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FOREWORD This report contains the findings of a study that was undertaken to provide more 
refined design methods which will allow greater use of elastomeric bearings in highway 

By Staff bridges. The report includes recommended specifications for the design of bearings 
Transportation that are more highly stressed and more slender, providing bearings that are smaller 

Research Board or that impart lower horizontal forces on bridge piers and abutments. The contents 
of this report will be of immediate interest and use to bridge engineers, construction 
engineers, materials engineers, researchers, specification writing bodies, and others 
concerned with elastomeric bridge bearings. 

The use of elastomeric bearings in highway bridge construction in the United 
States has increased greatly during the last 20 to 30 years. This is, in part, because 
of their desirable performance characteristics, maintenanc-free durability, and relative 
economy of use. Initially, small, unreinforced elastomeric bearing pads were used to 
support short-span prestressed concrete beams. More recently, steel- and fiberglass-
laminated elastomeric bearing pads have been used in situations requiring higher 
bearing stresses and stiffness. 

NCHRP Project 10-20, "Elastomeric Bearings Design, Construction, and Ma-
terials," was initiated in 1981 to address the absence of detailed design procedures 
for the use of elastomeric bearings in the AASHTO Standard Specflcations  for High-

way Bridges. Recommendations for improved specifications for unconfined, plain and 
reinforced elastomeric bridge bearings (Method A) were made at the conclusion of 
the first phase of research on the project. These recommendations were included in 
NCHRP Report 248, "Elastomeric Bearings Design, Construction, and Materials." 
One of the most significant aspects of the recommended specifications was the increase 
in the allowable bearing stress on elastomeric pads from 800 psi to 1100 psi. The 
recommended specifications were adopted in whole into the AASHTO Standard 

Specifications for Highway Bridges in 1985. 
A second phase of NCHRP Project 10-20 was initiated in 1983 to develop 

improved specifications for elastomeric bridge bearings, and specifications for special 
applications. The Method A specification developed in the first phase of the research 
was based upon data and theories found in the recent literature. The second phase 
research included laboratory testing on actual bridge bearings in order to provide 
correlation of bearing performance and test data with the theories upon which the 
Method A specifications were based. Additionally, with a better understanding of 
elastomeric bearing behavior, a more rational design specification could be developed. 
Tests were performed to assess bearing compression, rotation, shear, stability, fatigue, 
and low temperature behavior. 



This report documents the work performed under the second phase of NCHRP 
Project 10-20. It provides recommendations for a more rational bearing specification 
(Method B) that would allow bearing pressures as high as 1600 psi under some design 
conditions. The use of Method B will require a greater design effort and quality control 
during bearing fabrication. The use of Method B, however, should provide elastomeric 
bearings that are more efficient and provide better performance than bearings presently 
in use. It is expected that the AASHTO Subcommittee on Bridges and Structures 
will consider adoption of the recommended Method B specifications into the AASHTO 
Standard Specifications for Highway Bridges shortly. 
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PERFORMANCE OF 
ELASTOMERIC BEARINGS 

SUMMARY 	Elastomeric bridge bearings have been used in the United States for nearly 30 
years. They are now more widely used than any other type of bearing, because they 
are economical, efficient, and maintenance-free. The AASHTO Standard Specifications 
for Highway Bridges (hereinafter referred to as AASHTO Specifications or Specifi-
cation) contain rules for their design and for materials performance standards to be 
met in specific ASTM tests. These design and materials requirements have changed 
little since they were first included in 1961, and have fallen behind many foreign 
specifications in their versatility. NCHRP Project 10-20 was initiated in 1981 with 
the objective of evaluating the existing worldwide knowledge on the subject and 
preparing a proposal for revising the AASHTO Specifications. The report on that 
project (NCHRP Report 248) contained an improved but still simple design method 
(Method A), which pointed out a number of areas where the state of the art showed 
inadequacies or inconsistencies. Phase II of the project was initiated to resolve those 
shortcomings. This report describes the Phase II research and contains the resulting 
proposals for a more sophisticated design method (Method B) which allows the design 
of bearings that are more highly stressed and more slender, at the expense of greater 
design effort and tighter quality control. The potential benefits lie in smaller bearings 
and lower horizontal forces on the bridge piers. 

The research consisted mostly of testing and correlation of results with existing 
theories. Compression, rotation, shear, stability, fatigue, and material modulus results 
are described in some detail in Appendixes B through G, respectively, of the report. 
A purely theoretical study was conducted on low-temperature bearing behavior, and 
that is reported in Appendix A. In the main body of the report the a priori state of 
the art is outlined, followed by condensed descriptions of the behavior studies and 
their findings; these, then, are used to develop the design provisions for Method B. 

The low temperature study showed that typical steel-reinforced bearings will reach 
thermal equilibrium with their surroundings in approximately 6 hours or less, de-
pending on size and shape. Thus, elastomers which crystallize rapidly at temperatures 
to be found in the field will stiffen significantly even during a short cold spell, and 
suitable measures for preventing high horizontal forces appear necessary. These could 
include provision of a sliding surface or choice of an elastomer with appropriate 
resistance to crystallization and low temperature thermal stiffening. To this end, 
proposals are made for dividing the country into three regions. In each region either 
a specific grade of elastomer or a slip apparatus should be used, or the piers should 
be designed to resist the higher forces arising from the stiffening. A number of questions 
remain open, and they can only be resolved by appropriate testing. 

The compression studies showed that yielding and fracture of the reinforcement 
could be predicted by existing theories with reasonable accuracy. Theories were also 
developed for some cases of bearings with holes, and these showed that holes raise 
the steel stresses and reduce the fracture strength by a factor of about 2. Experimental 
verification was difficult (because the high stresses exist only locally), but it supported 
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the theoretical findings. Some poorly made bearings had very uneven elastomer layer 
thicknesses, and they failed at loads significantly below the predicted ones, demon-
strating the need for good quality control during manufacture. In all cases debonding 
of the elastomer at the edge of the bearing occurred before fracture of the reinforce-
ment, but the average compressive stress at which it took place showed very wide 
scatter, which prevented any reasonable correlation with the shear stresses at the 
bearing edge predicted by existing theories. Fiberglass-reinforced bearings were found 
to be more flexible in compression than similar bearings reinforced with steel and to 
have significantly lower fracture strengths. 

Two types of rotation tests were conducted. In the first, increasing load was applied 
at constant eccentricity, and in the second a special rig was designed and built in 
which rotations could be imposed while a primary, concentric load was maintained 
constant. Both test series showed that moment-rotation curves at a given compressive 
load are very close to linear prior to lift-off, as predicted by theory. However, the 
rotational stiffness was found to increase significantly with greater compressive stress. 
The variation in rotational stiffness with plan dimensions correlated reasonably well 
with predictions. At high loads debonding started on the most highly compressed 
edge at average compressive stresses below those which had caused debonding in 
concentrically loaded specimens. This provides qualitative validation of theoretical 
predictions of the severity of the edge stresses under eccentric load, but there was too 
much scatter in the results to draw quantitative conclusions. 

Shear tests were conducted both as an end in themselves and as a check on the 
material properties or condition of the specimens being used in other tests. The 
monotonic force-displacement relationship was found to be nearly linear, but some 
hysteresis was present in all the cyclic tests. This hysteresis increased at higher 
compressive loads. The loops degenerated for the first few cycles but became repeatable 
after about five or six. For displacements less than about half the total thickness of 
the elastomer, behavior appeared to be well represented by a simple shear model, but 
higher displacements caused roll-over at the bearing edges. In the elastomer this gave 
rise to stress concentrations and a probable component of vertical tension in addition 
to the imposed shear, and it caused local bending of the steel reinforcement, all of 
which are clearly undesirable. Direct stresses in the reinforcement caused by shear 
were found to be insignificant. The shear stiffness of a bearing is sensitive to tem-
perature and to stability effects, as discussed in Appendixes A and E, but even in 
squat specimens at room temperature where these effects were negligible the shear 
stiffness was found to vary with the compressive stress which was applied at the same 
time. 

Stability was investigated by finding the buckling strengths of columns made of 
different numbers of reinforced bearing units placed on top of one another. The 
measured buckling strength compared well with theoretical predictions (which include 
the effects of shear flexibility) for slender columns, but at lower slendernesses the 
theory was found to under-predict the true buckling load. To improve the correlation 
the theory was modified to incorporate the stiffness changes that occur as a result of 
changing geometry and material properties, but the improvements did not warrant 
the extra analytical effort. Transverse stiffness tests under varying levels of axial load 
were also conducted, and, while correlation was reasonable, the measured stiffnesses 
were somewhat smaller than predicted. In all the correlations the fact that the shear 
and rotational stiffnesses appeared to be sensitive to compressive stress made prediction 
of a unique buckling load impossible with existing theories, leading to the same problem 
in predicting a unique transverse stiffness. 

Fatigue experiments were carried out separately in shear and compression. They 
had to be done quite slowly in order to avoid overheating the specimens, so lack of 
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time prevented generation of complete S-N curves. In shear, it was found that the 
most important variable was the range of the applied cyclic shear displacement, even 
though the simultaneous static compressive stress caused calculated (constant) shear 
strains, at the edge of the elastomer, which were considerably higher. Cyclic shear 
strains greater than ± 0.50 were particularly damaging. The natural rubber specimens 
(which were generally softer) showed better shear fatigue performance, but the harder 
specimens of both natural rubber and polychloroprene did best in the compression 
fatigue tests. Furthermore, fatigue life was not found to correlate well with any 
particular material property, such as elongation at break. Fatigue damage was' man-
ifested in both types of test by cracking and debonding at the edge of the elastomer-
steel interface, although the nature of the cracking was slightly different in the two 
cases. The damage caused more difference to the compression than to the shear 
stiffness. Most specimens were tested without edge cover, so it is believed that the 
results are conservative. However, two specimens with cover were tested in shear 
fatigue, and the cover served effectively to hide the considerable damage that took 
place underneath. Thus the degree of conservatism inherent in the tests may not be 

as great as intuition would suggest. 
The results of these test programs were evaluated and used as the basis for design 

provisions. The scatter in the data and the difficulty of selecting acceptable levels of 
fatigue damage from what is essentially a continuous spectrum mean that highly 
sophisticated design rules are not justified. The most significant design recommen-
dations are that the absolute maximum compressive stress be raised to 1,600 psi, based 
on debonding observations, with lower values under many circumstances. The com-
pressive stresses under total load and under live load alone are each limited to separate 
functions of the shape factor, the material modulus, and the rotation which is applied 
at the same time. The shear displacement between the conditions at setting of the 
girder and the extreme conditions is limited to 0.5 times the total elastomer thickness. 
The slenderness of the bearing is controlled only through the buckling load, permitting 
the use of bearings that are considerably taller than those allowed by the present 

SpecIcations. It is hoped that these proposed design rules will open up possibilities 
for improving the efficiency of elastomeric bearings, broadening their range of ap-
plication, and designing bearings that will lead to smaller forces on the adjoining 

parts of the bridge. 

CHAPTER ONE 

INTRODUCTION AND RESEARCH APPROACH 

BACKGROUND 

Elastomeric bridge bearings are being used with increasing 
frequency. They support large gravity loads while accommo-
dating movements due to thermal effects, shrinkage or creep, 
and generally they require minimal maintenance. These desir-
able attributes have resulted in present usage that has gone far 
beyond that originally envisioned in the American Association 
of State Highway and Transportation Officials (AASHTO) 
Standard Specifications for Highway Bridges (hereinafter re-
ferred to as the AASHTO Specifications) (1). Provisions for 
elastomeric bearings were first included in the 1961 editions of  

the AASHTO Specifications. They were based on the develop-
mental work (2) performed by the DuPont Company, and were 
intended for plain (unreinforced) polychloroprene pads. These 
provisions remained in force with only minor changes for more 
than 20 years, but the needs of the bridge engineer changed 
dramatically during that period. As a result of these changes, 
the NCHRP Project 10-20 research program was started in 
1981. The first phase consisted of a comprehensive state-of-the-
art review (3) that resulted in a series of initial modifications 
to the AASHTO Specifications (4). 

The final report (3) of the first phase showed that there were 
some severe deficiencies in the existing understanding of elas- 



tomeric bearing behavior. Different design specifications contain 
wide discrepancies and contradictions, and offer no sound sci-
entific reasons for selecting one design approach over another. 
As a result, a Phase II research program was initiated to resolve 
many of these inconsistencies, and to develop a new, more 
rational design specification. This report is the Final Report of 
this second phase of the NCHRP Project 10-20 research pro-
gram. It includes detailed descriptions of the research per-
formed, analysis of the research results, development of 
conclusions and recommendations, and a proposed modification 
to the AASHTO Specifications. The fundamental behavior of 
elastomeric bridge bearings is discussed at length in the earlier 
report (3), and is not repeated in this report. 

PHASE II RESEARCH 

The Phase II research was directed toward resolving serious 
unanswered questions found in the Phase I research and de-
veloping recommendations for an improved AASHTO Specifi-
cation. Those questions fell into the following four major 
categories, which defined the first four tasks of the research. 

Task A—Low Temperature Effects. Elastomers stiffen as 
they cool, and the degree of stiffening varies with time, tem-
perature, and the elastomeric compound. Because the bridge 
also deforms with temperature, this low temperature stiffening 
may significantly increase the shear forces on the bearing and 
the bridge structure. These larger forces may cause damage to 
the structure or may cause the bearing to slip out from its proper 
position. This task was an analytical study, whose goal was to 
obtain the best available data on low temperature behavior and 
to estimate if and when low temperature stiffening is a problem. 
It did not include any experimental work because the necessary 
funds were not available. 

Task B—Confirmation of Theories of Behavior. Most de-
sign specifications for elastomeric bearings limit the loads and 
deformations so that specified stress and strain limits are not 
exceeded. The theories used to predict these stresses and strains 
are usually based on simplified linear elastic models. However, 
it is well known (3) that elastomers are not perfectly elastic, 
and nonlinearities are introduced both by large strains and non-
linear materials effects. This task examined the validity of the-
ories used to predict stress, strain, force, and deflection in 
bearings. The task was to focus on behavior under compression, 
shear, rotation, and combinations of these loadings. Theoretical 
predictions of the buckling loads and the effect of stability on 
the bearing stiffness were also to be considered. These theories 
were to be evaluated, compared to experimental results, im-
proved where possible, and then used to provide a basis for 
better design provisions. 

Task C—Determination and Assessment of the Modes of 
Failure. Design specifications limit the stress and strains in 
bearings to values that are believed to represent some fraction 
of the values that would cause failure of the bearing. It is well 
known (3) that bearings may fail by yield or rupture of the 
reinforcement, cracking or tearing of the elastomer, fatigue, 
delamination or separation of the elastomer from the reinforce-
ment, buckling, slip of the bearing from under the load, creep, 
deterioration or excessive deflections. The limiting values for 
these modes of failure are not well understood or well docu-
mented. They often are functions of the quality of manufacture 
and the elastomeric compound. Therefore, experiments were  

performed to understand these modes of failure better and to 
develop more reliable limits for design. Task C is closely related 
to Task B, inasmuch as many experiments were used for both 
purposes. 

Task D—Evaluation of Material Behavior. The elastomeric 
compound and its material properties have considerable impact 
on the bearing behavior. Further, many of the previous exper-
iméntal and theoretical research programs (3) did not document 
these properties well. As a result, Task D was added to support 
the results of the earlier tasks. It had two major objectives. One 
objective was to document the properties of bearings used in 
the experiments so that reasonable comparisons could be made 
between theoretical and experimental results. The second ob-
jective was to test a wide range of elastomeric compounds, which 
are commonly used in bridge bearings, to determine how dif-
ferent compounds affect the modes of failure. Task D was closely 
associated with Tasks B and C. 

Structure of the Report 

Many of the experiments and analyses are relevant to more 
than one of the Tasks A through D. The work is thus reported 
by type of behavior rather than by Task. The main report 
contains a summary and analysis of the most important findings, 
and the details and the proposed SpecfIcation are contained in 
the appendixes. 

