louisiana. The procedures outlined in Appendix D have been applied to Louisiana, the project's alpha test site, and should assist other agencies in their implementation.

The completed examples of the Suggested Procedural Task worksheets, in Appendix D and their supporting forms, also in Appendix D, have been grouped together for easier future user reference and immediately succeed the task-by-task discussion that follows.

The following task-by-task discussion contains two types of comments, *LADOTD Example* and *Comments*. The *LADOTD Example* heading deals with information related to completing the task worksheet. The *Comments* heading simply supplies general information concerning Louisiana experiences in implementing a survey system using digital input.

TASK DISCUSSION

Task A. Know Your Surveying Equipment, Survey Tasks, and Data Processing Capabilities

Task A.1—Become Familiar with the Agency Surveying Equipment and System (See Fig. E-1)

LADOTD Example. Refer to the completed Task A.1 worksheet, Figure E-1.

Comments. The limitations of numeric only had less negative impact than expected.

Automated input of the data at the theodolite is definitely a positive factor.

Surveyor response times for instrument inputs in seconds:

 CODE/INFO blocks 	20-30 sec
• Azimuth only	1 sec
 Distance and Azimuth 	8 sec

Task A.2—Determine Survey Task(s) to be Implemented

LADOTD Example. Refer to completed Task A.2 worksheet, Figure E-2.

Comments. Louisiana expects significant time savings in collecting topographic data.

Terrain data collection has not been adapted to radial type surveying and because of the flat terrain (maximum elevation in Louisiana 400–500 ft), Louisiana is of the opinion that stationoffset-rod reading (SOR) type of data collection will slow down the surveying task. However, the downstream benefits of digitally collecting the terrain data has not been evaluated but is scheduled as a future task.

Task A.3—Identify Data Processing Facilities

LADOTD Example. Refer to completed Task A.3 worksheet, Figure E-3.

Plotting computer routines were written using Hewlett Packard's HPGL graphics language.

Comment. Louisiana's survey subsystem will presently be downloaded to their Intergraph VAX computer, edited, displayed, and maintained on that system. A Plan Preparation database is the eventual home of the UFF like data.

Task B. Know UFF/Control File Capabilities and Syntax

Refer to completed Task B, Figure E-4.

Task C. Define an Agency-Specific ISIMS, Maintaining Compatibility Across Data Collection Procedures, Data Collectors and the UFF

Task C.1-Establish Control File Procedures

LADOTD Example. Refer to completed Task C.1 worksheet, Figure E-5.

Control survey points were manually input for the Louisiana alpha test site. Additional topography control points were established during the data collection process.

Identify the topographic control points as features so that they can be defined on Form D-1. Refer to Figure E-6.

Task C.2—Establish Data Collection Procedures for POS:vvv Command Sets

LADOTD Example. Refer to completed Task C.2 worksheet, Figure E-7.

Refer to the completed Form D-7, Figure E-8.

Louisiana has decided against the use of x,y coordinates as field input. The state-plane coordinate system is the basic coordinate system used and the x,y value of control points will be established in the office or collected as field data. These points will be identified by point numbers in the field, the coordinates calculated during processing and placed in the Control File.

Task C.3—Prepare Feature Code List

LADOTD Example. Refer to completed Task C.3 worksheet, Figure E-10.

The list of fifty (50) features is a subset of the feature activity list in Appendix F.

Task C.4—Establish Data Collection Procedures for ISIMS-Defined FEAT:vvv Command Sets

LADOTD Example. Refer to completed Task C-4 worksheet, Figure E-13. Refer to completed Form D-7, Figure E-14.

The definition of these command sets will be similar to the specifications for Task C.2. When the UFF record layout is determined for a feature in Task C.6, it will require primarily that the appropriate FEAT:vvv command set be copied and the proper descriptor values selected. Thus, this completed form can act like a "spec" sheet when working on Task C.6.

Task C.5—Prepare Features-Specific Specifications

LADOTD Example. Refer to completed Task C.5 worksheet, Figure E-15.

A feature or info worksheet was filled out for each feature identified in Task C.3. Refer to Figure E-16 for five (5) completed examples of features.

The feature descriptor tags are then defined in detail by filling out the feature descriptor tag table for each feature. Figure E-17 provides an example of the same five sample features completed on Form D-5. Refer to the Louisiana Alpha Test Site ISIMS Implementation document for remaining features.

Any point descriptor tags needed are also defined in the point descriptor tag table. These measurement tags are not feature-specific, but apply across all applicable features. Recall there is a limit of nine (9) and Figure E-18 represents those that would apply to Louisiana's selected features.

Task C.6—Establish Data Collection Procedures for Features

LADOTD Example. Refer to completed Task C.6 worksheet, Figure E-19.

Louisiana establishes additional control points for collecting

topography to supplement the control points of the Project Control points. These points are established to allow the extension of control from a known control point and to establish an unknown point as a control point. The normal setup code for establishing topography and these two control type codes were added as features in Task C.1. The ISIMS definition for these activities has been documented as Figure E-20, using Form D-7. Note that the inclusion of the ACC:vvv command sets increases the accuracy requirements of establishing an unknown point as a control point.

Task C.6 continues to document the five (5) sample feature codes from Louisiana example in Task C.5. These five features have been documented using an alternate Form D-7 and follow the outlined steps. Refer to Figures E-21 and E-22 for the five (5) completed examples.

An alternate type form has been used for Form D-7 to describe the X_YZ , H_VD and the data collector format for features. Special feature codes describing topographic control points have been defined and use Form D-7 for defining the feature design.

After Task C.6 has been completed, the user should have a complete understanding of both the data collection record sequence and the HVD record layout to be established for each feature, as well as how these relate to each other. A program can then be written to convert the data collector formatted records to the HVD record format.

For additional documentation on the full complement of features implemented in Louisiana, refer to NCHRP Project 20– 21 Document "Louisiana Alpha Test Site ISIMS Implementation."

Task C.7—Prepare Program Design for Converting Each Feature from the Agency's Data Collection to the UFF Convention

LADOTD Example. Refer to completed Task C-7, Figure E-23.

This task is more complex than has been previously indicated. There will necessarily be some system and program design done by the computer programming staff. However, the engineer can detail each feature's design information. The programming staff should be able to code and test from the information outlined. Form D-8, Figure E-24, may be sufficient for use as a computer design document from the surveyors to the computer programmers.

Task D—Incorporate Design, Write and/or Embellish ISIMS

LADOTD Example. Refer to Figure E-25 for Task D in Louisiana.

SUGGESTED PROCEDURAL TASKS AS APPLIED TO LOUISIANA DEPARTMENT OF TRANSPORTATION'S AUTOMATED SURVEYING

Task A.1 - Become familiar with the agency surveying equipment and system.

- Step 1. Become familiar with the survey instrument's capabilities and limitations with respect to recording data.
- Step 2. Become familiar with the data collector capabilities and limitations, its ability to manipulate data collected in the field and the output format of the data collector.

VENDOR: WILD PRODUCT: TC2000 - Surveying Total Station GRE3 - Data Collector

CHARACTER ENTRY: Integer only NUMBER OF CODE BLOCKS: 1 NUMBER OF INFO BLOCKS: 4/CODE BLOCK NUMBER OF CHARACTERS ALLOWED IN CODE BLOCK: 7 NUMBER OF CHARACTERS ALLOWED IN INFO BLOCK: 7

RECORDING CONCEPT - The GRE3 records blocks of data. There are two types of <u>data blocks</u>: Measurement blocks, code blocks.

MEASUREMENT BLOCK - Measurement blocks are designed primarily for recording measurement information, e.g. angles and distances.

Format and content of a measurement block:

į				a
	Point number	Hz-circle	V-circle	Slope distance
l		1		

CODE BLOCK - Code blocks are designed primarily for recording identification codes, data-processing codes and information. However, they can also be used for recording measurement information, e.g. staff readings when leveling, check distances etc.

Format and content of a code block

Word 1 Word 2 Word 3 Word 4 Word 5

	Code number	Information 1	Information 2	Information 3	Information 4	
--	-------------	---------------	---------------	---------------	---------------	--

Figure E-1. Task A.1—Become familiar with agency survey equipment.

SUGGESTED PROCEDURAL TASKS AS APPLIED TO LOUISIANA DEPARTMENT OF TRANSPORTATION'S AUTOMATED SURVEYING

Task A.2 - Determine survey task(s) to be implemented.

- Step 1. Access agency survey tasks and determine needs and benefits, then prioritize survey task implementation.
- Step 2. Implement a selected system based on needs, implementation time and/or educational requirements.

SURVEY CHECK LIST

I. CONTROL SURVEYS

- A. NGS
- B. Project
 - Horizontal
 Vertical
- II. ENGINEERING SURVEYS
 - A. Alignment
 - Horizontal
 - a. Design
 - b. Staking2. Vertical
 - a. TBM Establishment
 - b. Profile
 - c. Cross-Section
 - d. Contour
 - B. Utility
 - C. Topographic
 - 1. Natural
 - 2. Manmade
 - D. Drainage

III. CADASTRAL SURVEYS A. Boundary B. Property

- ---
- a. Design b. Staking
- IV. CONSTRUCTION SURVEYS
 - A. Staking
 - B. Cross-Section
- V. HYDROGRAFHIC SURVEYS
- A. Construction
- B. Maintenance
- IV. Bridge Surveys

Priority 2

Priority 3

Priority 1

Priority 5 Priority 4

SUGGESTED PROCEDURAL TASKS AS APPLIED TO LOUISIANA DEPARTMENT OF TRANSPORTATIONS'S AUTOMATED SURVEYING

Task A.3 - Identify data processing facilities.

- Step 1. Identify computer facilities for editing processors.
- Step 2. Identify computer facilities for maintaining the UFF.

<u>Alpha Test</u>

GRE3 raw survey data was dumped to and edited on an IBM PC-AT compatible using a Hewlett Packard 7475A x-y plotter. Data was converted from H_V_D file convention into X_Y_Z file convention on the same PC. Data was then transferred to LADOTD host IBM mainframe for inputs into RDS.

See Appendix introduction for LaDOTD computer facilities.

Figure E-3. Task A.3—Identify data processing facilities.

SUGGESTED PROCEDURAL TASKS AS APPLIED TO LOUISIANA DEPARTMENT OF TRANSPORTATIONS'S AUTOMATED SURVEYING

Task B - Learn the UFF/Control File capabilities and syntax.

- If the output is in UFF format the users should perform the procedural tasks in the following sequence:
 - Task C.1
 - Task C.3
 - Task C.5 thru Task C.7
 - Task D
- If the output is <u>not</u> in UFF format then the user must develop the conversion program based on his data collector and collection procedure for ISIMS.

Output of GRE3 is not UFF. See Task A.1 for format description.

Figure E-4. Task B—Learn the UFF/control file capabilities and syntax.

Task C.1 - Establish Control File procedures.

Step 1. Select one or more procedures for creating the Control File.

- a. An extraction from a statewide control point database selecting known horizontal control points, bench marks and azimuth markers.
- b. Manual input into the Control File thru data entry procedures.
- c. Survey data collected, processed thru ISIMS and put into the Control File.
- Step 2. Become familiar with the Control File format and understand how it operates.
- Step 3. Develop procedures and computer programs necessary to create the control file if subtasks 1.a and/or 1.b are selected.
- Step 4. Include control point creation as a feature in Task 7 if subtask l.c is selected.
- Step 5. If output of data collector is in UFF, skip to Task C.3.

Select 1.b and 1.c to create Control File.

Place topographic control points on form D-1, Feature Description Form, Figure E-6.

The FEAT:vvv code for the topographic control points will define the type of surveying being done. If greater accuracies are required then use the ACC:vvv command sets. See Appendix C for specification details on the ACC:vvv command set.

Figure E-5. Task C.1—Establish control file procedures.

Form D-1: Feature Description Form

FEAT	
VALUE*	FEATURE DESCRIPTION
····	
50	Setup on known point for topographic surveying.
51.	Create a control point from a known point - Topographic Survey.
55	Create a control point from an unknown point - Topographic Survey.

* This is the one to six character alphanumeric name of the feature that the surveyor intends to input into the data collector and that will then be used to identify the feature.

Figure E-6. Topographic control points.

Figure E-8. POS:vvv command set.

SUGGESTED PROCEDURAL TASKS AS APPLIED TO LOUISIANA DEPARTMENT OF TRANSPORTATION'S AUTOMATED SURVEYING

- Task C.2 Establish data collection procedures for POS:vvv, position, command sets.
 - Step 1. Become familiar with ISIMS command set specifications.
 - Step 2. Select the POS:vvv command sets that are applicable to the survey task selected in Task A.2.
 - Step 3. Complete the Data Collector to UFF Worksheet (Form D-7) for each command set.

Select POS:vvv command sets. Initiate a definition of Terms/Variables sheet, Refer to Figure E-9.

SELECTED POS: VVV SETUP USETUP EFORE BSVERT

Figure E-7. Task C.2—Establish data collection procedures for position command sets.

Form D-7. Data Collector to UFF Worksheet

Data Tag: <u>POS</u>

T 10		DESCRIPTOR	1	DESCRIPTION	UFF	FIELD DATA
TAG VALUE	TAG	DEFAULT		OF DATA	DATA	COLLECTION
- THEOR	IAO	SYSTEM	DOT	COLLECTION REQUIREMENTS	FORMAT	PROCEDURES
SETUP	-	-	-	Set up instrument on known point	POSISETUP	CODE BLOCK
				Identify occupied point	OS:OSPTNO	INFO
				Identify BS	BS:BSPTNO	INFO2
				Record Horizontal circle sighted on BS	XXX: ppp hhh	MBHC
-						
Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7

The H_V_D or S_O_E format in Column 6 of the Data Collector to UFF Worksheet defines output specifications for the user's data collection to ISIMS conversion program.
 Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the user's data collector to ISIMS conversion program.

Form D-7. Data Collector to UFF Worksheet

Form D-7. Data Collector to UFF Worksheet

Data Tag: _____POS

		DESCRIPTOF	۱.	DESCRIPTION	UFF	FIELD DATA
TAG VALUE	TAG	DEFA	ULT	OF DATA COLLECTION	DATA	COLLECTION
THEOR	170	SYSTEM	DOT	REQUIREMENTS	FORMAT	PROCEDURES
USETUP				Set up instrument on unknown point	POS:USETUP	CODE BLOCK
	OS			Store occupied point in control file	OS:OSPTNO	INFO1
				Do not store occupied point in control file	OS:	INFO1
	BS			Back sight on known point	BS:BSPTNO	INF02
	FS			Foresight on known point	FS:FSPTNO	INFO3
				Measure distance and azimuth to backsight	XXX: ppp hhh vvv sss	MB1
				Measure distance and azimuth to foresight	XXX: ppp hhh vvv sss	MB2
Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7

The H_V_D or S_O_E format in Column 6 of the Data Collector to UFF Worksheet defines output specifications for the user's data collection to ISIMS conversion program.
 Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the user's data collector to ISIMS conversion program.

THO		DESCRIPTOR	l	DESCRIPTION	UFF	FIELD DATA
TAG VALUE	TAG	DEFAULT		OF DATA DATA COLLECTION FORMAT		COLLECTION
	ino	SYSTEM	DOT	REQUIREMENTS	FORMAT	PROCEDURES
HFORE	-	-	-	Pre-conditions SETUP command set for backsight azimuth	POS:SETUP BS VERT XXX:	CODE BLOCK MBHC
				Foresight establishes a new control point from a known point	POS:HFORE	CODE BLOCK
				Measure distance and angle to foresight	XXX: ppp hhh vvv sss	INFO1 MB
Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7

 The H_V_D or S_O_E format in Column 6 of the Data Collector to UFF Worksheet defines output specifications for the user's data collection to ISIMS conversion program.

Output specifications for the user's data collection to issues conversion program.
 Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the user's data collector to ISIMS conversion program.

Figure E-8. Continued

Data Tag: ______ POS

Figure E-8. Continued

Form D-7. Data Collector to UFF Worksheet

Data Tag: POS:

TAG	I	DESCRIPTOR		DESCRIPTION OF DATA	UFF DATA	FIELD DATA COLLECTION
VALUE	TAG	DEFA	DOT	COLLECTION	FORMAT	PROCEDURES
BSVERT:	BM PR	SYSTEM		REQUIREMENTS Prerequisite is POS-USETUP or POS-USETUP must be active Establish vertical control for computing elevations Identify backsight elevation Prism height Record BS elevation	POS:BSVERT BM:BMELEV PR:PRHT XXX:	CODE BLOCK
				elevation	ppp hhh vvv ddd	MBVC hhh vvv ddd
Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7

The H_V_D or S_O_E format in Column 6 of the Data Collector to UFF Worksheet defines output specifications for the user's data collection to ISIMS conversion program.
 Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the

user's data collector to ISIMS conversion program.

Figure E-8. Continued

SUGGESTED PROCEDURAL TASKS

Task C.3 - Prepare feature code list

- Step 1. Select features (Figure E-11) that are applicable to the survey task selected in Task A.2.
- Step 2. Complete the Feature Description Form (Form D-1) and Information Description Form (Form D-2).

Feature selection is based on the priority 1 and 2 type surveys noted in Task A.2, Figure E-2.

Figure E-10. Task C.3—Prepare feature code list.

DEFINITION OF TERMS/VARIABLES

BS = Backsight
 FS = Foresight

- OSPTNO = Occupied station point number value
- 4. BSPTNO = Backsight point number value
- 5. FSPTNO = Foresight point number value
- 6. XXX = UFF measurement block
- 7. MB = data collector measurement block
- MBn = Sequential set of data collector measurement blocks where n identifies a particular MB in the set
- 9. ppp = point number
- 10. hhh = horizontal circle value
- 11. vvv = vertical angle value
- 12. sss = slope distance
- 13. dv = data value
- 14. INFO1 = Information field from the code Blockrecord from the WILD GRE3 data collector
- 15. INFO2 = Information field from the code Blockrecord from the WILD GRE3 data collector
- 16. INFO3 = Information field from the code Blockrecord from the WILD GRE3 data collector
- 17. INFO4 = Information field from the code Blockrecord from the WILD GRE3 data collector
- 18. MBHC = The measurement block that records the horizontal circle
- 19. MBVC = The measurement block that records the distance and azimuth to a backsight BM.
- 20. BMELEV = The elevation value of the benchmark.
- 21. PRHT = The prism height value.

Figure E-9. Definition of terms/variables.

SURVEY FEATURES AND ACTIVITIES AS ADOPTED FROM THE LOUISIANA DEPARTMENT OF TRANSPORTATION'S AUTOMATED SURVEYING

Feature/Activity	Survey Type	<u>Class</u>
System Information Equipment Date Crew Weather	All All All All	Info Info Info Info
Project Information Project ID	All	Info
Horizontal Control		
Vertical Control Start Vrt Ctrl on known Start Vrt Ctrl on unknown Stop Vertical Control Depth Probe Length	Control Control Control Control Control	Vertical Vertical Vertical Vertical Vertical
Topographic Control Setup on known TCP Establish New TCP from known Triangulation	Торо Торо Торо	Control Control Control
Horizontal Alignment		
Vertical Alignment		
Cross Sections		
Cadastral Property Corner	Cadast	Property
Topography Box Culvert Building Curb Drop Inlet Fence Gate Guard Post Headwall Light Post Pipe Culvert	Торо Торо Торо Торо Торо Торо Торо Торо	Structure General Road Drainage General General Road Structure General Structure

Feature/Activity	Survey Type	<u>Class</u>
Polygon	Торо	Geometric
Road Edge	Торо	Road
Row Marker	Торо	Road
Shoulder Edge	Торо	Road
Sidewalk	Торо	General
Storage Tank	Торо	General
Track	Торо	Railroad
Traffic Control Box	Торо	Road
Tree	Торо	General
Water Well	Торо	General
Wood Line	Торо	General
Utility		
Appurtenance	Utility	General
Casing	Utility	
Cleanout	Utility	Sewer
Cross Connect Box	Utility	Tele
Fire Hydrant	Utility	Water
Guy Wire	Utility	Power,
		Tele
Junction Box	Utility	Power
		Tele
Line	Utility	Gas
		Petro
		Sewer
		Tele
		TV
Manhole	Utility	Sewer
		Storm
W .		Tele
Meter	Utility	Gas
		Water
Pole	Utility	Power
B 1 .		Tele
Regulator	Utility	Gas
		Petro
Test Box	Utility	Gas
Underground Transformer Valve	Utility	Power
valve	Utility	Gas
Vent	11-21-2-4	Water
venc	Utility	Petro
Feature Dependent Activities		
Continue	A11	General
Owner	A11	General
Offset	A11	General
Secondary line	A11	General
Start/Stop Curve	A11	General
UID	A11	General

Figure E-11. Selected feature list.

Figure E-11. Continued

Form D-1: Feature Description Form

FEAT	FEATURE DESCRIPTION
VALUE*	
102	Edge of pavement
103	Shoulder Edge
104	Curb
106	Guard post
107	Right-of-way
109	Traffic control box
115	Railroad tracks
130	Fence line
131	Gate
137	Sidewalk
140	Storage tank
150	Trees
151	Wood line
173	Storm sewer manhole
174	Drop Inlet
200	Gas line
201	Gas valve
202	Gas meter
203	Gas test box
209	Gas regulator
214	Vent
219	Pipeline regulator
224	Power Junction Box
225	Power Pole
226	Power Pole with Dead Man

* This is the one to six character alphanumeric name of the feature that the surveyor intends to input into the data collector and that will then be used to identify the feature.

Form D-1: Feature Description Form

FEAT VALUE*	FEATURE DESCRIPTION
227	Underground Transfer
233	Sanitary Sewer Manhole
234	Sanitary Cleanout
253	Telephone Manhole
254	Telephone Junction Box
255	Telephone Pole
256	Telephone Pole With Dead Man
257	Telephone Cross Connect Box
270	Water Line
271	Water Valve
272	Water Meter
274	Fire Hydrant
895	General Polygon
139	Light Post
145	Water Well
160	Pipe Culvert
161	Box Culvert
162	Headwalls
170	Storm Sewer Line
208	Pipeline Casing
210	Petroleum Pipeline
230	Sewer Line
250	Underground Telephone Line
302	Property Corner
135	Building
1	

* This is the one to six character alphanumeric name of the feature that the surveyor intends to input into the data collector and that will then be used to identify the feature.

SUGGESTED PROCEDURAL TASKS

- Task C.4 Establish data collection procedures for ISIMS defined FEAT:vvv command sets.
 - Step 1: Select the FEAT:vvv command sets that are applicable to the survey task selected in Task A.2.
 - Step 2: Complete the Data Collector to UFF Worksheet (Form D-7) for each command set.
 - All FEAT:vvv command sets are applicable.

Single Shot Features

Shoot only one point per feature.

1. Actual Single Shot

Used to locate simple single point features such as control points.

2. Symbolic Single Shot

Used to locate multiple shot features which will be represented by a predefined symbol.

Multiple Shot Features

Shoot more than one point per feature.

1. Simple Multiple Shot

Shoot all required points from a single setup.

2. Continuous Multiple Shot

Shoot as many of the required points as possible from each setup, before moving to the next setup. Assign related ID activity code

Reference the related activity code, ID, for interrupting the shooting of multiple shot features to:

- (1) move the instrument
- (2) shoot another feature.
- 3. Closed Multiple Shot

Feature Characteristic

Figure E-13. Task C.4—Establish data collection procedures for ISIMS defined FEAT:vvv command sets.

4. Primary Multiple Shot with Secondary Extensions

Reference the secondary and skip activity codes for shooting secondary extensions off of primary features.

- 5. Multiple Shot with Curves
 - a. Arcs 3 point definition
 - Angle only measurement
 - Angle and distance measurement
 - b. Arcs and Smooth Curves multipoint
 - START/STOP switch
 - Angle and distance measurement
 - Angle and distance measurement
 - ARC or smooth curve is feature characteristic
- Circles
 - 1. 1 Shot

Shoot the center of the circle and measure the diameter and define as feature characteristic.

2. 2 Shot

Shoot the center of the circle and one point on the circumference of the circle.

3. 3 Shot

Shoot three points on the circumference of the circle. ISIMS will calculate the center.

Reverse Direction Marker

A double measurement marker is recorded at the beginning of the feature when the surveyor intends to collect the data points in the reverse order from the direction of the survey.

- a. Distance measurement -----[ALL]
- b. Distance measurement -----[ALL]

Figure E-13. Continued

Data	Tag.	POS	

Form D-7. Data Collector to UFF Worksheet

Data Tag. POS

Form D-7. Data Collector to UFF Worksheet

Data Tag: _	00						Data Tag: _	05			•		
		DESCRIPTOR	1	DESCRIPTION	UFF	FIELD DATA	T 1 0		DESCRIPTOR	1	DESCRIPTION	UFF	FIELD DATA
TAG VALUE	TAG	DEFA	ULT	OF DATA COLLECTION	DATA	COLLECTION	TAG VALUE	TAG	DEFA	ULT	OF DATA COLLECTION	DATA	COLLECTION
	TAO	SYSTEM	DOT	REQUIREMENTS	FORMAT	PROCEDURES		140	SYSTEM	DOT	REQUIREMENTS	FORMAT	PROCEDURES
FEAT:	-	-		Identify feature	FEAT:vvv		FEAT:	-	-	-	Identify feature	FEAT:vvv	
GM:	SINGLE		-	Measurement record to point must include distance and azimuth	GM:SINGLE XXX: ppp hhh vvv ddd	Feature specific ISIMS defined ISIMS generated Measurement block	GM:	MULTI			Measurement record to each point along feature; distance and azimuth required	GM:MULTI XXX: ppp hhh vvv ddd XXX: ppp hhh vvv ddd XXX: ppp hhh vvv ddd	Feature specific ISIMS defined ISIMS generated Measurement block #1 ISIMS Generated Measurement block #2 ISIMS Generated Measurement block #n
Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7	Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7

The H_V_D or S_O_E format in Column 6 of the Data Collector to UFF Worksheet defines ×

* The H_V_D or S_O_E format in Column 6 of the Data Collector to UFF Worksheet defines

Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the user's data collector to UFF Worksheet defines the input specifications for the user's data collector to ISIMS conversion program.

** Column 7 of the Data Collector to UFF Worksheet defines
 ** Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the user's data collector to USIMS conversion program.

Figure E-14. FEAT:vvv command set.

57 Figure E-14. Continued

Data Tag: POS

Form D-7. Data Collector to UFF Worksheet

Data Tag: POS

		DESCRIPTOR	2	DESCRIPTION	UFF	FIELD DATA			DESCRIPTOR	2	DESCRIPTION	UFF	FIELD DATA
TAG VALUE	TAG	DEFA	ULT	OF DATA COLLECTION	DATA	COLLECTION	TAG VALUE	TAG	DEFA	ULT	OF DATA COLLECTION	DATA	COLLECTION
THEOL	IAG	SYSTEM	DOT	REQUIREMENTS	FORMAT	PROCEDURES	VALUE	TAG	SYSTEM	DOT	REQUIREMENTS	FORMAT	PROCEDURES
FEAT:	-	-	-	Identify feature	FEAT.vvv		FEAT:	-	-	-	ldentify feature	FEAT:vvv	
GM:	CIRCLE	-	-	Method #1 Measurement to center of circle must include distance and azimuth. Diameter of circle input Method #2 Measurement to center of circle and to a point on circumference	GM:CIRCLE CIRD:vvvv XXX: ppp hhh vvv ddd GM:CIRCLE CIRD:vvv XXX: ppp hhh vvv ddd XXX: ppp hhh vvv ddd	Feature specific ISIMS defined ISIMS generated Measurement block #1 Code block - info number Generated in conversion program ISIMS generated Measurement block #1 ISIMS generated Measurement	GM:	3PTCIR	-	-	Measurement blocks are at 3 points along the circumference of the circle.	GM:3PTCIR XXX: ppp hhh vvv ddd XXX: ppp hhh vvv ddd XXX: ppp hhh vvv ddd	Feature specific ISIMS defined ISIMS generated Measurement block #1 ISIMS generated Measurement block #2 ISIMS generated Measurement block #3
_						block #2							
Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7	Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7

* The H_V_D or S_O_E format in Column 6 of the Data Collector to UFF Worksheet defines output specifications for the user's data collection to ISIMS conversion program. •• Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the

user's data collector to ISIMS conversion program.

The H_V_D or S_O_E format in Column 6 of the Data Collector to UFF Worksheet defines output specifications for the user's data collection to ISIMS conversion program.
 Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the user's data collector to ISIMS conversion program.

.

Form D-7. Data Collector to UFF Worksheet

Figure E-14. Continued

Figure E-14. Continued

Data Tao. POS	Data	Tag	POS	
---------------	------	-----	-----	--

Form D-7. Data Collector to UFF Worksheet

Data Tag: POS

Form D-7. Data Collector to UFF Worksheet

THO		DESCRIPTOR	<u>.</u>	DESCRIPTION	UFF	UFF FIELD DATA				DESCRIPTOR	<u> </u>	DESCRIPTION	UFF	FIELD DATA
TAG VALUE	TAG	DEFA	ULT	OF DATA COLLECTION	DATA	COLLECTION	!	TAG VALUE	TAG	DEFA	ULT	OF DATA COLLECTION	DATA	COLLECTION
VALOD	170	SYSTEM	DOT	REQUIREMENTS	FORMAT	PROCEDURES		VALUE	IAG	SYSTEM	DOT	REQUIREMENTS	FORMAT	PROCEDURES
FEAT:	-	-	-	Identify feature	FEAT:vvv	CODE BLOCK - CODE NO.		FEAT:	-	-	-	ldentify feature	FEAT:vvv	CODE BLOCK - CODE NO.
ID:	-	-		Give arbitrary ID to continuous type features over multiple setups	ID:vvv	CODE BLOCK - INFO NO.		SK:	-			To recognize skips in continuous features or to return from secondary line measurements	SK:	Method #1 Code block - Code no. Note: Info blocks to take on characteristics of Feature Code Info Blocks Method #2 Double Measure- ment blocks showing same x,y coor dinates. The PADJ: command set will also be required.
Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7	1 [Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7

The H_V_D or S_O_E format in Column 6 of the Data Collector to UFF Worksheet defines output specifications for the user's data collection to ISIMS conversion program.
 Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the user's data collector to ISIMS conversion program.

The H_V_D or S_O_E format in Column 6 of the Data Collector to UFF Worksheet defines output specifications for the user's data collection to ISIMS conversion program.
 ** Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the user's data collector to ISIMS conversion program.

Figure E-14. Continued

,

Form D-7. Data Collector to UFF Worksheet

Form D-7. Data Collector to UFF Worksneet

		DESCRIPTO	2	DESCRIPTION	UFF	FIELD DATA		T	DESCRIPTO	र	DESCRIPTION	UFF	FIELD DATA
TAG VALUE	TAG	DEFA	AULT	OF DATA COLLECTION	DATA	COLLECTION	TAG VALUE	TAG	DEF	AULT	OF DATA COLLECTION	DATA	COLLECTION
		SYSTEM	DOT	REQUIREMENTS	FORMAT	PROCEDURES	TABOB	TAO	SYSTEM	DOT	REQUIREMENTS	FORMAT	PROCEDURES
FEAT: CR:	START ARC		-	Identify feature Locate an arc that will be defined by 3 points	FEAT:vvv CR:START ARC CR:END ARC	CODE BLOCK - CODE NO. Measurement Blocks MMM:hhh vvv ddd MMM:hhh vvv ddd	FEAT: CR:	START CURVE	-	-	Identify feature Locate a curve that will have multiple points generally applicable to long alignment curves		CODE BLOCK - CODE NO. Measurement Blocks XXX:hhh vvv ddd XXX:hhh vvv ddd XXX:hhh vvv ddd
				Generally applicable to small curves on turnouts, medians, etc.									
Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7	Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7

Data Tag: POS

* The H_V_D or S_O_E for mat in Column 6 of the Data Collector to UFF Worksheet defines Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the user's data collection to ISIMS conversion program.
 Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the user's data collector to ISIMS conversion program. The H_V_D or S_O_E format in Column 6 of the Data Collector to UFF Worksheet defines output specifications for the user's data collection to ISIMS conversion program.
 Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the user's data collector to ISIMS conversion program.