Chapter One of this report provides an introduction to the 
research and a brief summary of the different theoretical and 
experimental portions of the work described in full in the ap-
pendixes. Also included in this chapter is a glossary of the 
notation used throughout this report. Chapter Two briefly sum-
marizes the major research results found in the appendixes, and 
Chapter Three discusses the rationale for the major recommen-
dations in the proposed design provisions and correlates these 
with the research results summarized in Chapter Two. Chapter 
Four summarizes the major conclusions, design recommenda-
tions, and recommendations for further research. 

Appendix A contains the analysis of bearing behavior at low 
temperature. Appendix B describes the behavior of bearings 
subjected to compression. Appendix C describes the research 
related to bearings subjected to relative rotation of the top and 
bottom surfaces, and Appendix D contains a discussion of re-
sponse to shear and combined loading. Appendix E describes 
the work on buckling and stability, and fatigue research is con-
tained in Appendix F. Appendix G outlines some special ob-
servations on material behavior. The proposed modifications for 
the AASHTO Specifications and commentary constitute Ap-
pendix H. 

RESEARCH APPROACH 

Low Temperature Research 

The existing literature (3,5,6) on low temperature material 
properties of elastomeric compounds typical of those used in 
bridge bearings was reviewed. Inconsistencies and contradictions 
between different data were noted, and upperbound and low-
erbound limits were developed both for low temperature crys-
tallization and instantaneous thermal stiffening. These bounding 
values were inserted into a simple mathematical model, which 
approximately simulates both instantaneous and time-dependent 



stiffening. Historic low temperature records were then gathered 
for five different cities in the United States (Lubbock, Texas: 
Colorado Springs, Colorado; Duluth, Minnesota; Albany, New 
Yoik; Fairbanks, Alaska), and these were used to estimate the 
time-dependent temperature of the elastomeric bearing and the 
thermal deformation of the bridge. The temperature records 
includc daily high and low tenupetatuies for one month with a 
daily sinusoidal variation, because stiffening of the elastomer 
depends on the time and duration of the temperature in addition 
to the lowest temperature. Heat flow calculations were per-
formed on the bearing to estimate its temperature as a function 
of time for the niorithly peiiods. The simple mathematical model 
was then applied to these 1iuic-depeuideiit temperature profiles, 
and the time-dependent expansion (or contraction) of the bridge 
was used to estimate forces in the bridge bearing. The calcu-
lations are imprecise because of the many assumptions and 
simplifications made in the analysis. However, upperbound and 
lowerbound limits on stiffening behavior were used in the anal-
ysis, and so their results should provide a "worst case" and 
"best case" indication of low temperature behavior. 

Compression LoadIng 

The theoretical and experimental research related to bearings 
Inaded under compression is described in detail in Appendix B. 
The theoretical work started with the work of Conversy, Gent, 
and others (3,15,16,17,18). Formulas for predicting the stress 
and strain in the steel and the elastomer were reviewed, and 
limitations of the theories were described. Approximate theories 
were examined and compared to the more refined solutions. 
Several extensions, which simulate large strain conditions, were 
then evaluated, and modified theories for circular bearings and 
bearings with holes were derived. In addition, several finite 
element analyses were performed on rectangular bearings with 
and without holes. The results of these different analyses and 
analytical methods were compared with one another and with 
the analytical results of other research. They also were compared 
to experimental results. 

Experiments were performed to investigate both working-
stress behavior and modes of failure, and to provide a basis for 
appraising the theories. In these experiments, the loads were 
applied in small increments, and the bearings were closely ex-
amined for cracking of the elastomer, delamination or separation 
of the elastomer and reinforcement, excessive bulging of the 
elastomer, and yield or rupture of the reinforcement. 

Figure 1 illustrates a typical test set-up for the compression 
tests. The loads were applied with a 2.4 million pound Baldwin 
Hydraulic Test machine, and they were measured electronically 
with a calibrated load cell. Four linear variable differential trans-
formers (LVDT's) were used to measure the vertical deflection 
of the bearings, and for some tests additional LVDT's were used 
to measure the bulging of the elastomer. A wide range of bear-
ings were tested to cover a wide range of practical field con-
ditions. Shape factors typically varied between 5 and 12, and 
circular bearings, square bearings, two-to-one and four-to-one 
rectangular bearings were tested. Comparison of these test re-
sults shows how size, shape, and shape factor affected the mode 
of failure, bearing behavior, and the comparison between theory 
and experimental results. Most bearings had steel reinforcement, 
but some used layers of fiberglass. Nearly all of these specimens 
were loaded to failure or until the test machine capacity was 

Figure 1. Test setup for the compression tests. 

reached. In practice, holes are frequently placed in elastomeric 
bearings (3) to pin the bearing in place in the field, and some 
fabricators also make holes in the reinforcement to hold it in 
place during manufacture. These may be subsequently plugged 
with elastomer. As a result, some specimens with holes were 
tested to evaluate the effect of this practice. 

All bearings were carefully examined before and after testing. 
Layer size and spacing and overall geometry were measured. 
Some bearings had strain gages attached to the reinforcement 
in an attempt to measure the distribution of stress and strain 
in the laminate at working stress levels and to compare them 
to those predicted by theory. These bearings were not tested to 
destruction. 

Many compression stiffness tests were also performed. They 
are not considered to be a part of the compression loading 
research program described in Appendix B, because they were 
performed to measure the initial properties of the bearing or to 
estimate the extent of deterioration or damage produced by other 
testing such as fatigue. Therefore, they are discussed in the 
appropriate appendixes. The procedure for these stiffness tests 
was nearly identical to that described in this section, and, thus, 
the results are usually provided with minimal discussion. 

Rotation 

Bending of a bridge girder causes end rotation about a hor- 
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izontal axis perpendicular to the longitudinal bridge axis. The 
top surface of the bearing is then forced to rotate relative to the 
bottom surface. Such relative rotation may also be caused by 
the dead loads if the underside of the girder is not perfectly 
parallel to the pierhead. The action is called rotation in this 
report, but it is also referred to elsewhere as bending, edge 
loading, or nonuniform loading. 

Previous research (3) has suggested that rotational defor-
mation of the bearing is one of the most severe loadings which 
can be applied. Theoretical models for rotation are typically 
extensions (3,36) of compression theories. These theories were 
examined in detail, and the results are summarized in Appendix 
C. Stress, strain, moments and rotations, and forces and de-
flections were computed and were compared to experimental 
results. 

Two types of rotation experiments were performed. The first 
type was an extension of the compression test procedure and is 
shown in Figure 2. The loads were applied with a hydraulic 
test machine, but they were applied at an eccentricity with 
respect to the centroid of the bearing. As in the compression 
tests LVDT's measured the vertical deformations at four lo-
cations, and both the rotation and average vertical deflection 
were determined from these measurements. The moment was 
determined by the axial force and the eccentricity of the applied 
load, which consisted of both an initial eccentricity plus an 
additional component due to rotation of the load assembly. This 

Figure 2. Tesi setup for the eccentrically loaded bearing rotation 
tests. 

rotation also imposed a shear deformation in addition to the 
rotation and compression. Most bearings were tested with sev-
eral eccentricities; however, each bearing in this series was ul-
timately tested to failure or to the maximum load capacity of 
the test machine. Bearings of different size, shape, and shape 
factor were tested. Each bearing was carefully examined at in-
tervals throughout each test for delamination, cracking of the 
elastomer, uplift of the load from the bearing, and failure of the 
reinforcement. 

The first rotational test procedure was closely related to the 
compression loading. It provided valuable evidence of failure 
modes and general rotation behavior, but moment-rotation stiff-
ness data could be determined only by indirect methods. As a 
result, a second rotation test method was devised, and is shown 
in Figure 3. This test procedure permitted independent appli-
cation of the compression load and the applied moment or 
rotation, and the moment-rotation stiffness could be measured 
directly. However, the test apparatus was usable only for rel-
atively small bearings (i.e., shape factor of approximately 5 or 
less) and small loads (i.e., less than 300 kip in compression). 
The bearing was placed at the center of rotation of a split 
cylinder as shown in Figure 3. The compressive load was applied 
through the split cylinders by a hydraulic test machine, and the 
moment was applied by a small ram acting through the lever 
arms. The split cylinders rolled with minimal resistance and 
introduced a true rotational deformation on the bearing to co-
incide with the applied moment. Rotations and vertical deflec-
(ions were measured with LVDT's. Several bearings of different 
shapes had strain gages attached, and these gages were used to 
estimate the effect of rotation on the strains in the steel rein-
forcement. 

Shear and Combined Loading 

Tlieoi'etical nodels for shear deformation of elastomeric bear-
ings invariably assume that the bearing deforms in simple shear 
and that the average shear stress is linearly related to average 
strain even at very large strain levels. Shear tests arc always 
performed with an axial load applied, since the compression 
load is needed to prevent slip of the bearing. The stress and 
strain under combined loading are computed by superposition 
of the individual solutions. However, it is very questionable 
whether superposition should be applied, siiiee (lie computed 
strains greatly exreeil the limits of infinitesimal strain theory 
(3). Series of tests were performed to evaluate the limits and 
validity of these theories, and they are described in detail in 
Appendix D. 

The shear tests were conducted in a 	tIeqiiilihrating test 
frame as shown in Figure 4. A number of bearings of different 
size, shape, and shape factor were tested Some. hteritigs had 
strain gages attached to the steel reinforcement as in the 
compression and rotation test. LVDT's were used to measure 
vertical deflections and horizontal displaeenieiits. The compres-
sion load was applied with a hydraulic test machine and was 
maintained nearly constant during the cyclic shear deformation. 
Each bearing was tested for a range of different compression 
loads. The shear deformation was applied by a second hydraulic 
ram as shown in Figure 4. These specimens were typically not 
tested to failure. Instead the shear strains were subjected to a 
small number of cycles of strain within or somewhat above 
service limits. The bearings were closely examined at intervals 
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during the test, but failures of the types noted in the compression 
or rotation tests were not expected. 

Many shear tests were also performed to measure bearing 
stiffness, to estimate material properties, and to evaluate the 
deterioration caused by other modes of testing. These tests were 
performed in the test rig shown in Figure 4 or other similar test 
frames. These tests supported other test programs (such as 
stability and fatigue), and so they are not discussed in Appendix 
D. The test procedures were nearly identical to the shear tests 
described in this discussion, and so their results are usually 
summarized without additional discussion. 

Stability 

The experimental research related to buckling of bearings and 
the reduction in shear stiffness caused by the stability effect are 
described in Appendix E. Elastomeric bridge bearings are usu-
ally stiff in compression and rotation but flexible in respect to 
shear deformation. Haringx (47) derived the first buckling the-
ory for shear flexible systems, and this work was extended by 
Gent, Schapery, Skala, and others (41,48,49). This basic theo-
retical work was reviewed, and the limitations were examined. 
Extensions for these theories were then derived. These extensions 
partially accounted for the large strains and the shortening 
effects that accompany large compression loads on elastomeric 
bearings. Previous experiments (41) concerned with the stability 
of bearings have been performed on small bearings with very 
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small shape factors (shape factors of 1 or less). These tests 
compared well to the existing theories, but they were well outside 
the range of practical bridge bearings. Therefore, tests were 
performed on two bearing sizes of more practical geometry. 
Sixteen bearings of nominally identical size, shape, shape factor, 
and material were made in each of two different sizes and shape 
factors. Each bearing had two elastomer layers and three steel 
laminates. The bearings were 2 to I rectangles, and they could 
be stacked to simulate a wide range of heights and slenderness 
ratios as shown in Figure 5. 

The axial shortening of the stack was measured with LVDT's, 
and the lateral deflection was measured with LVDT's at the 
midheight of the stack and at the quarter points as shown in 
the figure. The compressive load was slowly increased, and the 
lateral and vertical deflections were measured at various load 
intervals. The lateral deflections and compressive load were 
plotted in the Southwell plot format, and the buckling load was 
determined for each height and bearing type. The more slender 
stacks were loaded to incipient collapse, but this was not prac-
tical for the shorter stacks, because material failure would have 
preceded buckling. These measured buckling loads were com-
pared to theoretical predictions, and the validity of the existing 
and newly derived mathematical models was assessed. 

A steel plate was then inserted at midheight of the stack, and 
shear tests were conducted at different compressive loads to 
investigate the influence of compressive load on shear stiffness. 
These tests were done for a number of stack heights. The results 
were also compared with theoretical predictions and were used 
to assess the accuracy of the analytical models. 

In order to establish the material properties as accurately as 
possible, several pairs of bearing were subjected to shear tests 
under various compressive loads. These two-bearing stacks were 
too short to be influenced significantly by stability effects and 
were used to isolate material effects from the geometric ones 
involved in buckling. These tests are described in Appendix G. 

Fatigue 

Fatigue was the last major mode of failure considered in this 
Phase II research program. Fatigue tests have been previously 
performed by other investigators (38,62,63), but the results were 
often poorly documented or of limited applicability to present 
elastomeric bearing design practice. This existing research was 
carefully reviewed, and the major research conclusions were 
noted. An experimental fatigue research program was then in-
stituted to fill in the gaps of the existing knowledge and to 
develop approximate, conservative design guidelines which miii-
imize potential fatigue problems. These fatigue tests were per-
formed on bearings of practical size and geometry. Their primary 
objectives were the determination of the effect on fatigue life 
and behavior of load type, load rate, mean stress or strain, stress 
or strain range and elastomeric compound. 

Two types of tests were performed. Some bearings were tested 
under approximately constant compression with severe cyclic 
shear deformation. Figure 6 illustrates this test apparatus. 
Twenty thousand cycles were chosen, representing one cycle for 
each day of a 55-year life expectancy. The compression load 
was kept as nearly constant as possible during these fatigue tests, 
and it represented the mean stress due to gravity loads. The 
compression load was applied with four tension rods and was 
held constant with elastomeric springs placed in series with the 

Igtie 5...iakcl /uaing con figuration for the stability tests. 

Figure 6 Test setup jhr the cvciic shear Jittigue tests. 



test specimens. The cyclic shear deformation was applied with 
an MTS actuator under displacement control. Compressive de-
flection and shear deformation were measured with LVDT's, 
and the temperature of the bearing was measured with a ther-
mocouple. 

Thirteen pairs of bearings were tested. The first test was a 
pilot one covering a range of load rates, and was intended to 
determine the fastest loading that could be imposed without 
seriously influencing the fatigue behavior. Rapid loading causes 
higher temperatures that are detrimental to fatigue resistance, 
and, even at constant temperature, higher loading rates appear 
more damaging. However, time constraints dictated that the 
tests be done as fast as reasonably possible. Other shear tests 
evaluated the effect of different compressive stress or strain levels 
and different shear strain ranges. In addition, five tests used 
comparable strain levels but employed bearings made from a 
wide range of elastomeric compounds. The compounds were 
selected from the possible range that could meet AASHTO (1) 
property requirements, but would develop the maximum vari- 
ation in hardness, tensile strength and elongation at break. These 
later tests were intended to measure the effect of these elastomer 
properties on fatigue behavior. 

A second series of fatigue tests were performed with bearings 
under compression with the test frame as shown in Figure 7. 
The compressive load was applied with an MTS actuator under 
load control. The bearings were tested with a constant minimum 
(or mean) stress to simulate dead load and a stress range to 
simulate the live load. The primary objective of these tests was 
to evaluate the effect of mean stress, stress range, and material 
properties on the fatigue life and behavior. Thus, these param- 
eters were varied for different tests as in the shear fatigue tests. 
Two million cycles of severe compression loading were used. It 
was believed that the number of cycles was small, but the stress 
range was large compared to field conditions. This loading his- 
tory was required by time constraints, because elastomeric bear-
ings cannot be tested at the rapid rates used for steel or other 
materials. Further, other research (64) has suggested that 2 
million cycles of a severe truck load such as HS-20 may ap-
proximate a 46-year life expectancy of typical bridge fatigue 
loading. As a result, it was felt that this test procedure should 
provide approximate design limits for fatigue control. 

The bearings were carefully measured and examined before 
and after the fatigue tests and at intervals during the test. Cracks 
and tears in the elastomer were observed and measured, and 
their growth was monitored during the test. The shear and 
compression stiffnesses were also measured at intervals to de-
termine if any deterioration had occurred. 

NOTATION 

A 	........... Plan area of bearing 
A 	........... Dimensionless compressive stiffness coefficient 
A 
............ 

Dimensionless rotational stiffness coefficient 

A............ Shear area of the bearing 
A 
............. 

Shear area of the bearing in the unloaded state 

A 
............ 

Plan area of the bearing in the unloaded state 

B 	........... Dimensionless compressive stiffness coefficient 

B............ Dimensionless rotational stiffness coefficient 
Dimensionless coefficient relating the maximum 
shear strain in the bearing to the compressive 
strain 

Figure 7. Test setup for the compression fatigue tests. 

Limits on allowable total shear strain, under 
total load and live load 

C 	........... Dimensionless constant in Eq. E-37a relating 
limiting slenderness to shape factor 

C4.C5  ........ Constants in Eq. E-55 relating experimentally 
observed buckling stress to slenderness 

C ............ Constant in Eq. A-S relating crystallization rate 
to temperature 
Dimensionless coefficient of K, the bulk mod- 
ulus, in Eq. B-2b for compressive stiffness in- 
cluding compressibility 

c ............. Dimensionless coefficient of K, the bulk mod- 
ulus, in Eq. C-4 for rotational stiffness including 
compressibility 

c . 	........... Strength coefficient, relating reinforcement fail- 
tire strength to average compressive stress on 
the bearing (see Eq. B-16) 
Specific heat 

D,,. .......... Thermal diffusivity = k16 /p C,6 
D1  ........... Dimensionless 	constant 	= 	(47T 	B.) 

used in buckling load calculation 
and defined in Eq. E-54b 

E 	........... Young's modulus 
E, ........... Effective Young's modulus in compression of 

the bearing, neglecting bulk compressibility 
Effective Young's modulus in compression of 
the bearing, accounting for bulk compressibility 

E ............ Effective Young's modulus in rotation of the 
bearing, neglecting bulk compressibility 
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E ............ Effective Young's modulus in rotation of the L 	........... Plan dimension, parallel to the bridge span, of 
bearing, accounting for bulk compressibility a rectangular bearing 

E(T) ........ Temperature-dependent Young's modulus of L ............ Instantaneous column length 
the elastomer L 0  .......... Instantaneous column length under zero axial 

E0  ........... Young's modulus at reference (room) temper- load 
ature of the elastomer 	- 1 	............ Bridge span 

EB .......... Elongation at break of the elastomer M........... Bending moment 
.... Yield strength of the reinforcement in uniaxial M0  .......... Bending moment at the end of shear-flexible 

tension beam-column 
.... Dimensionless compressive stiffness coefficient m 	........... Exponent in the approximate expression for K, 

= A, + BCS2  Eq. E-66 
.... Dimensionless rotational stiffness coefficient = N ..... . ..... Axial force 

A+BS2  n ............ Exponent or index 
G 	........... Shear modulus of the elastomer P............ Vertical load on the bearing 

.... Apparent shear modulus of the elastomer, in- P 	.......... Buckling load 
eluding the contribution of bending to the total P,,Ii 	........ Buckling load of a bearing with limiting slen- 
transverse displacement derness, below which buckling is impossible 

g ............ Dimensionless coefficient relating rotation angle PE ........... Euler buckling load in fundamental mode 
to maximum shear strain in the elastomer (see P,, ........... th  Euler buckling load 
Eq. C-5b) P. ........... Buckling load of a column with shear flexibility 

H ........... Transverse force on one bearing alone, = GA 
H 	.......... Time in hours for the elastomer to harden by Q 	........... Dimensionless constant, = 

10 durometer points at its optimum crystalli- -Jl + (E/K)(L/n7rH,.)2, used in the series so- 
zation temperature, TA - lution for rotational stiffness 

h ............ Combined thickness of elastomer and steel in q............ Dimensionless constant used to calculate the 
one layer of a reinforced bearing buckling load of a shear-flexible column, = 

h,. ........... Total combined thickness of elastomer and steel .jP/ 	El 
in all layers of a reinforced bearing R 	........... Radius of a circular bearing 

.... Total combined thickness of elastomer and steel R,, 	.......... Dimensionless constant, = 
in all layers of a reinforced bearing in the un- 1j1 + 4(E/K)(L/n7rhr)2, used in the series so- 
loaded state lution for compressive stiffness 

.... Thickness of shear panel R 1(T),R2(T) Dimensionless functions of temperature used in 

.... Thickness of elastomer in one layer of a rein- prediction of low-temperature bearing stiffness 
forced bearing r ............ Radial coordinate, or radius of gyration 

.... Thickness of elastomer in one layer of a rein- r0 	........... Radius of gyration in the unloaded state 
forced bearing in unloaded state S............ Shape factor 

.... Thickness of elastomer layers either side of a S0  ........... Shape factor in unloaded state 
layer of reinforcement SF .......... Safety factor 

h,. ........... Total thickness of all elastomer layers in a rein- T 	........... Temperature 
forced bearing TA 	.......... Temperature for maximum rate of crystalliza- 

............ Total thickness of all elastomer layers in a rein- tion 
forced bearing in the unloaded state T 	.......... Temperature at which Young's modulus for the 

.... Thickness of steel reinforcement in one layer of elastomer reaches 10,000 psi 
a reinforced bearing To 	.......... Temperature of the outside of the bearing 

.... Total thickness of all steel layers in a reinforced t 	............ Time 
bearing u............ Longitudinal displacement of a point within a 

I............ Moment of inertia of the bearing shear-flexible beam-column 
Jo 	........... Moment of inertia of the bearing in the unloaded ii ............ Longitudinal displacement of a point within a 

state shear-flexible beam-column 	that lies on the 
K 	........... Bulk modulus of the elastomer member axis 

..... Strain-dependent stiffnesses in compression, ro- V 	........... Shear force 
tation, and shear of a bearing v 	............ Transverse displacement of a point within a 

K............ Transverse stiffness of a bearing, including sta- shear-flexible beam-column 
bility effects Transverse displacement of a point within a 

K ............. Transverse stiffness of a bearing, including sta- shear-flexible beam-column 	that lies on the 
bility effects, at zero compressive load member axis 

k............ Effective length factor used in prediction of the W........... Plan dimension perpendicular to the bridge span 
- buckling load of a rectangular bearing 
K 	........... Dimensionless coefficient in the equation E, = x,y 	.......... Cartesian coordinates in the plane of the rein- 

E( 1 + 2kS2) for the compressive stiffness derived forcement 
from experimental data z ............ Through -thickness coordinate of the bearing 

k10 	.......... Thermal conductivity a 	........... Coefficient of thermal expansiOn of bridge deck 
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/3 	........... Dimensionless coefficient in specification equa- X............ Modified slenderness ratio, = X/f, 

tion for allowable compressive stress XE  ........... Slenderness ratio in the unloaded state 

y,, y5.... Shearing strains caused by compression, rota- X01 ,,, 	........ Limiting slenderness ratio in unloaded state, be- 

tion and shear low which the column will not buckle 

Compressive deflection v............ Poisson's ratio 

Shear deflection v.......... Poisson's ratio for the elastomer 

Transverse deflection, accounting for instability v. ........... Poisson's ratio for steel 

effects p............ Mass density 

Change in temperature o- 	........... Average compressive stress on the bearing 

U .......... Change in strain energy o ............ Buckling stress 

Change in potential energy ,,, 	....... Maximum steel stress 

Direct strain Shear stress 

Average compressive strain in bearing r, r., i Maximum shearing stresses in bearing caused 

Direct strain in x direction by compression, rotation, and shear 

Compressive strain at incipient buckling in a T,,, T, r Radial, hoop, and vertical stresses respectively 

column of limiting slenderness, below which T ............ Shear stress in the elastomer at its interface with 

buckling is impossible the reinforcement 

Diameter of the hole/Diameter of the bearing ............ Dimensionless constant used in calculating K 
in a circular bearing with a central hole for Haringx s theory 
Coefficient of EB in the formula for maximum (1 + P/GAS) 
allowable shear strain in the former British spec- (1 - P/GAS) for Engesser's theory 
ification BE1 /76 4, 	........... Ratio of total combined thickness to total elas- 

0............ Rotation angle tomer thickness in a reinforced bearing 
Maximum allowable rotation angle iji 	........... Total rotation of the cross-section in a shear- 

X............ Extension ratio (in kinetic theory of elastomers), flexible column 
= 	1 	- e, or slenderness ratio (in buckling w 	........... Dimensionless constant used to calculate K, (see 
theory), = kh,/r Eq. E-24) 

CHAPTER TWO 

FINDINGS 

LOW TEMPERATURE BEHAVIOR 

The analytical study of the low temperature behavior of elas-
tomes indicated that the stiffness of the elastomeric compounds 
used in bridge bearings may vary widely at low temperatures. 
Two types of low temperature stiffening occur. Crystallization 
is a time-dependent phenomenon, and it occurs over a wide 
range of low temperatures (almost any temperature lower than 
32°F). However, the rate of crystallization appears to be greatest 
at temperatures on the order of + 15°F. Polychloroprenes gen-
erally crystallize faster than natural rubber, but there is con-
siderable variation among the different types. Compounds made 
from the commonly used type W neoprene base polymer crys-
tallize more rapidly than those made from type WRT, which 
has slightly different chemistry, is more expensive, but has been 
found to perform better at low temperatures (5). However, the 
rate of crystallization is very sensitive to the complete compound 
(6), and a good polychloroprene compound has much better 
resistance to crystallization than a poor natural rubber com-
pound. Generally, compounds which crystallize rapidly also 
stiffen more over time (6), and the elastomer stiffness may 
increase to as much as 10-20 times the normal room temper-
ature value (6). 

Thermal stiffening or glass transition occurs instantaneously 
after the material cools to the transition temperature. This tran-
sition occurs at temperatures on the order of - 35°F to - 55°F 
(- 37°C to - 49°C), with polychloroprene compounds generally 
stiffening at the higher end of this range, and natural rubber, 
at the lower end of the range. Stiffness increases of several orders 
of magnitude may occur at these low temperatures. Small spec-
imens may become brittle and may shatter under impact at these 
temperatures, but the likelihood of practical bridge bearings 
experiencing this extreme form of behavior appears very remote. 

The experimental data for crystallization and instantaneous 
thermal stiffening were analyzed, and upperbound and lower-
bound limits were postulated. These limits were used in an 
approximate time and temperature-dependent model to estimate 
the temperature-dependent forces experienced by the bearing, 
the bridge pier, and the superstructure. The temperatures of the 
bridge and the bearing were estimated for five different record-
low monthly temperature records from different cities in the 
United States, and the time delay caused by heat flow through 
the bridge and the bearing was considered. Time is required for 
bearings to reach a given temperature; therefore, low temper-
atures of very short duration should not adversely affect the 
bearing behavior. The calculations suggest that a duration of 1 
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to 2 hours is required for cooling of most practical-sized bear-
ings, and durations of 8 to 12 hours may be required for large 
bridge bearings. These time delays are particularly sensitive to 
the quality and thickness of the cover layers, and should be 
used with caution in design. 

The calculations further suggest that record-low temperatures 
in most of the continental United States could introduce sig-
nificant stiffening due to crystallization. If elastomers with good 
crystallization properties (i.e., very resistant to low-temperature 
crystallization) are used in these regions, little increase in force 
can be expected. However, bridge bearings with less than ideal 
crystallization characteristics for the region may develop forces 
in the bearing that are three to four times the forces that would 
have been found if the bearing had retained its room temperature 
stiffnesses. Figure 8 is a typical plot of the bearing force for a 
given low temperature record with an elastomer that is not well 
suited to the climate. The bearing force is normalized by dividing 
it by the "design force," defined as the shear force that would 
be induced in the bearing at room temperature if it was subjected 
to a shear strain of 50 percent. This additional force will not 
break the bearing, but it may damage the pier or the super-
structure or cause the bearing to slip out of position. The elastic 
deflection of the piers and support structure was not considered 
in these calculations, and a flexible supporting structure would 
help to alleviate the induced forces. 

The calculations indicate that instantaneous thermal stiffening 
is important only for a fewnorthern tier or mountainous areas 
of the continental United States, Canada, and Alaska. However, 
bearings that have inadequate thermal stiffening properties (i.e., 
the second order transition temperature is too low) may develop 
forces that are many times greater than the design bearing force. 

COMPRESSION LOADING 

The linear elastic theories for compression of bearings can be 
expressed as  

(1) 

wheref, = A, + B 2. 
The A, term depends only on the uniaxial deformation, and 

its effect is small for practical-sized bridge bearings. The term 
B, has been derived theoretically differently by different re-
searchers, but similar results are usually obtained. This second 
term takes into account the bulging shown in Figure 9, and for 
design purposes the approximate equation 

f, — l+2kS2 	 (2) 

is frequently employed. The constant k simulates the volumetric 
deformation effect and is a function of the hardness of the 
elastomer. It varies between 0.55 and 0.75 for practical bridge 
bearing compounds. This approximate theory is not precise be-
cause it does not account for the effect of shape on the bearing 
behavior or for nonlinear behavior. However, it is simple to use, 
and it is difficult to justify a more refined calculation for most 
practical conditions. 

Important features of behavior under compression are re-
vealed by these theoretical analyses, and were confirmed by 
finite element analyses. Harder elastomers and larger shape 
factors lead to stiffer bearings. Strains in the elastomer increase 
with applied stress, and are reduced by higher shape factors and 
material moduli. The stress in the steel reinforcement increases 
with increasing compressive load, increasing elastomer thick-
ness, and decreasing laminate thickness. Holes in the reinforce-
ment introduce a stress increase due to the stress concentration 
effect and the loss of net section, and this increase influences 
the ultimate load capacity and yield behavior. 

Experiments were performed on different size, shape, and 
shape factor bearings, and the results were compared to the 
theories. The experiments agreed well with the general trends 
indicated by the theories, but specific comparisons were often 
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Figure & Typical plot of the normalized bearing shear force due to low temperature 
effects. 
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Figure 9. Typical bulge pattern 
of an elastomeric bearing loaded 
in compression (8-in, diameter 
bcu,iig 3/town). 
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Figure 10. Typical average compressive stress-strain curve for an elasiomeric bearing. 

fair to poor. A typical experimental average stress-strain curve 
is shown in Figure 10. The deflections and strains were generally 
larger for smaller shape factors, thicker elastomer layers, or 
softer elastomers as predicted by the theories. However, com-
parison of specific deflections to computed values was less fa-
vorable. Other research (35) has indicated that this less 
favorable comparison may be due to the seating-in required to 
overcome initial imperfections in the bearing. The flat zone of 

the curve at low stress levels is influenced strongly by the initial 
out of flatness of the platens and the bearings. A much better 
comparison between theoretical and experimental force-deflec-
tion results if the comparison is made for incremental stress at 
higher stress levels (i.e., tangent stiffness comparison). 

The sudden loss of stiffness, which can be seen in the load-
deflection curve, is caused by yielding of the reinforcement, and 
the load at which it occurred correlated well with the theoret- 



14 

4"x16" Bearing 

I 	I 	 I 	I 
200 	 400 	 600 	 800 	 1000 

MICROSTRAIN IN STEEL PLATE 

Figure 11. Typical strain in the steel laminate as a function of the compressive load 

ically predicted value. This provided evidence that the theoret-
ical models for predicting steel stress were reasonable. However, 
the strains in the reinforcement measured during the experi-
ments at working stress levels were extremely erratic and bore 
no relation to the theoretical predictions as can be seen from 
the typical values shown in Figure 11. It is believed that they 
were influenced greatly by initial imperfections in the bearings 
(35, 43), and they were so erratic that they could not be used. 
Holes in the reinforcement clearly reduced the ultimate load 
capacity of the bearing as suggested by the theory, but they did 
not appear to have as large an impact on the load to cause first 
yield. This may reflect more the difficulties in detecting a local 
effect (first yielding) from a global measure (force-deflection 
curves) than a real phenomenon. This gross yielding of the 
section is relatively insensitive to stress concentrations and thus 
is less affected by holes in the reinforcement. Initiation of yield-
ing is affected by the stress concentrations, but would not be 
observable from the overall bearing behavior and the load de-
flection results. 