Figure E-14. Continued

Data Tag: POS

Figure E-14. Continued

8

Data Tag: POS Form D-7. Data Collector to UFF Worksheet Data Tag: POS Data Tag: POS													
		DESCRIPTOR		DESCRIPTION	UFF	FIELD DATA]	DESCRIPTOR		DESCRIPTION	UFF	FIELD DATA
TAG VALUE		DEFA	ULT	OF DATA COLLECTION	DATA	COLLECTION	TAG VALUE	TAG	DEFA	ULT	OF DATA COLLECTION	DATA	COLLECTION
VALUE	TAG	SYSTEM	DOT	REQUIREMENTS		VALUE	TAG	SYSTEM	DOT	REQUIREMENTS	FORMAT	PROCEDURES	
FEAT:	-	· _	-	Identify feature	FEAT:vvv	CODE BLOCK - CODE NO.	FEAT:	-	-		Identify feature	FEAT:vvv	CODE BLOCK - CODE NO.
CL:		-	-	To identify that a feature is a closed back to point #1		CODE BLOCK - INFO	BK:	-			Take measuremen data backwards during a setup	BK:	Double Measure- ment block where the xy coordinates are equal. The use of the PADJ: command set will also be required.
Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7	Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7

The H_V_D or S_O_E format in Column 6 of the Data Collector to UFF Worksheet defines output specifications for the user's data collection to ISIMS conversion program.
 Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the user's data collector to ISIMS conversion program.

* The H_V_D or S_O_E for mat in Column 6 of the Data Collector to UFF Worksheet defines

Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the user's data collector to UFF Worksheet defines the input specifications for the user's data collector to ISIMS conversion program.

Form D-7. Data Collector to UFF Worksheet

Form D-7. Data Collector to UFF Worksheet

		DESCRIPTOR	L	DESCRIPTION	UFF	FIELD DATA			DESCRIPTOR		DESCRIPTION	UFF	FIELD DATA		
TAG VALUE	TAG	DEFA	ULT	OF DATA COLLECTION	DATA	COLLECTION	TAG VALUE	TAG	DEFA	ULT	OF DATA COLLECTION	DATA	COLLECTION		
VALUE	TAG	SYSTEM	DOT	REQUIREMENTS	FORMAT	PROCEDURES	PROCEDURES	PROCEDURES	TABOD	170	SYSTEM	DOT	REQUIREMENTS	FORMAT	PROCEDURES
FEAT: Z:	YES NO	-	-	ldentify feature Take elevations Do NOT take elevations	FEAT:vvv Z:YES Z: NO XXX: hhh XXX: hhh	CODE BLOCK - CODE NO. Method # 1 Absense of Code block - system default Method #2 Feature specific Sequence of: Measurement block producing an azimuth only Measurement block distance and azimuth.	FEAT: CIRD:		-	_	Identify feature Define the diameter of a circle	FEAT:vvv CIRD:vvv	CODE BLOCK - CODE NO. Feature specific Method #1 Code Block - Info Method #2 Computation in conversion program		
Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7	Column 1	Column 2	Column 3	Column 4	Column 5	[*] Column 6	** Column 7		

Data Tag: POS

* The H_V_D or S_O_E format in Column 6 of the Data Collector to UFF Worksheet defines output specifications for the user's data collection to ISIMS conversion program. •• Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the

user's data collector to ISIMS conversion program.

Figure E-14. Continued

Data Tag: POS

* The H_V_D or S_O_E format in Column 6 of the Data Collector to UFF Worksheet defines output specifications for the user's data collection to ISIMS conversion program.

** Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the user's data collector to ISIMS conversion program.

Figure E-14. Continued

SUGGESTED PROCEDURAL TASKS

Task C.5 - Prepare feature specific specifications.

- Step 1. Complete a Feature Worksheet (Form D-3) INFO Worksheet (Form D-4) for every feature tag identified in Task C.4.
- Step 2. Complete the Feature Attribute Form (Form D-5) from the worksheets in Step 1.
- Step 3. Complete the Point Attribute Form (Form D-6) from the worksheets in Step 1.

See attached worksheets and forms.

Figure E-15. Task C.5—Prepare feature specific specifications.

62

		FORM	D-3: FEATU	IRE WORKSHEET			FORM D	-3: FEATURE WORKSHEE	T		FORM D-3:	FEATURE WOR	KSHEET
FEATURE	PROF	ERTY C	CORNER		FEATURE	EDG	E OF	PAVEMENT	FEATURE	W	DODLINE		
MANDATO	RY DATA	,			MANDATORY	<u>Y DATA</u>			MANDATOR	<u>(DATA</u>			
FI	EAT:	302			FEAT	r:	102		FEA?	C:/	151		
GI	1:	SINGLE MULTI	CIRC 3PTC		GM:		SINGLE MULTI	CIRCLE 3PTCIR	GM:		MULTI	CIRCLE 3PTCIR	
ORIGINA	L DATA		<u>USED</u> C		ORIGINAL	DATA		USED_OFTEN?	ORIGINAL	DATA		USED OFTEN?	
C: P/	?: IRD: ADJ: OFFSET ADJ: DEPTH		YES YES YES YES					YES NO YES NO YES NO YES NO		D: J: OFFSE J: DEPTH		YES NO YES NO YES NO YES NO	
F	EATURE DESC	RIPTORS			FEAT	TURE DESC	<u>CRIPTORS</u>		FEA	TURE DES	CRIPTORS		
1	TYPE	CORNER N	NARKER	6)	1)	TYPE	SURFACE	. 6)	1)	ΤΥΡΕ	WOODLINE		6)
2	·			7)	2)			7)	2)				7)
3				8)	3)			8)	3)				8)
4)			9)	4)			9)	4)				9)
5)				5)				5)				
		DESCRIPTORS	1		MEAS	SUREMENT	DESCRIPTORS		MEA	SUREMENT	DESCRIPTORS		
1)			6)	1)			6)	1)	ORIEN	UT .		6)
2)			7)	2)			7)	2)				7)
3)			8)	3)			8)	3)				8)
4)			9)	4)			9)	4)				9)
5)				5)				5)				
F	OR GM:-MUL1	<u>.</u>	<u>USED</u>	OFTEN?	FOR	GM:-MULI	<u>11</u>	USED OFTEN?	FOR	GM;-MUL	<u>.TI</u>	USED OFTEN?	
I	D:		YES	NO	ID:			YES NO	ID:			YES NO	
C	R:		YES	NO	CR:			YES NO	CR:			YES NO	
S	K:		YES	NO	SK:			YES NO	SK:			YES NO	
C	L:		YES	NO	CL:			YES NO	CL:			YES NO	
B	K:		YES	NO	BK :			YES NO	BK:			(YES) NO	

.

Figure E-16. Sample completed feature worksheet—Form D-3.

	FORM D-3: FEATURE WORKSHEET
FEATURE FENCE	
MANDATORY DATA	
FEAT: 130	· · · · · · · · · · · · · · · · · · ·
	NGLE CIRCLE
ORIGINAL DATA	USED OFTEN?
Z?: CIRD: PADJ: OFFSET PADJ: DEPTH	YES NO YES NO YES NO YES NO
FEATURE DESCRIPTO	<u>RS</u>
1)CLASS OF FO	ENCE LINE 6)
2) FENCE HEN	CHT 7)
3) FENCE TYP	<i>E</i> 8)
4)	9)
5)	
MEASUREMENT DESCR	<u>IPTORS</u>
1) JUNCTION	POINT 6)
2)	7)
3)	8)
4)	9)
5)	
FOR GM: -MULTI	USED OFTEN?
ID:	(YES) NO
CR:	YES NO
SK:	YES NO
CL:	YES NO
BK:	YES NO

Г	
· · ·	
6) 7) 8) 9)	
	6) 7) 8)

.

Figure E-16. Continued

FORM D-4: INFO WORKSHEET

-C

2

Figure E-16. Continued

Form D-5. Feature or Information Attribute Form.

4

Form D-5. Feature or Information Attribute Form

Feature Name	Acceptable Feature Descriptor Tags	Feature Descriptor Descriptions	Acceptable Values				Feature	Acceptable Feature	Feature Descriptor	Acceptable Values		Reg'd	
			values	definition	Reg'd Y/N	Default	Name	Descriptor Tags	Descriptions	values	definition	Y/N	Default
302	TYCORN	TYPE OF CORNER MARKER	CONMOD FEROD WHELAX RRTIE RRAIL WCODP GBARS FEPIPE	1 = CONCRETE MONUMENT 2 = IRON ROD 3 = WHEEL AXLE 4 = RR TIE 5 = RR RAIL 6 = WOOD POST 7 = GRATE BARS 8 = IRON PIPE	Y	Ν	102		TYPE OF SURFACE MATERIAL	ASPHALT CONC GRA VEL SHELL DIRT FBOOK	11 = ASPHALT 5 = CONCRETE 12 = GRAVEL 13 = SHELL 10 = DIRT 9999 = FIELD BOOK	Y	ASPHAL

Figure E-17. Sample completed feature attribute form—Form D-5.

Form D-5. Feature or Information Attribution Form

Form D-5. Feature or Information Attribute Form.

	Acceptable	Feature	Accer	otable Values			Feature	Acceptable Feature	Feature Descriptor	Acce	ptable Values		
Feature Name	Feature Descriptor	Descriptor	values	definition	Req'd Y/N	Default	Name	Descriptor Tags	Descriptions	values	definition	Regid Y/N	Defauit
151	Tags TYWOOD	Descriptions WOOD LINE TYPE	WOODS HARD LWOODS	1 = WOODS 2 = HARD WOODS 3 = LIGHT WOODS	Y	WOODS	130	CLASSL	CLASS OF FENCE LINE	PRIME SECOND	PRIMARY FENCE SECONDARY FENCE	Y	PRIME
			FBOOK	9999 = FIELD BOOK				FENCEH	FENCE HEIGHT	1.0 - 15.1	TENTHS OF FT	N	N
								TYPFEN	TYPE OF FENCE	BARBW BARMES HURCAN WOOD	1 - BARE WIRE 2 - BARB WIRE WITH MESH 3 - HURRICANE FENCE 4 - WOOD		
			-								i i i i i i i i i i i i i i i i i i i		
											l		

Figure E-17. Continued

Figure E-17. Continued

Feature	Acceptable Feature Descriptor	Feature Descriptor	-	table Values	Req'd	Defect
Name	Tags	Descriptions	values	definition	Y/N	Default
3	EQUIP	Equipment being used	TC2000	1 = Wild TC2000 and GRE3		
	DATE	Date	YYMMDD	Year Month Day		
	CREW	Field Party	SQUAD	Squad No.		
	WEATHER	Weather conditions	WCOND	1 = Sunny 2 = Cloudy 3 = Partly Cloudy 4 = Rain 5 = Cold		-
				,		
					ļ	

Form D-5: Feature or Information Attribute Form

-

.

Acceptable Point	Point Descriptor	Acceptable Values			
Descriptor Tags	Descriptions	Values	Definition	Req'd Y/N	Default
JUNCPT	A Junction Point	PNUM SNUM	The last primary line point number The last secondary line point number	N	N
TYPEPT	Point Type	POLE GUYWIR	Pole Guy wire	Y	N
VAULT	Vault	YES	vault exists	N	YES
APPURT	Appurtenance	YES	Exists	N	YES
ORIENT	Orientation	YES	Next measurement point indicates orientation	N	YES
CALC	Calculated point	YES	next measurement point was calculated	Ν	YES

Figure E-18. Point attribute information—Form D-6.

- Step 1. Detail the X Y Z or S O E file convention for each feature in column 6 of the Data Collector to UFF Worksheet (Form D-7). This represents the feature oriented data file that will interface to outside applications.
- Step 2. Detail the H_V_D or S_O_R file convention for each feature in column 6 of the Data Collector to UFF Worksheet (Form D-7). This will represent command sets as they are input into ISIMS. A good understanding of ISIMS processing is required.
- Step 3. Detail the field survey data collection records for each feature in column 7 necessary to create the H_V_D or S_O_R format detailed in Step 2 above.

Louisiana will use only the H_V_D file convention.

The three topographic survey control points do not require Step 1 definition as they are used by ISIMS in computing x,y,z values.

Refer to the completed Form D-7 for these three data collector to H V D conversion definitions.

In Louisiana, an alternate form type was used for detailing the H_V_D and X_Y_Z tag sequences. Figure E-21 describes the H_V_D and X_Y_Z relationship. Figure E-22 describes the H_V_D and data collector relationship.

Figure E-19. Task C.6—Establish data collection procedures for features.

Data Tag:

Form	D_{-7}	Data	Collector	to LIFE	Worksheet

Data Tag: .

Data Tag							Data Tug						
	1	DESCRIPTOR		DESCRIPTION	. UFF	FIELD DATA]	DESCRIPTOR		DESCRIPTION	UFF	FIELD DATA
TAG	710	DEFA	ULT	OF DATA	DATA	COLLECTION	TAG VALUE	TAG	DEFA	ULT .	OF DATA COLLECTION	DATA	COLLECTION
VALUE	TAG	SYSTEM	DOT	COLLECTION REQUIREMENTS	FORMAT	PROCEDURES	TABOL	IAU	SYSTEM	DOT	REQUIREMENTS	FORMAT	PROCEDURES
50					H_V_D for mat only		51					H_V_D for mat only	
				SETUP over known point	POS:SETUP	CODE BLOCK CODE NO. = 50					Pre-condition Code 50 established	POS:SETUP OS:vvv BS:vvv	
				Occupied point	OS:SETUP	CODE BLOCK INFO1 = OSPTNO					Establish new control point	H_V_D: HFORE:	CODE BLOCK CODE NO. = 51
				BS point	BS:BSPTNO	CODE BLOCK INFO2 = BSPTNO					from known point		
				Record horizontal circle	H_V_D: ppp hhh vvv ddd	MB BSPTNO hhh			1		Record distance and azimuth	H_V_D: ppp hhh vvv ddd	MB CODE BLOCK-INFO1 hhh vvv ddd
						Acceptable: MB					Close horizon	ACC:HREPS	MB CODE BLOCK-INFO1 hhh
					ppp hhh vvv ddd	BSPTNO hhh vvv ddd						ppp hhh vvv ddd H_V:	MB BSPTNO
												ppp hhh vvv ddd	hhh
											Store in Control file	Future Enhancement	Presently Manual
Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7	Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7

The H_V_D or S_O_E format in Column 6 of the Data Collector to UFF Worksheet defines output specifications for the user's data collection to ISIMS conversion program.
 Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the user's data collector to ISIMS conversion program.

×

1

Form D-7. Data Collector to UFF Worksheet

The H_V_D or S_O_E format in Column 6 of the Data Collector to UFF Worksheet defines, output specifications for the user's data collection to ISIMS conversion program. ** Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the user's data collector to ISIMS conversion program.

Data Tag:		Form D-7	. Data Colle	ctor to UFF Work:	sheet		Data Tag: _	FEAT	Form D-	7. Data Coll	ector to UFF Worl	ksheet ,	
TAG		DESCRIPTO		DESCRIPTION	UFF	FIELD DATA	THE	DESCRIPTOR		2	DESCRIPTION	UFF	FIELD DATA
VALUE	TAG	DEFA	AULT	OF DATA COLLECTION	DATA	COLLECTION	TAG VALUE		DEF	AULT	OFDATA	DATA	COLLECTION
	IAO	SYSTEM	DOT	REQUIREMENTS	FORMAT	PROCEDURES	VALUE	TAG	SYSTEM	DOT	COLLECTION REQUIREMENTS	FORMAT	PROCEDURES
55				Pre-condition Known BS and FS points	H_V_D for mat only		55 continued				Close Horizon	ACC:HORIZON HTOLR:5.0 ATOLR:5.0	
				Establish new CP from unknown point	POS:USETUP	CODE BLOCK CODE NO 55						ACC:HREPS I_H_V:	МВ
				Occupied point	OS:OSPTNO	CODE BLOCK INFO1 - OSPTNO						ppp hhh vvv ddd H_V	hhh MB
				BS point	BS:BSPTNO	CODE BLOCK INFO2 - BSPTNO						ppp hhh vvv ddd	hhħ
				FS point	FS:FSPTNO	CODE BLOCK INFO3 - PSPTNO					Store in Control File	Future Enhancement	Presently Manual
				Record distance and azimuth	H_V_D: ppp hhh vvv ddd	MB BSPTNO hhh vvv ddd							
				Record distance and azimuth	H_V_D: ppp hhh vvv ddd	MB FSPTNO hhh vvv ddd							
Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7	Column 1	Column 2	Column 3	Column 4	Column 5	* Column 6	** Column 7

* The H_V_D or S_O_E format in Column 6 of the Data Collector to UFF Worksheet defines Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the user's data collector to UFF Worksheet defines the input specifications for the user's data collector to ISIMS conversion program.

.

The H_V_D or S_O_E format in Column 6 of the Data Collector to UFT Worksheet defines output specifications for the user's data collection to ISIMS conversion program.
 Column 7 of the Data Collector to UFF Worksheet defines the input specifications for the user's data collector to ISIMS conversion program.

Figure E-20. Continued

Figure E-20. Continued 1

FEATURE PROPERTY CORNER

HVD FORMAT	X Y Z FORMAT
IDENTIFY FEATURE FEAT: 302	IDENTIFY FEATURE FEAT: 302
DEFINE GEOMETRY CM: SINGLE	DEFINE GEOMETRY GM: SINGLE
(1) DESCRIPTOR TAGS TYCORN:	(1) DESCRIPTOR TAGS TYCORN:
(2) EACH POINT IS A FEATURE HVD:	EACH POINT IS A FEATURE XYZ:
REPEAT (2) FOR MULTIPLE FEATURES WITH REPEAT (1) FOR MULTIPLE FEATURES WITH	I SAME TYCORN: I DIFFERENT TYCORN:
FEATURE EDGE OF PAVEMENT	
HVD FORMAT	XYZ FORMAT
IDENTIFY FEATURE FEAT: 102	IDENTIFY FEATURE FEAT: 102
DEFINE GEOMETRY GM: MULTI	DEFINE GEOMETRY GM: MULTI
DESCRIPTOR TAGS TYPMAT:	DESCRIPTOR TAGS TYPMAT:
SET USER ID IF FEATURE REQUIRES MULTIPLE SETUPS	
ID: (USER ID) SET BACKWARE FLAG IF APPLICABLE	
BK: YES . TO DEFINE A STRAIGHT LINE	TO DEFINE A STRAIGHT LINE
HVD: TO DEFINE AN ARC	XYZ: TO DEFINE AN ARC
CR: STARTA HVD:	CR: STARTA XYZ:
HVD:	XYZ:
HVD: CR: STOPA	XYZ: CR: STOPA
TO DEFINE A CURVE CR: STARTC	TO DEFINE A CURVE CR: STARTC
HVD:	XYZ:
HVD : HVD :	XYZ: XYZ:
CR: STOPC	CR: STOPC
TO NOT CONNECT THE LINE	TO NOT CONNECT THE LINE
TO THE NEXT POINT SK: SKIP	TO THE NEXT POINT SK: SKIP
HVD:	XYZ:

HVD FORMAT IDENTIFY FEATURE FEAT: 151 DEFINE GEOMETRY BM: MULTI SET USER ID IF FEATURE REQUIRES MULTIPLE SETUPS ID: (USER ID) SET BACKWARD FLAG IF APPLICABLE BK: YES DESCRIPTOR TAGS TYWOOD: DEFINE WOODLINE FACE ORIENT: YES HVD: DEFINE WOODLINE HVD: TO NOT CONNECT THE LINE TO THE NEXT POINT SK: SKIP HVD: TO CONNECT THE FIRST AND LAST POINTS CL: CLOSED FEATURE FENCE HVD FORMAT IDENTIFY FEATURE FEAT: 130 DEFINE GEOMETRY GM: MULTI DESCRIPTOR TAGS FENCEH: TYPFEN: SET USER ID IF FEATURE REQUIRES MULTIPLE SETUPS ID: (USER ID) SET BACKWARD FLAG IF APPLICABLE BK: YES PRIMARY FENCE LINE CLASSL: PRIME HVD: LEAVE PRIMARY JUNCPT: PNUM SECONDARY FENCE LINE CLASSL: SECOND HVD: RETURN TO PRIMARY CLASSL: PRIME SK: SKIP JUNCPT: PNUM HVD: TO NOT CONNECT THE LINE TO THE NEXT POINT SK: SKIP HVD: TO CONNECT THE FIRST AND LAST POINTS

FEATURE WOODLINE

XYZ FORMAT HVD FORMAT IDENTIFY FEATURE FEAT: 151 IDENTIFY INFORM DEFINE GEOMETRY INFO: 3 BM: MULTI DESCRIPTOR TAGS EQUIP: DATE: DESCRIPTOR TAGS CREW: TYWOOD: DEFINE WOODLINE FACE WEATHER: ORIENT: YES DEFINE WOODLINE

XYZ: TO NOT CONNECT THE LINE TO THE NEXT POINT SK: SKIP XYZ: TO CONNECT THE FIRST AND LAST POINTS CL: CLOSED

FORMAT

XYZ:

IDENTIFY FEATURE FEAT: 130

DEFINE GEOMETRY GM: MULTI

DESCRIPTOR TAGS FENCEH: TYPFEN:

PRIMARY FENCE LINE CLASSL: PRIME

LEAVE PRIMARY JUNCPT: PNUM

SECONDARY FENCE LINE CLASSL: SECOND

RETURN TO PRIMARY CLASSL: PRIME SK: SKIP JUNCPT: PNUM

TO NOT CONNECT THE LINE TO THE NEXT POINT SK: SKIP HVD:

TO CONNECT THE FIRST AND LAST POINTS CL: CLOSED

Figure E-21. Sample of feature/information codes in UFF format.

CL: CLOSED

INFO SYSTEM INFORMATION

NFORMATION	
	XYZ FORMAT
MATION	IDENTIFY INFORMATION
	INFO: 3
s	DESCRIPTOR TAGS
	EQUIP:
	DATE:
	CREW:
	WEATHER :
`	

```
FEATURE PROPERTY CORNER
```

```
HVD FORMAT
```

LOUISIANA WILD TC2000

```
IDENTIFY FEATURE
FEAT: 302
```

CODE BLOCK 302

PREDEFINED

```
DEFINE GEOMETRY
GM: SINGLE
```

 DESCRIPTOR TAGS TYCORN:
 EACH POINT IS A FEATURE HVD:

INFO BLOCK 1

MEASUREMENT BLOCK(S)

LOUISIANA WILD TC2000

CODE BLOCK 102

PREDEFINED

INFO BLOCK 1

INFO BLOCK 2

ANGLE ONLY

MEASUREMENT BLOCK(S)

MEASUREMENT BLOCK (PC)

MEASUREMENT BLOCK (POC)

MEASUREMENT BLOCK (PT)

REPEAT (2) FOR MULTIPLE FEATURES WITH SAME TYCORN: REPEAT (1) FOR MULTIPLE FEATURES WITH DIFFERENT TYCORN:

FEATURE EDGE OF PAVEMENT

HVD FORMAT

IDENTIFY FEATURE FEAT: 102

CEFINE GEOMETRY GM: MULTI

DESCRIPTOR TAGS TYPMAT:

SET USER ID IF FEATURE REQUIRES MULTIPLE SETUPS ID: (USER ID) SET BACKWARE FLAG IF APPLICABLE BK: YES TO DEFINE A STRAIGHT LINE HVD: TO DEFINE AN ARC CR: STARTA HVD: HVD: HVD: CR: STOPA TO DEFINE A CURVE CR: STARTC HVD HVD:

HVD: CR: STOPC TO NOT CONNECT THE LINE

TO THE NEXT POINT SK: SKIP HVD: ANGLE ONLY + ANGLE ONLY MEASUREMENT BLOCK (PC) MEASUREMENT BLOCK (PC) MEASUREMENT BLOCK (PT) ANGLE ONLY + ANGLE ONLY

DOUBLE MEASUREMENT BLOCKS 1 & 2

CLODE BLOCK 990 MEASUREMENT BLOCK(S)

FEATURE WOODLINE

HVD FORMAT

IDENTIFY FEATURE FEAT: 151 DEFINE GEOMETRY BM: MULTI SET USER ID IF FEATURE REQUIRES MULTIPLE SETUPS ID: (USER ID) SET BACKWARD FLAG IF APPLICABLE BK: YES DESCRIPTOR TAGS TYWOOD: DEFINE WOODLINE FACE ORIENT: YES HVD: DEFINE WOODLINE HVD: TO NOT CONNECT THE LINE TO THE NEXT POINT SK: SKIP HVD: TO CONNECT THE FIRST AND LAST POINTS CL: CLOSED

LOUISIANA WILD TC2000

CODE BLOCK 151

PREDEFINED

INFO BLOCK 3

DOUBLE MEASUREMENT BLOCKS 1 & 2

INFO BLOCK 1

MEASUREMENT BLOCK 1

MEASUREMENT BLOCK(S)

CODE BLOCK 990 MEASUREMENT BLOCK(S)

INFO BLOCK 2

Figure E-22. Sample of feature/information code data collector to H_V_D .

FEATURE FENCE

HVD FORMAT

IDENTIFY FEATURE FEAT: 130

DEFINE GEOMETRY GM: MULTI

DESCRIPTOR TAGS FENCEH: TYPFEN:

ζ

SET USER ID IF FEATURE REQUIRES MULTIPLE SETUPS ID: (USER ID)

SET BACKWARD FLAG IF APPLICABLE BK: YES

PRIMARY FENCE LINE CLASSL: PRIME HVD:

LEAVE PRIMARY JUNCPT: PNUM

SECONDARY FENCE LINE CLASSL: SECOND HVD:

RETURN TO PRIMARY CLASSL: PRIME SK: SKIP

JUNCPT: PNUM HVD:

TO NOT CONNECT THE LINE TO THE NEXT POINT SK: SKIP HVD:

TO CONNECT THE FIRST AND LAST POINTS CL: CLOSED

INFO BLOCK 3

LOUISIANA WILD TC2000

CODE BLOCK 130

PREDEFINED

INFO BLOCK 1

INFO BLOCK 2

INFO BLOCK 4

PREDEFINED MEASUREMENT BLOCK(S)

CODE BLOCK 991

CODE BLOCK 991

CODE BLOCK 991

CODE BLOCK 990

MEASUREMENT BLOCK(S)

MEASUREMENT BLOCK(S)

MEASUREMENT BLOCK(S)

DOUBLE MEASUREMENT BLOCKS 1 & 2

INFO ENVIRONMENT

WEATHER:

 HVD FORMAT
 LOUISIANA WILD TC2000

 IDENTIFY INFO
 INFO: 3

 DESCRIPTOR TAGS
 EQUIP:

 DATE:
 INFO BLOCK 1

 CREW:
 INFO BLOCK 3

Figure E-22. Continued

igure E-22. Continuea

INFO BLOCK 4

73

Figure E-22. Continued

- Task C.7 Prepare program design for converting each fighture from the agency's data collection format to an unprocessed UFF format.
 - Step 1. Copy column 7 from the Data Collector to UFF Worksheet (Form D-7) to column 1 of the Conversion Program Guideline worksheet (Form D-8).
 - Step 2. Copy column 6 from the Data Collector to UFF Worksheet (Form D-7) to column 3 of the Conversion Program Guideline Worksheet (Form D-8).
 - Step 3. Complete column 2 at the Conversion Program Guideline Worksheet (Form D-8), by describing the correlation between the input in column 1 and the output in column 3.

Form D-8 has been completed for the five (5) sample codes used in Task C.5 and Task C.6. Refer to Figure E-24 for completed D-8 forms.

Figure E-23. Task C.7—Convert data collector format to UFF-HVD.

			10(11)0	. conversion rrogram ourdennes worksheet.	
FIELD DATA COLLECTION PROCEDURES	CORRELATION	RAW SURVEY UFF DATA FORMAT	FIELD DATA COLLECTION	CORDELATION	RAW SURVEY
LOUISIANA WILD/TC2000 CODE BLOCK 102	Create FEAT:102 command set	HVD FORMAT IDENTITY FEATURE FEAT: 102	PROCEDURES	CORRELATION	UFF DATA FORMAT
PREDEFINED	Create GM:MULTI command set	DEFINE GEOMETRY GM: MULTI DESCRIPTOR TAGS	LOUISIANA WILD/TC2000 CODE BLOCK 151	Create FEAT:151 command set	HVD FORMAT IDENTITY FEATURE FEAT: 105
INFO BLOCK 1 = aaa INFO BLOCK 2 = bbb	Create TYPMAT:aaa feature description command set	TYPMAT: SET USER ID IF FEATURE	PREDEFINED	Create GM:MULTI command set	DEFINE GEOMETRY GM: MULTI
	Create ID:bbb feature description command set	REQUIRES MULTIPLE SETUPS	INFO BLOCK 1 = aaa	Create TYWOOD:aaa descriptor set	DESCRIPTOR TAG TYWOOD
DOUBLE MEASUREMENT BLOCKS 1 & 2	lf MB1xy = MB2xy, Create BK:YES	ID: (USER ID) SET BACKWARD FLAG IF APPLICABLE	INFO BLOCK 2 - bbb	Create CL:CLOSED command set	TO CONNECT THE FIRST AND LAST POINTS CL: CLOSED
		BK: YES TO DEFINE A STRAIGHT LINE	INFO BLOCK $3 = ccc$	Create ID:ccc descriptor set	SET USER ID IF FEATURE REQUIRES MULTIPLE SETUPS ID: (USER ID)
MEASUREMENT BLOCK(S)	MBn	HVD: TO DEFINE AN ARC	DOUBLE MEASUREMENT BLOCKS 1 & 2	MB1xy=MB2xy create BK:YES command set	SET BACKWARD FLAG IF APPLICABLE BK: YES
ANGLE ONLY MEASUREMENT BLOCK (PC) MEASUREMENT BLOCK(POC)	Create CR:START ARC command set P.C MBn P.O.C MB(n+1)	CR:START ARC HVD: HVD:	MEASUREMENT BLOCK 1	Create ORIENT:YES point descriptor set MB1	DEFINE WOODLINE FACE ORIENT: YES
MEASUREMENT BLOCK (PT)	Create CR:END ARC command set P.T MB(n+2)	HVD: CR: END ARC TO DEFINE A CURVE	MEASUREMENT BLOCK(S)	MBn	HVD: DEFINE WOODLINE HVD:
ANGLE ONLY ANGLE ONLY	Create CR:START CURVE command set	CR: START CURVE	CODE BLOCK 990	Create SK:SKIP command set	TO NOT CONNECT THE LINE TO THE NEXT POINT SK: SK IP
MEASUREMENT BLOCK (PC) MEASUREMENT BLOCK(POC MEASUREMENT BLOCK(PT) ANGLE ONLY	P.C MBn P.O.C MB(n+m) P.T MB(n+m+1) Create (READ) CUBVE	HVD: HVD: HVD: CR: END CURVE	MEASUREMENT BLOCK(S)	MBn	HVD:
ANGLE ONLY CODE BLOCK 990	Create CR:END CURVE Create SK:SKIP point description set	TO NOT CONNECT THE LINE TO THE NEXT POINT SK: SK IP			
MEASUREMENT BLOCK(S)	MBn	HVD:			

Form D-8. Conversion Program Guidelines Worksheet.