The experiments also showed that long narrow bearings are 
less influenced by holes than those of compact shape (circular 
or square). This finding is in agreement with simple post-yield 
analyses. Fiberglass-reinforced bearings exhibited a sequential 
failure mode in which individual fibers began to break well 
before total failure occurred. The presence of holes in the re-
inforcement did not significantly affect the failure load. The 
compressive stresses at failure were typically 1,800-2,200 psi, 
well below those observed for steel-reinforced bearings, because 
the fiber reinforcement was much weaker than the steel. For 
this reason, the proposed compressive stress limits are lower for 
fiber-reinforced than for steel-reinforced bearings. 

The compressive stiffness of elastomeric bearings is high com-
pared to their shear stiffness, because of the bulging restraint 
provided by the reinforcement. The elastomer is flexible and 
bulges as shown in Figure 9, and the bulging induces larger 
shear stress and strain in the elastomer, which, in turn, induce 
the tensile stress in the reinforcement. Theories predict that 
these shear strains increase with increasing load and layer thick-
ness and also increase with decreasing shape factor and elas-
tomer hardness. This general observation was supported by the 
compression test results. The bearings bulged under compressive 
load, and the size of the bulge increased with increasing load 
and decreasing shape factor. However, all attempts to measure 
accurately the shear strains or the size of the bulge were fruitless. 

The second mode of failure commonly observed during the 
compression tests was delamination or separation of the elas-
tomer from the reinforcement. This mode of failure was a crack-
ing or tearing of the elastomer in a plane very near the steel-
elastomer interface rather than a true bond failure. As a result, 
it is reasonable to expect that delamination is closely related to 
the shear strain in the elastomer, and therefore to the com-
pressive stress and shape factor of the bearing. Figure 12 shows 
the average compressive stress for which delamination was first 
observed. The data exhibit tremendous scatter. The data are 
somewhat obscured by the fact that some specimens were tested 
in rotation or had been previously tested to a larger compressive 
load, but it appears that the scatter in the data is greater than 
the shape factor effect. This may indicate that the shear strain 
is not a good indicator of delamination behavior, or it may 
suggest that other factors, such as quality control, dominate the 
phenomenon. 

The compression tests also illustrate the influence of quality 
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Figure 12. Average compressive stress vs. shape factor at which 
delamination was first observed. 
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control during the manufacture on the strength and stiffness of 
the bearing. Several specimens had extremely poor layer thick-
ness control. They were much more flexible than comparable 
bearings with uniform layer thickness, and they tended to fail 
(both in delamination and yield and rupture of the reinforce-
ment) at much lower stress levels. 

ROTATION 

Theories for predicting the behavior of bearings under rotation 
are extensions of the theories for bearings under compression 
(36). The equations for rotational stiffness are 

M=E,I-=f,EI- 	 (3) 

wheref, A, + B,S2 . 

There are several different theories for predicting the con-
stants A, and B,, and a range of A, values result. However, A, 
has minimal impact on the rotational stiffness of practical bridge 
bearings because the second term is much larger, and there is 
fairly general agreement on the values of B,. 

Two types of rotation experiments were performed. One was 
an eccentrically loaded test as depicted in Figure 2, and, in the 
other, rotations were applied at constant compressive load (Fig. 
3). Both experiments indicated that the moment-rotation curves 
are essentially linear (see Fig. 13), but the stiffness increases 
with increasing compressive stress. This increase in stiffness with 
compressive load is caused partly by the dimensional changes 
(reduced layer thickness and increased plain area) which result 
from the compression. At large rotations the moment-rotation 
curves soften and become nonlinear. This nonlinearity appar-
ently is caused by lift-off of the loading device from the edge 
of the bearing, and it causes severe deformation of the laminate 
and an increase of the strains in the elastomer. Lift-off should 
therefore be avoided because it introduces the possibility of 
damage or fatigue of the reinforcement and delamination or 
tearing of the elastomer. 

ROTATION OF ONE BEARING (DEGREES) 

SHEAR AND COMBINED LOADING 

Theories of shear behavior are generally based on the as-
sumption that the average shear stress and strain are linearly 
related. That is 

(4) 

The apparent shear modulus, G, depends on the material shear 
modulus, but for thick bearings it is also related to the magnitude 
of the compressive load through the stability effect. The theo-
retical aspects of this phenomenon are discussed in Appendix 
E. Experiments were performed with the test apparatus shown 
in Figure 4. The experiments generally support this linear the-
oretical model. The shear stress and strain invariably were nearly 
linearly related with a hysteresis as shown in Figure 14. The 
stiffness of the linear curve varied with compressive load, and 
generally decreased with the first few cycles of shear loading. 
The shear test appears to be the most repeatable and reliable 
measure for evaluating the material properties of the elastomer, 

Figure 13. Typical moment vs. rotation curve of an elastomeric 
bearing. 

but any such test must account for the stiffness changes asso-
ciated with multiple load cycles and compression load. 

Bearings typically displayed the simple shear deformation 
illustrated in Figure 1 5a. However, the corners of the bearing 
typically rolled over as illustrated in Figure 15b if the shear 
strain exceeded 50 percent. The roll-over effect became quite 
severe at large shear strains, and it may potentially damage the 
reinforcement or tear the elastomer. This indicates that shear 
deformation should be limited in bridge bearings to prevent 
damage. 

STABILITY 

Stability theory indicates that buckling of structural members 
depends on their bending and shear stiffness. Elastomeric bridge 
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bearings are relatively quite flexible in shear, and this stiffness 
is the dominant term in the buckling equation. Under these 
conditions the simplest theory (41) suggests that 

' 47,,,E1 	1 = 	
+ GA, 4))2 - Il 	

(5) 

where 4) = (h,, + /z,,)/(h,). 
This theory was examined in detail and extensions were con-

sidered which include geometric and material nonlinearity. 
These extensions changed the buckling load somewhat. They 
generally increased the buckling load for short bearings and had 
minimal impact on the buckling load of tall bearings. They also 
implied that sufficiently squat bearings cannot buckle at any 
stress. 

Experiments were performed on a wide range of bearing 
heights for two different bearing geometries. The range of bear-
ing heights tested was chosen for the purpose of verifying the 
theory, not just to simulate bearings in current use. Therefore, 
some bearings were considerably taller than would be expected 
in practice. The tall bearings buckled as shown in Figure 16, 
and the buckling loads were typically close to the theoretical 
prediction. Bearings of moderate height also buckled, but the 
buckling loads were larger than the theoretical predictions both 
for the basic and the extended theories. For very short bearings, 
incipient buckling could not be reached without damage to the 
bearing, and the Southwell plot technique was unable to provide 
a buckling load. This may simply indicate that the buckling 
load was greater than the test limits, but it may also lend support 
to the theoretical prediction, discussed in Appendix E, that very 
short bearings cannot buckle. In either case, the buckling load 
of very short bearings is well above practical service loads and 
is of no practical importance to bridge design. 

The buckling theory also provides an estimate of the apparent 
shear modulus, G, of a bearing when it is subjected to compres-
sion loading. The experimental shear stiffness was significantly 
smaller than the predicted value. This could be important for 
shear tests run for quality assurance purposes, in which some 
compression is also applied. 

Figure 15. Typical shear deformation of an elasto,neric bearing. 
(a) at strains less than 50 percent, and (b) at large strains with 
rollover. 

Figure 16 Buckling of a tall bearing. 
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Figure 17 Typical growth rate of the measure of relative crack size in the shear 
fatigue tests. 

FATIGUE 

Shear and compression fatigue tests were performed as de-
scribed in Appendix F. The shear tests were based on 20,000 
cycles of full shear cycles. Fatigue cracks developed in the elas-
tomer near the steel interface, and the cracks grew with time, 
as illustrated in Figure 17. Pilot tests at different loading rates 
showed that rapid loading caused the cracks to grow more 
quickly and to a larger size. Since the shear tests were conducted 
at an accelerated rate, this suggests that the test results represent 
a conservative basis for estimating fatigue life of a bearing in a 
bridge subjected to a daily temperature cycle. These observations 
may be unconservative for bridges subjected to cyclic shear 
deformation due to other phenomena, such as braking forces or 
vibrations, since many more, and more rapid, cycles may result. 
The cracks grew deeper and more rapidly when the cyclic shear 
strain was larger. Increased compressive strain also increased 
cracking. The material properties of the elastomer had consid-
erable impact on the fatigue cracking, but there was no evidence 
that greater elongation at break improved the fatigue behavior, 
as suggested by some design specifications. (3, 27 28). 

The compression fatigue tests were based on 2 million cycles 
of severe compression load cycles combined with a minimum 
stress level to simulate dead load. The crack growth for these 
fatigue tests was different, as shown in Figure 18. The crack 
growth did not stabilize in the compression tests as it frequently 
did in the shear tests. A large strain range greatly increased 
cracking. The mean strain affected the fatigue life, but it was a 
much weaker effect than the strain range. The material prop-
erties of the elastomer also had considerable impact on fatigue 
cracking, but there was again no evidence that increased elon-
gation of break increased the fatigue life. 

The bearings were usually tested without cover because this 
facilitated the observation of cracking. Edge cover may delay 
cracking somewhat, but it also tends to obscure crack devel- 

oprnent. Therefore, it is believed that the fatigue tests were 
conservative, but not overly so. However, it is very difficult to 
define an acceptable crack level. It is clear that some of the 
severely cracked specimens were well beyond acceptable ser-
viceability limits. It is equally clear that the most lightly dam-
aged specimens were well within acceptable limits, but the actual 
demarcation is difficult to define. Shear and compression stiff-
ness tests show that some of the severely damaged specimens 
experienced dramatic stiffness change. These stiffness results 
may be useful in defining an appropriate design limit. 

In assessing the results of these fatigue tests it is important 
to realize that the applied loading did not replicate actual bridge 
loading. Time constraints made that impossible. The loading 
was chosen to produce enough damage in the available time to 
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permit comparison between the effects of different parameters 
such as material properties and load amplitude. The most severe 
load histories were therefore more punishing than those to be 
expected in practice, especially in view of the unavoidable heat 
build-up which they caused. 

CHAPIER IHREE 

ANALYSIS OF RESULTS 

PROPOSED DESIGN SPECIFICATION 

The research results described in Chapters One and Two and 
Appendixes A through G were translated into a series of pro-
posed design recommendations. The recommendations are in-
cluded as a proposed design specification and commentary in 
Appendix H. This chapter provides a more detailed analysis of 
the research results and a rationale for some of the more critical 
design recommendations. 

SHEAR DEFORMATION AND LOW TEMPERATURE 
STIFFENING 

Expansion and contraction of bridge girders cause shear de-
formations in bridge bearings as shown in Figure 15a. The 
maximum shear deformation, A,, depends on A T, the difference 
between either the maximum or minimum temperature for the 
region and the installation temperature, whichever difference is 
larger. The shear strain is then 

alT 
(6) 

i,i 	,.l 

It should be kept below 0.5 because the corners of bearings tend 
to roll over if y exceeds this value. Many design specifications 
(8, 30) have gone to a 0.7 strain limitation, but this higher limit 
may sometimes result in damage to the reinforcement or tensile 
cracking of the elastomer. 

The shear deformation induces a shear force in the bearing, 
which at room temperature can be estimated by the equation 

H = GAy 	 (7) 

The apparent shear modulus, G, depends on the true material 
modulus, the bearing geometry, and the compressive load, and 
may be obtained from tests such as those described in Appen-
dixes D and E. It is fairly constant at loads well below the 
buckling load. Most field bearings would be compressed to a 
load significantly below the buckling load, and so the material 
shear modulus usually may be substituted for G. under many 
practical conditions. The bridge piers and other structural com-
ponents must be designed for this force, or slip must be per- 

mitted. Elastomeric compounds stiffen at low temperatures, and 
the shear modulus of the material may increase by one or more 
orders of magnitude under low temperature conditions. There-
fore, the bridge designer must either design the piers and struc-
tural components for forces much larger than H, or specify an 
elastomer that controls the stiffening effect, or provide a slip 
mechanism that limits these forces in the structure. 

The calculations provided in Appendix A are very approxi-
mate, but they provide reasonable bounds on stiffening based 
on the best available experimental data on low temperature 
crystallization and thermal stiffening. These calculations indi-
cate that bearings in most parts of the United States would be 
subject to low temperature crystallization, and bearing forces 
of three to four times the force computed using the room tem-
perature stiffness may occur when the bearing has an inappro-
priate grade of elastomer. As a result, it is recommended that 
the continent be divided into three major regions for purposes 
of low temperature design. Region I consists of areas such as 
the Gulf Coast, Pacific Coast, and Hawaii where low temper-
atures are not a problem. Possible guidelines for this region are 
extreme low temperatures higher than 0°F (- 18°C) and tem-
peratures not below 25°F (- 5°C) for more than 6 hours duration 
on 3 consecutive days. Region II would include most of the 
United States—those regions where the temperature does not 
fall below —30°F (-35°C). Region III would contain those 
areas where the extreme low temperature is below - 30°F 
(-35°C). 

The grade of elastomer needed in each region is related to 
the design force for the bearing. This is defined as the force that 
would be induced in the bearing when it is subjected to the 
maximum shearing deformation required by changes in bridge 
length, assuming that the shear modulus of the clastomer re-
mains at its room temperature value. In Regions I and II, 
elastomer of ASTM grades 1 and 2, respectively, will be per-
mitted provided that either a positive slip apparatus is installed 
or the structural components of the bridge can resist the forces 
arising from a bearing force of at least four times the design 
force. Otherwise, grades 2 and 3, respectively, will be used. In 
Region III grade 5 must be used under all circumstances and 
will always require separate tests to evaluate low temperature 
stiffening. It must be emphasized that the primary concerns here 
are damage to the structure or walking of the bearing from its 
required position. The latter may limit the forces, but the bearing 
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Breaking of the bearing is not believed to be a valid concern. 
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COMPRESSIVE STRESS LIMITS 

The experimental research has clearly shown that well-de-
signed and manufactured reinforced elastomeric bridge bearings 
may support compression loads that are much larger than those 
presently permitted by the AASHTO SpecjIcation. Larger al-
lowable compressive stresses will result in smaller bearings and 
will produce numerous benefits to the bridge engineer. First, 
smaller bearings will result in smaller design shear forces and 
may sometimes result in more slender and economical piers and 
support structures. Second, larger stress levels may permit the 
use of reinforced elastomeric bearings in many structures that 
would ordinarily require other more expensive bearing systems, 
such as pot bearings or mechanical bearings. Finally, smaller 
bearings require less material and may be more economical. 
However, it is essential that the bearings be manufactured with 
good quality control, and they must be designed to avoid several 
modes of failure including delamination, rupture or yield of the 
reinforcement, buckling or stability failure and fatigue. 

Yield and rupture of the reinforcement is important, because 
the large compressive load capacity of the bearing can only be 
developed if the bulging of the elastomer is restrained by the 
steel. The reinforcement applies restraining shear stresses on the 
elastomer, which introduce tensile stress in the reinforcement. 
In steel-reinforced bearings, these tensile stresses will first cause 
the steel to yield. As more load is added, the yielding spreads 
and some strain hardening occurs, and eventually the steel rup-
tures. Depending on the shape of the bearing, considerable 
inelastic stress redistribution may take place. Fiberglass rein-
forcement does not develop the desirable redistribution of stress, 
and it is generally much weaker than steel. Therefore, high 
compressive stresses cannot be permitted in these bearings. Sim-
ilarly, unreinforced pads lack the necessary bulging restraint, 
and so they too cannot support high stresses. 

Theoretical predictions of the maximum reinforcement stress 
have been made for strip and circular bearings. For steel-rein-
forced bearings, these theories have been confirmed by experi-
ments, and the equation 

h > 1.5(h,, + h) o-  = 1.5(h, + h,) ° 
	(8) 

2F,/SF 

gives a reasonably conservative value for the plate thickness, if 
the allowable steel stress is '/2  of F,,. 

Both theory and experiments have shown that holes in the 
reinforcement cause stress concentrations and rupture of the 
reinforcement at reduced loads. Holes are frequently placed in 
bearings for anchor pins, and some fabricators use holes to align 
the plates during manufacture and fill the holes after completion. 
In either case, the steel thickness must be at least double that 
required by Eq. 8. 