Form D-8. Conversion Program Guidelines Worksheet.

Figure E-24. Completed conversion program specifications form.

Figure E-24. Continued

Form D-8	Conversion Program Guidelines Worksheet.				
FIELD DATA COLLECTION PROCEDURES	CORRELATION	RAW SURVEY UFF DATA FORMAT			
LOUISIANA WILD/TC2000 CODE BLOCK 130 FEATURE PREDEFINED	Create FEAT:130 command set Create GM:MULT1 command set	HVD FÖRMAT IDENTITY FEATURE FEAT: 130 DEFINE GEOMETRY GM: MULTI	Form D-8	Conversion Program Guidelines Worksheet.	
INFO BLOCK 1 = aaa INFO BLOCK 2 = bbb INFO BLOCK 3 = ccc	Create FENCEH:aaa feature descriptor set Create TYPFEN:bbb feature descriptor set Creates CL:CLOSED command set	DESCRIPTOR TAGS FENCEH: TYPFEN: CONNECT FIRST & LAST POINTS	FIELD DATA COLLECTION PROCEDURES	CORRELATION	RAW SURVEY UFF DATA FORMAT
INFO BLOCK 4 = ddd DOUBLE MEASUREMENT: BLOCKS 1 & 2 FEATURE PREDEFINED MEASUREMENT BLOCK(S) CODE BLOCK 991	Create 1D:ddd feature descriptor set MB1xy - MB2xy, create BK:YES command set MB2 creates CLASSL:PRIME descriptor set MBn Creates JUNCPT:ppp point descriptor set	CL.CLOSED SET USER ID IF FEATURE REQUIRES MULTIPLE SETURS ID: (USER ID) SET BACKWARD FLAG IF APPLICABLE BK: YES PRIMARY FENCE LINE CLASSL: PRIME HVD LEAVE PRIMARY JUNCPT: PNUM SECONDARY FENCE LINE	LOUISIANA WILD/TC2000 CODE BLOCK 3 INFO BLOCK 1 = aaa INFO BLOCK 2 = bbb INFO BLOCK 2 = cc INFO BLOCK 4 = ddd	Create INFO:3 command set Create EQUIP:aaa information descriptor set Create DATE:bbb information descriptor set Create CREW:ccc information descriptor set Create WEATHER:ddd information descriptor set	H_V_D FORMAT IDENTIFY INFORMATION INF0:3 DESCRIPTOR TACS BQUIP: DATE CREW: WEATHER:
MEASUREMENT BLOCK(S) CODE BLOCK 991	and CLASSLSECOND MBn Creates CLASSLPRIME feature descriptor set	CLASSL: SECOND HVD: RETURN TO PRIMARY			
MEASUREMENT BLOCK(S)	MBn	SK: SKIP JUNCPT: PNUM HVD: TO NOT CONNECT THE LINE TO THE NEXT POINT			Ĩ.
CODE BLOCK 990 MEASUREMENT BLOCK(S)	Creates SK:SKIP command MBn	SK: SKIP HVD:			Te

Form D-8. Conversion Program Guidelines Worksheet.

Figure E-24. Continued

Figure E-24. Continued

SUGGESTED PROCEDURAL TASKS

Task D. Incorporate, design, write and/or embellish ISIMS software modules.

Step 1. Review demonstrators 20-21G, 20-21W and 20-21L (see Appendix G) and corresponding program documentat

ISIMS - INTEGRATED SURVEY INFORMATION MANAGEMENT SYSTEM GENERAL DEMONSTRATOR MENU

MODULE	DESCRIPTION
1.	DOWNLOAD THE FIELD DATA
2.	CONVERT DATA COLLECTOR FORMATTED TOPO DATA TO UFF-HVD
3.	CONVERT DATA COLLECTOR FORMATTED X-SEC DATA TO UFF-SOE
4.	PLOT UFF-HVD OR UFF-XYZ
5.	PRINT UFF-HVD OR UFF-XYZ
6.	PRINT UFF-SOE CROSS SECTIONS
7.	CONVERT UFF-SOE CROSS SECTIONS TO RDS FORMAT
8.	EDIT DATA
9.	CONVERT DATA FROM UFF-HVD TO UFF-XYZ
Α. ΄	PRINT A FILE
В.	INSTALL NEW SET OF FEATURES
С.	CONTROL FILE DATA

Step 2. Select the computer(s) that will do the survey data processing.

Step 3. Fill modules 1 and 8 (see above) with communications and editor software respectively.

Step 4. Rewrite (or possibly modify) programs for modules 2 and 3 to suit agency needs.

Step 5. Modify module 5 to accommodate the agency's particular plotter.

Step 6. Embellish any module. For example, module 9 could be modified to delete commands BCK: and ID: Also, make minor coding changes due to differences in FORTRAN77/BASIC across computers.

Step 7. Add modules, specifically, those that transform UFF data to a roadway engineering application or CADD format.

Project 20-21 has developed the above as part of the alpha test site. See Appendix G for Louisiana Demonstration. See Appendix H for software documentation.

Figure E-25. Task D—Incorporate, design, write and/or embellish ISIMS software modules.

- 7

APPENDIX F

SURVEY FEATURES AND ACTIVITIES

The types of surveys usually performed by most state DOT's include the following: control, topography, horizontal alignment, vertical alignment, cross-sections, cadastral, and utility. ISIMS has the ability to allow processing of all these types of surveys with appropriate use of Appendix D (ISIMS Feature Design and Installation Guidelines).

As part of the ISIMS installation process for any of these types of surveys, the user should formulate a set of survey features and activities to be incorporated into ISIMS. Figure F-1 is a set of one hundred and twenty-five (125) survey features and activities, organized by survey type, that can aid the user in the installation of ISIMS for his agency. Additional features or activities can be defined by the user when completing Forms D-1 through D-8. ISIMS is not limited to this list, nor is this list ISIMS-specific. Rather, it can be used as a guide for installing ISIMS for a specific surveying task for a particular agency.

SURVEY FEATURES AND	ACTIVITIES		Feature/Activity	Survey Type	<u>Class</u>
Feature/Activity	<u>SurveyType</u>	<u>Class</u>	Cross Sections Originals Drainage	X Secs X Secs	Road Hydro
System Information					
Equipment	A11	Info	Cadastral	Cadast	Property
Date	A11	Info	Easement Line		
Crew	A11	Info	Property Corner	Cadast	Property
Weather	All	Info	Propery Line	Cadast	Property
Data Transmission ID	A11	Info	Row Line Section Corner	Cadast Cadast	Property Boundary
Project Information					
Project ID	A11	Info	Topography	-	Geometric
Accuracy Specs	A11	Info	Alignment	Торо	Geometric
			Annotation	Торо	
Horizontal Control			Bill Board	Торо	Road
Marker Type	Control	Horizontal	Body of Water	Торо	Hydro
Start on Monument	Control	Horizontal	Box Culvert	Торо	Structure
Start on Azimuth Marker	Control	Horizontal	Bridge	Торо	Structure
Setup on known Control Point	Control	Horizontal	Building	Торо	General
Establish new Control Point	Control	Horizontal	Canal	Торо	Hydro
End on Monument	Control	Horizontal	Catch Basin	Торо	Drainage
End on Azimuth Marker	Control	Horizontal	Cattle Guard	Торо	General
Side Shot	Control	Horizontal	Circle	Торо	Geometric
Reference	Control	Horizontal	Crossing Gate	Торо	Railroad
			Crossing Signal	Торо	Railroad
Vertical Control			Curb	Торо	Road
Start Vrt Ctrol on known	Control	Vertical	Driveway	Торо	General
Start Vrt Ctrl on unknown	Control	Vertical	Drop Inlet	Торо	Drainage
Stop Vertical Control	Control	Vertical	Fence	Торо	General
Benchmark	Control	Vertical	Fuel Pump	Торо	General
Temporary Benchmark	Control	Vertical	Gate	Topo	General
Side Shot	Control	Vertical	Guard Post	Торо	Road
Depth	Control	Vertical	Guard Rail	Торо	Road
Probe Length	Control	Vertical	Headwall	Торо	Structure
			Levee	Торо	Hydro
Topographic Control			Light Post	Торо	General
Setup on known TCP	Торо	Control	Marsh	Торо	Hydro
Establish New TCP from known	Торо	Control	Mile Post	Торо	Railroad
Triangulation	Topo	Control	Orchard	Торо	General
TTTMButueton			Pipe Culvert	Торо	Structure
Horizontal Alignment			Polygon	Торо	Geometric
Center Line	H Align	Design	Retaining Wall	Торо	Structure
VEHICE DING		0	Road Edge	Торо	Road
Vertical Alignment			Row Marker	Торо	Road
Ditch	V Align	Road	Running Water	Торо	Hydro
Ditch Backslope	V Align	Road	Shoulder Edge	Торо	Road
Profile	V Align	Road	Sidewalk	Topo	General
TTATTA					

Figure F-1. Type and class of feature/activity.

Figure F-1. Continued

78

Ì¢ 4

	i					
Feature/Activity	•	Survey Type	Class	Feature/Activity	Survey Type	<u>Class</u>
Silo	1	Торо	General	Valve	Utility	Gas
Slab	•	Торо	General		serrey	Water
Slope Wall	<u>`</u> .	Торо	Structure	Vent	Utility	
Storage Tank		Торо	General	vene	ourrey	Petro
Swamp		Торо	Hydro	Feature Dependent Activities		
Track		Торо	Railroad	Continue	A11	• •
Traffic Control Box		Торо	Road	Owner	All	General
Tree		Торо	General	Perpendicular Offset	A11 A11	General General
			oonorar	Restart	All	
Topography (cont'd)				Return	All	General
Underground Storage		Торо	General	Start/Stop Curve	All	General
Utility Line		Торо	Geometric	Related Feature Identification		General
Water Well		Торо	General	Related reacure identification	A11	General
Wood Line		Торо	General			
HOOD DING		Tobo	Generat		-	
Utility				Figure F-1. Continued		
Appurtenance		Utility	General			
Casing		Utility				
Cleanout		Utility	Sewer			
Cross Connect Box		Utility	Tele			
Depth		Utility	General			
Fire Hydrant		Utility	Water			
Guy Wire		Utility	Power,			
•		,	Tele			
Junction Box		Utility	Power			
			Tele			
Line		Utility	Gas			
		001110)	Petro			
			Power			
			Sewer			
			Tele			
			TV			
Manhole		Utility	Power			
Halliote		UCITICY	Sewer			
			Storm			
Meter		No. / 3 / 5	Tele			
netet		Utility	Gas			
Pole			Water			
FOLE		Utility	Power	4		
Dump Station		n	Tele			
Pump Station		Utility	Sewer			
Regulator		Utility	Gas			
Tath Day			Petro			
Test Box		Utility	Gas			
Transmission Tower		Utility	Power			
 Underground Transformer 		Utility	Power			

Figure F-1. Continued

APPENDIX G

USER'S GUIDE TO ISIMS DEMONSTRATORS

INTRODUCTION

One of the results of this project is three demonstrator applications of ISIMS. The applications are:

- 1. A generic application of ISIMS.
- 2. A Louisiana (LDOTD)-based application.
- 3. A Wisconsin (WDOT)-based application.

Each application runs on an IBM-XT compatible microcomputer, has up to 14 modules, has one module written in BASIC, has two modules that are to be filled with off-the-shelf proprietary software, and has FORTRAN 77 as the language for all other modules.

The function of each module is as follows:

wnload data from data collector to data process- microcomputer (IBM-XT compatible) nvert HVD data collector formatted data to UFF- D* nvert SOR** data collector formatted data to F-SOE***
D* nvert SOR** data collector formatted data to F-SOE***
F-SOE***
t UFF-HVD or UFF-XYZ data on a plotter ca- le of understanding the HPGL language (an HP 5A)
nt UFF-HVD or UFF-XYZ data
nt UFF-SOE cross-section data
nvert UFF-SOE cross-section data to RDS format
t any data
nvert UFF-HVD data to UFF-XYZ
nt a file
tall new set of features
ntrol file maintenance
t system

*HVD = Horizontal angle, slope angle, distance (comes from field data collection) **SOR = Station, offset, rod reading (comes from field data collection)

***SOE = Station, offset, elevation

Figure G-1 is a diagram of how field-collected data are converted to the UFF. Path 2 is never used because it is a small computation to get from the data collector to SOR and then SOE. SOR is never used except for archival purposes because it represents the original data. Module 2, Module 3, and Module 9 are the original data processing programs and their positions relative to the data are shown in Figure G-1.

The available demonstrator modules for Louisiana and Wisconsin are shown in Figure G-2. The number of modules (programs) required and their content may need to be modified for a specific surveying task. Usually, as soon as the data are put into a UFF format, modules and programs are available to further process the data.

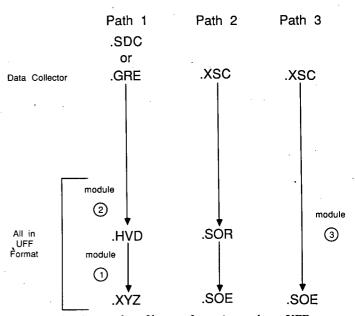


Figure G-1. Survey data file transformation paths to UFF.

MO

ISIMS - INTEGRATED SURVEY INFORMATION MANAGEMENT SYSTEM LOUISIANA DEMONSTRATOR MENU

DULE	DESCRIPTION
1	DOWNLOAD THE TC2000/GRE3 FIELD DATA
2	CONVERT TC2000/GRE3 COLLECTED TOPO TO UFF-HVD
з	NOT DEMONSTRATED
4	PLOT UFF-HVD OR UFF-XYZ
5	FRINT UFF-HVD OR UFF-XYZ
6	NOT DEMONSTRATED
7	NOT DEMONSTRATED
8	EDIT DATA
э	CONVERT DATA FROM UFF-HVD TO UFF-XYZ
A	PRINT A FILE
ø	EXIT THE SYSTEM

FOR ONE SET OF DATA ENTER SEVERAL OF THE NUMBERS ABOVE IN THE ORDER THAT YOU WANT THESE ACTIVITIES EXECUTED:

ISIMS	- INTEGRATED SURVEY INFORMATION MANAGEMENT SYSTEM WISCONSIN DEMONSTRATOR MENU
MODULE	DESCRIPTION
1	DOWNLOAD ANY SDC71 FIELD DATA
é	CONVERT SDC71 COLLECTED TOPO TO UFF-HVD
. 3	CONVERT SDC71 COLLECTED CROSS SECTIONS TO UFF-SOE
4	PLOT UFF-HVD OR UFF-XYZ
5	PRINT UFF-HVD OR UFF-XYZ
6	PRINT UFF-SOE CROSS SECTIONS
7	CONVERT UFF-SOE CROSS SECTIONS TO RDS FORMAT
8.	EDIT DATA
Э	CONVERT DATA FROM UFF-HVD TO UFF-XYZ
A	PRINT ANY FILE
ø	EXIT THE SYSTEM

FOR ONE SET OF DATA ENTER SEVERAL OF THE NUMBERS ABOVE IN THE ORDER THAT YOU WANT THESE ACTIVITIES EXECUTED:

Figure G-2. Available demonstrator modules for Louisiana and Wisconsin.

INSTALLING THE DEMONSTRATORS

To execute the demonstrators, it is necessary to install them on a microcomputer with a hard disk. Installation is a two-step process: (1) create a subdirectory called 20-21, and (2) copy the entire contents of each demonstrator disk onto the 20-21 subdirectory.

EXECUTING AN APPLICATION

After installation, there are three applications that can be run. To run an application, first move into the 20-21 subdirectory, then type in 20-21G, 20-21L, or 20-21W for the generic, Louisiana, and Wisconsin demonstrators, respectively, and then press the RETURN key.

At this point, the application is menu driven. By following the menu's instructions all modules can be investigated.

DEMONSTRATOR SIMILARITIES

There are several similarities across the three demonstrators that will apply to any ISIMS application structured in the manner of these demonstrators.

A. Modules 1 and 8 are activated by inserting calls to proprietary computer programs, into the system's driver routine. In the actual October 1986 demonstration in Louisiana, WORDSTAR was used as the editor in Module 8, and XTALK was used as the communications package in Module 1. In these three demonstrators, these modules are not filled, but on-line instructions are given to incorporate off-the-shelf packages into the systems.

B. Modules 2 and 3 are data collector and data collection procedure dependent, and as such, must be rewritten across agencies.

C. The demonstration software in Module 4 is dependent on the plotter's knowledge of HPGL (Hewlett Packard Graphics Language).

D. Software in Modules 4, 5, 6, 7, and 9 all accept UFF as input and so are applicable to any agency using ISIMS (except for the restrictions mentioned in Appen. H).

GENERIC DEMONSTRATOR DESCRIPTION

The purpose of the generic demonstrator is to guide the user who wants to create his own ISIMS application. Executing any module brings up screens that describe what the user needs to do (if anything) in order to make a working module.

Since the generic demonstrator was created as a means of documenting ISIMS implementation, those interested persons should execute 20-21G and read the on-screen documentation.

LOUISIANA DEMONSTRATOR DESCRIPTION

The purpose of the Louisiana demonstrator is to show how the contents of UFF-based data can be entered into a relatively primitive data collector (WILD GRE3-with no programming) and then converted to UFF, printed, and plotted. Relative to this demonstrator, modules 2, 4, and 5 were used. Module 2 is applicable only for users with a WILD GRE3 T2000 who employ the data entry conventions used by Louisiana to collect topo (refer to Appen. E and Appen. H for further information). The data entry conventions applied to the GRE3 allowed entry of data that covers several facets of the UFF-HVD. Because a somewhat complex procedure was applied to a primitive data collector, the programming of Module 2, which converts GRE3formatted data to UFF-HVD, was a long and complicated process. The level of this programming effort indicates that it may often be better to replace a primitive data collector with a more sophisticated preprogrammed one than to try to apply data collection conventions and write a format translation program for the primitive collector.

In this demonstrator, Modules 2, 4, 5, 9, and A are active; Modules 1 and 8 are to be filled with off-the-shelf software; and Modules 3, 6, and 7 are not applicable to the Louisiana demonstrator. Limitations under which the in-place modules operate are described in Appendix H.

WISCONSIN DEMONSTRATOR DESCRIPTION

The purpose of the Wisconsin demonstrator is twofold. First, it allows processing of topo data when the WILD T2000 is hooked to a second vendor's data collector (SDC71/HP71B from ABACUS). Second, it allows stand-alone use of the SDC71 in collecting cross sections with a rod and level in the standard station and offset method. Once this cross-section data is collected, it can be processed and converted into RDS input format.

Modules 2, 4, 5, and 9 are used to process topo. Modules 3, 6, and 7 are used to process cross sections. For topo, only a very small number of the data collection facilities allowed in the UFF-HVD were implemented. For both topo and cross sections, the survey computer program on the SDC71 was used directly and procedural instructions for data entry were supplied to the survey crew so that the ISIMS application software would properly interpret the data (refer to Appen. H). Limitations under which the in-place modules operate are described in Appendix H.

FILE NAMING IN THE DEMONSTRATORS

The demonstrators have been set up to input specifically named example data files. All Louisiana demonstrator example files are of the form LOUIGRE3.*. The Wisconsin demonstrator example files are named WISCSDCX.*. The file name suffixes for these two demonstrators and associated software conform to the file naming conventions documented in Appendix H.

To allow user-dictated input file naming, minor modifications to programs 20-21W.BAS and 20-21L.BAS are needed.

DEMONSTRATOR 20-21G SCREEN LISTINGS

Examples of the generic demonstrator (20-21G) screen listings describing what the user needs to do to make a working module follow.

DOWN LOAD THE FIELD DATA

ISIMS - INTEGRATED SURVEY INFORMATION MANAGEMENT SYSTEM GENERAL DENONSTRATOR MENU

MODULE DESCRIPTION

- 1. DOWNLOAD THE FIELD DATA
- 2. CONVERT DATA COLLECTOR FORMATTED TOPO DATA TO UFF-HVD
- 3. CONVERT DATA COLLECTOR FORMATTED X-SEC DATA TO UFF-SOE
- 4. PLOT UFF-HVD OR UFF-XYZ
- 5. PRINT UFF-HVD OR UFF-XYZ
- 6 PRINT UFF-SOE CROSS SECTIONS
- 7. CONVERT UFF-SOE CROSS SECTIONS TO RDS FORMAT
- 8. EDIT DATA
- 9. CONVERT DATA FROM UFF-HVD TO UFF-XYZ
- A. PRINT A FILE
- 8. INSTALL NEW SET OF FEATURES
- C. CONTROL FILE DATA

0 EXIT THE SYSTEM

FOR ONE SET OF DATA ENTER SEVERAL OF THE NUMBERS ABOVE IN THE ORDER THAT YOU WANT THESE ACTIVITIES EXECUTED: Survey data is collected in the field using a data collector. This device must have the ability to transfer data through a cable into a computer. RS-232 protocol is the recommended method of communication.

To transfer data from a data collector to a computer one needs:

- 1) a data collector loaded with data
- 2) the data collector must have software and a port to transfer data to the computer
- RS-232 cabling, or similar equipment, between the data collector and computer (possibly including an interface converter to RS-232).
- software on the computer that can receive data, and a port from which to receive it.
- 5) compatible RS-232 protocol between the devices sending and receiving data.

usually available on all data collectors, but may have to be written.

PRESS ANY KEY TO CONTINUE

The protocol for RS-232 connections includes compatibility relative

- baud rate,

to

1.

- number of data bits,

- parity, and

- number of stop bits.

The above four (4) parameters must be the same for the equipment being utilized.

On the receiving computer proprietary software is often used to perform this function. At this project's demonstration CROSSTALK XVI software was used on an IBM-PC. The communication software has been replaced by this document for the demonstration model.

CONVERT DATA COLLECTOR FORMATTED TOPO DATA TO UFF-HVD 2.

This module is designed to take TOPO data (or any data) collected in angle, angle, distance notation and convert it to UFF-HVD. This module is necessary when the output from the data collector is in a format different than UFF. The user must define a procedure for the collection of TOPO data and then always conform to its format. This procedure will then act as a specification for the creation of the corresponding software module. This software module is dependent upon both data collector and data collection procedure. When coding this module, data checking on FEAT: feature names and feature descriptor tags is recommended. Incorporation of the Louisiana demonstrator TAG file concept is suggested. See Module B for more information.

Configuring a data collection procedure and associated software is a large task. It can be avoided by using a UFF-based data collector.

PRESS ANY KEY TO CONTINUE

3. CONVERT DATA COLLECTOR FORMATTED CROSS SECTION DATA TO UFF-SOE

This module is designed to take cross section data (or any data) collected in station, offset, rod reading notation and convert it to the UFF-SDE. The module is necessary when the output from the data collector is in a format different than UFF. When collecting cross sections in this fashion, a collection procedure can be easily devised to pather appropriate data. The design and coding of the conversion routine will be a small task. This software module is dependent upon both data collector and data collection procedure.

Alternatively, this module could convert data into UFF-SDR. In this case, a UFF-SUR to UFF-SOE conversion propram would also be necessary.

The output file for this module in the Wisconsin demonstrator shows now cross section data can be configured in the UFF-SOE. Also, see Appendix H program CNVRTW documentation.

PRESS ANY KEY TO CONTINUE

4.

5.

PLOT UFF-HVD OR UFF-XYZ

Plotting survey data facilitate editing. This routine accepts either UFF-HVD or UFF-XYZ as input. The output is a plot with:

- points and their corresponding point numbers (should density 1) permit).##
- lines connecting points in a multipoint feature. 2)
- curves, not necessarily drawn, but at least, indicated by line typing or line color.

The demonstrator software is plotter specific. It requires a plotter with the Hewlett-Packard Graphics Language (HPGL).

+* In high density areas the point will be plotted but its corresponding point number will not appear. You may have points with no numbers beside them.

PRESS ANY KEY TO CONTINUE

PRINT UFF-HVD OR UFF-XYZ

Print-outs of survey data facilitate editing. This routine accepts either UFF-HVD or UFF-XYZ as input. Its output is a listing of the data. Due to the design of the UFF, out demonstrator makes a multi-columnar listing. For UFF-HVD input, corresponding X, Y, and optionally Z are calculated and orinted.

PRESS ANY KEY TO CONTINUE

PRINT UFF-SDE CROSS SECTIONS

Print-outs of survey data facilitate editing. This routine accepts either UFF-SOR or UFF-SOE as input. Its output is a listing of the data. Due to the design of the UFF, our demonstrator makes a multi-columnar listing. For UFF-SOR input corresponding elevations are also calculated and printed. This module can apply to all UFF-SDE and UFF-SOR data rather than just cross sections.

A plot routine for this data has not been included because cross section data can be quickly transformed into RDS format for generation of cross-section plots. Optionally, module 4 can be expanded to plot station and offset and another module added to plot cross sections.

PRESS ANY KEY TO CONTINUE

7. CONVERT UFF-SDE CROSS SECTION DATA TO RDS FORMAT

ISIMS can have several translation routines depending upon users' needs. In this demonstrator, cross section data was translated into RDS forwat (including job control for an IBM mainframe installation). This RDS formatted data can be used without modification in the RDS system. Other candidate translator routines can be written for:

1. INTERGRAPH

- C060
- 3. IGRDS

know the file-name of the data he wants to edit.

8.

9.

For this module off-the-shelf proprietary software can be used. In the projects' Detober 1986 demonstration in Louisiana, WORDSTAR was used. This demonstrator contains a non-proprietary editor. We recommend that the user substitute an editor with which ne is familiar. The user must

EDIT DATA

PRESS ANY KEY TO CONTINUE

CONVERT DATA FROM UFF-HVD TO UFF-XYZ

This routine takes angle, angle, distance data and transforms it into coordinates (X.Y, and optionally Z). In this process all POS: and PADJ: command sets are lost. Although not required, we recommend that ID: and BK: commands also be filtered out in this conversion. Dur demonstrator software does not do this ID: and BK: filtering.

Data in the UFF-XYZ format is in a form most likely to be used for transfer into applications.

A UFF-SOR to UFF-SOE conversion routine is an optional module that could be included by the user. It is not available in this demonstrator.

6.

PRINT A FILE

This routine allows printing of any file whose file name is known. This is a useful module, especially in the demonstrators. Here the user can print and compare any or all example data files. Comparison of the same data in different formats is a good exercise in learning the UFF. These example files show the same data.

Louisiana TOPO	Wisconsin TOPO	Wisconsin Cross Sections	Control
LOUIGRE3. GRE	WISESDEX. SDC	WISCSDCX.XSC	LOUI. CNT
LOUIGRE3. HVD	WISCSDCX.HVD	WISCSDCX.SOE	WISC. CNT
LOUIGRE3. XYZ	HISCSDCX.XYZ	WISCSDCX. RDS	

PRESS ANY KEY TO CONTINUE

Β.

INSTALL A NEW SET OF FEATURES

The UFF design allows the user to define his own set of features, associated feature descriptors, and a swall number of measurement point descriptors. Guidelines for this exercise are shown in Appendix D and Appendix E shows Louisiana as an example. Once this information is defined, it can be incorporated into ISIMS. ISIMS checks for user compliance when field data is examined. In the Louisiana demonstrator this information has been compiled in the TAG file and used in module 2 for input data checking. Since module 2 is data collector and data collection procedure dependent, the TAG file concept could be used by any user recoding module 2. Module 8 can be used to edit the TAG file.

Alternatively, the TAG file and its data checking facility can be incorporated directly on the data collector. This would be practical for a programmable data collector with software configured to output UFF.

PRESS ANY KEY TO CONTINUE

CONTROL FILE DATA

С.

In order to process UFF-HVD data and convert it to UFF-XYZ, the coordinates of the control points are necessary. In this demonstrator, it is assumed that the control survey has already been done and the control points have been adjusted. At this point all control points for the project are put into a control file for use in any module addressing a UFF-HVD data file. During the course of a project, as new control points are established, they should be added to the control file (#.CNT).

Processing of control surveys, automatic inclusion of control points in the control file and traverse adjustments are not modules in this demonstrator, but can be added at the users' discretion. The control file record layout is described in Appendix C.

PRESS ANY KEY TO CONTINUE

LISTINGS OF FILES USED IN DEMONSTRATION

The following example UFF files, as well as data collector files, are found in the demonstrators.

Louisiana - TOPO	Wisconsin TOPO	Wisconsin Cross Sections	
LOUIGRE3.GRE	WISCSDCX.SDC	WISCSDCX.XSC	
LOUIGRE3.HVD	WISCSDCX.HVD	·	
LOUIGRE3.XYZ	WISCSDCX.XYZ	WISCSDCX.SOE	
		WISCSDCX.RDS	
LOUI.CNT	WISC.CNT		
•			
TAG.	•		
	TOPO LOUIGRE3.GRE LOUIGRE3.HVD LOUIGRE3.XYZ LOUI.CNT	TOPOTOPOLOUIGRE3.GREWISCSDCX.SDCLOUIGRE3.HVDWISCSDCX.HVDLOUIGRE3.XYZWISCSDCX.XYZLOUI.CNTWISC.CNT	TOPOTOPOCross SectionsLOUIGRE3.GREWISCSDCX.SDCWISCSDCX.XSCLOUIGRE3.HVDWISCSDCX.HVDWISCSDCX.SOELOUIGRE3.XYZWISCSDCX.XYZWISCSDCX.RDSLOUI.CNTWISC.CNTWISCSDCX.RDS

File formats and content for the data collector files can be found in the GRE3 and SDCH user manuals and by reading the source code for programs CNVRTL.FOR, CNVRTW.FOR and CRSSEC.FOR found on the demonstrator disks. File format and content for UFF files are included in Appendixes C and H. Listings of these files are provided in the remainder of this appendix.

45	51
 +00000000 01+00142580 01+00142580 01+00104000 01+0010000000 01+00173390 01+00173390 01+00173390 01+00175391 01+001255919 01+001255919 01+001255919 01+001255919 01+001355919 01+001355990 	31. 81+88135819 331. 81+8815559 331. 81+8815559 331. 81+8815559 331. 81+8815559 331. 81+8815559 331. 81+88324556 331. 81+88324555 331. 81+883245555 331. 81+883245555 331. 81+883254555 331. 81+883254555 331. 81+88355555 331. 81+883555555 331. 81+883555555 331. 81+88355555 331. 81+88355555 331. 81+88355555 331. 81+88355555 331. 81+88355555 331. 81+88355555 331. 81+88355555 331. 81+883555555 331. 81+8835555555 331. 81+883555555 331. 81+883555555 331. 81+8835555555 331. 81+883555555 331. 81+885555555 331. 81+885555555 331. 81+885555555 331. 81+885555555 331. 81+8855555555 331. 81+885555555555555555555555555555555555
	104+08347500 104+08347500 104+08318358 104+08318358 104+030282545 104+03025151 104+03025151 104+03025151 104+030255154 104+03012513 104+030012513 104+030000000000000000000000000000000000
+08001704 +08001704 104+35959577 104+143555555 104+143555555 104+1552532 104+1552532 104+15558365 104+15558356 104+15558356 104+15518189 104+15518189 104+1551818955 104+357104055 104+355147377 104+155121337 104+1551233 104+155233 104+155233 104+155233 104+155233 104+155233 104+155233 104+155233 104+155233 104+155233 104+155233 104+155233 104+155233 104+155233 104+155233 104+155233 104+155233 104+155333 104+155333 104+15533 104+155333 104+155333 104+155333 104+1553	104+17325034 22 104+19154571 22 104+19154571 22 104+19155665 22 104+19155665 22 104+134514365 22 104+134514365 22 104+15466519 22 104+15565519 22 104+15565517 22 104+15565517 22 104+155655517 22 104+155655517 22 104+155655517 22 104+155659365 22 104+15565517 22 104+15565517 22 104+155655517 22 104+155655517 22 104+155655517 22 104+155655517 22 104+155655517 22 104+155655517 22 104+155655517 22 104+15565557528 104+15565557528 104+15565557528 104+15565557528 104+15565557528 104+15565557528 104+15565557528 104+1556557528 104+1556557528 104+15565557528 104+1556557528 104+1556557528 104+1556557528 104+1556557528 104+1556557528 104+1556557528 104+15565557528 104+1556557528 104+1556555758 104+1556557528 104+1556557528 104+1556557528 104+155655757 104+1556555758 104+1556557528 104+1556555758 104+1556555758 104+1556555758 104+1556555758 104+1556555758 104+1556555758 104+155655758 104+155655758 104+155655758 104+155655758 104+155655758 104+155655758 104+1556555758 104+1556555758 104+155655758 104+155655758 104+155655758 104+155655758 104+155655758 104+1556555758 104+155655758 104+155655758 104+1556555758 104+15565575758 104+15555555758 104+155555575758 104+155555575758 104+155555575758 104+155555575758 104+155555575758 104+155555575758 104+15555557575758 104+15555575758 104+155555757575758 104+155555757575757575757575757575757575757
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	10025-0000078 21 10025-0000078 21 10025-00000789 21 10025-00000789 21 10025-00000783 21 10035-00000783 21 10035-00000783 21 10035-00000788 21 10035-00000788 21 10035-00000788 21 10042-00000792 21 10042-00000793 21 10045-00000793 21 10045-000000793 21 10045-000000793 21 10045-000000793 21 10045-000000793 21 10045-000000793 21 10045-000000793 21 10045-00000793 21 10045-000000793 21 10045-000000793 21 10045-000000793 21 10045-00000793 21 10045-000000793 21 10045-000000793 21 10045-000000793 21 10045-00000793 21 10045-00000793 21 10045-00000793 21 10045-00000793 21 10045-00000793 21 10045-00000793 21 10045-00000793 21 10045-00000793 21 10045-000000793 21 10045-000000793 21 10045-000000793 21 10045-000000793 21 10045-000000793 21 10045-00000793 21 10045-000000793 21 10045-00000793 21 10045-000000793 21 10045-00000793 21 10045-000000793 21 10045-000000793 21 10045-00000793 21 10045-00000793 21 10045-000000793 21 10045-00000793 21 10045-000000793 21 10045-000000793 21 10045-00000793 21 10045-000000793 21 10045-000000793 21 10045-000000793 21 10045-000000793 21 10045-000000793 21 10045-00000793 21 10045-000000793 21 10045-000000793 21 10045-00000079000000000000000000000000000000
	42 +08001704 43 +00000017 44 +00000002 45 +0000 42 +080001704 43 +000000017 44 +00000002 45 +0000 221 104+35595595 22. 104+09016134 31. 01+00000006 51 +0012 221 104+13235553 22. 104+0901534 31. 01+00000006 51 +0012 221 104+13235559 22. 104+09015384 31. 01+00000006 51 +0012 22. 104+13235559 22. 104+09012384 31. 01+00000006 51 +0012 24 +00000000 52. 104+09015384 31. 01+00000006 51 +0012 24 +000000006 52. 104+09012384 31. 01+00000000 51 +0012 22. 104+15558358 22. 104+09012384 31. 01+00000000 51 +0012 22. 104+15558358 22. 104+09015384 31. 01+00000000 51 +0012 22. 104+15558358 22. 104+09017045 31. 01+00000000 51 +0012 22. 104+15558358 22. 104+09017045 31. 01+00003000 51 +0012 22. 104+55710405 22. 104+09025575 31. 01+00135590 51 +0012 22. 104+55710405 22. 104+09025555 31. 01+00135590 51 +0012 22. 104+1557818 22. 104+091365655 31. 01+00326516 51 +0012 22. 104+15757122 22. 104+09335568 31. 01+00035536 51 +0012 22. 104+177425513 22. 104+09335565 31. 01+00035530 51 +0012 22. 104+17755732 22. 104+093355655 31. 01+00035530 51 +0012 22. 104+17755512 22. 104+09335565 31. 01+00035530 51 +0012 22. 104+17755512 22. 104+083355655 31. 01+00035530 51 +0012 22. 104+17755512 22. 104+08335555 31. 01+00035530 51 +0012 22. 104+17755512 22. 104+08335555 31. 01+00035530 51 +0012 22. 104+17755512 22. 104+08335555 31. 01+00035530 51 +0012 22. 104+17755513 22. 104+08335555 31. 01+00035530 51 +0012 22. 104+177555513 22. 104+08335555 31. 01+00035

<pre>1005-records 2: 1.0++e05468 2: 1.0++e05216 3: 1.0+e012708 1: 0012400 10124-e002485 2: 1.0++e05216 3: 1.0+e012708 2: 1.0++004788 2: 1.0++</pre>		**
1005-00000030 21 14-00512440 22 14-0051240 21 14-0051252 1.0 010-00000000 1001-0	File: A:LOUIGRE3.GRE	File: A: (OUIGRE3. GRE
1005-00000030 21 14-00512440 22 14-0051240 21 14-0051252 1.0 010-00000000 1001-0	Savada 10-00-06 at 11:00:17 au	
1005-00000030 21 14-00512440 22 14-0051240 21 14-0051252 1.0 010-00000000 1001-0		
10055-000000000 21. 104-10713167 22. 104-00000000 31. 01-000000000 10011-0000000000 21. 104-10713167 22. 104-00000000 10011-0000000000 21. 104-10713167 22. 104-00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 0000000000 0000000000 0000000000000 000000000000000000000000000000000000		······································
10055-000000000 21. 104-10713167 22. 104-00000000 31. 01-000000000 10011-0000000000 21. 104-10713167 22. 104-00000000 10011-0000000000 21. 104-10713167 22. 104-00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 0000000000 0000000000 0000000000000 000000000000000000000000000000000000		
10055-000000000 21. 104-10713167 22. 104-00000000 31. 01-000000000 10011-0000000000 21. 104-10713167 22. 104-00000000 10011-0000000000 21. 104-10713167 22. 104-00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 0000000000 0000000000 0000000000000 000000000000000000000000000000000000	100EE.0000000E.01.101.00E20100.00 101.00001E12.01.01.00000010.E1	200-000
10057-0000001 21. 104-0204555 22. 104-0020455 22. 104-0020455 22. 104-0020455 21. 001-0204555 21. 001-0204555 21. 001-0204555 21. 001-0204555 21. 001-020455555 21. 001-020455555 21. 001-		110111+0000852 21.104+31931113 22.104+08939227 3101+0019.870 51+0012+000
10057-0000001 21. 104-0204555 22. 104-0020455 22. 104-0020455 22. 104-0020455 21. 001-0204555 21. 001-0204555 21. 001-0204555 21. 001-0204555 21. 001-020455555 21. 001-020455555 21. 001-	10056+00000806 21.104÷00517370 22.104+09021508 3101+00306350 51+0	110112+000 110112+0000853 21.104+31913187 22.104+08935198 3101+00194690 51+0012+000
10050-000000000000000000000000000000000		
10057-00000000 21.194-0071152 22.194-0071112 22.194-0071112 22.194-0071112 22.194-0071112 22.194-0071112 22.194-0071112 22.194-0071112 22.19	1003/+00000007 21.104+00343467 22.104+03021433 3101+00307030 31	WIZTERNO IIWIJJTENONOWOJ4 ZI. 104732043003 ZZ. 104700341114 51. 0170020/430 31 ODJETODO
1065 1065 1061	.10058+00000808 21.104+00828280 22.104+09011571 3101+00342190 51+0	110114+0000 110114+00000655 21.104+31557387 22.104+08941181 3101+00216050 51+0012+000
1065 1065 1061	10059+0000009 21,104+00911539 22,104+09011562 31, 01+00343860 51 +0	1012+000 110115+00000855 21 104+31315202 22 104+08939226 31. 01+00198650 51+0012+000
 Links F. Woodweller, 4.2., Woodweller, 4.2.,		
1005C-0000001 21, 104-1033113 22, 104-09302529 31, 01-0030104 51,, +012-40 1005C-0000001 21, 104-0033064 22, 104-09302529 31, 01-0030004 51,, +012-40 1005C-0000001 21, 104-0033064 22, 104-0930273 31, 01-0030000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000 000000000 00000000 0000000000 000000000 0000000000	10000+000000010 21.104+00521135 22.104+05010428 3101+00341420 31+0	110116+000000037 21.104+32710203 22.104+0337113 31
1005C-0000001 21, 104-1033113 22, 104-09302529 31, 01-0030104 51,, +012-40 1005C-0000001 21, 104-0033064 22, 104-09302529 31, 01-0030004 51,, +012-40 1005C-0000001 21, 104-0033064 22, 104-0930273 31, 01-0030000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000 000000000 00000000 0000000000 000000000 0000000000	12061+00000104 42+00000000 43+000000000 44+000000000 45+0	0010402 110118+00000859 21.104+32634165 22.104+08936549 3101+00172750 31+0012+000
1065-0000001 21.104-013313 22.104-01330253 21.104-01302535 21.104-0130253 21.104	10062+00000811 21.104+01533113 22 104+09005299 31 01+00360140 51 +00	012+000 1:0119+000008E0 21 104+72944250 22 104+08941749 71. 01+001E9910 71+0012+000
1086+0000018 21.10+10802066 21.00+108020666 21.00+10802066 21.00+10		
1865-90000013 21.14+00030005 22.14+00030005 22.104+00030005 22.104+00030000 20000000 000000000 00000000 000000000 00000000 00000000 00	10005+000000012 21.104+0155113 22.104+09003290 5101+00500140 51+0	012+000 110120+00000861 21.104+33013233 22.104+00335276 31.01+00174520 31+0012+000
1865-90000013 21.14+00030005 22.14+00030005 22.104+00030005 22.104+00030000 20000000 000000000 00000000 000000000 00000000 00000000 00	10064+00000813 21.104+00830064 22.104+09011349 3101+00000000 51+0	012+000 110121+00000862 21.104+34607508 22.104+06910062 3101+00169860 51+0012+000
1005-0000001 21:10-0051066 22:10-000000 4:0:0:0:000000 11012-0000005 21:10-0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0		R12+RAR 41R122+RARRA139 RARRARA RARRARA RARRARA RARRARA RARRARA RARRAR
1005-0000001 21.104-102022 22.104-051262 23.104-052623 23.104-052623 23.104-052625 23.		
10865+000001 21.10++1424423 22.10++09102163 1.0++0824423 22.10++091021673 1.0++0824421 10012+00000 1012-00000000 21.10++14141319 22.10++091021625 31.10+00102000 1012-000000000 21.10++14141319 22.10++091021625 31.10+00102000 1012-000000000 21.10++14141319 22.10++091021625 31.10+00102000 1012-000000000 21.10++00102100 21.10++1001021000 21.10++1001020000	10066+00000013 21.104+00348486 22.104+09009410 3101+00330140 51+0	W12+WWW 110123+WWWWWB63 21.104+34344221 22.104+08852159 3101+00147368 31+0012+000
10865+000001 21.10++1424423 22.10++09102163 1.0++0824423 22.10++091021673 1.0++0824421 10012+00000 1012-00000000 21.10++14141319 22.10++091021625 31.10+00102000 1012-000000000 21.10++14141319 22.10++091021625 31.10+00102000 1012-000000000 21.10++14141319 22.10++091021625 31.10+00102000 1012-000000000 21.10++00102100 21.10++1001021000 21.10++1001020000	10067+00000816 21.104+00517402 22.104+09022115 3101+00306320 51+00	012+000 110124+00000364 21.104+34228485 22.104+08857013 3101+00047880 51+0012+000
1005-90000052 21.104-14024027 22.104-90516275 3101-00127005 514012-000 11072-90000052 21.104-131519 22.104-9051625 3101-0012905 514012-000 11072-90000052 21.104+1375512 22.104-9051625 3101-0012905 514012-000 11072-90000052 21.104+1305265 22.104+0596453 3101-0012905 514012-00 11072-90000052 21.104+1305282 22.104-9051625 3101-0012905 514012-00 11072-90000052 21.104+1305282 22.104-9051625 3101-0012905 514012-00 11072-90000052 21.104+13052752 22.104+1501520 3101-001290 00000000 00000000 00000000 00000000 0000	10050+00000017 21 104+14024029 22 104+00010205 71 01+00000000 51 +00	0101000 (10105-00000104 43 +00000000 43 +00000000 44 +00000000 00 00000000 00000000
10872+00000815 21.104+1519 22.104+0900653 31.01+0000000 51+0012+00 10872+00000825 21.014+13087264 22.104+09302653 31.01+00127900008655 31.01+001279000086578 31.01+001279000086578 31.01+001279000086578 31.01+001279000086578 31.01+00127900008757 31.01+0001279000787 31.01+00127900008757 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+000127900787 31.01+000127900787 31.01+000127900787 31.01+000127900787 31.01+000127900787 31.01+0001279007	THESE PRODUCT ELLIPTITETELS LE TETTESERCO SIL ETTERRENER JI TH	
10872+00000815 21.104+1519 22.104+0900653 31.01+0000000 51+0012+00 10872+00000825 21.014+13087264 22.104+09302653 31.01+00127900008655 31.01+001279000086578 31.01+001279000086578 31.01+001279000086578 31.01+001279000086578 31.01+00127900008757 31.01+0001279000787 31.01+00127900008757 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+0001279000787 31.01+000127900787 31.01+000127900787 31.01+000127900787 31.01+000127900787 31.01+000127900787 31.01+0001279007	10063+00000818 21.104+14024027 22.104+03010277 3101+00171390 51+00	W12+WWW 110125+WWWWW855 21.104+WW418160 22.104+W8916226 3101+WW1WW700 51+WW12+WWW
<pre>1007:+00000053 21.10++13755312 22.10++0912655 31.01+0021908 51+0012+00 1007:+00000053 21.10++0302542 22.10++03026264 31.01+0021908 51+0012+00 1007:+00000053 22.10++031574 22.10++0305307 31.01+00175120 51+0012+00 1007:+00000057 21.10++032557 22.10++0305307 31.01+00175120 51+0012+00 1007:+00000057 21.10++032557 22.10++0305307 31.01+00175120 51+0012+00 1007:+00000057 21.10++032557 22.10++0305307 31.01+00175120 51+0012+00 1007:+00000057 21.10++0443255 22.10++0315353 31.01+0012470 51+0012+00 1007:+00000057 21.10++0443255 22.10++0315355 31.01+0012470 51+0012+00 1007:+00000057 21.10++12443257 22.10++0315355 31.01+0012470 51+0012+00 1007:+0000057 21.10++12443257 22.10++0315355 31.01+0012470 51+0012+00 1007:+0000057 21.10++12443257 22.10++0315452 31.01+000255 1+0012+00 1007:+0000057 21.10++12443257 22.10++0315452 3101+000255 1+0012+00 1007:+0000057 21.10++12443257 22.10++0315452 3101+000255 1+0012+00 1007:+0000057 21.10++1251150 3101+0002550 0+0012+00 1007:+0000057 21.10++1251150 3101+0002550 0+0012+00 1007:+0000057 21.10++1251150 3101+0002550 0+0012+00 1007:+0000057 21.10++351543 31.01+00000000 0+0012+00 1002:+0000057 21.10++351543 31.01+00000000 0+0012+00 1002:+0000057 21.10++351543 31.01+00000000 0+0012+00 1002:+0000057 21.10++351543 31.01+00000000 0+0012+00 1002:+0000057 21.10++351543 31.01+00000000 0+0012+00 1002:+0000057 21.10++351543 21.01+00000000 0+0012+00 1002:+0000057 21.10++351543 21.01+00000000 0+0012+00 1002:+0000057 21.10++351543 21.01+00000000 0+0012+00 1002:+0000057 21.10++351543 21.01+00000000 0+0012+00 1002:+0000057 21.10++351543 21.01+00000000 0+0012+00 1002:+00000057 21.10++351543 21.01+00000000 0+0012+00 1002:+0000057 21.10++351543 21.01+00000000 0+0012+00 1002:+00000057 21.10++351543 21.01+00000000 0+0012+00 1002:+00000057 21.10++351543 21.01+00000000 0+0012+00 1002:+00000057 21.10++351543 21.01+00000000 0+0012+00 1002:+00000057 21.10++351543 21.01+00000000 0+0012+00 10012:+00000057 21.10</pre>	10070+00000819 21,104+14114519 22,104+09006312 31,.01+00194550 51+00	A12+AAA 110127+00000866 21.104+00432066 22.104+08906453 3101+00000000 51+0012+000
10072+00000021 21. 104+03502034 21. 104+03502037 21. 104+03502037 31. 104001702 10123+00000005 10123+000000005 10123+00000005 <td< td=""><td></td><td></td></td<>		
18073-0000003 00000000 00000000 1033-0000072 104400000072 104400000072 104400000000 10400000000 10400000000		
1007+00000825 21.104+1303574 22.104+0915403 3101+0000000 51+0012+000 10075+00000851 22.104+13443257 22.104+09154358 3101+00005000 51+0012+000 10075+00000855 21.104+1359517 22.104+0915403 51+012+000 10075+00000852 21.104+1359957 22.104+0915528 3101+0000518 51+0012+000 10075+00000852 21.104+1359957 22.104+0915528 3101+0000518 51+0012+000 10075+00000852 21.104+1359957 22.104+0915528 3101+0000518 51+0012+000 10075+00000852 21.104+13590013 22.104+593548 3101+0000518 51+0012+000 10075+00000852 21.104+13590013 22.104+593548 3101+0000508 51+0012+000 10075+00000852 21.104+13590013 22.104+593548 3101+00000000 51+0012+000 10075+00000852 21.104+1359153 22.104+091528 3101+00000000 10133+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+0000000 51+0012+000 10135+00000852 21.104+3915528 3101+0000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 5101+0000000 51+0012+000 10135+00000852 21.104+3915528 5101+0000000 51+0012+000 10135+00000852 21.104+3915528 5101+0000000 51+0012+000 10135+00000852 21.104+3915528 5101+0000000 51+0012+000 10135+00000852 21.104+4531532 22.104+08155978 51.		012+000 110129+00000858 21.104+00510131 22.104+08508239 3101+00103810 51+0012+000
1007+00000825 21.104+1303574 22.104+0915403 3101+0000000 51+0012+000 10075+00000851 22.104+13443257 22.104+09154358 3101+00005000 51+0012+000 10075+00000855 21.104+1359517 22.104+0915403 51+012+000 10075+00000852 21.104+1359957 22.104+0915528 3101+0000518 51+0012+000 10075+00000852 21.104+1359957 22.104+0915528 3101+0000518 51+0012+000 10075+00000852 21.104+1359957 22.104+0915528 3101+0000518 51+0012+000 10075+00000852 21.104+13590013 22.104+593548 3101+0000518 51+0012+000 10075+00000852 21.104+13590013 22.104+593548 3101+0000508 51+0012+000 10075+00000852 21.104+13590013 22.104+593548 3101+00000000 51+0012+000 10075+00000852 21.104+1359153 22.104+091528 3101+00000000 10133+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 3101+0000000 51+0012+000 10135+00000852 21.104+3915528 3101+0000000 51+0012+000 10135+00000852 21.104+3915528 3101+00000000 51+0012+000 10135+00000852 21.104+3915528 5101+0000000 51+0012+000 10135+00000852 21.104+3915528 5101+0000000 51+0012+000 10135+00000852 21.104+3915528 5101+0000000 51+0012+000 10135+00000852 21.104+3915528 5101+0000000 51+0012+000 10135+00000852 21.104+4531532 22.104+08155978 51.	10073+00000103 42+000000003 0000000 0000000 00	MABBANA 110130+00000869 21.104+00644596 22.104+08906437 3101+00102470 51+0012+000
10075-00000023 21.104+02000007 4240000007 414002001 3140124000 110132-0000007 21.104+1243257 22.104+0915422 3101+0000007 404002443257 22.104+0915422 3101+000007 404002443257 22.104+0915422 3101+000007 404002443257 22.104+0915422 3101+000007 404002443257 22.104+0915422 3101+000007 404002443257 21.104+1531439 22.104+0915422 3101+00007 404002443257 21.104+1531439 22.104+0915422 3101+00007 404002443257 21.104+1531439 22.104+0915422 3101+00007 4040024400 0000000 0000000 0000000 0000000 00000	10074+00000022 21 104+13013574 22 104+08950307 31 01+00175120 51 100	a_{12+000} 110171+00000970 21 104+12443257 22 104+09152315 31 01+00000000 51+0012+000
10075-00000051 42+00200007 43+00200007 44+00200007 51+0012-000 110132+00000072 21.104+153090 25 124-0915825 3101+0005575 251+0012-00 110132+00000072 21.104+153090 25 124-0915825 3101+00050070 51+0012+00 110132+00000075 21.104+153101399 25 124-0955575 251+012+005526 251+0012+00 110132+00000075 21.104+153101399 25 124-0955575 251+0012+00 110132+00000075 21.104+153101399 25 124-0955575 251+0012+00 110132+00000075 21.104+153101399 25 124-0955575 251+0012+00 110132+00000075 21.104+15310129 25 124-0955575 251+0012+00 110132+00000075 21.104+1531014 252 124-0955575 251+0012+00 110132+00000075 21.104+1531014 252 124-0955575 251+0012+00 110132+00000075 21.104+1531014 252 124-0955575 251+0012+00 110132+00000075 21.104+1531014 252 124-0955575 251+0012+00 110132+00000075 21.104+1531014 252 124-09555757 251+0012+00 110132+00000075 21.104+1531014 252 124-09552857 251+0012+00 110132+00000075 21.104+1531014 252 124-09553804 31+0012+00 110132+00000075 21.104+1531014 252 124-09553804 31+0012+00 110132+00000075 21.104+1531014 252 124-09553804 31+0012+00 110132+00000075 21.104+1531014 252 124-09553804 31+0012+00 110132+00000075 21.104+1531014 252 124-09553804 31+0012+00 110132+00000075 21.104+1531014 252 124-09553804 31+0012+00 11012+000 11012+000 11012+0000075 21.104+1531032 122.104+0531285 21+0012+00 11012+000 11012+0000075 21.104+153103 12.0.0000000 11012+0000075 21.104+153103 12.0.0000000 11012+0000075 21.104+153103 12.0.0000000 11012+0000075 21.104+153103 12.0.0000000 11012+0000075 21.104+153103 12.0.0000000 11012+0000075 21.104+153103 12.0.0000000 11012+0000 11012+0000 11012+0000 11012+0000075 21.104+153103 12.0.0000000 11012+0000 1102+0000005 11.0001255 11.0001255 11.0001255 11.0001255 11.0001255		
10073-00000024 21.104+3535553 22.104+0935554 31.01+00000000 51+0012-000 110:34-0000067 22.104+0935422 31.01+0000000 0000000 0000000 0000000 0000000	100/5+000000823 21.104+00/08545 22.104+09014040 3101+00299800 51+00	VI2+000 110132+0000008/1 21.104+12443257 22.104+09152321 3101+00062510 51+0012+000
10073-00000024 21.104+3535553 22.104+0935554 31.01+00000000 51+0012-000 110:34-0000067 22.104+0935422 31.01+0000000 0000000 0000000 0000000 0000000	10076+00000051 42+00000130 43+00000007 44+00000131 00	NANAANA 110133+00000872 21.104+12500112 22.104+09158358 3101+00063750 51+0012+000
12073+00000825 21.104+131429 22.104+09325541 31.01+00000000 51+0012+000 403240000 0000000 0000000 41+0012+000 41213540000023 2000000 00000000 00000000 51+0012+000 41213540000023 2000000 00000000 51+0012+000 41213540000023 2000000 00000000 51+0012+000 113136+00000057 22.104+3515521 22.104+0352557 3101+00005000 51+0012+00 113136+00000057 22.104+3515521 22.104+0352557 3101+00005000 51+0012+00 113136+00000057 22.104+3515521 22.104+0352557 3101+00005000 51+0012+00 11336+0000057 22.104+3515521 22.104+0352557 2301+00007400 51+0012+00 11336+0000057 22.104+3515521 22.104+0352557 2301+00007400 51+0012+00 11336+0000057 22.104+3515521 22.104+0352557 2301+0000740 0000000 11036+00000057 22.104+3515521 22.104+0352557 2301+0000740 0000000 11036+00000057 21.104+3515557 22.104+351557 2301+00007400 0000000 11046+0000057 22.104+351557 22.104+0352557 2301+0000740 0000000 11046+0000057 22.104+351557 22.104+0351557 2301+0000740 0000000 10006+00000000 00000000 10006+00000000 10006+00000000 00000000 00000000 00000000		a_{124000} 1(0):74+00000973 2) 104+12918090 22 104+09154022 31 01+00051020 51 +0012+000
10073-00000826 21.104-1314294 22.104-89325443 31.01-00000000 51+0012-000 100827 21.104-1351528 22.104-09021150 31.01+00026020 00000000 00000000 0000000 0000000 0000		
10808+00000827 21.104+13000011 22.104+2732542 11.41-100005000 00000000 00000000 00000000 00000000 10135+00000825 22.104+031521 22.104+03152757 11.41-100005000 10135+00000825 21.104+13315321 22.104+03155777 11.41-00005000 10135+00000825 21.104+13315321 22.104+03155777 11.41-00005000 10135+00000825 21.104+13315321 22.104+03155777 11.41-00005000 10012+0000085 11.315+0000082577 11.41-13015321 22.104+03155777 11.41-00005000 10012+0000 10135+00000815 21.104+13154321 22.104+03155777 11.41-00005000 00000000 00000000 00000000 00000000 00000000 00000000 000000000 000000000 00000000 00000000 00000000 00000000 00000000 000000000 00000000 000000000	100/8+00000825 21.104+19314199 22.104+09035541 3101+00388590 51+00	012+000 410135+000000103 00000000 00000000 0000000 0000000
10808+00000827 21.104+13000011 22.104+2732542 11.41-100005000 00000000 00000000 00000000 00000000 10135+00000825 22.104+031521 22.104+03152757 11.41-100005000 10135+00000825 21.104+13315321 22.104+03155777 11.41-00005000 10135+00000825 21.104+13315321 22.104+03155777 11.41-00005000 10135+00000825 21.104+13315321 22.104+03155777 11.41-00005000 10012+0000085 11.315+0000082577 11.41-13015321 22.104+03155777 11.41-00005000 10012+0000 10135+00000815 21.104+13154321 22.104+03155777 11.41-00005000 00000000 00000000 00000000 00000000 00000000 00000000 000000000 000000000 00000000 00000000 00000000 00000000 00000000 000000000 00000000 000000000	10079+00000826 21.104+01314294 32.104+26932443 3101+00000000 51+00	012+000 110136+00000874 21.104+16611328 22.104+09021150 3101+00063220 51+0012+000
1002 1000000050 221 104-000000050 121 104-000000000 121 104-000000000 121 104-000000000 121 104-000000000 121 104-000000000 121 104-000000000 121 104-000000000 121 104-000000000 121 104-000000000 121 10000000000 121 1000000000 <td></td> <td></td>		
10005-00000164 42+00000000 44+00000000 51+0012-000 10035-0000016 42+00000000 44+00000000 45+0012-000 10035-0000016 42+0012-000 10035-0000016 42+0012-000 10035-0000016 42+0012-000 10035-0000016 42+0012-000 10035-0000016 42+0012-000 10035-0000016 42+0012-000 10035-0000016 42+0012-000 10035-0000016 42+0012-000 10035-0000016 42+0012-000 10035-0000016 42+0012-000 10035-0000016 42+0012-000 10035-0000016 42+0012-000 10035-0000016 42+0012-000 10035-0000016 42+0012-000 10035-0000001 1104-4523206 51+0012-000 10035-0000002 20.0000000 00000000 11014-40000007 20.0000000 00000000 00000000 11014-40000079 20.104+0532506 51+0012-000 10035-0000003 21.104+375725 22.104+035506 51+0012-000 10035-0000003 21.104+375725 22.104+035506 51+0012-000 10035-0000003 21.104+375722 114+035506 51+0012-000 10035-0000003 21.104+15146414 22.104+035206 51+0012-000 10035-0000003 21.104+15146414 22.104+035506 51+0012-000 10035-0000003 21.104+15146414 22.104+035506 51+0012-000 10035-0000003 21.104+15146414 22.104+035506 51+0012-000 10035-0000003 21.104+15146414 22.104+035506 51+0012-000 10035-0000003 21.104+15146414 22.104+035506 51+0012-000 10035-0000003 21.104+1530000 22.104+035506 51+0012-000 10035-0000003 21.104+1530000 22.104+035506 51+0012-000 10155-0000003 21.104+1530000 22.104+035506 51+0012-000 10155-0000003 21.104+1535000 22.104+035506 51+0012-000 10155-0000002 21.104+035506 5101+0012550 51+0012-000 10155-0000002 21.104+035506 5101+0012550 51+0012-000 10155-0000002 21.104+035506 5101+0012550 51+0012-000 10155-0000002 21.104+035506 5101+0012550 51+0012-000 10155-0000002 21.104+035506 5101+0012550 51+0012-000 10155-0000002 21.104+035506 5101+0012550 51+0012-000 10155-0000002 21.104+035506 5101+0012550 51+0012-000 10155-0000002 21.104+035506 5101+0012550 51+0012-000 10155-0000002 21.104+035506 5101+0012550 51+0012-000 10155-0000002 21.104+0355506 5101+0012550 51+0012-000 10155-00000		
100051+000000104 22.104+035520354 22.104+0000000 42+00000000 42.0000000 42.0000000 42.0000000 42.0000000 42.0000000 42.0000000 42.00000000 42.00000000 42.00000000 42.00000000 42.00000000 42.00000000 42.00000000 42.00000000 42.00000000 42.00000000 42.00000000 42.0000000000 42.0000000000 42.0000000000 42.0000000000 42.0000000000 42.0000000000 42.0000000000 42.000000000000000 42.0000000000000000000000 42.000000000000000000000000000000000000		NUNNNN 110138+UNNUN8/5 21.104+33916321 22.104+089234/3 3181+0000000000 31+0012+000
100051+000000104 22.104+035520354 22.104+0000000 42+00000000 42.0000000 42.0000000 42.0000000 42.0000000 42.0000000 42.0000000 42.00000000 42.00000000 42.00000000 42.00000000 42.00000000 42.00000000 42.00000000 42.00000000 42.00000000 42.00000000 42.00000000 42.0000000000 42.0000000000 42.0000000000 42.0000000000 42.0000000000 42.0000000000 42.0000000000 42.000000000000000 42.0000000000000000000000 42.000000000000000000000000000000000000	10082+00000828 21.104+35959597 22.104+08913355 3101+00000000 51+00	012+000 110139+00000876 21.104+33916321 22.104+08925472 3101+00006500 51+0012+000
10005-00000030 21.104+35520354 22.104+00015522 3101+00215520 3101+0021520 000000000 00000000 00000000 <td></td> <td>0010/02 110140+00000077 01 104+33944146 00 104+08920084 31 01+00007480 51+0012+000</td>		0010/02 110140+00000077 01 104+33944146 00 104+08920084 31 01+00007480 51+0012+000
10085-00000104 00000000 00000000 00000000 110142-00000872 11.04+1302422 12.14+09128357 11.040284578 11.0402730000000 00000000 <td></td> <td></td>		
10007+000000053 21.104+347521277 22.104+00000200 000000000	10083+00000830 21.104+33320364 22.104+08913582 3101+00283600 51+00	nistran alalattananasis anangana anangana anangana
10007+000000053 21.104+347521277 22.104+00000200 000000000	1 0 0 86 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>0000000 110142+00000878 21.104+11302422 22.104+09128367 3101+00083670 51+0012+000</u>
10008+000000832 21.104+33477053 22.104+08912409 3101+0027870 51+0012+000 10009+000000833 21.104+33411538 22.104+08916340 3101+00134626 51+0012+000 10039+00000833 21.104+15146414 22.104+08911133 3101+00007000 51+0012+000 10039+00000833 21.104+15146414 22.104+08911134 3101+00007200 51+0012+000 10039+00000835 21.104+15146414 22.104+091532053 3101+0014500 51+0012+000 10039+00000835 21.104+15153241 22.104+09153240 51+0012+000 10147+00000861 21.104+0955207 22.104+09057022 3101+0014500 0000000 000000000 00000000 <td< td=""><td>10087+00000831 21 104+34751277 22 104+08917511 31 01+00270890 51 40</td><td>A12+300 412+43+00000272 03000000 0000000 0000000 0000000</td></td<>	10087+00000831 21 104+34751277 22 104+08917511 31 01+00270890 51 40	A12+300 412+43+00000272 03000000 0000000 0000000 0000000
10099+00000833 21.104+3911538 22.104+0928340 3101+00127670 51+0012+000 10091+00000835 21.104+15146415 22.104+09211111 3101+00007280 51+0012+000 10091+00000835 21.104+15146414 22.104+09215714 3101+00007280 51+0012+000 10092+00000835 21.104+15146414 22.104+09215714 3101+00007280 51+0012+000 10092+00000835 21.104+1500166 22.104+0915714 3101+00002800 0000 000000 00000000 0000000 0000000 0000000 000000		
10/29+000000835 21.104+15146415 22.104+09211113 31.01+00000000 000000000 000000000 000000000	10088+00000832 21.104+34747033 22.104+08912409 3101+00278870 31+00	012+000 110144+000008/9 21.104+03323031 22.104+089333108 3101+00113340 J1+0012+000
10/29+000000835 21.104+15146415 22.104+09211113 31.01+00000000 000000000 000000000 000000000	10089+00000833 21.104+34911538 22.104+08908340 3101+00127670 51+00	012+000 110145+00000880 21.104+05536457 22.104+08950020 3101+00134260 51+0012+000
10091+00000035 21.104+15146414 22.104+0911111 31.01+00054200 51+0012+000 110147+000000836 21.104+16048367 22.104+0915754 3101+0007280 51+0012+000 10093+00000835 21.104+15531485 12.104+0915824 3101+00027280 51+0012+000 110148+00000882 21.104+09158231 3101+0000080 0000000 00000000 00000000 10093+00000837 21.104+15531486 22.104+09158243 3101+00086520 51+0012+000 110148+00000882 21.104+09358557 22.104+09057022 3101+0012505 10095+00000837 21.104+15051846 22.104+09158303 3101+00065810 51+0012+000 11015+00000888 21.104+09338557 22.104+09057022 3101+0012520 51+0012+000 10095+00000833 21.104+1505593 22.104+09158303 3101+00065710 51+0012+000 110152+00000883 21.104+09243524 22.104+09053439 3101+0012520 51+0012+000 10095+00000840 21.104+357300 22.104+09158309 3101+0015700 51+0012+000 110152+00000885 21.104+09243524 22.104+09053439 3101+0012400 0000000 00099+00000842 21.104+357300 12.2104+08915397 3101+0012570 51+0012+000 110152+00000865 21.104+0915333 3101+00124738 51+0012+000 0102+00000842 21.104+34730001 22.104+08915397 3101+0024528 51+0012+000 110155+00000865 21.104+1011353 22.104+08931553 3101+00108600 51+0012+000 0102+00000842 21.104+3473005 22.104+08931555 3101+00244288 51+0012+000 110155+00000865 21.104+0114537 22.104+08931553 3101+0012400 51+0012+000 0102+00000845 21.104+347307058 22.104+08930513 3101+00235200 51+0012+000 110155+00000865 21.104+0114537 22.104+08936314 3101+00108600 51+0012+000 0102+	0090+00000834 21 104+15145415 22 104+09211178 71 01+00000000 51 +00	312+000 410+46+00000271 0000000 0000000 0000000 00000000 000000
10025+00000835 21.104+16848367 22.104+09157544 3101+00072280 51+0012+000 10073+00000837 21.104+17532341 22.104+0915713 3101+00086620 51+0012+000 10079+00000838 21.104+165018622 21.104+0915713 3101+00086610 51+0012+000 10079+00000838 21.104+16602542 22.104+0915713 3101+0010520 51+0012+000 10079+00000838 21.104+166025425 22.104+0915733 3101+0010520 51+0012+000 10079+00000839 21.104+166025425 22.104+09101520 51+0012+000 10152+00000833 21.104+09955047 3101+0010520 51+0012+000 10079+00000840 21.104+15652093 22.104+0910520 51+0012+000 110152+00000835 21.104+09553437 3101+0010520 51+0012+000 10079+00000843 21.104+34713001 22.104+0891573 3101+00127570 51+0012+000 110152+00000845 21.104+0953533 3101+0010500 51+0012+000 10019+00000843 21.104+34713001 22.104+08915733 3101+00127570 51+0012+000 110155+00000854 21.104+0113155 21.04+08931553 3101+00128500 51+0012+000 110155+00000854 21.104		
10035400000837 21.104+17532341 22.104+09158241 3101+00082620 51+0012+000 410149+00000272 00000000 0000000	10031+00000833 21.104+13146414 22.104+03211111 3101+000034200 51+00	012+000 11014/+000000881 21.104+03848320 22.104+08330038 3101+00143640 31+0012+000
10035400000837 21.104+17532341 22.104+09158241 3101+00082620 51+0012+000 410149+00000272 00000000 0000000	10092+00000836 21.104+16048367 22.104+09157544 3101+00072280 51+00	012+000 110148+00000882 21.104+09926307 22.104+09049531 3101+00098790 51+0012+000
00094+00000083 21.104+14501086 22.104+09157139 3101+00006610 51+0012+000 110150+0000083 21.104+09336557 22.104+09057022 3101+001012526 51+0012+000 00095+00000083 21.104+1650546 22.104+0915830 3101+000655710 51+0012+000 110152+00000839 21.104+09336557 22.104+09057023 3101+00102456 51+0012+000 00095+00000083 21.104+15635093 22.104+0915830 3101+00065890 51+0012+000 110152+00000835 21.104+09243524 22.104+09053439 3101+00102456 51+0012+000 00095+00000842 21.104+34752049 22.104+0891691 3101+00127570 51+0012+000 110155+00000835 21.104+09243524 22.104+0931553 3101+00102456 51+0012+000 00095+00000842 21.104+34752049 22.104+08915399 3101+00127570 51+0012+000 110155+00000845 21.104+09243524 22.104+0891553 3101+00127570 51+0012+000 0101+00000843 21.104+34752049 22.104+08916595 3101+00124208 51+0012+000 00000000 </td <td>10093+00000837 21_104+17532341 22_104+09158241 31_01+00082620 51400</td> <td>a12+aaa 41a149+aaaaa272 aaaaaaaaa addaaaaaa addaaaaaa addaaaaaa</td>	10093+00000837 21_104+17532341 22_104+09158241 31_01+00082620 51400	a12+aaa 41a149+aaaaa272 aaaaaaaaa addaaaaaa addaaaaaa addaaaaaa
10035+00000137 000000000		$\frac{1}{10}$
10096+00000833 21.104+16005426 22.104+09158300 3101+0065710 51+0012+000 410152+00000271 0000000 00000000 00000000 0000000 0000000 0000000 0000000 0000000 00000000	2094+000000838 21.104+18301086 22.104+09137139 3101+00086610 31+00	012+000 110150+00000883 21.104+09838557 22.104+09857022 3181+00101528 31+0012+000
10096+00000833 21.104+16005426 22.104+09158300 3101+0065710 51+0012+000 410152+00000271 0000000 00000000 00000000 0000000 0000000 0000000 0000000 0000000 00000000	.0095+00000137 00000000 0000000 0000000 0000000 00000 0000	2000000 110151+00000884 21.104+09938027 22.104+09055047 3101+00102450 51+0012+000
10097+00000840 21.104+15635093 22.104+09203002 31.01+00127570 51+0012+000 10099+00000841 21.104+34752049 22.104+08916391 31.01+00127570 51+0012+000 10099+00000842 21.104+34713001 22.104+08915393 31.01+00127570 51+0012+000 10099+00000842 21.104+34713001 22.104+08930572 3101+00127570 51+0012+000 101155+00000842 21.104+34713001 22.104+089307572 3101+00244370 51+0012+000 1012+00000843 21.104+34717056 22.104+089307572 3101+00244370 51+0012+000 10125+00000844 21.104+34717056 22.104+08930551 3101+00244370 51+0012+000 10125+00000845 21.104+34777058 22.104+08930513 3101+00244370 51+0012+000 10125+00000845 21.104+34777058 22.104+08930511 3101+00236200 51+0012+000 10125+000008464 21.104+3473008 22.104+08930512 3101+0020600 8000000 10125+00000845 21.104+34730086 22.104+08930512 3101+0000000 8000000 10125+000008464 21.104+34730086 22.104+089307516 3101+0000000 8000000	10096+00000839 21 104+16005426 22 104+09158300 31 01+00065710 51 +00	12+020 410152+00000271 20000000 0000000 0000000 00000000
00098+00000841 21.104+34752049 22.104+08916091 3101+00127570 51+0012+000 410154+00000274 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 000000000 00000000		
00099+00000842 21.104+34713001 22.104+06915399 3101+00244280 51+0012+000 0100+00000843 21.104+34518187 22.104+08931553 3101+00108600 51+0212+00 0102+00000843 21.104+34518187 22.104+08931553 3101+00244370 51+0212+00 0102+00000843 21.104+34518187 22.104+08931553 3101+00244370 51+0212+00 0102+00000843 21.104+34575210 22.104+08931553 3101+00244350 51+0212+00 0102+00000845 21.104+34757058 22.104+08916585 3101+00236200 51+0012+000 0104+000008464 21.104+34777058 22.104+08910513 3101+00236200 51+0012+000 0104+00000847 21.104+34777058 22.104+08910519 3101+00236200 51+0012+000 0105+00000846 21.104+34777058 22.104+08910196 3101+00236200 51+0012+000 0105+00000848 21.104+34730086 22.104+08907568 3101+00170470 51+0012+000 0107+00000848 21.104+34730086 22.104+08907568 3101+00170470 51+0012+000 0108+00000850 21.104+3473093 22.104+089307568 3101+00170450 51.	10037+000000840 21.104+13633093 22.104+03203002 3101+00063890 31+00	A12+060 110153+00000385 21.104+09243524 22.104+09053433 3101+00147380 51+0012+000
00099+00000842 21.104+34713001 22.104+06915399 3101+00244280 51+0012+000 0100+00000843 21.104+34518187 22.104+08931553 3101+00108600 51+0212+00 0102+00000843 21.104+34518187 22.104+08931553 3101+00244370 51+0212+00 0102+00000843 21.104+34518187 22.104+08931553 3101+00244370 51+0212+00 0102+00000843 21.104+34575210 22.104+08931553 3101+00244350 51+0212+00 0102+00000845 21.104+34757058 22.104+08916585 3101+00236200 51+0012+000 0104+000008464 21.104+34777058 22.104+08910513 3101+00236200 51+0012+000 0104+00000847 21.104+34777058 22.104+08910519 3101+00236200 51+0012+000 0105+00000846 21.104+34777058 22.104+08910196 3101+00236200 51+0012+000 0105+00000848 21.104+34730086 22.104+08907568 3101+00170470 51+0012+000 0107+00000848 21.104+34730086 22.104+08907568 3101+00170470 51+0012+000 0108+00000850 21.104+3473093 22.104+089307568 3101+00170450 51.	0098+000000841 21.104+34752049 22.104+08916091 3101+00127570 51+00	<u>12+900 4,0154+80000274 00000000 8000000 8000000 8000000 8000000</u>
R100+00000137 42+00000004 00000000 00000000 00000000 R101+00000843 21.104+34518187 22.104+08937572 3101+00244370 51+0012+000 R101+00000844 21.104+34755210 22.104+08937572 3101+00244350 51+0012+000 R102+00000844 21.104+34755210 22.104+08930513 3101+00244350 51+0012+000 R103+00000845 21.104+34757055 22.104+08908501 3101+00246350 51+0012+000 R104+00000845 21.104+34757055 22.104+08908501 3101+00246350 51+0012+000 R104+00000845 21.104+34757055 22.104+08908501 3101+00256200 51+0012+000 R104+00000845 21.104+34757055 22.104+08911283 3101+002463530 51+0012+000 R105+00000845 21.104+34757055 22.104+08911095 3101+00170470 51+0012+000 110159+000008888 21.104+03423065 22.104+08936312 3101+0000000 51+0012+000 R105+00000846 21.104+3473730056 22.104+08910195 3101+00170470 51+0012+000 110160+00000889 21.104+03423063 22.104+08936316 3101+00105156 51+0012+000 R10	0099+00000842 21 104+3471 3001 22 104+08915399 31 01+00244280 51 +00	X12+000 1:0155+000000000000000000000000000000000
0101+00000843 21.104+34518187 22.104+08937572 3101+00244370 51+0012+000 0102+00000844 21.104+34775210 22.104+08918585 3101+00244350 51+0012+000 0102+00000845 21.104+34777055 22.104+08936501 3101+002244350 51+0012+000 0103+00000845 21.104+34777055 22.104+08900501 3101+00236200 51+0012+000 0104+00000846 21.104+34777055 22.104+08936314 3101+00204000 0000000 0104+00000846 21.104+3477058 22.104+08936314 3101+00000000 0100+0012+000 0105+00000847 21.104+3477058 22.104+08936314 3101+00000000 51+0012+000 0106+00000847 21.104+3473012 22.104+08936314 3101+00000000 51+0012+000 0106+00000847 21.104+34730086 22.104+08936316 3101+00000000 51+0012+000 0107+00000847 21.104+34730086 22.104+08936316 3101+0000055 51+0012+000 0108+000008450 21.104+34730086 22.104+08936316 3101+000055 51+0012+000 0107+000008450 21.104+34732055 22.104+08936316 3101+0001747930 51+0012+000 <td></td> <td></td>		
0102+00000844 21.104+34755210 22.104+08918585 3101+00244350 51+0012+000 0103+00000845 21.104+34757252 22.104+08908501 3101+00236200 51+0012+000 0103+00000845 21.104+34777058 22.104+08908501 3101+00236200 51+0012+000 0104+000000846 21.104+34777058 22.104+08936314 3101+0000000 0000000 0000000 0105+00000847 21.104+34777058 22.104+08936314 3101+0000000 51+0012+000 0105+00000847 21.104+34832112 22.104+08936314 3101+0000000 51+0012+000 0106+00000848 21.104+34730086 22.104+08936312 3101+00000000 51+0012+000 0107+00000849 21.104+347373085 22.104+08936316 3101+00170470 51+0012+000 0107+00000849 21.104+347373085 22.104+08936316 3101+001704705 51+0012+000 0108+00000849 21.104+343730055 22.104+08936316 3101+001704705 51+0012+000 0107+00000849 21.104+343737525 22.104+089363172 3101+001704705 51+0012+000 0108+000008050 21.104+343730055 22.104+08936172 3101+00	C100-T00000137 42 F00000004 00000000 0000000 000	
0102+00000844 21.104+34755210 22.104+08918585 3101+00244350 51+0012+000 0103+00000845 21.104+34757252 22.104+08908501 3101+00236200 51+0012+000 0103+00000845 21.104+34777058 22.104+08908501 3101+00236200 51+0012+000 0104+000000846 21.104+34777058 22.104+08936314 3101+0000000 0000000 0000000 0105+00000847 21.104+34777058 22.104+08936314 3101+0000000 51+0012+000 0105+00000847 21.104+34832112 22.104+08936314 3101+0000000 51+0012+000 0106+00000848 21.104+34730086 22.104+08936312 3101+00000000 51+0012+000 0107+00000849 21.104+347373085 22.104+08936316 3101+00170470 51+0012+000 0107+00000849 21.104+347373085 22.104+08936316 3101+001704705 51+0012+000 0108+00000849 21.104+343730055 22.104+08936316 3101+001704705 51+0012+000 0107+00000849 21.104+343737525 22.104+089363172 3101+001704705 51+0012+000 0108+000008050 21.104+343730055 22.104+08936172 3101+00	.0101+00000843 21.104+34618187 22.104+08907572 31,.01+00244370 51,+00	12+000 410156+00000054 42+00000001 43+000000050 44+00002516 45+000000040
0103+00000845 21.104+34717056 22.104+08908501 3101+00236200 51+0012+000 0104+00000846 21.104+34757058 22.104+08911283 3101+00236330 51+0012+000 0105+00000846 21.104+34757058 22.104+08910196 3101+00236330 51+0012+000 0105+00000846 21.104+34757058 22.104+08936312 3101+00000000 51+0012+000 0105+00000847 21.104+34323068 22.104+08936312 3101+00000000 51+0012+000 0105+00000848 21.104+34730086 22.104+08936312 3101+00000000 51+0012+000 0107+00000848 21.104+34729395 22.104+08936316 3101+00105156 51+0012+000 0107+00000848 21.104+34729395 22.104+08936316 3101+00105156 51+0012+000 0108+00000849 21.104+34729395 22.104+08938172 3101+00105156 51+0012+000 0108+00000845 21.104+34827416 22.104+08938172 3101+00105156 51+0012+000 0108+00000850 21.104+34328051 22.104+08938172 3101+00105156 51+0012+000 0108+000000850 21.104+34328051 22.104+08938172 3101+00105156	0102+00000A44 21,104+34755210 22,104+0A91A5A5 31 01+00244350 51 +00	12+000 110157+00000887 01 104+01145237 22 104+08907513 3101+00191050 51+0012+000
0104+00000846 21.104+34757058 22.104+08911283 3101+00236330 51+0012+000 0105+00000847 21.104+34323068 22.104+08936314 3101+00000000 51+0012+00 0105+00000847 21.104+34730086 22.104+08936312 3101+00000000 51+0012+00 0106+000000848 21.104+34730086 22.104+08936316 3101+0000000 51+0012+00 0107+00000848 21.104+3730086 22.104+08936316 3101+00105150 51+0012+00 0107+00000849 21.104+34729395 22.104+08936316 3101+00105150 51+0012+00 0108+00000850 21.104+34729395 22.104+08938172 3101+00105150 51+0012+00 0108+00000850 21.104+34729395 22.104+08938172 3101+00105150 51+0012+00 0108+00000850 21.104+34827416 22.104+08938172 3101+00105150 51+0012+00 0108+000000850 21.104+34827416 22.104+08938172 3101+00174930 51+0012+00 0108+000000137 42+00000003 00000000 10000000 10000000 00000000 0109+000000137 42+00000003 00000000 00000000 110154+000000034 <td></td> <td></td>		
0105+000000847 21.104+34832112 22.104+08936312 3101+00700008 110160+000000847 21.104+03423066 22.104+08936312 3101+00000008 51+0012+00 0106+000000848 21.104+34730036 22.104+08907568 3101+00170470 51+0012+00 110161+000000890 21.104+03423063 22.104+08936316 3101+00105150 51+0012+00 0107+000000849 21.104+34729395 22.104+08907560 3101+00174930 51+0012+00 110162+00000891 21.104+05158514 22.104+08938172 3101+00105150 51+0012+00 0108+00000850 21.104+3427416 22.104+08938172 3101+00174930 51+0012+000 410162+00000891 42+00000001 43+00000005 00000000 00000000 00000000 00000000 110154+000000812 21.104+05504250 22.104+09000510 3101+00112340 51+0012+000 0109+00000137 42+00000003 00000000 00000000 00000000 110154+000000822 21.104+05504250 22.104+090000510 3101+00112340 51+0012+00 0109+0000003 00000000 00000000 00000000 110154+000000832 21.104+02504250 22.104+029000510 31+0012+00 <td>0103-00000043 51.104-34/1/030 52.104+00300301 3101+002302000 51+00</td> <td>016+000 410138+000006/10 42+000000062 43+000000003 00000000 0000000</td>	0103-00000043 51.104-34/1/030 52.104+00300301 3101+002302000 51+00	016+000 410138+000006/10 42+000000062 43+000000003 00000000 0000000
0105+000000847 21.104+34832112 22.104+08936312 3101+00700008 110160+000000847 21.104+03423066 22.104+08936312 3101+00000008 51+0012+00 0106+000000848 21.104+34730036 22.104+08907568 3101+00170470 51+0012+00 110161+000000890 21.104+03423063 22.104+08936316 3101+00105150 51+0012+00 0107+000000849 21.104+34729395 22.104+08907560 3101+00174930 51+0012+00 110162+00000891 21.104+05158514 22.104+08938172 3101+00105150 51+0012+00 0108+00000850 21.104+3427416 22.104+08938172 3101+00174930 51+0012+000 410162+00000891 42+00000001 43+00000005 00000000 00000000 00000000 00000000 110154+000000812 21.104+05504250 22.104+09000510 3101+00112340 51+0012+000 0109+00000137 42+00000003 00000000 00000000 00000000 110154+000000822 21.104+05504250 22.104+090000510 3101+00112340 51+0012+00 0109+0000003 00000000 00000000 00000000 110154+000000832 21.104+02504250 22.104+029000510 31+0012+00 <td>0104+00000046 21.104+34757058 22.104+08911283 3101+00236330 51+00</td> <td>112+000 110159+000008888 21.104+03423068 22.104+08936314 3101+000000000 51+0012+000</td>	0104+00000046 21.104+34757058 22.104+08911283 3101+00236330 51+00	112+000 110159+000008888 21.104+03423068 22.104+08936314 3101+000000000 51+0012+000
0106+00000848 21.104+34730086 22.104+08907568 3101+00105150 51+0012+00 0107+00000849 21.104+34729395 22.104+08907568 3101+00105150 51+0012+00 0108+00000849 21.104+34729395 22.104+08907568 3101+00174930 51+0012+00 0108+00000850 21.104+34827416 22.104+089185172 3101+0018510 51+0012+00 0108+000008137 42+00000003 00000000 51+0012+000 410163+00000991 42+00000001 43+00000005 000000000 00000000 0109+00000137 42+00000003 00000000 00000000 110164+00000892 21.104+05504250 22.104+09000510 3101+00112340 51+0012+000		110150+000 110150+00000000 51 104+03433055 22 104+08935312 31 01+00000000 51 +0012+000
0107+00000849 21.104+34729395 22.104+08907560 3101+00174930 51+0012+00 110162+00000891 21.104+05158514 22.104+08938172 3101+00088410 51+0012+00 410162+00000850 21.104+34827416 22.104+08910549 3101+00174990 51+0012+00 410163+00000991 42+000000001 43+000000005 00000000 0000000 0000000 110164+00000892 21.104+05604260 22.104+090000510 3101+00112040 51+0012+00 12+00		
0108+00000850 21.104+34827416 22.104+08910549 3101+00174990 51+0012+000 410163+00000991 42+000000001 43+000000005 00000000 0000000 0000000 110164+00000892 21.104+05004260 22.104+09000510 3101+00112040 51+0012+00		
0108+00000850 21.104+34827416 22.104+08910549 3101+00174990 51+0012+000 410163+00000991 42+000000001 43+000000005 00000000 0000000 0000000 110164+00000892 21.104+05004260 22.104+09000510 3101+00112040 51+0012+00	0107+00000849 21.104+34729395 22.104+08907560 3101+00174930 51+00	
0109+00000137 42+000000003 00000000 00000000 0000000 110154+00000892 21.104+05604260 22.104+09000510 3101+00112040 51+0012+00		
0110+00000851 21.104+34608445 22.104+08913124 31.01+00175000 51+0012+000 110165+00000893 21.104+05606102 22.104+09000527 3101+00112120 51+0012+00		
	0110+00000851 21,104+34608445 22,104+08913124 31,01+00175000 51,+00	110165+0000893 21.104+05606102 22.104+09000527 3101+00112120 51+0012+000