Delamination of the elastomer from the reinforcement is also 
a potential failure mode that could limit the compressive load. 
Normal theoretical considerations would suggest that delami-
nation is related to the maximum shear strain in the elastomer 
and, therefore, related to the applied compressive stress and the 
shape factor. An approximation for the maximum shear strain 
due to compression loading, y, is 
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Figure 19. Theoretical variation in the stress at delamination. 

= 65e. 	 (9) 

where 

EC 
= 3G(l + 2kS2) 	

(10) 

Delamination is clearly a tearing or cracking of the elastomer 
near the steel interface. If it is postulated that the cracking 
occurs when y  attains a given strain level, the maximum com-
pressive stress should be as shown in Figure 19. The delami-
nation was physically observed in the compression tests, and 
the stress at which delamination cracking was first observed is 
shown in Figure 12. It is obvious that there is great scatter in 
these data. It is probable that the data are related to shear strain, 
but other factors, such as quality of manufacture, must play a 
dominant role. In view of these factors it is believed that the 
wisest course of action is to place a fixed upper limit on the 
average compressive stress to control delamination. All speci-
mens except one delaminated under monotonic load at a stress 
greater than 2,500 psi, and the one specimen that delaminated 
at a lower stress had been tested earlier. An upper limit of 1,600 

psi on the service load appears to be appropriate for present 
practice, because it employs a factor of safety that is on the 
order of that commonly used for bridges. However, this limit 
may be increased somewhat in the future as the quality of 
manufacture improves or the mode of failure is better under-
stood. 

STABILITY 

The theoretical work of Gent (41) can be simplified to provide 

4IT 2EIf. 	1 
P = 	IV 1 + GA

s(khrt 4)2 	1 	
(11) 

for a rectangular bearing with boundary conditions on the top 
and bottom surfaces which are characterized by effective length 
factor k. The ratio 4 is  4 = (h + h,.)/(h,). This ratio is 
invariably greater than 1 but seldom greater than 1.2 in practical 
bridge bearings. The rotational stiffness term, f, is discussed in 
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Appendix C and is a function of bearing geometry. However, 
it can be approximated as 

fr = + 0.267S2 	 (12) 

for a long strip, and 

I;. = 1 + 0.742S2 	 (13) 

for a square bearing. The empirical equation 

I 	2L\S2  
 

approximates both of these expressions and is compared with 
the exact theoretical solution in Figure 20. With this empirical 
approximation 

GL ir 
 

\ W)4 

where L is less than W and h, is the total thickness of the 
elastomer in the bearing. The buckling stress predicted by this 
equation is shown in Figure 21. This figure illustrates the nor-
malized buckling capacity for a bearing subject to lateral move-
ment (sideways) but not end rotation (k = 1). The curves are 
normalized with respect to the shear modulus, G, but they 
contain no factor of safety. The shear modulus, G, is approxi-
mately 110 psi for 55 hardness elastomer. If a safety factor of 
1.7 is maintained against buckling, the buckling stress must be 
at least 2,720 psi in order to use the maximum working stress 
of 1,600 psi. This buckling stress can be developed for most 
practical bridge bearings. For example, for a 2 to 1 rectangle 
with a shape factor of 6 and an effective length factor of 0.5, 
it requires only that the h < L/l.8. Very tall bearings or square 
bearings of intermediate height may be controlled by stability 
design. 

Gent's theory compares well with experimental results for 
very tall, slender bearings and is very conservative for shorter 
bearings. Modified theories are available, but they do not offer 
sufficient improvements in correlation to warrant their extra 
complexity. Therefore, it is believed that this equation will result 
in safe and satisfactory stability designs. However, the conserv-
atism will not be excessive because stability will seldom control 
the design in squat bearings, where the equation is most con-
servative. 

The empirical Eq. 14 forfr  is compared with the series solution 
for it in Figure 20. Comparisons are made both for an incom-
pressible material and for a material with a bulk modulus 1,000 
times greater than the elastic modulus. These values bound the 
normal stiffness of bridge bearing elastomers. Comparisons are 
made for a square bearing, a 2 to 1 rectangle and a 4 to 1 
rectangle. The empirical model underestimates J for the rec-
tangular bearing. It overestimatesf, for the square bearings with 
the compressible material, but is quite close for the compressible 
value. The buckling stress is proportional to the square root of 
j. The error in f never appears to be greater than 20 percent, 
and so the maximum error in the buckling stress should be less 
than 10 percent. In view of this, it would appear that the factor 
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Figure 20. Comparison of the empirical rotational stiffness  to the 
exact solutions for square and rectangular bearings. 
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Figure 21. Theoretically predicted buckling stress for d(fferent 
elastomeric bearings (k = 1). 

of safety could be increased from 1.7 to 1.8 to account for any 
inconsistencies in the simplified equation. 

FATIGUE 

The fatigue tests showed significant fatigue cracking for many 
specimens, but they provided no clear guidelines for defining 
the tolerable upper limit for cracking. The tests further showed 
that the strain range and mean strain were important param-
eters, but the strain range appeared to be the more important. 
The material properties of the elastomer also appeared to influ-
ence the results, but there was no evidence to support the hy-
pothesis that greater elongation at break (or any other specific 
property) improved the fatigue performance. 

Fatigue damage in the experiments was associated with shear 
failure in the elastomer next to the steel laminates, whether the 
load on the bearing was compressive or shear. The European 
approach of limiting the total shear strain thus appears the most 
logical. Two separate limits are proposed 
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Test 
No. 

Compressive 
Strain 

Number 
of Cycles 

Mean 
Shear 
Strain 

Cyclic 
Strain 
Range 

Total 
Shear 
Strain 

Relative 
Damage 

1 .04 21000 1.27 1.20 1.87 182 
2 .11 20100 3.50 1.00 4.00 300 
3 .11 20000 3.50 1.00 4.00 697 
4 .12 20000 3.82 1.00 4.32 83 
5 .14 20000 4.45 1.00 4.95 \ 	356 

6 .12 20000 3.82 1.70 4.67 1081 
7 .11 20000 3.50 .30 3.65 0 
9 .11 20000 3.50 1.70 4.35 1186 
10 .13 20000 4.13 1.70 4.98 1350 
11 .12 20000 3.82 1.70 4.67 961 

12 .13 20000 4.13 1.70 4.98 1188 
13 .13 20000 4.13 1.70 4.98 919 

Table 2. Compression fatigue test shear strains. 

Test 
No. 

Strain 
Compressive Namber 

of 
Cycles 

D.L. 
Shear 
Strain 

L.L. 
Strain 
Range 

Total 
Shear 
Strain 

Rela- 
tive 
Damage Mean LL 

17 .066 .041 2121 1.37 1.23 2.60 12 
18 .053 .075 245 .47 2.25 2.72 690 
19 .075 .056 254 1.41 1.68 3.09 539 
20 .045 .063 338 .41 1.89 2.30 495 
21 .075 .046 2003 1.56 1.38 2.94 308 

22 .092 .091 2053 .84 1.64 2.48 545 
23 .078 .053 662 1.54 1.59 3.14 273 
24 .071 .057 1205 1.28 1.71 2.99 520 
25 .084 .050 554 1.77 1.50 3.27 224 
26 .058 .047 499 1.32 1.80 3.13 438 

27 .086 .051 484 1.81 1.53 3.35 131 
26 .084 .052 490 1.74 1.56 3.30 130 
29 .071 .051 663 1.37 1.53 2.90 98 

G 200 psi / 	/G 150 psi, 
/ 	 - 

G 100 psi 

LIVE LORD < 1.6 * DEAD LORD 

12 

SHAPE FACTOR 

Figure 22 Approximate allowable stress permitted by the fatigue 
provisions for different hardness and shape factor. 
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70 + )c + 7, :!~' Cl 
	 (16) 	Table 1. Shear fatigue test shear strains. 

for dead and live loads combined, and 

++:5C2 	 (17) 

for liveloads alone. The two limits are needed because the live 
load strain varies cyclically over a range, and is clearly more 
important than the constant dead load strain. The constant 
limits, independent of the elastomer properties, are proposed 
because there is no rational justification for using a more so-
phisticated limit. 

The experimental results must be used to define these limits. 
Tables 1 and 2 define the maximum shear strains for the shear 
fatigue and compression fatigue tests. In the shear fatigue tests 
(Table 1) the mean shear strain is the shear strain caused by 
compression, calculated from Eq. 9, and the cyclic strain range 
quoted is from maximum positive to maximum negative shear 
displacement. Thus, the absolute maximum shear strain is the 
mean plus half the range. Because in all cases half the range 
was less than the mean, the shear strain throughout the bearing 
never changed sign. Examination of these strains indicates that 
relatively little damage occurred in specimens with both a total 
shear strain less than 3 and a live load shear strain less than 
1.5. This suggests that upper limits of C1 and C2 should be 3.0 
and 1.5 respectively. The shear strain due to imposed shear 
deformations is limited to 0.5 for other reasons. It is conserv-
ative, therefore, to take 

y,+ y, < 2.5 	 (18) 

for total load, and 

7. + y, < 1.0 	 (19) 

for live load only. These limits may be raised by 0.5 in bearings 
fixed against translation. The compressive shear strain may be 
estimated by 

6Se. 	 (20) 

where 

o.c 

3G(l+2kS) 	
(21) 

and k is a constant depending on elastomer hardness. It has 
been suggested that k varies between 0.75 and 0.55 for 50 to 
65 hardness elastomers. Practical bridge bearings have large 
shape factors, so the term (1 + 2kS2 ) may be approximated by 
2kS2 , giving 

o.c (22) 
GkS 

Using an average value of k (k = 0.65) and the limits on 
combined shear strains derived above, the maximum compres-
sive stress on a bearing with maximum shear and no rotation 
is 

o- 	1.625 GS 	 (23) 

for combined dead and live load, and 

0.65 GS 
	

(24) 

for live load only. The limits in Eqs. 23 and 24 are rounded to 
5/3 and 2/3, and, for bearings fixed against translation, they are 
raised to 2.0 and 1.0. Approximate allowable stresses for elas-
tomers with different shear moduli are shown in Figure 22. 
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No increase in the loads to allow for impact is required. This 
is because the demarcation between acceptable and unacceptable 
fatigue damage is arbitrary, because the live load generally rep-
resents only a small proportion of the total load, and because 
the impact fraction defined in the AASHTO Specflcations  bears 
little relation to the true impact load on a bearing. 

Many bearings are subjected to rotation in conjunction with 
an applied compression and shear strain. Rotation increases the 
shear strain in the bearing. In many cases, the rotation is due 
to initial camber or imperfections during construction, and so 
it contributes only to the total strain, and not to the cyclic strain 
rangc. 

The conditions that 

yc +y,< C1 	 (25) 

and 

A, = 
o-,h,1 	

(26) 
6 GkS2  

M. 

E/K.002 

SF12 

INCOMPRESSIBLE 

I 	I 	I 	I 	I 	I 	I 	I 

0 	 1.0 	 2.0 

lead to 

(6kC1 /C,)GS 
a-, 

	

	 (27) 
C, OL l+--- 

BEARING ASPECT RATIO (L / W) 

Figure 23. Shear strain due to rotation (y,) divided by the max-
imum shear strain due to compression (y,)for rectangular bear-
ings with different shape factors (theoretical values). 

where C, and C, are coefficients relating maximum shear strain 
to imposed compression and rotation. The ratio C,/C, is plotted 
against bearing aspect ratio W/L in Figure 23. Two curves are 
shown for different assumptions about the material properties, 
and they bracket the range for practical bridge bearing elasto-
mers. Taking C,/C, as a constant value of 0.5 for all circum-
stances can be seen to be a reasonable approximation. Using 
the same values for C1 , C, and k as before 

1.66 GS 

	

OL 	
(28) 

1 + 	- 

for total load and 

0.66 GS 
< 	OL 	

(29) 

l+ 

for live load alone. 0 and A, in Eq. 29 are the rotation and 
vertical deflection caused by live load alone. It is shown in the 
next section that 0 should be restricted to 2A,/L, so when the 
rotation takes on its larger permissible value, the effect is to 
reduce the allowable compressive stress by a factor of 1.5 over 
the value for no rotation. 

ROTATION 

The maximum rotation permitted on elastomeric bridge bear-
ings may be based on one of several limits. Some specifications 
base it on the prevention of lift-off and others employ maximum 
rotations that may be three times as large as the lift-off value. 
This higher rotation limit is based on the prevention of strain 
reversal at the lightly loaded edge. The experimental results 
suggested that lift-off may severely damage the bearing, and so 
rotation is limited to 0,,,,, < (2A,/L) where L is the plan 
dimension perpendicular to the axis of rotation. This limit is 
only applicable to total loads. The rotation caused by live load 
alone need not be limited. 

Both initial lack of parallelism and the dead and live load 
rotations contribute to the total rotation. The magnitude of each 
component depends on the continuity and method of construc-
tion in the bridge. Continuous bridges will have relatively small 
live load rotations. There is no initial lack of parallelism in a 
poured-in-place concrete bridge, and that in prefabricated 
bridges (steel or precast concrete) will depend on the girder 
tolerances and the accuracy with which the bearings are set on 
the piers. 
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CONCLUSIONS 

This report has described the research results from Phase II 
of the NCHRP Project 10-20 research program. During the 
research the behavior of bearings under different types of loading 
was considered, and the important modes of failure were in-
vestigated theoretically and experimentally. These modes of fail-
ure include delamination, yield or rupture of the reinforcement, 
fatigue cracking of the elastomer, excess deformation and buck-
ling of the bearing. Theories were investigated and compared 
to experimental results, and where possible improvements were 
made. This information was then combined into a draft spec-
ification which is provided in Appendix H. 

This draft specification will permit bearings that are more 
slender and more highly stressed than those in use today. The 
combined effect of these two factors is a potential reduction in 
the shear force transmitted by the bearing. However, the use of 
these provisions requires more design effort and tighter quality 
control in the manufacture of the bearing. 

While this study has improved the understanding of the be-
havior of elastomeric bridge bearings, there is still considerable 
room for improvement. A better understanding of these existing 
deficiencies may further enhance elastomeric bearing design. 

RESEARCH NEEDS 

The major topics which are not fully resolved include the 
following: 

Low Temperature Behavior. The Phase II research included 
an analytical study of thermal stiffening of bridge bearings. This 
study provided mathematical bounds on the low temperature 
problem, but experimental research is needed to translate these 
theoretical limits into practical design rules. In particular, the 
existing low temperature elastomer grades are defined by the 
hardness change caused by a given temperature condition. Hard-
ness is a very poor indicator of elastomer stiffness, and research 
is needed to develop a low temperature grading system that is 
based on the stiffness of the elastomer after a given time and 
temperature. In addition, the low temperature test must be 
correlated to local climatic conditions. Research is needed to 
develop certification tests which can be correlated to the local 
climate where the bearing will be used. 

Fatigue. A number of fatigue tests were performed during 
the Phase II research. These tests helped to develop a better 
understanding of fatigue in practical bridge bearings, and they 
also served as a basis for the design guidelines which were 
proposed for the AASHTO Specification. However, the under-
standing of fatigue is by no means complete. The fatigue tests 
showed that material properties definitely affect fatigue cracking  

and fatigue life, but no one parameter which controls this be-
havior could be found. Further, the fatigue tests were based on 
an arbitrary constant amplitude test procedure. Research is 
needed to translate these effects into realistic variable load his-
tories. Fatigue studies on steel structures have shown that this 
true load behavior may result in very different fatigue life ex-
pectancy. A better understanding of these phenomena may result 
in increased refinements in elastomeric bearing design. 

Field Studies. Research into the actual field performance 
of elastomeric bearings is needed. Phase I of the NCHRP Project 
10-20 research program made design recommendations that 
were adopted by AASHTO, which increased the allowable 
stresses by 25 to 37 percent on some reinforced bearings. This 
report recommends allowable stresses that are as much as 100 
percent larger than those permitted prior to the start of this 
project. This is a significant increase, and field observations are 
needed to determine the actual consequences of the changes. 
Bridge engineers are frequently enthusiastic about elastomeric 
bearings. They believe that they never fail. However, discussion 
also suggests that they seldom, if ever, examine the bearings. 
Poor elastomeric bearing performance is unlikely to result in 
the collapse of abridge, but it may result in a dramatic reduction 
in its service life. Examination of bearings is needed to assure 
that they are performing well at the increased stress levels. Field 
measurements of actual bridge movements and stress and strain 
levels in rotation, translation and compression would provide 
valuable information for the future improvements in the design 
of bearings. 