*---------

-----*

File: A:LOUIGRE3.GRE Saved: 10-02-86 at 11:29:13 am	Page 4	
x		
110166+00000894 21.104+05325552 22.104+08936315 3101+00000000 51.	+8012+00	0
110167+00000895 21.104+05325551 22.104+08936320 31.01+00113360 51.		
110168+00000896 21.104+05325549 22.104+08936331 31.01+00113360 51.	+0012+00	ē.
1:0165+00000897 21.104+05805071 22.104+08953109 3101+00133590 51.	+0012+00	e
110170+00000898 21.104+05805067 22.104+08953115 3101+00133620 51.		ø
110171+00000899 21.104+05536506 22.104+08932033 3101+0000000 51.	+0012+00	e
110172+00000900 21.104+05536504 22.104+08932019 3101+00134290 51.		
110173+00000901 21.104+05536503 22.104+08932018 3101+00134290 51.		-
110174+00000902 21.104+05650520 22.104+08949531 3101+00000000 51.		
110175+00000903 21.104+05850520 22.104+08949512 3101+00145650 51.		
410176+00000991 00000000 0000000 0000000	8888888	8
410177+00000999 42+00000030 0000000 0000000		
110178+00000904 21.104+09317198 22.104+09117452 31.01+00090010 51.		-
110179+00000905 21.104+10011519 22.104+09110359 31.01+00095620 51.		
110180+00000906 21.104+10013218 22.104+09110350 31.01+00095690 51.		
110181+00000907 21.104+09926058 22.104+09105382 31.01+00000000 51		
110182+00000908 21.104+09926058 22.104+09105378 3101+00098890 51.		
110183+00000909 21.104+09836046 22.104+09114306 3101+00000000 51.		-
110184+00000910 21.104+09836045 22.104+09114326 3101+00101550 51.	+6615+66	1

110185+00000911 21.104+09836044 22.104+09114342 31..01+00101590 51....+0012+000 110186+00000912 21.104+10117142 22.104+09116575 31..01+00096660 51....+0012+000 110197+00000913 21.104+10117141 22.104+09116585 31..01+00096650 51....+0012+000 110188+00000914 21.104+09942265 22.104+09111242 31..01+00000000 51....+0012+000 110189+00000915 21.104+09940220 22.104+09111240 31.01+00102480 51....+0012+000 110190+00000916 21.104+09940220 22.104+09111246 31..01+00102500 51....+0012+000 110191+00000917 21.104+10548185 22.104+09106291 31..01+00101220 51....+0012+000 110132+00000918 21.104+10232481 22.104+05114390 31.01+00110110 51....+0012+000 110193+00000919 21.104+10232483 22.104+09114399 31..01+00110100 51....+0012+000 110194+00000920 21.104+10104273 22.104+09149526 31..01+00000000 51....+0012+000 110195+00000921 21.104+10104271 22.104+09149523 31..01+00108500 51....+0012+000 110196+00000922 21.104+10104271 22.104+09149511 31..01+00108500 51....+0012+000 110197+00000923 21.104+09245267 22.104+09053176 31..01+00000000 51....+0012+000 110198+00000924 21.104+09245261 22.104+09053197 31..01+00147400 51....+0012+000 413139+00000104 42....+00000000 43....+00000000 44....+00000000 45....+00010401 110200+00000925 21.104+05922467 22.104+09055013 31..01+00000000 51....+0012+000 110201+00000926 21.104+05922467 22.104+09055584 31..01+00057560 51....+0012+000 110202+00000927 21.104+06739465 22.104+09106119 31..01+00056900 51....+0012+000 110203+00000928 21.104+07707198 22.104+09105511 31..01+00058060 51....+0012+000 410204+00000104 42....+00000001 43....+00000000 44....+00000000 45....+00010401 410205+00000137 42....+00000001 43....+00000000 44....+00000000 45....+00013701 110206+00000229 21.104+08100341 22.104+09117525 31..01+00000000 51....+0012+000 110207+00000930 21.104+08100341 22.104+09117529 31..01+00000000 51....+0012+000 110208+00000931 21.104+08100341 22.104+09117537 31..01+00059080 51....+0012+000 110209+00000932 21.104+09603362 22.104+09128424 31..01+00067670 51....+0012+000 110210+00000933 21.104+10852029 22.104+09141385 31..01+00059800 51....+0012+000 110211+00000934 21.104+11023385 22.104+09127475 31..01+00115170.51....+0012+000 110212+00000935 21.104+10645160 22.104+09059178 31..01+00000000 51....+0012+000 110213+00000936 21.104+10645159 22.104+09059183 31..01+00000000 51....+0012+000 112214+00000937 21.104+10643500 22.104+09059209 31..01+00148810 51....+0012+000 410215+00000104 42....+00000000 43....+00000000 44....+00000000 45....+00010401 110216+00000938 21.104+10612094 22.104+09055429 31..01+00000000 51....+0012+000 110217+00000939 21.104+10612093 22.104+09055423 31..21+00152710 51....+0012+000 110219+00000940 21.104+10354392 22.104+09051118 31..01+00167220 51....+0012+000 110219+00000941 21.104+10219175 22.104+09048555 31..01+00177200 51....+0012+000

410220+00000104

80000000

00000000

00000000

00000000

- ¥

ŧ٠					٠.
;	File.	A:LOUIGRE3. GRE			•
					•
1	Saveds	10-02-86 at 11:29:13 am	Page	5	
				_	
¥-					¥.
· ·					

110221+00000942 21.104+10235039 22.104+09047519 31..01+00178110 51....+0012+002 110222+00000943 21.104+10216360 22.104+09046223 31..01+00177620 51....+0012+000 110223+00000944 21.104+09909148 22.104+09037355 31..01+00198950 51....+0012+000 410224+00000137 42....+000000000 43....+00000000 44....+00000000 45....+00013781 110225+00000945 21.104+09900230 22.104+09037535 31..01+00192800 51....+0012+000

	-29-8/ at	11:37:16 am		Page
ILE:H V D OS:USETOP P: C 130 S: C 6 S: C 7				
	359 59 59 143 32 53	9.7 090 09 08.4 3.9 090 16 13.4	342 . 5809 142 . 2800	
VD: 5 VD: 6 OS:SETUP P: C 130	323 32 54		. 0000 . 0000	
S:C 6 VD:8 EAT:SIDEWK M:MULTI D:13701		9.9 090 12 38.4	. 8000	
K:SKIP V D: 10 V D: 12 V D: 12 V D: 13 V D: 14 V D: 16 V D: 17 V D: 18 V D: 18 V D: 19	165 54 14 165 58 36 159 57 57 155 18 18 357 10 40 354 47 36 351 43 47 345 17 39	5.9 089 56 46.0 7.7 090 000 34.2 3.9 090 17 04.5 5.5 090 22 57.5 5.6 090 18 37.7 7.7 090 20 51.3	172.3000 176.3800 173.1900 155.9100 286.8100 316.5200 320.6100 321.3100	
	162 10 55 161 08 05 160 16 31 174 25 51 173 59 42 173 25 03 191 54 57 191 36 06 191 11 30	5.6 0.69 5.6 15.0 5.6 0.89 36 36.5 7.0 0.89 38 58.8 .3 0.89 41 53.0 2.6 0.89 30 18.7 3.4 0.89 47 50.0 1 0.89 69 40.5 5.0 0.89 18 36.8 0.3 0.89 21 28.7	70.7800 69.6300 70.8900 135.6900 135.8900 135.8100 164.4100 163.5900 164.3700	
M:MULTI D:10401 K:SKIP K:START _V_D: 32 _V_D: 34 _V_D: 35 _V_D: 35 _V_D: 38 _V_D: 39 _V_D: 40	345 14 36 352 09 36 354 48 05 357 28 04 154 06 51 158 15 51 165 25 33	0.2 090 26 12.4 0.5 090 24 40.1 0.2 090 22 54.5	324.3500 323.8000 320.0700 298.0700 155.9400 173.3800 179.4900	
K:END VD: 41 EAT:DROPIN M:SINGLE		0.7 089 56 17.1	180.0600	

ŧ			
H V D: 44 H V D: 46 H V D: 50 H V D: 50 H V D: 53 H V D: 53 H V D: 53 H V D: 55 H V D: 56 H V D: 58 H V D: 58 H V D: 58 H V D: 58 H V D: 60 FEAT:CURB	4 155 02 56.7 5 154 36 09.6 6 036 02 30.3 7 032 32 26.5 3 034 29 39.2 4 155 47 49.0 9 055 47 49.0 9 055 52 31.7 2 357 35 22.8 3 357 36 59 4 356 59 36.5 5 005 32 40.8 6 005 32 40.8 6 005 32 40.8 6 005 32 40.8 6 005 32 40.8 6 005 32 40.8 6 005 32 40.8 6 005 45 46.7 9 009 11 53.9 9 009 21 18.8	0'90 11 21.3 0'90 12 59.0 0'90 51 13.8 0'90 51 13.8 0'90 47 26.9 0'90 47 27.2 0'90 45 44.0 0'90 45 44.0 0'90 45 46.3 0'90 20 94.2 0'90 20 94.2 0'90 20 94.2 0'90 21 51.3 0'90 21 51.3 0'90 21 51.3 0'90 21 57.1 0'90 11 57.1 0'90 11 56.2 0'90 10 42.8	154.7900 150.4400 52.9500 56.4200 98.9600 92.6600 95.1000 293.2500 293.2500 293.2500 293.6200 301.9400 306.3500 307.0900 342.1900 343.8600 341.4200
GM:MULTI			
ID:10402 SK:SKIP			
H V D: 63	015 33 11.3	898 85 29.8	359.1499
H V D: 65	008 30 06.2	090 11 33.6	342.2700
H V D: 66	205 48 48.6	A9A A9 41.A	339.1499
H V D: 67	005 17 40.2	090 05 29.0 090 11 33.6 090 09 41.0 090 22 11.5 090 10 27.7 090 06 31.2 089 18 26.5 089 22 08.4	286 2288
H V N 69	140 24 02 7	000 10 27 7	171 7000
1 V D. 03	141 14 51 0	000 06 71 0	171.3700
	141 14 31.3	000 10 01.2	194.3300
1 V D: /1	13/ 36 31.2	083 18 50.0	207. 9800
BRIEND			
H_V_D: 72	138 02 03.4	089 22 08.4	210.4000
FEAT: SHOULI)		
GM:MULTI			
ID: 0			
TYPE:000003	· `		
SKISKID			
H V D • 74	179 17 57 4	000 50 70 7	175 1000
<u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	007 00 5/ 5	089 50 30.7 090 14 04.0	200 0000
POSTEFORE	007 00 14.3	0.70 14 04.0	C 7 7. OK400
PU3:EFURE			
0P: C 130 BS: C 7 FS: C 131			
BS: C /			
FS: C 131			
H_V_D: 77	359 59 59.7	08 9 5 5 5 2.3	. 0000
H V D: 78	193 14 19.9	090 35 54.1	388.5900
H V D: 79	013 14 29 4	269 32 44.3	. 0000
H V D: 80	180 00 01.9	089 55 52.3 090 35 54.1 269 32 44.3 270 26 46.4	9999
171 1 21		08 9 13 35.5	
BC C 2			
	750 50 50 7	000 17 75 5	0000
	, 'tt tt tt	003 12 29.9	. 0000
GM: NULTI			
ID:10402			
HVD: 85	355 20 36.4	089 15 58.2	283.6000
FEAT CURB			

File: A:LOUIGRE3.HVD Saved: 01-29-87 at 11:37:16 am

4-----

88

Page 2 l

ULTI 0						
KIP TART D: 88 D: 89 D: 91 D: 92 D: 93	349 1 151 4 16 8 4	7 05.3 1 53.8 6 41.4 8 36.7 2 34.1	089 08		278.8700 127.6700 54.2000 72.2800 82.6200	
SIDEWK ULTI 0	185 0	1 08.6	031 57	7 13.9	85.6100	
D: 97 D: 98	156 3 347 5	15 42.6 15 99.3 12 04.9 13 00.1	092 0. 089 1	B 30.0 3 00.2 5 09.1 5 39.9	65,7100 65,8900 127,5700 244,2800	
KIP D: 101 D: 102 D: 103 D: 104 D: 105 D: 106 D: 107 D: 108 :SIDEWK WLTI 0 :0000003	347 5 347 1 347 5 348 3 348 3 347 3 347 3	8 18.7 5 21.0 7 05.6 7 05.8 32 11.2 30 08.6 29 39.5 27 41.6	089 1 089 0 089 1 089 1 089 1 089 0	7 57.2 8 58.5 8 50.1 1 28.3 0 19.6 7 56.8 7 56.0 0 54.9	244.3708 244.3508 236.2008 236.3388 170.4788 170.4788 174.9388 174.9388	
D: 111 D: 112 D: 113 D: 114 D: 115 D: 116 D: 118 D: 119 D: 120 D: 121 T:LPOST	319 3 319 1 320 4 315 5 313 1 327 1 326 3 329 4 330 1	88 44.5 31 11.3 13 18.3 19 55.5 57 38.7 15 20.2 10 20.9 14 25.0 13 25.3 14 25.0 15 20.8	089 3 089 3 089 4 089 4 089 3 089 3 089 3 089 3 089 4 089 3	3 12.4 9 22.7 9 19.8 1 11.4 1 18.1 9 22.8 7 11.5 6 27.8 0 06.2	175.0008 191.8700 194.6900 207.4500 216.0500 198.6800 178.3500 172.7500 169.9100 174.8200 169.8600	
D: 123 D: 123 D: 124 CURB	343 4 342 6	44 22.1 28 48.5	088 5 088 5	2 15.9 7 01.3	147 . 3600 47 . 8800	

File: A:LOUIGRE3.HVD Saved: 01-29-87 at 11:37:16 am	Page	
		 π

CL:CLOSED										
SK:SKIP H V D: 126 H V D: 128 H V D: 129 H V D: 130 H V D: 130 H V D: 132 H V D: 133 H V D: 134	004	10	16	a	000	16	20	6	100	7000
U U D: 120	004	20	06.	ς.	003	06	45	6	100.	9799
H V D. 129	005	10	13.	ĭ	089	ñĂ	29.	ğ	183.	8100
H V D: 130	ARE.	44	59.	Ġ	089	06	43.	7	102.	4700
HTVTD: 132	124	43	25.	7	091	52	32.	1	62.	6100
H V D: 133	128	80	11.	ż	091	58	35.	8	63.	7500
H V D: 134	128	18	89.	0	091	54	Ø2.	2	61.	0200
FEAT: TCBOX										
GM:SINGLE										
H_V_D: 136	166	11	32.	8	090	21	15.	0	63.	2280
FEAT: SSMAN										
GH:SINGLE									_	
H_V_D: 139 H_V_D: 140	339	16	32.	1	089	25	47.	2	6.	5000 4800
	339	44	14.	6	8 89	28	Ø8 .	4	7.	4866
FEAT: THAN										
GM:SINGLE		a 0	40	2	001	20	70	7	07	6 700
H V D: 142		65	42.	2	6.31	20	35.	1	83.	5700
FEAT: WHETER										
GM:SINGLE	057	эe	07	•	000	50	10	۵	117	7400
H V D: 144 H_V_D: 145	055	20	45	7	0007	50	02	0 0	176	26.90
FEAT:WVALVE	ບບບ	20	-0.	'	001	90	υ	U	1041	1000
GM:SINGLE										
H V D: 147	95 8	48	32.	A	089	50	05.	8	145.	8400
H_V_D: 147 H_V_D: 148	099	26	30.	7	0.30	48	53.	1	98	7900
FEAT: WHETER	033			•				-		
GM:SINGLE										
H V D: 150	8 38	38	55.	7	030	57	02.	2	101.	5200 4500
H V D: 151	099	38	02.	7	090	55	04.	7	102.	4500
FEAT: WVALVE										
GM:SINGLE										
H_V_D: 153	032	43	52.	4	030	53	43.	3	147.	3800
FĒAT:FHYD										
GM:SINGLE			_	_				_		
H V D: 155	101	13	45.	8	0 89	31	55.	3	108.	6000
FEAT: WLINE										
GM:MULTI										•
ID: 0										
DIAM:00002				•						
MATL:000005										
SK:SKIP	074	27	ar	-	000	76	71	r	105	1500
H_V_D: 161 H_V_D: 162	051	23	65.	3	007	20	17	2	160	1,000
ID: -1	031	90	51.	7	603	20	17.	C .	00.	4100
SK:SKIP										
JN 100 14 142	951	5,0	51	4	DAG	R	17	2	88	4100
H_V_D: 163 H_V_D: 164	051	20	26	a -	0000	30	51	ā	112	9499
ID: -9	0.00	64	-0.	•	0.0			-		
SKISKID										
H V D: 165	056	86	10.	2	830	88	52.	7	112	1288
H_V_D: 165 H_V_D: 167	053	25	55	ī	089	36	32	ė	113	3600
ID: -1										
H_V_D: 169	85 8	65	@ 7.	1	089	53	10.	9	133.	5900
								-		

68

File: A:LOUIGRE3.HVD Saved: 01-29-87 at 11:37:16 am	I File: A:LOUIGRE3.HVD Page 5 I Saved: @1-29-87 at 11:37:16 am
ID: -9 K:SKIP V D: 170 058 05 06.7 089 53 11.5 133.6200 V D: 172 055 36 50.4 089 32 01.9 134.2900 ID: -1 V D: 175 058 50 52.0 089 49 51.2 145.6500 D: 0	GM:MULTI ID: 0 SK:SKIP H V_D: 221 102 35 03.9 090 47 51.9 178.1100 H V_D: 222 102 16 36.0 090 46 22.3 177.6200 H V_D: 223 099 09 14.8 090 37 35.5 198.9500 FEAT:SIDEWK
V D: 178 093 17 19.8 091 17 45.2 90.0100 V D: 179 100 11 51.9 091 10 35.9 95.6200 D: −9 K:SKIP	GM:MULTI ID:13701 H_V_D: 225 099 00 23.0 090 37 53.5 192.8000
+ V D: 180 100 13 21.8 091 10 35.0 95.6900 + V D: 182 099 26 05.8 091 05 37.8 98.8900 + V D: 184 098 36 04.5 091 14 32.6 101.5500	
15: ⁻ 0 4 V D: 186 101 17 14.2 091 16 57.5 96.6600 15: ⁻ -9	
SK:SKIP + ∨ D: 187 101 17 14.1 091 16 58.5 96.6500 + ∨ D: 189 099 40 22.0 091 11 24.0 102.4800	
ID: 0 4 V D: 191 105 48 18.5 091 06 29.1 101.2200 4 V D: 192 102 32 48.1 091 14 39.0 110.1100 ID: -9	
K:SKIP { V D: 193 102 32 48.3 091 14 39.9 110.1000 { V D: 195 101 04 27.1 091 49 52.3 108.5000 [D: 0	
IV D: 198 092 45 26.1 090 53 19.7 147.4000 EAT:CURB M:MULTI	
D:10401 V D: 201 059 22 46.7 090 55 58.4 57.5600 V D: 202 067 39 46.5 091 06 11.9 56.9000 V D: 203 077 07 19.8 091 05 51.1 58.0600 EAT:CURB M:MULTI D:10401	
YPE:000001 TEAT:SIDEWK M*:MULTI D:13701 VEF:002001	
YFE:000001 V D: 208 081 00 34.1 091 17 53.7 59.0800 IVD: 209 096 03 36.2 091 28 42.4 67.6700 IVD: 210 108 52 02.9 091 41 38.5 89.8000 IVD: 211 110 23 38.5 091 27 47.5 115.1700 IVD: 214 106 43 50.0 090 59 20.9 148.8100 EAT:CURB	
M:HULTI D:10401 {VD:217 106 12 09.3 090 55 42.3 152.7100 [VD:218 103 54 39.2 090 51 11.8 167.2200 [VD:219 102 19 17.5 090 48 55.5 177.2000 [EAT:CURB	·

---ŧ

90

Page 6 |

File: A:LO Saved: 01-2		am		File: A:LOUIGRE3.XYZ Saved: 01-29-87 at 11:26:16 am					
FILE:X Y Z FEAT:SIDEWK GM:MULTI ID:13701			. 00 . 00 . 00	*	X_Y_Z: 57 X_Y_Z: 58 X_Y_Z: 59 X_Y_Z: 60 FEAT:CURB GM:MULTI ID:10402 SK:SKIP_	1000538.5411 1000545.5995 1000542.8444 1000540.7531	249624, 1673 249586, 5141 249582, 7752 249584, 3432	. 00 . 00 . 00 . 00	
GM:SINGLE TYPE:000004		249971. 4768 249973. 9740 249956. 6936 249937. 0531 249668. 1976 249656. 2737 249656. 2236 249694. 5291	. 98 . 98 . 98 . 98 . 98		BR:START X Y Z: 63 X Y Z: 65 X Y Z: 66 X Y Z: 67 X Y Z: 67 X Y Z: 69 X Y Z: 70 X Y Z: 71	1000516. 5974 1000545. 5062 1000551. 7295 1000540. 1227 1000190. 4552 1000168. 0535 1000151. 1353	249549. 6389 249586. 3583 249605. 2551 249626. 2602 249900. 6997 249907. 1695 249897. 8242	. ହଡ . ତତ . ତତ . ତତ . ତତ . ତତ	
X Y Z: 21 X Y Z: 22 X Y Z: 22 X Y Z: 23 X Y Z: 24 X Y Z: 25 X Y Z: 25 X Y Z: 26 X Y Z: 27	1000298.9294 1000299.2768 1000297.6617 1000260.5752 1000260.6853 1000258.8626 1000258.8626	249910.0647 249908.3759 249908.0743 249966.4498 249964.9461 249964.7630 250016.9519 250015.7996 250015.8904	. 96 . 96 . 96 . 96 . 96 . 96 . 96		BR:END X Y Z: 72 FEAT:SHOULD GM:HULTI ID: 0 TYPE:0000003 SK:SKIP	1 000 15 0. 7545	249898. 2091		
X-Y-Z: 28 X-Y-Z: 29 FEAT:CURB GM:MULTI ID:10401 SK:SKIP	1000278.4918 1000277.0851	250015.7996 250015.8904	. 00 . 09		X Y Z: 74 X Y Z: 75 FEAT:CURB GM:MULTI ID:10402 X Y Z: 85	1000185.8558 1000528.3541 1000495.5074	249894. 722 6 249625. 9410 249522. 5280	. 00 . 00 . 00	
BK:START X Y Z: 32 X Y Z: 34 X Y Z: 35 X Y Z: 36	1000604.8304 1000592.1745 1000565.4320	249693.0737 249662.3138 249653.8030 249659.0764 249659.0764	. 00 . 00 . 00 . 00 . 00 . 00		FEAT:CURB GM:MULTI ID: 0 SK:SKIP BK:START Y 7 - 84	1000524.8192	249499. 3461	. 90	
X Y Z: 38 X Y Z: 39 X Y Z: 39 X Y Z: 40 BR:END X Y Z: 41 FEAT:DROPIN	1000215, 9036 1000205, 0865 1000211, 0063 1000210, 5760	249974.6962	.00 .00 .00		X Y Z: 89 X Y Z: 91 X Y Z: 91 X Y Z: 92 X Y Z: 93 BK:END Y Y Z: 94	1000623.3104 1000734.3362 1000752.0264 1000773.6129	249614, 1455 249755, 9067 249756, 4354 249760, 6902 249751, 6613	00	
GM:SINGLE X_Y_Z: 43 X_Y_Z: 44 X_Y_Z: 45 X_Y_Z: 45 X_Y_Z: 46 X_Y_Z: 47	1000216.3255 1000217.9587 1000221.4765 1000364.6450 1000368.3878	249934.0102 249935.9661 249933.1442 249821.1012 249818.0713	. 80 . 98 . 98 . 98 . 99 . 99		FEAT:SIDEWK GM:MULTI ID: 0 SK:SKIP X_Y_Z: 96 Y_Z: 97	1000747.5990 1000744.2927	249761, 5104	. 00	
X Y Z: 48 X Y Z: 49 X Y Z: 50 X Y Z: 51 X Y Z: 52 X Y Z: 53	1000366.7054 1000337.0721 1000340.7040 1000339.1422 1000562.6407 1000564.2549	249815.9615 249785.7297 249785.7297 249782.9332 249788.9778 249662.1159 249663.9959 249663.9959	. 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20		X Y Z: 97 X Y Z: 98 X Y Z: 99 FEAT:SIDEWK GM:MULTI ID: 0 TVTE:000000	1000744.2327 1000625.5573 1000549.6927	249753,8160 249612,2122 249523,5133	. 00 . 00 . 00	
X ⁻ Y ⁻ Z: 54 X ⁻ Y ⁻ Z: 55 X ⁻ Y ⁻ Z: 56	1000567.8195 1000536.4762 1000548.1444	249663.9959 249661.1867 249629.0257 249626.2386	. 69 . 69 . 69		SK:SKIP X_Y_Z: 101	1000552, 5811	249520.9117	. 00	

Page 2 I

File: A:L(Saved: @1-6	DUIGRE3.XYZ 29-87 at 11:26:10	5 aø	Pa	ge 3 i	File: A:L Saved: 01- #	OUIGRE3.XYZ 29-87 at 11:26:1	6 a.m.		Page	* F 4
X Y Z: 102 X Y Z: 103 X Y Z: 104 X Y Z: 105 X Y Z: 105 X Y Z: 106	1000547, 3940 1000554, 8131 1000552, 6710 1000595, 4380	249525.4570 249529.7778 249531.5058 249581.6253	. 80 . 82 . 90 . 80		X Y Z: 147 X Y Z: 148 FEAT:WMETER GM:SINGLE	1000576, 3521 1300666, 6420	249763.7704 249795.5351	. 00 . 00		
X Y Z: 106 X Y Z: 107 X Y Z: 107 X Y Z: 108 FEAT:SIDEWK	1000597.7166 1000594.7845 1000592.5487	249581.6253 249579.5585 249576.2116 249578.1421	. 00 . 00 . 00		X_Y_Z: 150 X_Y_Z: 151 FEOT: WOD VE	1000664.1719 1000665.3168	249797.3381 249798.9600	. 99 . 99		
GM:MULTI ID: 0 TYPE:000003					GM:SINGLE X Y Z: 153 FEAT:FHYD	1000629.3908	249838.4114	. 88	4	
SK:SKIP	1000597.8507 1000665.7809 1000666.1051	249573. 4621 249528. 6289 249517. 6527	. 00 . 00 . 00		GM:SINGLE X Y Z: 155 FEAT:WLINE GM:MULTI ID: 0	1000665, 3127	24 9805. 78 36	. 80	1	
X Y Z: 111 X Y Z: 112 X Y Z: 113 X Y Z: 114 X Y Z: 115	1000657.5233 1000673.2490 1000685.5371	249506.6490 249494.3838 249510.0808	. 00 . 00 . 00	•	DIAM:000002 MATL:0000005 SK:SKIP					
X_Y_Z: 116 X_Y_Z: 116 X_Y_Z: 118 X_Y_Z: 119 X_Y_Z: 120	1000646.2339 1000649.9531 1000642.2517 1000638.9256	249548.8836 249545.4574 249551.6634	. 80 . 90 . 90 . 90		X_Y_Z: 161 X_Y_Z: 162 ID: -1	1 000605. 6444 1000625. 7756	2497 84.2538 249731.5440	. 89 . 00		
FEAT:LPOST GM:SINGLE	1000601.2020	249547.7720 249577.3619	. 00		SK:SKIP X_Y_Z: 163 X_Y_Z: 164 ID: -9	1000625.7756 1000605.5423	249731.5440 249745.6720	. && . ØØ		•
X_Y_Z: 123 X_Y_Z: 124 FEAT:CURB GM:MULTI	1000620.5020 1000682.2660	249590.6970 249668.6764	. 00 . 00		SK:SKIP X_Y_Z: 165 X_Y_Z: 167 1D: -1	1000605.4867 1000602.6220	249745.7526 249741.1769	. 00 . 00		
ID: 0 CL:CLOSED SK:SKIP					X Y_Z: 169	1000586.9957	249757.4558	. 99		
X Y Z: 126 X Y Z: 128 Y Y 7, 129	1000625.0451 1000624.6061 1000621.5878	249654.3000 249654.5068 249654.0109	. 00 . 00 . 00		SK:SKIP X Y Z: 170 X Y Z: 172 15: -1	1000586, 9678 1000584, 2864	249757.4669 2497 52.386 7	. 86 . 88		
X ⁻ Y ⁻ Z: 138 X ⁻ Y ⁻ Z: 132	1000621.3270 1000709.3973 1000713.0187	249654.0109 249657.1432 249769.7125 249770.8224	. 00 . 00 . 00		X Y_Z: 175 ID: 0	1000576.5656	249763.7877	. 00		
X-Y-Z: 130 X-Y-Z: 132 X-Y-Z: 132 X-Y-Z: 133 X-Y-Z: 134 FEAT:TCB0X	1000713.2401	249768. 8863	. 00		X_Y_Z: 178 X_Y_Z: 179 ID: -9	1000662.1699 1000669.1943	249782, 8965 249793, 2453	. 00 . 00		
GM:SINGLE X Y Z: 136 FEAT:SSMAN GM:SINGLE	1000751.5808	249755.4169	. 60		SK:SKIP X_Y_Z: 180 X_Y_Z: 182 X_Y_Z: 184 X_Y_Z: 184	10006659.2014 1000666.5902	249793.3265 249795.6120 249797.3173	. 00 . 00		
X_Y_Z: 139 X_Y_Z: 140 FEAT:TMAN	1000707.1824 1000706.5940	249701.7189 249700.9332	. 90 . 90		ID: 0 X_Y_Z: 186 ID: -9	1000664.0879 1000670.4063	249797.3173 24979 4.96 13	. 00 . 00		
GM:SINGLE X Y Z: 142 FEAT:WMETER GM:SINGLE	1000692.0515	249788.6756	. 00		SK:SKIP X_Y_Z: 187 X_Y_Z: 189	1000670.4105 1000665.3695	249794.9522 249799. 0 095	. 00 . 00		
X Y Z: 144 X Y Z: 145 FEAT: WVALVE	1000602.6299 1000584.3100	249741.1445 249752.2951	. &A . &A		ID: 0 X_Y_Z: 191 X_Y_Z: 192 ID: -9	1000675.8752 1000667.0013	249802.1521 249808.1674	. 90 . 00		

_Z: 193 ≠						*		00:19:10 am			
	1000667.0054 1000665.1100	2498 88. 1583 2498 05. 5 226	. 80 . 00	•	· _ •	1 2	M 0.0000 M 0.0000	0.0000 0.0000	0. 0000 0. 0000		. •
Z: 195 0	1000003.1100		. 00			3	M 0.0000	8.0000	0.0000		
Z: 198	1000630.0357	249830.4650	. 00			4	M 0.0000	8, 8882	0.0000		
T:CURB					• .	5	M 0.0000	0.0000	0.0000		
MLELTI						6	M1000586.1660 M1000220.6820	249616.7520	0.0000		
10401 _Z: 201 _Z: 202 _Z: 203 T:CURB	1000/67 0202		·			/	M1000220.6820	249903.7710	0.0000 8.0000		
7. 201	1000657.9392、 1000662.3491	249730.0216 249737.0433				8.9	M 0.0000	0.0000 0.0000	0.0000		
7. 203	1000667.0467	249745.3551	00 :00	•		10	M 0.8000	8.0000	0.0000		
	1000007.0107	L43/43,3331	.00			11	M 0.0000	0.0000	0.0000	۸.	
MULTI						12	M 8.0000	0.0000	8.8888		
10401		1 (1) (1) (1) (1)				13	M 0.0000	8, 8888	9.0000		
E:000001					•	14	M 0.0000	0.0000	8. 8888		•
T:SIDEWK	•					15	M 0.0000	8.0000	0.0000		
MULTI		۵		•		16	N 9.0000	0.0000	9.0000	:	
13701						17	M 0.0000	0.0000	8.0000		
E:000001	1000000 0100	040340 0400				18	M 0.0000	0.0000	8.0008		
2:208	1000669.0198 1000677.0262	249748.9488 249765.7916	. 88		•	19 20	M 8.0000 M 8.0000	0. 9999 9. 9999	0.0000 0.0000		
Z: 208 Z: 209 Z: 210 Z: 211 Z: 214	1000684, 3635	249792.9449	.00		•	21	M 0.0000	8.0008	6. 8886		
7: 211	1000673.8482	249818.0580	. 00 . 00	•	;	22	M 0.0000	6. 6666	8.8888		
7: 214	1000661.7379	249847.6336	. 00			22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	M 0.0000	0.0000	0.0000		
						24	M 0.0000	8. 6866	0.0000		
ULTI						25	M 0.0000	0.0000	8.0000		
AULTI 10401 7: 217 7: 218 7: 219 7: 219 1:CURB						26	M 8. 8088	0.0000 0.0000	0.8880		
Z: 217	1000659.1262	249850.8483	. 00			27	M 0.0000	0.0000	0.0000		
Z: 218	1000647.9728	249862.1187	. 00			28	M 8.0080	8. 8888	0.0000		
Z: 219	1000639.6962	249869.4607	. 80			29	M 0.0000	0.0000	0.0000		
			,			30	M 0.0000	8. 0000	8.0000		
IUIL I I						31	M 8.0000	8.0000 8.0000	0.0000 8.0000	•.	
KIP Ø						32	M 0.0000 M 0.0000	8,8888	0.0000		
7. 221	1000640.0803	249870.6210	. 00			33	M 8.0000	8, 8688	0.0000		
Z: 221 Z: 222 Z: 223	1000639.3997	249869.7913	. 00			75	M 0.0000	0.0000	8. 8888		
7: 223	1000621.0237	249884.7841	.00			35	M 0.0000	0. 0000	0.0000		
SIDEWK						37	M 0.0000	0.0000	0. 9999		
ULTI			н к			38	M 8.0000	8.0000	8.8888		
3701						38 39 40	M 0.0000	0.0000	8.9999		
Z: 225	1000623.3542	249878.9906	. 00			40	M 0.0000	0.0000	8. 0000		
						41	M 0.0000	0.0000	0.0000		•
			•			42 43	H 0.0000	8.0000	0.0000		
							M 0.0008	0.0000 0.0000	0.0000 0.0000		
						44 45	M 0.0000 M 0.0000	0.0000	0.0000		
						46	M 0.0000	0.0000	0.0000	1	
						47	M 0.0000	0.0000	0.0000	.* .	
		·				48	M 0.0008	0.0000	.0.0000		
		, *				49	M 0.0000	0.0000	0.0000		
	*		*			50	M 0.0000	8.0000	8. 8888 🗡		
		• • • • •	•			51	M 0.0000	8.8888	0.0000		
						52	M 0.0000	9. 9999	8. 8888		
. ·						53 54 55	M 0.0000	8.0000	- 0.0000		
		•				54	M 0.0000 M 0.0000	0.0000 0.0000	8. 8888 8. 8888		

•	
File: A:LOUI.CNT	ŀ
Saved: 01-21-87 at 00:19:10 am	Page 2 I
*	

L	Cilm.	A:LOUI.	ONT
1	F116:	H:LUUI.	