Combination ofLarge Strains. The design recommendations 
employ the concept of superposition of stress and strain. Elas-
tomeric bearings sustain very large strains. Local shear strains 
of several hundred percent may occur at service load conditions. 
These strains are several orders of magnitude larger than the 
strains encountered in steel and concrete, and infinitesimal strain 
theory clearly does not apply. The effect of combined loading 
was studied both in the fatigue tests and monotonic loading, 
but very large gaps in the understanding of this behavior still 
exist. 

Friction and Slip. The friction developed between the bear-
ing and its contact surface is not well defined. Slipping of the 
bearing from its required position is an important mode of failure 
which must be controlled. Research is needed to understand 
this frictional behavior better. 

Material Properties. The material property tests presently 
in the AASHTO Speccations are misleading. They appear to 
set out precisely the necessary and sufficient conditions for 
assuring good bearing performance, .but this is not the case. In 
fact they have evolved because bearings that satisfy them have 
generally worked well at present loading levels, although the 
reasons for such satisfactory performance are not clear. Tests 
which are related more directly to performance requirements 
and which are independent of material type would be desirable, 
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and could lead to better performance and more economical 
bearings. 

Elastomers are at present specified almost exclusively by their 
nominal hardness, and the selection of ingredients is left to the 
fabricator. This leads to significant differences in real properties 
when two manufacturers produce bearings that are meant to be 
the same. A better understanding of the relationship between 
the physical properties of the finished elastomer and the methods 
and materials used in its manufacture would help to reduce 
these differences. It is also necessary if more appropriate tests 
are to be developed. 

Improvements in fiber-reinforced bearings require both 
stronger fiber reinforcement and better bond to the elastomer. 
The ability to make large sheets of material from which indi-
vidual bearings can subsequently be cut is appealing from a 
commercial point of view, and measures to increase the strength 
of fiber-reinforced bearings could provide the impetus for sig-
nificant developments. 

Manufacturing Tolerances. Quality control during manu-
facture has a significant influence on bearing behavior. The most 
obvious areas with potential for improvement are the control 
of elastomer layer thickness and edge cover. The former affects 
both static and fatigue strength, and the latter influences tem-
perature changes and so makes a difference to low temperature 
behavior. 

Secondary Factors. Many other factors relating to elasto-
meric bearing behavior require study. PTFE slide surfaces are 
frequently used with elastomeric bearings, but their behavior is 
not well understood or precisely defined. 

Theoretical Models. Finally, this research has again illus-
trated the serious limitations in the existing theoretical models. 
Improvements in this area could result in significant improve-
ments in the design and behavior of bridge bearings. Perhaps 
the most pressing need in this category is a means of establishing 
reliably the stresses in the elastomer at the edge of the reinforcing 
plates, and the ability of the elastomer to withstand them. 

APPENDIX A 

EVALUATION OF LOW TEMPERATURE BEHAVIOR 

INTRODUCTION 

It is well known that elastomeric bearings stiffen at low tem-
peratures. Structural bearings are designed to support the struc-
ture while accommodating bridge movements from causes such 
as thermal expansion. Excessive stiffening of the elastomer may 
prevent fulfillment of this function. However, the low temper-
ature behavior of elastomers is not fully understood, even from 
a laboratory standpoint, and furthermore, precise data on actual 
low temperature field conditions are often not available. As a 
result, a study of low temperature behavior was performed. The 
objectives were to determine if and when low temperatures might 
cause structural problems and to develop practical guidelines 
for minimizing those problems. It neither included experimental 
research nor considered the use of new elastomers or elastomeric 
compounds. It utilized the best available data for evaluating 
compounds that are typical of those encountered in present-day 
use. 

This appendix describes the results of the study. The existing 
knowledge of the low temperature material properties of elas-
tomers is reviewed in detail. Simple mathematical models are 
generated to characterize their behavior, and responses to the 
models are compared to existing experimental data. Typical 
extreme low temperature records are obtained for various parts 
of the United States, and these are used to estimate how tem-
perature varies with time in the bridge and bearing. Bearing 
response calculations are then performed for different elastomer 
types, bridge types, and temperature records. These calculations 
are evaluated and conclusions and design recommendations are 
developed. 

Before describing this research, it is essential to note that the 
work described in this chapter is approximate. The authors 
believe that the results indicate trends that can be readily used 
in design, but individual calculations are necessarily imprecise. 
There are two main reasons for this imprecision. First, the 
calculations are complex and require several implicit and explicit 
assumptions, which are discussed in detail in this appendix. 
Second, the analyses make use of material properties that vary 
widely with elastomeric compound and are substantiated by 
only limited experimental data. However, the assumptions made 
and properties used were selected to be consistent with the best 
available information. 

MATERIAL PROPERTIES 

Only limited research (5, 6) has been conducted on the low 
temperature behavior of elastomeric compounds typically used 
in bearings. Murray and Detenber (5) performed an experi-
mental study of low temperature properties with emphasis on 
polychloroprene. They showed that two types of low tempera-
ture stiffening occur, referred to as crystallization (or first order 
transition) and thermal stiffening. In addition a third phenom-
enon occurs, called glass transition, when the material becomes 
brittle and small specimens may shatter under impact. 

Crystallization is time-dependent. The material becomes 
harder and stiffer with time because of a temperature-dependent 
reorientation of the molecular structure. The rate of crystalli-
zation was measured by the time in hours at constant temper- 
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Figure A-2. Experimental data for thermal stiffening of neoprene. 
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Figure A-i. Experimental data for crystallization of 
neoprene. 

ature to half crystallization, which was defined by a 10 
durometer point increase in Shore A hardness. It was found to 
depend on temperature and elastomeric compound. For Neo-
prene compounds, the time to half crystallization varied ap-
proximately parabolically with temperature, and its minimum 
occurred at about - 12°C (+ 10°F) as shown in Figure A-i. 

Three neoprene compounds were studied based on neoprene 
base polymers types GN, W, and WRT, and the compound 
based on type W was found to crystallize much more rapidly 
than the other two. All three base polymers are polychloro-
prenes, but they have slightly different molecular structures 
which give rise to different physical properties in the finished 
compound. In general, neoprene compounds based on type W 
have the least resistance to crystallization and are used in mod-
erate environments because they are the most economical choice. 
Type WRT has the highest resistance to stiffening at low tem-
peratures but is more expensive and, therefore, is used primarily 
in cold regions. Type GN has low temperature properties that 
lie between those of types W and WRT. However, precise iso-
lation of the effects of the base polymer is difficult because the 
physical properties are also influenced by the other constituents 
of the compound and by the curing procedure, and these vary 
from one compound to another. One such constituent is plas-
ticizer, which is required to facilitate manufacture and to control 
the hardness. Increasing the plasticizer content was found to 
shorten the crystallization time. Crystallization is completely 
reversible, and neoprene vulcanizates were found to decrystallize 
quite quickly when held at a temperature more than 15°C (27°F) 
above the crystallization temperature. 

The second order transition is not a phase change in the 
molecular structure of the elastomer, and is not time-dependent, 
but consists of instantaneous stiffening and brittleness. Murray 
and Detenber defined as the thermal stiffening temperature the 
temperature at which the material modulus reached 10,000 psi. 
This represents a stiffness which is 25-40 times the room tem-
perature value. For natural rubber, Type W neoprene, and Type 

WRT neoprene they found thermal stiffening temperatures of 
—52°C, —38°C, and —39°C (-62°F, —36°F, —38°F) respec-
tively. While Type WRT neoprene displayed the slowest crys-
tallization rate of all the polychloroprenes, its thermal stiffening 
temperature was slightly higher than that of Type W. Its thermal 
stiffening characteristics are shown in Figure A-2. 

All elastomers except butyl reached a glass transition at a 
temperature approximately 5°C (9°F) below the thermal stiff-
ening temperature. •At this temperature, a thin specimen will 
shatter on bending or sudden impact. This fracture depends on 
the rate of loading and specimen size and is not likely to be a 
serious problem with practical bridge bearings. Butyl has been 
proposed as a polymer that is suitable for bridge bearings sub-
jected to low temperatures. Murray and Detenber's work sug-
gests that thermal stiffening in butyl occurs at higher 
temperature than in polychloroprenes and a lower temperature 
than in natural rubber; however, the glass transition temperature 
of butyl is higher than its thermal stiffening temperature. This 
is an undesirable situation and raises concerns about the use of 
this material. However, other data (7) may dispute this conten-
tion. 

Another comprehensive set of experimental data was reported 
by Stevenson (6). Seven compounds of natural rubber and two 
of polychloroprene were extensively tested for low temperature 
behavior as well as undergoing normal certification tests. The 
carbon black and sulfur contents of the individual compounds 
were recorded, and the normal certification tests for tensile 
strength, elongation at break, and aging resistance were pre-
formed. Hardness, compression set, and elastic modulus tests 
were then conducted at low temperature. These tests were per-
formed in accordance with common standards (8), but more 
detailed tests were also performed. Elastomer stiffness, hardness 
and compression set were reported for - 10°C and - 25°C (14°F 
and - 13°F) for exposure times varying from 1 min to 5,000 
hours. Figure A-3 shows a typical plot of stiffness and hardness 
at constant temperature as a function of time for a typical 
specimen normalized by dividing by the values at 70°F. The 
curves for all the specimens exhibited similar characteristics. 
That is, they had similar shapes and the hardness, modulus, 
and compression set appeared to have consistent relationships 
with one another. 
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Figure A-3. Typical time-dependent low-temperature behavior of elastomer. 

Stevenson's report does not distinguish between crystalliza-
tion and thermal stiffening, but correlation with these separate 
phenomena can easily be made, because the time is plotted on 
a logarithmic scale. Figure A-2 shows that thermal stiffening 
increases rapidly as the second order transition temperature is 
approached, and it is known that this is an instantaneous effect. 
In all of Stevenson's data the stiffness increased rapidly within 
the first minute and then remained constant for approximately 
one hour. The initial stiffness increase was not time-dependent 
inasmuch as it occurred instantly after the specimen achieved 
thermal equilibrium, and therefore it may be accounted for by 
the thermal stiffening noted by Murray and Detenber. After 
one or more hours, the stiffness started to increase with time, 
which is attributable to crystallization. The hardness also in-
creased with time and temperature as shown in Figure A-3. In 
all cases, specimens which had a large increase in hardness (more 
than 10 or 20 IRHD hardness points) also had a large increase 
in stiffness, but the hardness increase was usually delayed until 
the stiffness had increased substantially. The stiffness had usu-
ally increased by 800 percent to 1,000 percent when a 10 point 
hardness increase was noted. 

The slopes of the curves in Figure A-3 determine the rate of 
crystallization, and specimens which had a larger crystallization 
rate also stiffened much more. A few specimens stiffened by 
only very small amounts, and their hardness increased by less 
than 10 IRHD points even after 5,000 hours exposure. Some 
natural rubber specimens exhibited considerable low tempera-
ture crystallization and thermal stiffening, but the best natural 
rubber compound had considerably better low temperature char-
acteristics than the two polychloroprene compounds. This sug-
gests that natural rubber is better for low temperature 
applications than polychloroprene. However, it must be em-
phasized that low temperature behavior is highly dependent on  

many aspects of the elastomeric compound, and it is much better 
to use a well-formulated polychloroprene compound than a poor 
natural rubber one. This is particularly true in the light of the 
trade-off that appears to exist between obtaining good low tem-
perature characteristics and maintaining acceptable values for 
other physical properties. Compounds that were relatively re-
sistant to low temperature crystallization and thermal stiffening 
often had difficulty meeting other requirements such as tensile 
strength, elongation at break, or ageing resistance. This is an 
important observation, inasmuch as it clearly indicates that elas-
tomers designed for low temperature operation in tires, gaskets, 
or seals will not necessarily work in bridge bearings because 
they are unlikely to satisfy normal acceptance criteria. 

Figure A-3 shows that the observations of Murray and De-
tenber (5) and the data reported by Stevenson (6) are consistent, 
but the time to half crystallization chosen by Murray and De-
tenber is not the ideal definition for evaluating structural be-
havior, because structural engineers are more concerned with 
bearing stiffness than elastomer hardness. Further evidence of 
the correlation between the two sets of data is shown in the 
next section. 

NUMERICAL APPROXIMATION OF 
EXPERIMENTALLY OBSERVED LOW 
TEMPERATURE BEHAVIOR 

The results of the experiments on low temperature behavior 
must be expressed in numerical form before they can be readily 
used as a predictive tool. A mathematical model for thermal 
stiffening was derived by fitting a curve to the experimental 
data developed by Murray and Detenber, and it can be expressed 
as 
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E(7) = E0  + 	
E0 

 (A-i) 
(T—T,—l)2  

where E0  is elastic modulus at room temperature, T is temper-
ature, and T is the temperature at which the modulus reaches 
10,000 psi. This curve is empirical and it was selected as the 
best, most rational fit of the family of exponential and hyperbolic 
forms examined. It can also be used for other elastomers such 
as natural rubber with published (5) data for 1, and Figure 
A-4 shows the comparison of these empirical curves for neoprene 
WRT and natural rubber with test data provided by Stevenson 
(6). The comparison is adequate for both materials. Figure A-
5 shows a comparison of Eq. A- 1 with the experimental data 
of Murray and Detenber (5). 

The time-dependent low temperature data (6) can be ap- 
proximated by the family of curves represented by Figure A-6. 
The figure shows that this simple model is consistent with the 
experimental observations illustrated in Figure A-3. It has an 
instantaneous thermal stiffness component that occurs imme-
diately after attaining thermal equilibrium. Crystallization is 
time-dependent and can be approximated by 

E(T)  
EO 	+ (T— 1',— 1)2 	

if t < 1 	(A-2) 

or 

1 +' 
E0 	(T—T,-1)2  

+ R2(7) log t 	if t > 1 (A-3) 

where t is the exposure time in hours and R2(7) is the slope of 
the semilog curve and is a measure of the rate of crystallization. 
The function R2(1) must be larger for rapidly crystallizing 
elastomers. A mathematical expression for R1(fl, the rate of 
crystallization, was first derived from existing experimental data 
such as that shown in Figure A-i, and then R2(7), the rate of 
stiffness increase due to crystallization, was derived from it. 
Previous research (5) has shown clearly that low temperature 
crystallization is most rapid at certain optimum temperatures 
(approximately +10°F or - 12°C for neoprene) and the rate 
varies approximately as a parabola—for--othertemperatures. 
Therefore, the rate of crystallization can be approximated with 
an empirical equation for R1(fl 

R1(T) 
= (T—TA)2 	

+ H, 	(A-4) 
15 

where TA  and H, are the optimum crystallization temperature 
and the hours needed to increase durometer hardness by 10 
durometer points at this optimum rate for the given compound, 
as shown in Figure A-7. Tis the temperature in degrees Celsius. 
The predictions of Eq. A-4 are compared with experimental 
data in Figure A-8. 

It is generally accepted that the elastic modulus is directly 
related to hardness, but the relationship is not precise. Gent (9) 
proposed a model which would suggest that a 10 durometer 
point hardness increase would produce a 60 percent increase in 
stiffness for the hardness range commonly encountered in bear-
ings, and as the hardness increases his data suggest that a 220 
percent increase is plausible. Low temperture tests by Stevenson 
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10 

indicate that stiffness increases in the order of 600 percent to 
1,000 percent may occur if the elastomer hardens by 10 durom-
eter points. With this knowledge R2(7) can be approximated as 



28 

0 

CO 
E-' 
P11 
	

0 

z 
C 

F 
rn 

0.01 	0.1 	1 	10 	100 	1000 

TIME (Hours) 

Figure A-6. Mathematical model for time- and temperature- o He 
dependent stiffening. 