150

I Saved: 01-21-87 at 00:19:10 am 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 111 M M 112 113 M 114 0.0000 0.0000 0.0000 0.0000 115 116 M Ħ 117 H H H 118 0.0000 0.0000 119 M 8.9999 120 121 M 122 123 124 125 126 127 128 129 138 131 132 133 134 135 136 137 138 139 ļ H M H M Ħ M 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 8.0000 9.0000 9.0000 8.0000 8.0000 9.0000 9.0000 Ħ 148 141 142 143 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 144 145 0.0000 0.0000 8.0000 9.0000 8.0000 9.0000 9.0000 8.0000 146 147 148 149 0.0000 0.0000 0.0000 H

8.8888

•				
56	Ħ	8. 8888	8,8868	0.0000
57	M	0.0000	0.0000	8.0000
58	M	0.0000	0.0000	8.0000
59	M	0.0000	0.0000	0.0000
	n M	6.0000	0.0000	8.0000
60	M	0.0000		
61			0.0000	0.0000
62	M	8.0000	0.0000	0.0000
63	M	8.0000	0.0000	0.0000
64	M	0,0000	0.0000	8.0000
65	M	0.0000	0.0000	0.0000
66	M	0.0000	9.0000	8.0000
67	Ħ	0.0000	0.0000	0.0008
68	M	9.9998	0.0000	8.0008
69	M	6, 9999	0.0000	0.0000
70	M	8.0000	0.0008	0.0000
71	M	0.0000	8.0008	0.0000
72	M	8.0000	6. 8888	8. 8888
73	M	0.0000	8.0008	8.0800
74	M	8. 8888	0.0000	9.9999
75	М	8.0000	0.0008	8.8888
76	H	8. 8888	0.0000	0.0000
77	M	8.0000	0.0000	0,0000
78	Ň	0.0000	0.0000	0.0000
79	M	8,0000	0.0000	0.0008
80	M	8.8888	8, 9999	8.0008
81	M	0.0000	8.0800	0.0008
82	Ň	8. 8888	0.0000	8.0000
83	H H	8.0000	0.0000	0.0000
84 84	n M	8.0000	8.8888	0.0000
		8.0000	0.0000	0.0000
85	M			0.0000
86	M	8.0000	8.0000	
87	M	8.0000	0.0000	0.0000
88	Ħ	8.8888	0.0000	0.0000
89	M	0.0000	0.0000	0.0008
90	H	9.9999	0.0000	8.9998
91	Ħ	0.0000	8.0000	0.0008
92	M	9.0000	8.0000	8.0000
93	M	8.0000	0.0000	0.0000
94	Ħ	0.0000	0.0000	0.0000
95	M	0.0000	0.0000	0.0000
96	M	8.0000	0.0000	0.0000
97	M	0.0000	0.0000	8. 8998
98	M	8.0000	8.8880	0.0000
99	M	0.0000	0.0000	6.6666
188	M1000	359.7522	249873, 7895	0.0000
101		710.7484	249707.1369	0.0000
102	Ħ	8. 8888	8.0000	8. 0000
103	M	9. 9999	8. 9998	0.0000
104	M	0.0000	0. 9990	8. 8888
195	Ň	8,0000	8.0000	0.0008
106	Ä	8, 8888	8. 8888	8. 9999
107	M	8.0000	0.0000	8.0008
108	Ň	8.0000	0.0000	8. 9999
109	M	0.0000	0.0000	8. 8888
110	H H	0.0000	0.0000	0.0000
110	п	0.0000	0.0000	0.0000

Page 3 I

Saveo	1: 1	1-04	-86	at 10:	27:01	am				 	Page	1
DGPV HOULD URB URB	F1 F1	type Type Type Matl	N N	2 1 2 2 2 1 2	1	2222	3 3 9999		9999 5			
		CLSD		12 0 0 0	1	2						·
idewk Idewk Idewk Fost Well	F2	MATL	Ν	222	1 1 1	222	3 3	4 9999				
		TYPE	Y	12	1	2	3	4	5			
ASLN ASLN WALVE METER METER TBOX SREG ENT	F1 F2 F1 F1	owne owne owne	N N N	8 8 8 2 9 8 9 8 9 9 9 9	1	2						
REG JBOX POLE PDM ITRAN	F1 F1		1 N 1 N	0 0 0 0 0 0		N.						
CLEAN MAN JBOX POLE PDM	F1	DIA	1 N	24 0 24 0 0 0 0								
IXCBOX ILINE ILINE IVALVE IMETER FHYD	F1 F2 F1	DIA MATI VAL	. N	.5 i 2	.38 2 1	48.8 5 2	6	9993)			
DWNER DWNER DWNER DWNER DWNER DWNER	F2 F3	own Own Own Own	2 N 3 N	99999 i 1 1	1001 1001 1001 1001	9999 9999) }					
SECONI DEP.TH DEP.TH	F	DPT 2 DEC)	16	9 100	9				

ŧ			
Ì.	File:	A:WISCSDCX, XSC	-
1	Saved:	01-04-80 at 10:06:07 pm	Page

PR:CX IT:NONE SN:0 NH: TECH SERVICES TE:72 BP:30 OB:LEN RE:GENE DT:86/10/08 WE:RAIN TK:XSE AC:0S ZC:29.16 AC:BS RR:2.2520 AC:ST ST:100 AC:SS 0F:0 RR:3.00 AC:SS OF:2 RR:3.1 AC:SS 0F:2.5 RR:3.65 AC:SS 0F:25.5 RR:4.84 AC:SS 0F:26 RR: 3. 58 AC:SS 0F:44 RR:3.18 AC:SS 0F:-2 RR:3.07 AC:SS 0F:-2.5 RR:3.50 AC:SS 0F:-17.5 RR:3.9 AC:SS OF:-18 RR:3.40 AC:SS 0F:-36 RR: 3. 38 AC:ST

AC:SS 0F:0 RR:3.72

ST:125

#

95

1

1 1

File: A:WISCSDCX.XSC Saved: 01-04-80 at 10:06:07 pm 	Page 2	1 File: A:WISCSDCX.XSC 1 Saved: 01-04-80 at 10:06:07 ρm	Page 3
₩C:SS ₩F:2 18:3_76	-	AC:SS	
)F:2		0F:-2	
R: 3. 76		RR: 3. 78	
₩C:SS)F:2.5 \R:4_23		AC:FS	
0F:2.5		RR:4.132	
R:4.23		AC:BS	
		RR: 4. 924	
)F:26		AC:ST	
IR:4.63		ST:125	
VC:SS		AC:SS	
KC:SS F:26.5		0F:-2.5	
R:4.18		AC:SS DF:-2.5 RR:4.914	
R:4-18 MC:SS F:34		AC:SS	
F:34		AC:SS 0F:-17.5	
IR:3.94		RR:4.8	
R: 3, 94 C:ST		AC:SS	
iT:150		0F:-18	
C:SS		RR:4.3	
F:0		AC:SS 0F:-34	
R:4.32		0F:-34	
C:SS F:2 • R:4,48		RR: 4. 51	
F:2 •		CLOSED : FBOFF	
R:4.40			
C:SS			
C:SS F:2.5			
R:4.83			
C:SS F:26			
F:26			
R:5.3			
C:55 F:26.5			
F:26.3			
R:4.8			
C:SS F:44			
r:44 R:4.7			
R 14. /			
C:SS F:-2			
r:−∠ R:4,389			
5:55 F:-2.5			
R:4.83			
::55 :-18.0			
R:5.15			
C:5S			
-:			
R:5.73			
······································			
:SS :-34			
1:4.6 C:SS F:-34			
3:44.6 D:ST T:125			
1601		,	

<pre>File: A:WI Saved: 01-2</pre>	SCSDCX.SOE 29-87 at 11:03:1	2 am	Page	* 1 1 *	File: A:WISCSDCX.RDS Saved: 01-29-87 at 11:00:14 am Page	1
FILE:S 0 E FEAT:XSEC GM:MULTI SK:SKIP S 0 E: 11 S 0 E: 10 S 0 E: 9 S 0 E: 9 S 0 E: 9 S 0 E: 8 S 0 E: 7 S 0 E: 1 S 0 E: 1 S 0 E: 1 S 0 E: 2 S 0 E: 3 S 0 E: 4 S 0 E: 5 S 0 E: 5 S 0 E: 6 FEAT:XSEC GM:MULTI	100.00000 -1 100.00000 - 100.00000 - 100.00000 - 100.00000 100.00000 100.00000 100.00000 2 100.00000 2	6.00 28.032 8.00 28.012 7.50 27.512 2.50 27.912 2.00 28.342 .00 28.412 2.00 28.312 2.50 27.762 5.50 27.762 5.50 27.372 6.00 27.832 4.00 28.232			//FRANK#P JOB (7024,03102), GLENN, CLASS=K, MSGCLASS=9, NOTIFY=C1319 //*** JOB TO PLOT X-SECTIONS THAT COME IN ON AFLOPPY IN RDS //*** CARD FORMAT FRANK COOPER 08/25/86 //RDS EXEC RDSGEOM //CARD.INPUT DD * FRANK01SYSTEMXXXXXXXXXXEWNO NO NO NO NO XSEC PLOT FRANK##RTERRAINX X TEX XXXXX.2 1000 0 1L 20 803 36 801 18 751 17 791 2 834 2 XXXXX.2 1000 0 1L 20 803 36 801 18 751 17 791 2 834 2 XXXXX.2 1000 0 2L 20 841 0 XXXXX.2 1000 0 3R 20 831 2 776 2 737 25 783 26 823 44 XXXXX.2 125 0 1L 20 769 34 790 18 740 17 728 2 763 2 XXXXX.2 125 0 2L 20 769 0 XXXXX.2 125 0 2L 20 769 0 XXXXX.2 125 0 2L 20 769 0 XXXXX.2 125 0 3R 20 765 2 718 2 678 26 723 26 747 34 XXXXX.2 150 0 1L 20 681 34 681 34 568 18 626 18 658 2 XXXXX.2 150 0 2L 20 711 2 709 0 XXXXX.2 150 0 3R 20 701 2 658 2 611 26 661 26 671 44 FRANK##RXSEC 100 100 X 100551 HUT=HUBWDWS	
SK:SKIP S_0_E: 34 S_0_E: 33 S_0_E: 31 S_0_E: 31 S_0_E: 12 S_0_E: 12 S_0_E: 13 S_0_E: 14 S_0_E: 15 S_0_E: 15 S_0_E: 16 S_0_E: 17 FEAT:XSEC GM:MULTI	125.00000 -1 125.00000 -1 125.00000 - 125.00000 - 125.00000 125.00000 125.00000 125.00000 2 125.00000 2	4.00 27.634 8.00 27.904 7.50 27.484 2.50 27.290 2.00 27.632 .00 27.652 2.50 27.182 2.50 27.182 5.50 27.232 4.00 26.782 4.00 27.472			//RDS.FT16F001 DD DSN=&&RDS,DISP=(NEW,PASS),UNIT=WORKPAKS, // SPACE=(CYL,1),LABEL=RETPD=0 //PLOTSAS EXEC PLOTSAS,PLOTDSN='&&RDS'	
SK:SKIP S_0_E: 28 S_0_E: 29 S_0_E: 27 S_0_E: 25 S_0_E: 25 S_0_E: 25 S_0_E: 24 S_0_E: 19 S_0_E: 19 S_0_E: 21 S_0_E: 21 S_0_E: 21 S_0_E: 22 S_0_E: 23	150.00000 -3 150.00000 -1 150.00000 -1 150.00000 - 150.00000 - 150.00000 - 150.00000 150.00000 3 150.00000 3 150.00000 3	4.00 26.812 4.00 26.812 8.50 25.682 8.00 26.262 2.50 26.582 2.00 27.112 .00 27.092 2.00 27.012 2.50 26.582 2.00 27.012 2.00 27.012 2.50 26.582 2.50 26.582 2.50 26.582 2.50 26.582 2.50 26.582 2.50 26.582 2.50 26.582 2.50 26.582 2.50 26.582 2.50 26.582 2.50 26.582 2.50 26.582 2.50 26.582 2.50 26.582 2.60 26.112 2.50 26.612 4.00 26.712				

NDNE AC:SS TECH SERVICES PD:01 72 H1:357.25115 73 H1:357.25115 74 Y190.25012 75 H1:357.25115 76 Y190.25012 77 PD:01 78 PD:2012 79 PD:2012 79 PD:01 70 PD:01 71 PD:01 72 PD:01 73 PD:02 74 PD:02 75 PD:02 76 PD:02	File: A:WISCSDCX.SDC aved: 01-04-80 at 09:22:19 pm	Page 1	<pre>File: A:WISCSDCX.SDC I Saved: 01-04-80 at 09:22:19 pm *</pre>	Page 2
Note: Note: Pick SERVICES PickU Pick SERVICES PickU Pick SERVICES PickU Pick SERVICES PickU SERVICES PickUSE SERVICES PickUSE SERVICES PickU SERVICES Pick	ARET		DS: 320. 07	
TECH SERVICES PD: 40. 72 H13:57, 251:15 74 H2:57, 251:15 75 H2:58, 27 84 H2:58, 27 84 H2:58, 17 84 H2:58, 17 84 H2:58, 17 85 H2:58, 17 86 H2:58, 17 86 H2:58, 17 86 H2:58, 17 86 H2:58, 18 87 H2:58, 18 80 H2:58, 18 80 H2:58, 18 81 H2:59, 18 82 H2:58, 18 81 H2:59, 18 82 H2:59, 18 81 H2:59, 18 82 H2:58, 18 83 H2:59, 18 84 H2:59, 18 84 H2:59, 18 85 H2:59, 18 85 H2:50, 18 86 <			AC:SS	
12 14:357.251.15 23 17:362.253.12 24 15:258.37 25:258.27 26:255.25 26:07/25 26:255.25 27:07 27:251.15 28:07 27:251.15 29:07 27:251.15 20:07/25 27:251.15 20:07/25 27:251.15 20:07/25 27:251.15 20:07/25 27:251.15 20:07/25 27:251.15 20:07/25 27:251.15 20:07/25 27:251.15 20:07/25 27:251.15 20:07/25 27:251.15 20:07/25 27:251.15 20:07/25 27:251.15 20:07/25 27:251.25 20:07/25 27:251.25 20:07/25 27:251.25 20:07/25 27:251.25 20:07/25 27:251.25 20:07/25 27:251.25 20:07/25 27:251.25 20:07/25 27:252 21:07/25 27:252 21:07/25 27:252 21:07/25 27:252 21:07/25 27:252 21:07/25 27:252 22:07/25 27:252 23:07 27:252 25:07 27:252 <	U TECH REDUICER		PN:/	
38 71:98,25612 69/25 82:10.05E 69/25 82:10.05E 69/25 82:10.05E 010 92:40.05E 010 92:40.05E 010 82:10.05E 010 82:10.05E 010 82:10.05E 011 82:10E 012 82:10E 013 82:10E 014 82:10E 015 82:10E 015 82:10E 016 82:10E 017 82:10E 018 82:10E 019 82:10E 011 82			PD:=CU H7+357 25115	
LB0 05:298.37 B470725 A2:LOSE B470725 A2:SS B470725 A2:SS B470725 A2:SS B470725 B4167 B470725 B51755.9 B471855.26181 B5180.9 B47185 B51	7L 301		VT:98.25812	
BENE A2:10.05E BX:09/25 A2:10.5E BX:09/25 PX:0 SX:09/25 PX:0 SX:09/25 PX:0 SX:09/25 PX:0 SX:00 PX:0 SX:01 PX:0 SX:01 PX:0 SX:01 PX:0 SX:01 PX:0 SX:01 PX:0 SX:02 PX:01 SX:02 PX:01 SX:03 PX:02 SX:04 PX:02 SX:05 PX:02 SX:05 PX:02 SX:05 PX:02 SX:05 PX:02 </td <td>LEN</td> <td></td> <td>DS:298.97</td> <td></td>	LEN		DS:298.97	
B4.09/25 AC:SS PR:6 PR:6 PTD PD:40J PD:40J PD:40J	GENE		A2:0LOSE	
PC PX:8 RTU PX:60 LS PX:154,10561 LS PX:154,10561 DS PX:154,10561 DS PX:155 DS PX:155 SS PX:155 SS PX:155 SS PX:155,3344 TR Y1:65,3329 S1:155,776 DS:175,340 S1:153,736 PX:18 S1:153,737 DS:175,340 S1:153,738 PX:18 S1:155,756 DS:175,540 S3 PX:18 S4 PX:18 S4 PX:18 S5 PX:100 S6 PX:100 S7 PX:100 S6 PX:100 S7 PX:100 S8 PX:100 S9 PX:	86/09/25		AC:SS	
IS H7:154.19661 100 Y7:198.12441 55:35.99 AC:5S 98.21667 PA:9 58.21667 PA:9 59.21667 PA:9 59.21667 PA:9 59.21667 PA:9 59.21667 PA:9 59.21667 PA:9 59.21667 PA:9 59.2167 PA:9 59.2167 PA:9 59.2167 PA:9 59.2167 PA:9 59.2167 PA:9 59.217 PA:9 59.217 PA:9 59.217 PA:9 59.218 PA:9 50.218 PA:9 51.517 PA:11 52.518 PA:152 53.517 PA:11 53 PD:400 54.22 PA:10 53.517 PA:11 53 PD:400 54.26 PD:400 55 PD:400 56.26 PD:400 57.27 PA:11 58 PD:400 59.3118 PD:400 59.3119 PA:11 59.3119 PA:11 59.3119 PA:11 50.219 PA:11 </td <td>PC</td> <td></td> <td>PN:8</td> <td></td>	PC		PN:8	
190 V1:98.13.441 55 95 359.93961 AC:55 359.93962 AC:55 90:21067 Ph:9 SS PD:4CU 18 H7:157.3384 191.53.76 BS:1775.948 91.13.70 BS:175.948 170.442 BS:175.948 93.31.10 BS:180.1 171.82.65.181 H7:155.65.181 173.87 D1:10 174.842 BS:180.8 175.98 BS:180.8 176.1 BS:180.8 177 BS 186.1 BS:180.8 187.9 BS:180.8 187.9 BS:180.8 187.9 BS:180.8 188.9 BS:180.8 187.9 BS:180.8 188.9 BS:180.8 <t< td=""><td>RTO</td><td></td><td>PD:+CU</td><td></td></t<>	RTO		PD:+CU	
5 5 55, 9990 AC:55 99.21667 Pk:9 51 70:450 51 70:450 11 H2:155, 3384 16 70:450 17 75:75 18 15:175, 540 18 71:189, 35829 18 15:175, 540 18 71:155, 25:18 18 71:155, 25:18 18 71:155, 25:18 18 71:155, 25:18 19 71:155, 25:18 10 71:155, 25:18 17 72:155, 25:18 18 71:155, 25:18 19 71:15, 25:18 10 71:15, 25:01 11 71:15, 25:01 15 75:179, 520 17.4, 25:25 75:179, 520 18.3, 37 71:15, 126:375 19 74:105 19, 56:10 75:164, 83 19, 56:10 75:164, 83 19, 56:10 75:164, 83 19, 56:10 75:164, 83 10 71:10 10 71:10 10 71:10 10 71:10 10 71:10 10 71:10 10 71:10 </td <td>US .</td> <td></td> <td>HZ:154.10561</td> <td></td>	US .		HZ:154.10561	
359, 9999 AC:5S 90, 21667 Ph:9 SS PD:eCU 11 Y1:95, 3384 12 Y1:95, 3384 19:1, 53/76 D5:175, 940 91, 13778 AC:5S 19:1, 53/76 D5:175, 940 91, 13778 AC:5S 19:1, 53/76 D5:175, 940 93, 1378 AC:5S 10:4, 74 Ph:10 SS PD:eCU 11: Y1:80, 75471 12: SS:175, 7540 13:3, 71 P1:10 13:3, 71 P1:10 13:3, 73 P1:10 13:3, 74 P1:10 13:3, 75 P1:10 13:3, 74 P1:10 13:3, 74 P1:10 13:3, 74 P1:10 13:3, 75 P1:10 13:3, 75 P1:10 13:3, 74 P1:10 13:3, 74 P1:10 13:3, 74 P1:10 13:3, 74 P1:10 13:4 P1:10 14:5 P1:10 <			VI:500.15441 DC-155.0	
94.2167 S	D 750 99999		00,120,2	
SS 0: CU TR 71:59:3304 TR 71:59:3304 91:1377 0: Si 775:940 92:1377 0: Si 775:940 93:1378 0: Si 775:940 SS 0: Po + CU Pi<10	99.21957		PN:9	
1 H H2159.3394 191.5576 D21175.949 193.1370 AC:SS 164.74 P1:10 2 H2155.25181 2 H2155.25181 174.252 D5179.529 33.37 P1:60 35 P1:60 36 H2155.25181 37 P1:61.20 38 H2155.25375 39.56975 D5180.403 39.56975 D1:80.777 383 H2155.25375 49.533 H2155.25375 49.534 D5180.403 49.535 D5180.403 49.536 D5180.403 49.537 D1:90.403 49.62395 D1:90.475 50 D2:100.76 51.80.423 D3:2577 52.8233 D3:2577 53.83 D3:2577 54.538 D3:100.77 55.539 D3:100.77 56.530 D3:100.77 57.77 D3:100 - 000 -	SS		PD:#C1	
IR V1:09:5829 191.5576 109:5829 191.55776 109:5829 191.55776 101:55 164.74 101:55 SS 101:400 2 171:55:26:101 177.74 195:575.200 33 101:55 35 101:55 36 101:55 37.87 101:55 38.87 101:55 39.5695 101:55:100:03 35 111:55 36 101:50:1780.07 3888 101:55 3838 101:55:100:03 39.5695 101:50:1780.07 39.5695 101:50:1780.07 50 101:50:1780.07 51 101:50:1780.07 52 101:50:1780.07 53 101:50:1780.07 54 101:50:1780.07 55 101:50:1780.07 54 101:50:1780.07 55 101:50:1780.07 56 101:50:1780.07 57 101:50:1780.07 58 101:50:1780.07 59 101:50:1780.07 58 101:50:1780.07 59 101:50:1780.07 58 101:50:1780.07 59 <	1		HZ:159.3304	
191.5575 940 191.5576 0; 175.940 164.74 0; 185 164.74 0; 191:10 28 0; 191:05, 263101 174.2452 0; 191:10, 520 193.34110 0; 253 135.47 0; 191:10, 520 38 0; 191:10, 520 39 0; 1956 0; 191:10, 523 39 56905 0; 193.56, 203.75 162.19156 0; 193.56 39 56905 0; 198.083 39 56905 0; 198.083 30 56905 0	TR		VT:89.58329	
164,74 Ph:10 SS Ph:00 2 Ph:00 2 Ph:00 2 Ph:00 174,2452 Ph:173,520 135,87 Ph:11 35 Ph:11 36 Ph:10 37 Ph:01 38 Ph:10 39 Ph:10 30 Ph:11 31 Ph:01 31 Ph:01 35 Ph:01 36 Ph:10 37 Ph:01 38 Ph:02 39 Stor5 30 Ph:01 31 Ph:01 31 Ph:02 31 Ph:01 32 Ph:01 33 Ph:02 34 Ph:02 35 Ph:10 36 Ph:10 37 Ph:02 388 Ph:10 35 Ph:10 36 Ph:10 37 Ph:10 37 Ph:10 388 Ph:10 388 Ph:10 36 Ph:10 37 Ph:10 380 Ph:10 380	191.55476		DS:175.948	
SS (P):40 P: 40 P: 45, 263 (B):45, 263 (B): P: 42, 262 P: 43, 263 (B): P: 40 P:	89. 13378		AC:SS	
2 H2:165.25181 174.2452 D5:179.528 93.34118 D5:179.528 135.87 P4:11 SS P1:401 SS P1:402 SS P1:402 SS P1:402 SS P1:403 SS P1:404 SS	164.74		PN:10	
IF VT:89:59471 74:2452 D5:179:520 39:34113 AC:SS 39:34113 AC:SS 23:527 P1:411 36 P1:412 37 P1:402 38 P1:402 38 P1:402 38 P1:402 38 P1:402 39:56975 D5:180.83 39:56975 D2:180.83 40:53 D2:180.83 40:53 D2:180.83 40:53 D2:180.83 50:53 D2:180.83 50:53 D2:180.83 50:53 D2:180.83 51:82.82333 D2:180.93 52.82333 D2:180.93 52.82333 D2:180.93 53:53 D2:180.93 54:13 D2:180.93 55:13 D2:180.93 55:13 D3:180.93 55:13 D3:180.93 55:13 D3:180.93 55:13 D3:180.93 55:13 D3:180.93 55:13 D3:190.93 55:13 D3:190.93 55:13 D3:190.93 55:13 D3:190.93 55:13 D3:190.93 55:13 D3:190.93 <	5		PD:+CU	
174.2452 DS:179.520 175.27 175.27 175.27 175.27 175 175 175 175 175 175 175 175 175 17			HZ:165.26181	
99, 34116 C C SS 155, 87 PN:11 SS 9 PN:10 157, 87 PD: 400 162, 10156 S DS: 180, 03 162, 10156 C DS: 180, 03 162, 10156 S C C DS: FBOFF 1777 18088 18088 184, 22495 184, 22495 184, 22495 184, 22495 185, 7834 185, 7837 1979 1979 1979 1979 1979 1979 1977 19	176 2652		VI:83.394/1 DC.170.590	
135.87 PN:11 33 PD:+OU 33 PD:+OU 34 H2:165.26375 176.50 D5:180.03 39.56095 CLOSED:FBOFF 777 S888 53 S888 54 S3 55 S2.333 55 S5 56 S3 57 S5 58 S5 56 S5 57 S5 58 S5 56 S1 57 S1 58 S5 59 S1 50 S1 51 S1 52 S1 53 S1 54 S1 55 S1 56 S1 57 S1 58 S1 54 S1 54 S1 54 S1 54 S1 54 S1 54 S1	AG 7411A		00,000	
SS PD:+CU R HZ:165,26375 ICP. 10156 DS:180,03 93,55695 CLOSED:FB0FF 7777 S888 SS A SS SS VOL SS SS	135.87		DN:11	
3 HZ :165, 26375 162. 10156 UT :90, 03357 197. 5695 DS: 100, 03 2777 CLOSED : FBOFF 3888 SS 50 SS 51 SS 52 SS 53 SS 54 SS 53 SS 54 SS 55 SS 56 SS 57 SS 58 SS 59 SS 50 SS 51 SS 52 SS 53 SS 54 SS 55 SS 56 SS 57 SS 58 SS 55 SS	SS		PD:#CI	
If VT:90.83357 162.10156 DS:180.03 93.56975 CLUSED:FBOFF 707.7 CLUSED:FBOFF 3888 S5 9 S6 90.2834 S3 23.93 S999 55 S5 52 S2 53 S5 54 S5 55 S5 56 S5 57 S5 58 S5 59 S5 50 S5 51 S5 52 S5 52 S5 53 S5 54 S5 55 S5 56 S5 57 S5 58 S5 59 S5 50 S5 51 S5 52 S6 53 S5 54 S5 54 S5 55 S5 55 S5 56 S5 57 S5 58 S5 59 S5 54 S5 54 S5	3		HZ: 165, 26375	
Id2.10156 DS:180.03 39.560955 CLOSED:FBOFF 7777 3888 3888 S S5 S VCU S2 S5 S S6 S S7 S S6 S S7 S S6 S S7 S S6 S S6 S S7 S S6 S S6 S S7 S S8 S S6 S S7 S S8 S S6 S S7 S S6 S S7 S S6 S S6 S S7 S S6 S S7	TR		VT:90.03357	
7/7.58 7/77 3888 SS 4CU 346.23495 36.2834 523.93 55 55 55 55 56 52.062393 38.26001 323.86 3X1P SS 56 57 50 50 50 50 50 50 50 50 50 50	162. 10156		DS:180.03	
7777 3888 55 50. 2834 523. 93 55 55 55 55 56 57 40J 552. 662393 36. 22901 523. 86 38 IP 55 56 57 40J 55. 74349	89, 56895		CLOSED:FBOFF	
8888 S5 WCU S46. 23475 S6. 2634 S23. 93 S5 S5 S5 S5 S5 S6 S6 S6 S6 S6 S6 S6 S6 S6 S6	6. 28			
SS 4 401 346.23495 362.393 3999 35 55 401 352.462393 36.22001 323.46 381P 35 55	7777			
HU HU S46. 23495 S0. 2834 S23. 93 S999 S5 FCU S52. 62393 S40. 22801 S53. 86 SKIP S5 S5 S5	9000 19			
HQU 346. 23495 360. 2834 223. 93 37999 361 401 352. 662 351 401 354. 74349				
346.23495 362.834 323.93 3999 55 4U 4U 52.02393 90.22001 523.06 54.74349	HCU			
90.2834 323.93 35 57 401 352.02393 36.22001 323.06 3KIP 35 401 354.74349	346.23495			
523.93 55 60 52.02393 52.02393 54.22001 52.86 54.19 55 60 54.74349	90.2834			
SS 50 4CU 552. 02393 782. 22001 782. 266 54. 74349	23.93			
5 HQU IS2. 42393 H2.22001 IS23. 86 IS4 IS4. 74349	9999			
CU 152.02393 123.06 XIP SS SC SC SC SS SS SS SS SS SS SS SS SS	S			
52.02393 0.22001 23.86 KIP S CU CU 54.74349				
18.22891 123.86 KIP S GU 154.74349				
23.86 KIP S GU 154.74349	ia: 22001			
XIP SS S GU 154, 74349	23.86			
S 5 CU 154. 74349	ЖIР			
5 HCU 154, 74349	S			
HCU 154, 74349				
54.74349	CU CU			
	54, 74349			

.

86

•

•

C:\>MODE LT PT1:132,6 6

Printer error

File: Saved:						16	an						 	Page	1
IS:SETU															
P: C 10	0						•								
S: C 6 V D:	a	759	59	59	q	90	12	ZA	4		00000				
ATTR	U	555	55	55.	2			50.	•						
I-STNG	E														
V D: V D:	1	191	33	17.	1	89	8	1.	6	164	,74888				
V D:	2	174	14	42.	1	89	20	28.	2	135	87000				
:7777 :8888															
V D:	3	162	6	5.	6	89	33	39.	4	78	58000				
Ά Τ∷+ CU															
HULTI															
8:9999 - V D:	•	745	14	5	A	90	17		2	323	93000				
SKIP		0.0	• •		•		••		-						
V_D:	5			26.				12.			. 86898				
V ⁻ D: :CLOSE	. 6	354	44	36.	6	90	13	12.	5	520	. 07000				
U De		357	15	4.	2	98	15		4	298	97000				
V D: V D:	Ś	154	6	20.	2	90	8	3.	9	155	. 90000				
V_D:	9	159	19	49.	4	89	34	59.	8	175	. 94000				
V_D: V_D:	10	165 165	15	42. 49.	5	98 98	ຊ ຊ	41.	.8	179 180	. 97008 . 90000 . 94000 . 52008 . 83008				
File:	A:W	ISCSI		XYZ										Page	1
File: Saved:	A:W 01-	ISCSI		XYZ										Page	1
File: Saved: AT:TR SINGL	A:W 01-	ISCSI 29-87	CX. 7 at	XYZ : 11	:04	: 11	3#							Page	1
File: Saved: AT:TR SINGL	A:W 01-	ISCSI 29-87	CX. 7 at	XYZ : 11	:04	: 11	3#							Page	1
File: Saved: AT:TR SINGL Y_Z: Y_Z:	A:W 01-	ISCSI 29-87	CX. 7 at	XYZ : 11	:04	: 11	3#							Page	1
File: Saved: AT:TR I:SINGL Y Z: Y Z: :7777 2:8888	A:W 01- E 1 2	1909 1909)CX. 7 at 9827	XYZ 111 77.8	:04 384 793	:11	a m 21 24	5001	 16. f	5992 22 0 3		. 90 . 90		Page	1
File: Saved: SiNGL Y Z: Y Z: 7777 :8888 Y_Z:	A:W 01- E 1 2 3	ISCSI 29-87)CX. 7 at 9827	XYZ 111 77.8	:04 384 793	:11	a m 21 24	5001	 16. f	5992 22 0 3				Page	1
File: Saved: Saved: SINGL Y Z: Y Z: 7777 :8888 Y Z: AT:+CU	A:W 01- E 1 2 3	1909 1909)CX. 7 at 9827	XYZ 111 77.8	:04 384 793	:11	a m 21 24	5001	 16. f	5992 22 0 3		. 90 . 90		Page	1
File: Saved: SINGL Y Z: Y Z: 7777 :80888 Y Z: AT:*CU :MULTI :9999	A:W 01- 1 2 3	1900 1900 1900 1900	0029 0029	, XYZ ; 11 77.8 50.1	384 793 820	:11	am 21 24	5001 1990	16. 6 56. 2	 5992 2203 1502		. 90 . 90 . 90		Page	1
File: Saved: Saved: SINGL Y Z: 7777 88888 Y Z: AT:*CU S:9999 Y Z:	A:W 01- 1 2 3	1900 1900 1900 1900	0029 0029	, XYZ ; 11 77.8 50.1	:04 384 793	:11	am 21 24	5001 1990	16. 6 56. 2	5992 22 0 3		. 90 . 90		Page	1
File: Saved: SINGL Y Z: 7777 88888 Y Z: AT:#CU :MULTI :9999 Y Z: :SKIP	A:W 01- 1 2 3	1909 1909 1909 1909 1909)CX. 7 at 9927 9926	77.8 50.1	384 793 820	:11	am 21 24 24	5001 1990 1990	16. 6 56. 2 19. 8	5992 2203 3582 5445		. 90 . 90 . 90		Page	1
File: Saved: Saved: Y Z: Y Z: Y Z: AT:+CU SB089 Y Z: SAT:+CU S:SNGL Y Z: SZ: Y Z: Y Z: Y Z:	A:W 01- 2 3 4 5	1900 1900 1900 1900 1900	0022 0022 0022 0022	77.8 50.1 99.0	384 793 820 518 697	:11	25 24 24 24 24	5001 1996 1966	16. 6 56. 2 19. 8 38. 6	 5992 2203 1502		. 90 . 90 . 90		Page	1
File: Saved: SINGL Y Z: Y Z: 7777 :80888 Y Z: SKIP Y Z: SKIP Y Z: Z: SKIP Y Z: CLOSE	A:W 01- 12 3 4 5 6	1805 199-87 1860 1860 1860 1860 1860 1860)CX. 7 at 9827 9826 9829 9866 9866	77.8 50.1 99.0 25.5	384 793 820 518 697 279	:11	am 25 24 24 24 24	500) 1990 1990 1968	16. 6 56. 2 19. 8 38. 6 54. 6	5992 2203 3592 3592 3592 3592 3592 3592 3592 359		. 90 . 90 . 90 . 90 . 99 . 99 . 90		Page	1
File: Saved: Saved: SINGL Y Z: 7777 2:80888 Y Z: AT::CU 5:MULTI 5:9999 Y Z: 5:SKIP Y Z: Y Z: CLOSE Y Z:	A:W 01- 12 3 4 5 6	1805 199-87 1860 1860 1860 1860 1860 1860)CX. 7 at 9827 9826 9829 9866 9866	77.8 50.1 99.0 25.5	384 793 820 518 697 279	:11	am 25 24 24 24 24	500) 1990 1990 1968	16. 6 56. 2 19. 8 38. 6 54. 6	5992 2203 3592 3592 3592 3592 3592 3592 3592 359		. 90 . 90 . 90 . 90 . 90 . 90 . 90		Page	1
File: Saved: SINGL Y Z: 7777 :88888 Y Z: AT::CU :MULTI :9999 Y Z: (:SKIP Y Z: Y Z: Y Z: Y Z: Y Z: Y Z: Y Z:	A:W 01- 12 3 4 5 6	1805 199-87 1860 1860 1860 1860 1860 1860)CX. 7 at 9827 9826 9829 9866 9866	77.8 50.1 99.0 25.5	384 793 820 518 697 279	:11	am 25 24 24 24 24	500) 1990 1990 1968	16. 6 56. 2 19. 8 38. 6 54. 6	5992 2203 3592 3592 3592 3592 3592 3592 3592 359		. 99 . 99 . 99 . 99 . 99 . 99 . 99 . 99		Page	1
File: Saved: SINGL Y Z: 7777 :80888 Y Z: 37777 :80888 Y Z: :5KIP Y Z: :5KIP Y Z: :5CLOSE	A:W 01- 12 3 4 5 6	1000 1000 1000 1000 1000 1000 1000)CX. 7 at 9827 9826 9829 9866 9866	77.8 50.1 99.0 25.5	384 793 820 518 697 279	:11	am 25 24 24 24 24	500) 1990 1990 1968	16. 6 56. 2 19. 8 38. 6 54. 6	5992 2203 3592 3592 3592 3592 3592 3592 3592 359		. 90 . 90 . 90 . 90 . 90 . 90 . 90		Page	