Ta 

TEMPERATURE (° C) 

R2(T) = 
	 C6 	

(A-5) 	Figure A-Z Definition of parameters used in crystallization 
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The constant C6  cannot be precisely defined, but Gent and 	Eq. A-S were selected for them. Three were polychloroprenes 

	

Stevenson's data lead to approximate bounds of 0.6 and 7.5. 	(c-i through C-3) and three were natural rubber (N-i through 

	

Elastomers which do not crystallize easily will have large values 	N-3). They were all based on realistic values selected from the 

	

of H and small values of C6. For purposes of illustration, six 	experimental data in Refs. 5 and 6, with the index 1 signifying 

	

hypothetical compounds were chosen, and constants for use in 	the slowest and 3, the fastest, crystallization. In Figure A-9 they 
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are compared with Stevenson's test data (6). The three crystal-
lization stiffening models provide reasonable bounds for the 
experimental data. However, the data near the lower curve were 
taken from compounds that hardened less than 10 IRHD de-
grees at 5,000 hours. This again suggests that hardness is not 
a sensitive model for crystallization stiffening, because a 5,000-
hour test is likely to be extreme for most practical applications. 

TEMPERATURE OF THE ELASTOMER 

In the previous discussion, formulas were defined to model 
approximately the experimentally observed low temperature be-
havior of elastomers. From them, stiffness can be obtained as 
a function of time and temperature. However, the temperature 
of the bearing must be known, and, although it is clearly related 
to the ambient air temperature, the two may be quite different 
because elastomers are such poor conductors of heat. 

Heat flow in a 3-dimensional solid is a complex phenomenon 
(10, 11), and for linear isotropic behavior it is typically modeled 
by a form of the Laplace equation 

a2T a2T a2T 1 3T 
(A-6) 

where D,h  is the diffusivity, which is defined by 

k,,, 
= 	 (A-7) 

Cm P 

where km is the thermal conductivity, p is the mass density, and 
Cth is the specific heat. These values are frequently published 
for materials such as steel and concrete, for which diffusivity 
values of about 0.0186 and 0.000651 in.2 /sec (12.0 and 0.42 
mm2 /sec) are commonly used. However, the properties for elas-
tomers are less well known. It has been suggested that the 
conductivity, k,h, of rubber increases with increasing filler con-
tent, and the specific heat is believed to vary somewhat with 
temperature. Further, vulcanization also appears to modify these 
thermal properties. In view of the many uncertainties involved 
with the elastomeric compound, a diffusivity of 0.000124 to 
0.000264 in.2 /sec (0.08 to 0.17 mm2 /sec) would appear to be 
appropriate over the range of interest (12, 13). Neoprene and 
the harder natural rubbers may lie in the lower portion of this 
range, and softer natural rubbers may reach the higher portion 
of this range. This suggests that polychloroprene is a slightly 
poorer conductor of heat than natural rubber and thus will cool 
somewhat more slowly when exposed to low temperatures. 

The solution to the differential equation is quite difficult for 
most practical boundary conditions, and it is seriously compli-
cated by the composite nature of elastomeric bearings. Equation 
A-6 must be satisfied separately for the elastomer and steel 
laminates, and the temperature and heat flow boundary, con-
ditions must be satisfied at the interface. This makes the exact 
solution of the thermal problem impractical for elastomeric 
bearings, but a very close approximation can be developed by 
taking into account the geometry of a typical bearing. Bearing 
height is usually limited by stability requirements to less than 

/3 the minimum base dimension, and so the top and bottom 
surface area is usually considerably larger than the area on the 
edge. Heat transfer between a solid and the environment is 
dependent on the surface area, and the through-thickness heat  

flow may be expected to dominate the solution. If through-
thickness heat flow alone is considered, Eq. A-6 simplifies to 

2T_ 1 8T 
(A-8) 

and the diffusivity can be simplified by selecting a composite 
value that is dominated by the diffusivity of the elastomer since 
the diffusivities are acting in series. Standard solutions (11) to 
heat flow problems may be adapted for this particular case, and 
Figures A- 10 and A-il show time-temperature profiles for two 
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Figure A-JO. Temperature profiles at different  times for a 1.5 in. 
elastomeric bearing exposed to a constant temperature on its top 
and bottom surfaces (through-thickness heat flow only; internal 
temperature starts at 00).  
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Figure A-Il. Through-thickness temperature profiles at different 
times for a 3-in. elastomeric bearing exposed to a constant tem-
perature on its top and bottom surfaces (through-thickness heat 
flow only; internal temperature starts at 0°). 
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bearings that are exposed to a constant exterior temperature T0  
on their top and bottom surfaces. The bearings had '4-in, cover, 
'2-in. elastomer layers and '4-in,  steel plates. One had two elas-
tomer layers and the other, five. The diffusivity of the elastomer 
was taken as 0.000264 in.2 /sec, so the times shown should be 
increased by 110 percent if the lowest value of diffusivity is 
used. The origin of coordinates is at the center of the bearing, 
and z is measured through the thickness. 

This analysis is based on the assumption that the transverse 
heat flow is negligible compared to the through-thickness flow. 
The validity of this assumption can be checked by analyzing 
the transverse flow in a circular bearing. A circular bearing is 
radially symmetric, and so a one-dimensional solution (11) and 
a composite diffusivity can be used. The composite diffusivity 
for flow through the layers is dominated by the insulating qual-
ities of the elastomer; however, the heat flow parallel to layers 
is more strongly influenced by the steel. Figures A-12 and 
A- 13 show the radial temperature distribution for the bearing 
of Figure A-10 when the shape factor is 5 and 10 respectively. 
These figures are based on constant steel and elastomer layer 
thicknesses, and so the larger shape factor implies a larger radius. 
The internal temperature is assumed to start at 0° relative to 
the T0° at the outside. Radial flow is strongly influenced by edge 
cover, and Figure A- 14 shows the temperature distribution when 
the edge cover is decreased from 0.25 in. to 0.125 in. Exami-
nation of Figures A-10 to A-14 reveals several facts. First, 
through-thickness flow controls the bearing temperature in 
nearly all practical cases. Radial flow becomes more important 
only when the bearing is very thick, the shape factor and radius 
are very small, or the edge cover is thin or defective. 

For bearings of common dimensions (i.e., 2 in. thick or less) 
the time required to essentially reach thermal equilibrium is 
typically less than one hour. This is short enough for the bearing 
to reach a low temperature close to that of the air. However, 
it may increase to 8 or 12 hours for very large thick bearings 
(i.e., those bearings with more than 6 in. elastomer thickness). 
The time to reach thermal equilibrium may double from the 
above with hard natural rubber or neoprene. This delay may 
provide a beneficial effect in that bearings that are subjected to 
rapid changes in air temperature may not have time to stiffen. 
However, it may also have a negative effect in that the bearing 
will remain stiff during a sudden warming period. Thus, both 
the local, time-dependent air temperatures and the bearing's 
thermal properties must be accounted for when estimating the 
extent of thermal stiffening and crystallization. 

LOW TEMPERATURE RECORDS 

A wide range of climatic conditions exists within the United 
States. Daily high and low temperatures are tabulated at many 
locations within each state. These daily data are recorded in 
standard publications (67, 68) and extremes are summarized 
on a periodic basis. These data were examined to estimate the 
range of low temperatures to be expected. Five historic lows 
(prior to 1974) were chosen to reflect extreme low conditions 
for different parts of the United States. These are: 

I. - 16°F, Lubbock W.B. Airport, Texas, January 13, 1963. 
-21°F, Colorado Springs, Colorado, January 13, 1963. 
-28°F, Albany, New York, January 19, 1971. 
-38°F, Duluth W.B. Airport, Minnesota, January 14, 

1965. 

1.0 
Shape Fact 

2 Hours 

1 Hour 

Edge Cover 

34 	n. 

0.2 	0.4 	0.6 	0.8 	1.0 

r, RADIUS 

Figure A-12. Radial temperature profile for the circular bearing 
of Figure A-10 and a shape factor of 5, exposed to a constant 
temperature around its free edge (radial heat flow only; internal 
temperature starts at 0°). 
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Figure A-13. Radial temperature profile for the bearing of Figure 
A-10 and a shape factor of 10, exposed to a constant temperature 
around its free edge (radial heat flow only). 

5. - 56°F, Fairbanks W.B. Airport, Alaska, December 14, 
1964. 

These low temperatures were historic lows (as of 1974) for 
the specified locations, and so the low temperature values have 
a very small probability of being achieved in a given year. A 
statistical analysis of the data was not performed, but an intuitive 
examination of the data sUggests that these lows have recurrence 
intervals in the range of 10 to 50 years. 

The performance of elastomeric bearings depends not only 
on the low temperature, but also on the duration of the exposure 
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Figure A-14. Radial temperature profile for the bearing of Figure 
A-13 but with 0.125-in, edge cover. 
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Figure A-16. Time-temperature record for January 1963 in Col-
orado Springs, Colorado. 
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to it. Therefore, daily high and low temperatures' were noted 

	

for the month in question, and intermediate temperatures were 	a 40 
postulated with a sinusoidal variation. This resulted in the five 
time-temperature records shown in Figures A- 15 through 
A-19. Examination of these figures suggests that time-history 20  
characteristics may also vary widely with location. The Lub-
bock, Texas, record may be reasonably representative of extreme 

	

temperatures to be expected in some of the milder inland cli- 	0 

	

mates, but it may be somewhat extreme for many Gulf Coast 	" 
or Pacific Coast regions. A very low overnight temperature may 
occur, but it is of short duration. The Colorado Springs and 
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regions. Extreme overnight lows may occur for several nights 	 TIME (Days) 

	

in succession, but some warming will usually occur during the 	Figure A-i 7. Time-temperature record for January 1971 in Al- 
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Figure A-15. Time-temperature record for January 1963 in Lub- 	Figure A-18. Time-temperature record for January 1965 in Du- 
bock Texas. 	 luth, Minnesota. 
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Figure A-19. Time-temperature record for December 1964 in 
Fairbanks. Alaska. 

tier states and some mountainous regions. Here the overnight 
lows and daily highs are lower and may continue for 1 or 2 
weeks. The Fairbanks record is extreme in that it is extremely 
low with little warming during the day, and it continues for 
several weeks. 

ANALYSIS OF THE BEARING 

Typical bridge bearings were analyzed for the five low-tem-
perature records to obtain the through-thickness time-dependent 
temperature of the bearing. These calculations were performed 
for the given temperature records using one-dimensional 
through-thickness heat flow modeled by Eq. A-8 and previously 
illustrated in Figures A-10 and A-il. The calculations were 
quite complex because of the time-dependent air temperature, 
but they were of a well-documented (11) form. They employed 
a step-by-step time-dependent solution, where the temperature 
at time t + A t can be computed as a function of the temperature 
at time t by the equation 

T(zt+t)= T0(t+r) 

+ 	exp 
( —D th(2n + 1)2 ir 2  t)\ Icos (2n + l)z 

4lz, 	) I 	2h,, 

r2hc,(_ 1Y'T0(t+ t) I 	(2n+l)ir 
+ f h,  T(z', t) cos (2n + 1) Z 

dz'] } (A-9) 
2h z  

where To  is the air temperature and z is the through-thickness 
coordinate and h, is the total thickness of the bearing. The 
solution is an infinite series, but even under the most extreme 
conditions only the first few terms contribute to the solution. 
The integral had to be evaluated for each time step by approx-
imate integration methods. This solution was programmed into 
a Hewlett Packard HP98 16 computer and the time-dependent 
temperature profile was computed. 

The computed temperatures were then used to estimate the  

temperature-dependent stiffness of the bearing and the force on 
its supporting bridge pier. In all, six different material behavior 
models (i.e., C-i, C-2, C-3, N-i, N-2, N-3) were used, based on 
different thermal stiffening models (see Fig. A-4) and three 
different crystallization models (see Fig. A-9). These combi-
nations covered a wide range of low temperature behavior ex-
pected for neoprene and natural rubber bearings. The force 
transferred by the bridge bearing was then estimated and com-
pared to the design force that was based on the estimated in-
stallation temperature of the bearing, predicted extreme low 
temperature, the expansion length, and the design shear modulus 
with 0.5 shear strain. When estimating the bridge expansion, 
both steel and concrete girders were examined. 

Figure A-20 shows the typical time-dependent and temper-
ature-dependent bearing force for a bearing subjected to the 
1963 Lubbock record. This analysis was based on a steel girder 
with a 180-11 expansion length resting on a bearing with 2.5 in. 
total elastomer thickness, installed at 80°F. The response to the 
Lubbock record was not affected by thermal stiffening, but was 
influenced by crystallization resistance. Elastomers with high 
resistance to low temperature crystallization (model C-i or 
N-I) showed no significant increase in bearing force over the 
design value, but those with low resistance (model C-3 or N-3) 
experienced stress levels as large as 8 times the design value. 
This is surprising because Texas is not regarded as a cold climate, 
but it illustrates two important observations. First, the behavior 
shown in Figure A-20 is a potential problem for climates that 
have relatively cool nights but warm days. Crystallization is 
time-dependent and temperature-dependent, because the bearing 
gets stiffer with time and its most rapid rate of stiffening occurs 
at a relatively high temperature (approximately 10°F or - 12°C). 
The bearing thaws from these temperatures, but thawing re-
quires time and does not start until the bearing is heated more 
than 27°F (15°C) above the crystallization temperature. There-
fore, the bearing is consistently stiffer when the bridge is elon-
gating due to rising temperature than when it is shortening due 
to falling temperatures, and the growth in bearing forces shown 
in Figure A-20 will occur. 

However, while the growth phenomenon is realistic, the de-
gree of it shown in Figure A-20 is probably excessive. The 
mathematical model included the thawing action of the rubber, 
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Figure A-20. Normalized bearing force for a 2.5-in. elastomeric 
bearing subjected to the Lubbock temperature record. 
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but after the bearing has thawed, the excess stress will begin to 
relax through a stress relaxation process. Stress relaxation is a 
complex phenomenon that is not included in Figure A-20. Only 
limited experimental data are available for estimating the rate 
of stress relaxation, but Meinecke (14) has proposed a mathe-
matical model for creep and stress relaxation. This model com-
bines a Voigt solid with a Maxwell viscous fluid. Four 
parameters are required by the model, and they were estimated 
from the results of compression creep tests and other typical 
test results. There is clearly considerable scatter in these param-
eters, but Figure A-2 1 shows a modified version of Figure 
A-20 with stress relaxation included. Stress relaxation clearly 
reduces the extreme forces noted in Figure A-20, but forces on 
the order of 2 to 3 times the design force must still be expected 
if an elastomer with poor crystallization properties (i.e., C-3 or 
N-3) is used. Note that all the anlayses show that several days 
are required for the crystallization effects to become apparent. 
This time is required because crystallization prior to the first 
day is not considered. 

The material used in the bridge girder also affects the force 
response. Steel conducts heat quickly, and there is usually only 
a slight difference between air temperature and the temperature 
of the girder. Reinforced or prestressed concrete usually has a 
large thermal mass, and there may be considerable lag between 
air temperature and girder temperature. Figure A-22 illustrates 
this temperature lag. It shows the average temperature of the 
concrete girder with an 8-in, average concrete thickness as com-
pared to air temperature. The concrete girder reduces the ex-
treme temperatures by approximately 8°F and also introduces 
a time lag of several hours. This changes the bearing load history 
somewhat, but it does not have a great impact on the maximum 
forces and deformations experienced by the bearing, and so no 
separate time history calculations are shown for the concrete 
girders. Figures A-23, A-24, and A-25 show the time history 
records for the Colorado Springs, Albany, and Duluth temper-
ature records, respectively. These time history curves show that 
low temperature crystallization is important for all cases since 
elastomers with low crystallization resistance (Model C-3) ex-
perienced bearing forces that are approximately three times the 
design values. Elastomers with intermediate crystallization re- 
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Figure A-22. Comparison of the air temperature with the average 
temperature of a concrete girder with the Lubbock record. 
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Figure A-23. Normalized bearing force for a 2.5-in. elastomeric 
bearing subjected to the Colorado Springs temperature record. 
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Figure A-21. Normalized bearing force for a 2.5-in. elasfomeric 
bearing subjected to the Lubbock temperature record with stress 
relaxation included. 
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Figure A-24. Normalized bearing force for a 2.5-in. elastomeric 
bearing subjected to the Albany temperature record. 
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Figure A-25. Normalized bearing force for a 2.5-in. elastomeric 	Figure A-26. Normalized bearing force for a 2.5-in. elastomeric 
bearing subjected to the Duluth temperature record. 	 bearing subjected to the Fairbanks temperature record. 

sistance experience force levels one to two times the design value. 
Stress relaxation is not included in these figures, and it would 
have very little impact on the results for the Duluth and Albany 
records because they experience few thawing cycles. It does have 
some impact on the Colorado Springs results, but it is much 
smaller than that noted for Lubbock since daily warming cycles 
were smaller. Thermal stiffening has virtually no impact on the 
Albany and Colorado Springs results. It is of increasing im-
portance for the Duluth record, because - 35°F (- 37°C) is near 
the glass transition of polychloroprene; however, it is still less 
significant than crystallization. 