ave	d: 01-	21-87 at 0	0:19:10 am		Page
1	 M	8. 9999	8.0000	0.0000	
2	M	8.0000	0.0000	0.0000	
3	M	0.0000	6.0000	0.0000	
4	Ħ	0.0000	0.0000	6.0006	
5 6	H	8.0000	0.0000	0.0000	
		0586.1660	249616.7520	0.0000 8.0000	
7 8		0220.6820 8.0000	249903.7710 6.0000	8.0000	
ŝ	M	8, 8888	6.0000	0.0000	
é	Ĥ	8, 8888	0.0000	0.0000	
1	H	8.0000	0.0000	8,0000	
2	Ĥ	0.0000	0. 9996	6. 9999	
3	Ň	8.0000	8. 0000	9.0000	•
4	利	8.0000	8.0000	0.0000	
5	Ħ	9. 9999	0.0000	0.0000	
6	M	6. 6666	0.0000	0.0000	
7	H	0.0000	8. 8888	8. 9999	
8	M	8.0000	8. 8888	0.0000	
9	H	8.9998	0.0000	8.0000	
20	M	0.0000	8.0008 8.0008	0.0000 9.0000	
21	M	0.0000 0.0000	0.0000	8,8888	
22	rs M	0.0000	8.8888	8.8000	
24	M	8.9999	6.0000	8.0000	
25	M	8.0000	8, 8888	6. 6666	
26	M	8. 8888	8.0000	0.0000	
27	Ĥ	8.8888	0.0000	0.0000	
28	M	6. 9996	8.0008	0.0000	
29	M	6.0000	0.0000	8. 0000	
30	M	8.0000	0.0000	0.0000	
31	M	6.0000	6.0000	8. 6668	
32 33	M	0.0000	6.0000	6,0008	
55	M	0.0000 0.0000	0.0000 0.0000	8. 8888 8. 8888	
34 35	M	8.0000	8.8888	8.0000	
36	H	0.0000	6, 6666	8.0000	
37	H.	8. 8888	0.0000	0.0000	
38	Ä	0.0000	0.0000	8,0008	
39	- H	8. 8888	8. 8999	8. 8888	
40	M	0.0000	0.0008	0.0008	
41	M	0.0008	0.0000	8. 8888	
¥2	M	0.0000	6. 6666	0.0008	
43	M	8, 8888	8. 9999	8.0008	
44	M	8.0000	8.0008	8. 8888	
45	M	6.0000	0.0000	8.8000	
46	M	0.0000 8.8899	0.0000 0.0000	0.0008 0.0000	
47 48	M M	0.0000	8,0008	8.0000	
+0 49	11 1	8, 8888	0,0000	8. 8888	
+ <i>3</i> 58	<u>п</u> .	8.0000	0.0000	0.0000	
51	Ä	8. 9998	8. 0000	8.8888	
52	Й	8. 9998	9. 9999	8.0000	
53	Й	8.0000	8, 8888	8, 8888	
54	M	8, 8888	8.0000	0.0000	
55	M	6. 8888	8. 6666	8,8888	

66

				-		
1 Saved: 01-21-87 a	: 00:19:10	an		Page	2	1
I File: A:WISC.CNT						I
	-			 		

File:	A:WISC.	CNT
-------	---------	-----

| Saved: 01-21-87 at 00:19:10 am

9.0000 9.0000 9.0000 0.0000 0.0000 0.0000 111 Ħ 0.0000 0.0000 0.0000 112 M M 113 0.0000 0.0000 0.0000 0.0000 M 8.0000 0.0000 114 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 115 0.0000 116 M 117 8.8888 0.0000 Ħ 0.0000 0.0000 0.0000 118 М 119 M 120 M 0.0000 0.0000 121 0.0000 0.0000 0.0000 0.0000 9.0000 8.0000 8.0000 M 122 123 124 125 126 127 128 0.0000 0.0000 0.0000 0.0000 H 0.0000 0.0000 0.0000 M 8. 9000 8. 9000 8. 9000 9. 9000 8. 9000 8. 9000 8. 9000 8. 9000 8. 9000 9. 9000 9. 9000 9. 9000 M 0.0000 M 0.0000 0.0000 H 0.0000 0.0000 0.0000 129 8.0008 H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 130 131 132 133 134 135 M M M M 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008 0.0000 M 136 137 0.0000 M 0.0000 8.0000 8.0000 0.0000 8.0000 M 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 138 M 0.0000 139 M 0.0000 0.0000 140 0.0000 0.0000 141 M 142 143 Μ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 M 144 0.0000 МM 0.0000 145 8.0000 0.0000 0.0000 0.0000 0.0000 146 0.0000 147 Ħ 8.0000 8.8888 0.0000 0.0000 0.0000 M 0.0000 148 8. 0000 H 149 150 0.0000 8.0000 8.0000

# -				
=7	м	0 0000	0.0000	8.0000
56 57	M	0.0000	8.0000	
	H	8.8888	8. 8 888	8, 8888
58	M	8.0000	0.0000	8.0000
59	H	0.0000	0.0000	8.8998
60	M	0.0000	0.0000	9.0000
61	M	0.0000	0.0000	8. 8898
62	M	0.0000	0.0000	0.0000
63	M	0.0000	0.0000	0.0000
64	M	0.0000	6.0008	0.0000
65	H	0.0000	0. 0 000	8. 9998
66	M	0.0000	6.0000	8. 8888
67	M	8.0000	0.0000	0.0008
68	M	0.0000	0.0000	0.0000
69	H	0.0000	9. 9999	0. 0000
70	Ħ	0.0000	0.0000	6.0008
71	Ħ	8. 0000	0. 0000	8.0000
72	H	8. 8888	0.0000	0.0000
73	М	0.0000	8. 8888	8. 8888
74	M	0.0000	8. 8888	8.0000
75	Ħ	8.0000	0.0000	8. 8888
76	M	8.0000	8.6998	0.0000
77	M	8.0000	8. 8888	8. 0000
78	M	0.0000	8. 8888	8. 8888
79	M	0.0008	8, 8888	0. 0000
80	M	8.0000	8.0000	0.0000
81	. H	0. 0000	0,0000	8.0000
82	Ĥ	0.0000	8. 9998	0.0000
83	- H	0.0000	0, 0000	8.0000
84	M	0.0000	0.0008	0.0000
85	H	0. 9999	0.0000	8. 9998
86	Ň	0.0000	0.0000	0.0000
87	H	8. 8888	0.0000	9. 0000
88	Ň	0.0000	8.0000	8, 8888
89	M	8. 8888	8. 8008	8. 8888
90	M	6.0000	0.0000	0.0000
91	<u>н</u> .	8.0008	8. 8888	0.0000
92	M	0.0000	8.0000	0.0000
93	Ħ	0.0000	0.0000	8.0008
94	Ň	8.0000	6. 8888	0.0000
95	M	0.0000	8.0000	8, 9998
- 33 96	M	0.0000	0.0000	8.0000
97	ri H	6. 8888	0.0000	0.0000
			0.0000	
98	M	8.0000		8.0000
.99	И	8.0000 0359.7522	0.0000	8.0008
100			249873.7895	0.0000
101		0710.7484	249787.1369	8.0000
162	M	8.8888	6.0000	8.0000
103	M	0.0000	8.0000	8.0008
184	M	0.0000	8.0000	0.0000
105	M	8.0008	0.0000	8.0000
106	M	0.0000	0.0000	8.0000
107	M	0.0000	8.0000	0.0000
108	M	0.0000	6.0000	0.0000
109	M	6.0000	9. 0000	9.0000
110	M	8.0000	6. 6666	8.0000

<u>1</u>0

Page 31

APPENDIX H

PROGRAM DOCUMENTATION

DEMONSTRATOR SOFTWARE SYSTEM OVERVIEW

Software

The ISIMS demonstrator software processes survey data according to UFF specifications. It includes modules that are both data-collector dependent as well as modules that are applicable across a large number of agencies. An earlier version of the software was demonstrated at the second TAC meeting to the NCHRP Project Manager and Technical Advisory Committee. Both then and now, this software takes topological data collected in Louisiana on a GRE3 data collector, converts it to UFF format, and produces a plot of the results. It does the same with Wisconsin topological data collected on an SDC71 data collector. It also processes Wisconsin cross-section data collected on an SDC71 data collector into RDS format.

During the course of this project the UFF was not only defined but also updated on two occasions. Software development necessarily had to lag UFF development. Although these programs now reflect the current UFF, time did not permit incorporating all of its facilities.

The software used in this demonstration is written in Microsoft FORTRAN 77. There are two drivers, one to demonstrate Louisiana survey data processing and the other for Wisconsin data. These drivers activate the appropriate demonstrator software programs. They are written in BASICA.

All software is designed to run on an IBM-PC or an IBM-PC clone using the DOS 2.0 operating system. The system also accommodates off-the-shelf proprietary software for the survey data editing module and the data transfer module (from the data collector to the processing computer). In the project demonstrator, Wordstar and Crosstalk XVI were used. Figure H-1 provides an overview of the entire ISIMS structure showing survey procedure, hardware, software, and data formats.

The demonstration is structured to allow the user to activate any program from the driver main menu. Figure H-2 illustrates all modules in the system and how they apply to Louisiana and Wisconsin data. The typical application program execution sequence is shown in Figures H-3 and H-4 for Louisiana and Wisconsin, respectively. Figure H-5 is a summary depicting the purpose of each program in the system. The program name, description, inputs, and outputs are listed in Figure H-5.

Files

The DOS 2.0 operating system uses certain conventions for naming files. A file name contains a maximum of eight characters plus an optional extension consisting of a period and three characters. The software uses the file name extension to categorize files into types. The eight-character file name prefix consists of a four-character project name followed by a fourcharacter sequence number. Figure H-6 shows the types of files, their file name and/or extension and the purpose of all files in the system.

File layouts describing the exact record format for the file name and feature files are presented in Figures H-7 and H-8. Refer to Appendix C for record layouts for the UFF and the project control files. For data collector record layouts, refer to the SDC71 and the GRE3 users' manuals.

PROGRAM-SPECIFIC DOCUMENTATION

CNVRTL.FOR Program

CNVRTL reads data and performs error checking on a GRE3 data collector input file and a feature file. The program converts the field data to the UFF-HVD format.

Files used as input to CNVRTL are the file name file (FILE.NME), project control file (*.CNT), feature file (TAG), and the GRE3 data collector file (*.GRE3). Procedures for collecting data on the GRE3 data collector based on Louisiana DOTD surveying procedures are listed in Appendix E.

The output of CNVRTL is a UFF-HVD file. The program also sends a listing of the feature file to the printer.

CNVRTL handles only the SETUP, USETUP, and EFORE POS: commands to establish positioning. It does not adjust on PADJ: commands. The user-defined features available to CNVRTL are a subset of the features listed in Appendix E. CNVRTL handles all of these features with the exception of 102, 115, 130, 131, 135, 140, 151, 160, 161, 162, 170, 173, 209, 210, 230, 250, 255, 302, and 895.

PLOT2021.FOR Program

The purpose of PLOT2021 is to draw a plot consisting of points, connecting lines and annotated point numbers. The data for these points can come from the UFF-HVD file, the UFF-XYZ file, or the UFF-SOE file. PLOT2021 is written in FOR-TRAN 77 and employs HPGL calls to the plotter.

The input files for PLOT2021 are the file name file (FILE.NME), the project control file (*.CNT), and any one of the following files: UFF-HVD, UFF-XYZ, or UFF-SOE.

The output of this program is a plot drawn on an HP7475 plotter. The plot shows a symbol for each point in the file. Control points are drawn using a different symbol. Points in multipoint features are connected. All point numbers are annotated except those that are so close together that they would overwrite one another.

The plotter software and hardware allow the use of two different paper sizes, 8.5 in. by 11 in. or 11 in. by 17 in. The user is prompted to enter the minimum and maximum X value, the minimum Y value, and the paper size. The user can also choose whether or not to annotate point numbers.

e

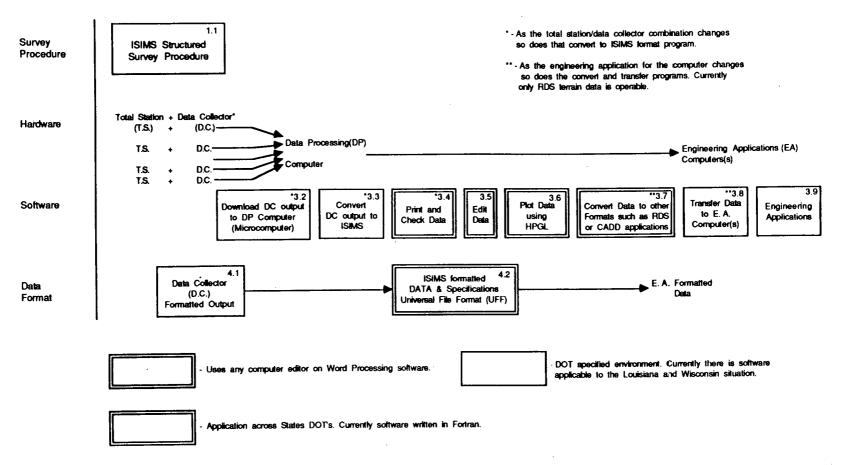


Figure H-1. ISIMS configuration at end of NCHRP Project 20-21.

102

£

			•		
lict of all	ISIMS demonstrator modules.		I/O files	Program/Process	Reports/Plots
Module	Description		<u>17011103</u>	Program/Process	Reports/ Plots
nouure	r				
1	DOWNLOAD THE FIELD DATA		FILENME	Create file	
2	CONVERT DATA COLLECTOR FORMATTED TOPO DATA TO THE U	JFF-HVD		. name and	
3	CONVERT DATA COLLECTOR FORMATTED X-SEC DATA TO THE	UFF-SOE	(feature	
4	PLOT UFF-HVD OR UFF-XYZ			files	
5	PRINT UFF-HVD OR UFF-XYZ		TAG		
6	PRINT UFF-SOE CROSS SECTIONS				
7	CONVERT UFF-SOE CROSS SECTIONS TO RDS FORMAT		//		
8	EDIT DATA			4	
9	CONVERT DATA FROM UFF-HVD TO UFF-XYZ			Download	
А	PRINT A FILE		.GRE	data from	
В	INSTALL NEW SET OF FEATURES			data	- ×
С	CONTROL FILE DATA			collector	-
0	EXIT THE SYSTEM				
	lvated in Louisiana demonstrator.				
Module	Description	Program Name			Listing of
-	DOLDH OLD WUR WOODOO (ODE) DIEID DAWA	1	*.CNT	CNVRTL	feature file
1	DOWNLOAD THE TC2000/GRE3 FIELD DATA	1. 2. CNVRTL			
2	CONVERT LOUISIANA TC2000/GRE3 COLLECTED TOPO	Z. CNVRIL			
3	TO UFF-HVD NOT DEMONSTRATED	3.			
3	PLOT UFF-HVD OR UFF-XYZ	4. PLOT2021		′ <u>*</u>	
4 5		5. LISTING	.HVD	(A)	
-	PRINT UFF-HVD OR UFF-XYZ NOT DEMONSTRATED	6.			
6	NOT DEMONSTRATED	7.			
8	EDIT DATA	8.	<u>I/O files</u>	Program/Process	Reports/Plots
9	CONVERT DATA FROM UFF-HVD TO UFF-XYZ	9. CNVRTUFF			
A	PRINT A FILE		FILENME	(A)	
Ö	EXIT THE SYSTEM			<u> </u>	
v					PLOT
				PLOT2021	
Modules act	ivated in the Wisconsin demonstrator.		.CNT		
Module	Description	Program Name			
			·.HVD		
1	DOWNLOAD ANY SDC71 FIELD DATA	1.	or		
2	CONVERT SDC71 COLLECTED TOPO TO UFF-HVD	2. CNVRTW	· XYZ		
3	CONVERT SDC71 COLLECTED CROSS SECTIONS TO UFF-SOE		<i>L</i>		· · · · · · · · · · · · · · · · · · ·
4	PLOT UFF-HVD OR UFF-XYZ	4. PLOT2021			REPORT
5	PRINT UFF-HVD OR UFF-XYZ	5. LISTING	L		
6	PRINT UFF-SOE CROSS SECTIONS	6. PRNTXSEC			
7	CONVERT UFF-SOE CROSS SECTIONS TO RDS FORMAT	7. SOE2RDS			
8	EDIT DATA	8.	HVD /		
9	CONVERT DATA FROM UFF-HVD TO UFF-XYZ	9. CNVRTUFF			
Α	PRINT ANY FILE			Edit data	
0	EXIT THE SYSTEM			Uala	
			, CNT	\sim \sim	
Figure H-2.	ISIMS demonstrator modules.				
-					

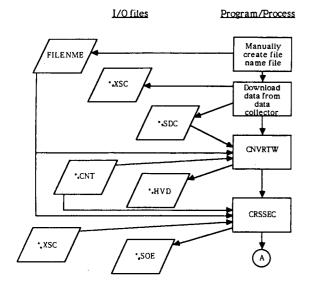
.

,

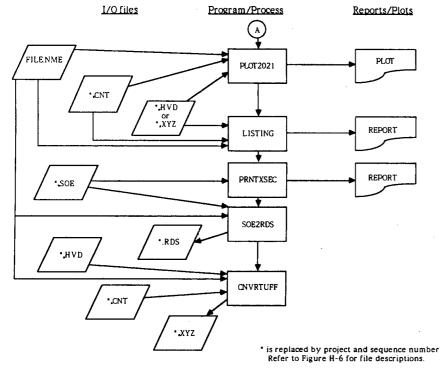
-

-.

Figure H-3. Typical Louisiana demonstrator program execution sequence.


is replaced by project and sequence number Refer to Figure H-6 for file descriptions.

*.XYZ


CNVRTUFF

103

,

Reports/Plots

~~

Figure H-4. Typical Wisconsin demonstrator program execution sequence.

Name	Program Description		Inputs		Outputs
LISTING	Lists the contents of either a UFF-HVD or UFF-XYZ file. For UFF-HVD also calculates and lists appropriate (X,Y,Z) coordinates	2)	file name UFF-HVD or UFF-XYZ file project's control file	UFF	ting of the -HVD or UFF data
CNVRTUFF	Converts a UFF-HVD file to a UFF-XYZ file	2)	file name UFF-HVD file project's control file	UFF	-XYZ file
PLOT2021	Reads UFF-HVD or UFF-XYZ and plots points, connecting lines and point numbers	2)	file name UFF-HVD or UFF- XYZ file project's control file	Pl	ot
CNVRTL	Reads data in GRE3 format and converts to UFF-HVD	2) 3)	file name GRE3 file project's control file feature file	2)	UFF-HVD file listing of feature file
CNVRTW	Reads topo data in SDC71 format & converts to UFF-HVD	2)	file name SDC71 file project's control file	1)	UFF-HVD
CRSSEC	Reads cross-section data in SDC71 format & converts to UFF-SOE		file name SDC71 file	1)	UFF-SOE
SOE2RDS	Reads UFF-SOE data & converts to RDS format		file name UFF-SOE	1)	RDS file
PRNTXSEC	Lists the contents of a UFF-SOE file		file name UFF-SOE	1)	listing of UFF-SOE dat
PRNT	Prints any file indicated by the user	1)	any file	1)	<pre>printed lis ing of file</pre>
20-21L.BAS	Louisiana demonstrator driver		•••••		name file
20-21W.BAS	Wisconsin demonstrator driver				name file

5

Figure H-5. Program descriptions.

	File	Filename	Purpose
1)	File name	FILE.NME	Contains one record with project name, sequence number and date. Project name & sequence number are used as the prefix for file names.
2)	UFF-HVD	*.HVD	Contains field data translated into UFF format.
3)	Project control file	*.CNT	Contains control points used to establish positioning.
' 4)	Feature file	TAG	Contains user defined features & descriptor
5)	GRE3 data collector file	*.GRE	Contains raw field data from the GRE3 data collector.
6)	UFF-XYZ	*.XYZ	Contains processed field data in UFF format with angle and distances replaced by X, Y, and Z coordinates.
7)	SDC71 topo data collector file	*.SDC	Contains topo raw field data from the SDC71 data collector.
8)	SDC71 cross- section data collector file	*.XSC	Contains cross-section raw field data from the SDC71 data collector.
9)	UFF-SOE	*.SOE	Contains cross-section field data translate into UFF.
10)RDS file	*,RDS	Contains processed cross-section data trans lated into a RDS format.

* Prefix to file name is project name plus sequence number.

Figure H-6. File descriptions.

Variable	Field Description	Type & Size	Comments
PROJ	Name of project	C4	
SEQ	Sequence number	C4	:
DATE	Date	C8	MM/DD/YY

Figure H-7. File name file record layout (FILE.NME).

Variable	Field Description	Type & Size	Comments
FNAME	Feature name	C6	
TNUM	Number of descriptor tags	C2	lst character = F or M 2nd character = number
TNAME	Name of descriptor tag	C4	
REQD	Is this descriptor required	Cl	"Y" or "N"
DEFLT	Default value for this tag	C4	
TYPE	Type of values	Cl	<pre>0 = no values 1 = Range (min-max) 2 = distinct numeric values 3 = distinct character values</pre>
VALUES	Values for descriptor tags	C4	

Figure H-8. Feature file record layout (TAG.).

The types of positioning in PLOT2021 are limited to SETUP, USETUP, and EFORE POS: commands. The program does not adjust on PADJ: commands.

LISTING.FOR Program

This program lists the contents of either a UFF-HVD or a UFF-XYZ file. If the input is a UFF-HVD file, the program will calculate and list the appropriate X, Y, and Z coordinates.

Inputs to LISTING are the file name file (FILE.NME), the project control file (*.CNT), and either a UFF-HVD or a UFF-XYZ file. The output is a printed listing of the file. Records are listed in five columns across each page. For each H_V_D: record, four additional lines of data are added to show point numbers, X, Y, and Z coordinates.

Positioning in LISTING is limited to the SETUP, USETUP, and EFORE POS: commands. The program does not adjust on the PADJ: command and does not perform error checking.

CNVRTUFF.FOR Program

The purpose of CNVRTUFF is to convert a UFF-HVD file to a UFF-XYZ file. A file in the UFF-XYZ format has all horizontal angles, vertical angles, and distances changed to X, Y, and Z coordinates.

Inputs to CNVRTUFF are the file name file (FILE.NME), the project control file (*.CNT), and a UFF-HVD file. The output of the program is a UFF-XYZ file.

Positioning in CNVRTUFF is limited to the SETUP, USETUP, and EFORE POS: commands. The program does not adjust on PADJ: commands. Currently, there is no grouping of records for the related feature ID, nor does it transpose backwards-collected data into forward.

CNVRTW.FOR Program

This program converts specifically sequenced topo data collected by an SDC71 data collector to UFF-HVD. Converted SDC71 commands are as follows:

SDC71	UFF-HVD	Comments
AC:OS	POS:SETUP	AC:OS is the 1st ac- ceptable command
PN:xxx	OP:xxx	-
PD:xxx	BS:rrr	
PN:ppp		Measurement point number of H_V_D command
PD:*xxxx	FEAT:xxxx GEOM:MULTI	The asterisk in 1st po- sition implies a multi- point feature
PD:xxxx	FEAT:xxxx GEOM:SINGLE	
I1:xxxx	I1:xxxx	Feature descriptors
I2:xxxx	I2:xxxx	with tags I1, I2, and I3
I3:xxxx	I3:xxxx	respectively

SDC71	UFF-HVD	Comments
A1:START A1:STOP	CR:START CURVE CR:END CURVE	
A2:SKIP A2:CLOSE	SK:SKIP CL:CLOSED	
HZ:aaa	H_V_D:ppp aaa bbb ccc ppp latest PN:	o is from the

VT:bbb DS:ccc

Only these SDC71 commands are accepted, with AC:OS being the first acceptable command. The HZ:, VT:, and DS: commands are always input together and are in this sequence.

In this program, only a subset of the UFF-HVD is used. This restricted UFF-HVD has the following characteristics:

Restrictions

- 1. Only POS:SETUP is used.
- 2. No Z coordinates.
- 3. No PADJ: commands.
- 4. No circles.
- 5. No related feature ID's.

6. No backwards.

Permissible

- 1. Curves are acceptable.
- 2. Single and multipoint features are acceptable.
- 3. Any feature set and three feature descriptors per feature are allowed.
- 4. Skip and closure are allowed.
- 5. H_V_D is the file type.

Inputs to this program are project and sequence numbers plus the SDC71 topo output (*.SDC). The output of this program is UFF-HVD data (*.HVD).

CRSSEC.FOR Program

The purpose of this program is to take cross-section data collected as station, offset, and rod reading on an SDC71 data collector and to turn it into its UFF-SOE data equivalent. Data entry on the SDC71 has been defined to accommodate these functions.

SDC71 input description	SDC71 inputs
1. Benchmark elevation input and corre- sponding benchmark rod reading	AC:OS ZC:
	AC:BS RR:
2. Station number input	AC:ST ST:
3. Offset and rod reading input	AC:SS OF: RR:
4. Adjusting of instrument because of moving the tripod	
a. Foresight to a temporary benchmark	AC:FS
b. Moving of the level and then	RR:
c. Backsight to the same benchmark	AC:BS
	RR :

Figure H-9 shows the proper sequencing of SDC71 records, their description, and acceptable record sequencing.

The UFF-SOE output file consists of all S_O_E : records sorted by station number and offset values. In addition, the first record of the file that is FILE:S_O_E. A FEAT:XSEC and GEOM:MULTI record pair precedes each set of S_O_E: records with the same station number.

The inputs to the CRSSEC.FOR program are project and sequence numbers plus the SDC71 cross-section output (*.XSC). The output of this program is UFF-SOE data (*.SOE).

SOE2RDS.FOR Program

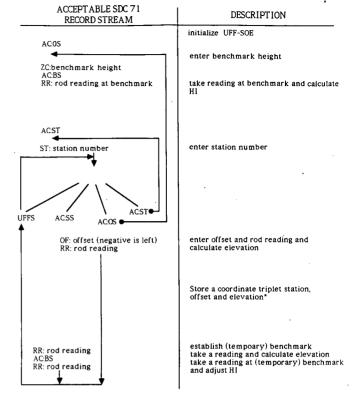
This program takes the output of program CRSSEC.FOR (UFF-SOE data), and puts it into a format acceptable for input into RDS. Job control for an IBM mainframe is also part of the output.

In this conversion process, five station/offset combinations are allowed per RDS record, a bias is used relative to elevations, and offsets are termed "R" and "L" (right and left) instead of positive and negative respectively.

Inputs to the program are project and sequence numbers plus the UFF-SOE output of program CRSSEC.FOR (*.SOE). The output of this program is RDS-formatted data including job control (*.RDS).

PRNTXSEC.FOR Program

The purpose of this program is to list the contents of a UFF-SOE file.


Inputs to the program are the name file and a UFF-SOE file. The output is a printed listing of the UFF-SOE file showing records in five columns across each page.

PRNT.FOR Program

This program prints any file indicated by the user. Inputs are from the keyboard and are a file name, and an indication can be given to print extra line feeds. The line feed option should be invoked when the file normally prints over itself or when double spacing is wanted. Output is to the printer. Only the first 127 characters of each record are printed.

20-21L.BAS Demonstrator

This is the Louisiana demonstrator driver. It provides a menu of modules so that the user can easily select and run Louisianarelated demonstrator programs (see Fig. H-2). Appendix G provides guidelines for executing this demonstrator.

* At EOF these coordinate triplets are sorted by station and then output in UFF-SOE format.

Figure H-9. Program CRSSEC description.

20-21W.BAS Demonstrator

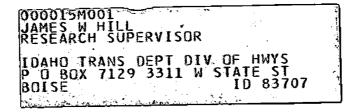
This is the Wisconsin demonstrator driver. It provides a menu of modules so that the user can easily select and run Wisconsinrelated demonstrator programs (see Fig. H-2). Appendix G provides guidelines for executing this demonstrator. **THE TRANSPORTATION RESEARCH BOARD** is a unit of the National Research Council, which serves the National Academy of Sciences and the National Academy of Engineering. It evolved in 1974 from the Highway Research Board which was established in 1920. The TRB incorporates all former HRB activities and also performs additional functions under a broader scope involving all modes of transportation and the interactions of transportation with society. The Board's purpose is to stimulate research concerning the nature and performance of transportation systems, to disseminate information that the research produces, and to encourage the application of appropriate research findings. The Board's program is carried out by more than 270 committees, task forces, and panels composed of more than 3,300 administrators, engineers, social scientists, attorneys, educators, and others concerned with transportation; they serve without compensation. The program is supported by state transportation and highway departments, the modal administrations of the U.S. Department of Transportation, the Association of American Railroads, the National Highway Traffic Safety Administration, and other organizations and individuals interested in the development of transportation.

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Frank Press is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, indee the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements. Dr. Robert M. White is president of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Samuel O. Thier is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy's purpose of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Frank Press and Dr. Robert M. White are chairman and vice chairman, respectively, of the National Research Council.


TRANSPORTATION RESEARCH BOARD

National Research Council 2101 Constitution Avenue, N.W. Washington, D.C. 20418

ADDRESS CORRECTION REQUESTED

NON-PROFIT ORG. U.S. POSTAGE PAID WASHINGTON, D.C. PERMIT NO. 8970

i

j