Figure A-26 shows the force history for a typical bearing 
subjected to the Fairbanks temperature record. Response is dom-
inated by thermal stiffening, and the figure shows only the 
response with the natural rubber thermal stiffening model (see 
Fig. A-4). It is not greatly affected by low temperature crys-
tallization. For bearings based on WRT neoprene (Model C-l) 
forces several hundred times the design value were predicted 
and are not shown. Crystallization is still important, in that it 
influenced the response of even the highly resistant natural 
rubber (Model N-3), but —56°F (-49°C) represents a temper-
ature range that is clearly approaching the lower limits of suit-
ability for all elastomeric bearings. 

The foregoing figures all showed the predicted response for 
modest-sized bearings. Thick bearings have somewhat different 
responses. Large thick bearings with sound edge cover change 
temperature more slowly than smaller bearings, and they may 
not feel the extreme short time variations in temperature which 
may occur. This may reduce the force levels somewhat, but it 
also introduces potential problems. For example, a sudden 
warming trend may cause very large forces with a very thick 
bearing and may negate any benefits noted on the cooling cycle. 
Therefore, it appears to be of questionable wisdom to try to use 
this delay in practice. 

SUMMARY AND CONCLUSIONS 

In this appendix, the best available data on low temperature 
behavior were presented and discussed. A mathematical model 
of crystallization and thermal stiffening was developed and used  

to analyze bearing response. The results are necessarily ap-
proximate, because very limited experimental data are available. 
However, within these limitations several important conclusions 
and recommendations can be made. 

Crystallization appears to be a problem for any temperature 
lower than approximately 32°F or 0°C. The rate, at which it 
happens depends on temperature, and it occurs fastest at tem-
peratures around 10°F (- 12°C). It has been suggested that low 
temperature crystallization is primarily a problem of polychlo-
roprene (3), but the available data (6) indicate that some natural 
rubber compounds also crystallize quite rapidly while others are 
highly resistant to it. WRT neoprene appears to have much 
higher crystallization resistance than type W neoprene. In most 
parts of the United States, elastomers with low resistance (sim-
ilar to model C-3) may experience bearing forces that are three 
to four times the design force, and those with high crystallization 
resistance should experience forces quite close to the design 
values. 

Thermal stiffening may be a serious problem for Alaska, 
much of Canada, and limited parts of the continental United 
States. Neoprene becomes extremely stiff and approaches a glass 
transition at approximately - 40°F (- 40°C) and the best avail-
able data suggest that natural rubber approaches a glass tran-
sition at approximately - 67°F (-5 5°C). At these temperatures 
bearing forces that are many times the design value may be 
attained, and an elastomer should only be used if its second 
order transition behavior is proven by test to be acceptable. 

Tests required by codes and specifications do not appear 
to be particularly relevant to crystallization or thermal stiffening 
behavior of bearings in service. The ASTM standard D4014 
(69) appears to be the most useful, because it separates elas-
tomers into several low temperature grades according to their 
performance in compression set and hardness tests at different 
temperatures. Bearing stiffness at low temperature is the most 
important measure of serviceability of the bearing, but unfor-
tunately the only standard tests (compression set, hardness, and 
brittleness) are not good indicators of it. Thus, modification of 
the ASTM standard to include a stiffness test is desirable. 

Several important observations were made based on the 
crystallization models and thermal stiffening models used in the 
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analyses of this chapter. Figures A-4 and A-9 show that these 
models cover the range of observed experimental behavior but 
that there is considerable scatter. However, correlating these 
results with the standard ASTM grades (69) is useful. The 
correlation is not precise, but the chloroprenes which approx-
imated crystallization model C-3 generally failed to satisfy grade 
2 or 3 criteria or satisfied them only with difficulty. Those which 
approximated model C-i easily satisfied grade 3 requirements, 
and probably would satisfy grade 5. 

5. Finally, it should be noted that low temperature behavior 
is both an important and overstated concern. It is important 
because with poor low temperature crystallization resistance, 
bearings can easily develop loads that are several times the design 
values. This could cause considerable damage to the structure. 
Further, thermal stiffening may cause a much larger effect in 
extreme climates. However, the problem may be overstated since 
a properly designed and tested elastomer can avoid both of these 
problems, and there is evidence that both neoprene and natural 
rubber can be used. It is logical to ask why, if there is a potential 
problem, there have not been a large number of failures observed. 
There are several reasons. First, it is only in recent years that 
any effort has been made in the United States to compute the 
bearing stiffness and the resulting design forces on the piers and 
superstructure. Thus, in the vast majority of existing bridges, 
these components are much stronger than necessary to carry 
the bearing forces. Second, many (perhaps most) of the existing 
bearings may have good low temperature properties. However, 
continual economic changes in the industry mean that it is 
necessary to assure that bearings provided today and in the 
future are of adequate quality for the more sophisticated designs. 
Finally, bearings that are overloaded will frequently slip or 
experience relaxation before damage occurs. These phenomena 
were not included in the analysis because insufficient data are 
available to consider them reliably. Clearly more test data are 
needed. 

TENTATIVE DESIGN RECOMMENDATIONS 

Based on the above conclusions and the analyses that preceded 
them, a series of tentative design recommendations are pre-
sented. They are tentative because the analyses were approxi-
mate and based on limited data. It is first recommended that 
the North American continent be divided into 3 regions. Region 
I would be the areas where the temperature never falls low 
enough to cause serious problems for elastomeric bearings. Such 
areas as the southern Pacific Coast, Gulf Coast, and Hawaii 
would fall in Region I. Possible criteria for inclusion in this 
region would be that the temperature never falls below 0°F 
(- 18°C) and that it does not drop below 25°F for more than 6 
hours duration at any one time or for shorter periods on more 
than 3 consecutive days. Region II would include most of the 
remaining United States. It could be defined as all areas that 
do not qualify for Region I and have extreme low temperatures 
not lower than - 30°F (- 35°C). Response of bearings in Region 
II would be influenced by low temperature crystallization but 
not thermal stiffening. Region III would consist of most of 
Alaska and Canada, and the portions of the United States that 
do not qualify for Regions I and II. 

A basic design force must be derived for each region. The 
design force for an individual bearing is: 

H=AGy. 	 (A-b) 

where A is the gross plan area of the bearing and G is the shear 
modulus at 70°F (2 1°C) as defined by AASHTO Method A or 
by test results. The shear strain y,  should be limited to less than 
0.5 and be defined by 

i Ta 1 
.y 

= -ii:;-- 	
(A-li) s  

where a is the coefficient of thermal expansion of the bridge, I 
is the expansion length, and h,., is the total elastomer thickness. 
The temperature increment, AT, shall be defined as the differ-
ence between the extreme air temperature of the region and the 
extreme installation temperature of the girders. For example, if 
the bridge girders are to be installed in October, AT could be 
the larger of the difference between the historic low temperature 
for October and the historic high for the area, or the difference 
between the historic high temperature for October and the his-
toric low for the area. 

For Eq. A- 10 to provide the necessary safety and serviceability 
in the field, either G for the chosen elastomer must not increase 
excessively, or the structure must be able to resist forces several 
times larger than those predicted by Eq. A-b. Thus, in Region 
I, grade 2 elastomers would always be acceptable, and grade 1 
elastomers could only be used if the structure could resist bearing 
forces at least three times the design value multiplied by an 
appropriate load factor. In Region II, the use of grades 2, 3, 
and 5 would require that the structure could withstand forces 
4, 3, and 2 times the design value multiplied by an appropriate 
load factor. Region III should always require the use of grade 
5 elastomers and, in addition, tests should be required to assure 
that the glass transistion is at least 5°F below the historic low 
temperature for the region. The structure should be able to resist 
total bearing forces of two times the design force with an ap-
propriate load factor. 

The above structural design forces may be reduced if a reliable 
mechanism which allows slip, such as a stainless steel-PTFE 
slider, is provided, and a lower grade elastomer may be used 
for Regions I and II under these conditions. 

Low temperature stiffening is an important characteristic and 
needs to be addressed more directly than it is now. First, the 
certification requirements for the various elastomer grades 
should include a test to measure low temperature stiffness itself, 
rather than relying on indirect indicators such as compression 
set. Second, the measures needed to achieve satisfactory stiffness 
should be examined. While it is possible to design a compound 
that has either excellent low temperature performance or ex-
cellent physical properties (such as tensile strength) at normal 
temperatures, test data show that achieving both together is 
very difficult. In view of the importance of low temperature 
stiffening, a slight reduction in the physical property require-
ments could be considered. This should only be done in cases 
where it is impossible to produce a compound that will meet 
both objectives, and even then care should be taken not to open 
up the possibility of new problems such as excessive creep. 
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APPENDIX B 

COMPRESSION 

INTRODUCTION where 

 

The behavior of bearings subjected to compression was in-
vestigated using analysis and testing. This appendix describes 
response to pure compression, while rotation and eccentric 
compression are described separately in Appendix C, even 
though in many tests one bearing was subjected to concentric 
and eccentric compression in turn. Analysis is treated first so 
that when the test results are presented, a theoretical basis with 
which to compare them already exists. Previous analyses are 
reviewed in more detail in Ref. 3. 

and 

f, = A, + B,S 

S = shape factor 	 (B-lb) 
A, and B, = dimensionless constants 

= P/A 	 (B-ic) 

LINEAR ANALYSIS 

GENERAL 

In classical elasticity theory, deformations are assumed to be 
small, so that negligible errors are introduced by assuming that 
strains are linearly related to displacements and that the equi-
librium equations can be written in the undeformed geometry. 
An elastomeric bearing in service undergoes significant defor-
mations and so neither of these assumptions is strictly true, but 
because of the extreme difficulties of performing any analysis 
which models the true behavior more closely, analyses (15, 16, 
17, 18) based on classical theories have been widely used. Efforts 
have been made (19, 20) to incorporate the effects of large 
deflections by modifying the end results and, while they appear 
to provide improvement,, these analyses are not rigorous. 

Studies based on complete nonlinear finite element formu-
lations are presently under way (22). Discrete analysis, in which 
each elastomer or steel layer is broken down into a number of 
separate elements, proves prohibitively expensive. Replacing the 
true layered medium with a homogeneous one that has equiv-
alent properties shows promise in predicting overall behavior, 
but is necessarily unable to provide detailed information about 
conditions at the critical steel-elastomer interface. 

The following discussion describes typical closed-form solu-
tions, their shortcomings, solutions for a bearing with a central 
hole, and results of a linear finite element analysis. 

Elastic Solutions 

A number of investigators (3, 15, 16, 17) have developed 
closed-form load-deflection relationships for reinforced bearing 
layers. They have all assumed that the reinforcement is inex-
tensible and that the elastomer bulges parabolically, and they 
have all considered the case of completely incompressible elas-
tomer. Only Conversy (16) provided solutions that incorporate 
finite compressibility. The solutions can be expressed in the form 

= E,e, = Ef,e, 	 (B-la) 

Conversy (16) and Rejcha (18) treated the problem in a single 
step and obtained A, = 0, which is clearly incorrect when S 
tends to zero. Gent (15) treated it in two steps. In the first, the 
bearing is compressed while the elastomer is free to expand 
laterally, and in the second, shearing stresses are imposed at 
the elastomer-steel interface to restore the lateral displacements, 
while the vertical displacements remain fixed. The resulting B, 
coefficients are identical to Conversy's, and for rectangular bear-
ings with sides L and W, are plotted against L / W in Figure 
B-i as a solid line. Gent gives B, = 2.0 for a circle. Gent's (15) 
value for A, varies from 1.0 to 1.33, depending on plan shape, 
so, for practical shape factors of 5 or more, Eq. B-lb shows 
that the coefficient B, is much more important. 

I 	Incompressibi 

.2 	.4 	.6 	.8 	1.0 

BEARING ASPECT RATIO LIW 

Figure B-I. Variation of compressive stiffness coefficient B, with 
bearing aspect ratio. 



It should be noted that arbitrarily choosing the bulged shape 
of the elastomer to be a parabola means that some equations of 
equilibrium cannot be satisfied, and that the foregoing equations 
cannot be exact. The fact that they provide reasonable solutions 
shows that the chosen bulged shape is close enough to the true 
one to cause only minor, local violations of equilibrium. 

The bulk modulus of the elastomer has a significant influence 
on compression stiffness for bearings with large shape factors. 
The coefficient B0  becomes smaller, by an amount which depends 
both on S and on E/K (E and K are the Young's modulus 
and bulk modulus.) Values of B0  derived from (16) for the most 
extreme case considered (S = 12 and ElK = 0.002) are shown 
in Figure B-i as a dashed line. Gent (10) suggested accounting 
for bulk modulus by the approximate formula 

— =— + — 	 (B-2a) 
E' E0  K 
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8.0 

7.0 

6.01 
0 where E'0  and E, are the effective compression moduli including 

and excluding the influence of bulk compressibility. Conversy's 
more rigorous analysis can be simplified to give 

11 	1 	ii 	1E 

E' 

	

-, = E-, + 
Ck0K = E 

-- J + -
Ck0 
-
K 	

(B-2b) 

where Ck, is a constant. For the range investigated (3 < S < 
12, 0 < E/K < 0.002 and 0.001 < L/W < 2.0), Ck, varied 
only from 0.728 to 0.838. A value of 0.75 represents practical 
shaped bearings very well and, if used in Eq. B-2b, provides a 
slight improvement on Eq. B-2A. The bulk modulus of an elas-
tomer is not easy to measure (24), but ElK is commonly taken 
as 0.001 for bridge bearing materials. 

The strain in the elastomer consists of a shear component 
plus a small bulk compression. The shear strain is largest at the 
elastomer-steel interface, and it increases linearly towards the 
outer edge of the bearing (15). There it falls sharply to zero in 
order to satisfy the condition that there be no shear stress on 
the vertical free elastomer surface. The maximum shear strain 
is given by 

= CSe, 	 (B-3a) 

where for rectangular bearings 

(1 L) v 1 / 	nirW ' 
+ 	., -- (l - sech 	R0) 

and 

	

R20  = 1 + 
4E L 	

(B-3c) 
K (nlTh,)2  

Figure B-2 shows, for the incompressible case, the variation of 
C, with aspect ratio in rectangular bearings. For a circular 
bearing, C, = 6.0. 

Gent's (15) analysis was modified to include the effects of a 
hole, giving 

= 1 + 2S2f() 	 (B-4a) 

where 

0,2 	0.4 	0.6 	0.8 	1.0 

ASPECT RATIO 	L/../ 

Figure B-2. Shear strain coefficient C, as a function of aspect 
ratio. 

Hole Diameter 

Figure B-3. Distribution of compressive stress in a circular bearing 
with and without a hole. 

- 1 	44   - + 4ln 
f(O - (1 - 2)(1 - 	

(B-4b) 

and 

hole diameter 

	

= bearing diameter 	
(B-4c) 

Where 4 approaches zero, f() approaches 1. 0, so Eq. B-4a gives 
the same value as Gent had derived for the bearing with no 
hole, as it should. The theory suggests that the presence of a 
hole may significantly change the stress distribution within the 
bearing as shown in Figure B-3. In Eq. B-4a the free surface 
around the hole should be included in the definition of S. Equa-
tion B-4b is plotted in Figure B-4 and shows that treating f(13 
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as 1.0 in the interests of simplicity is a slightly conservative 
procedure. The error for practical bearing sizes is likely to be 
less than 10 percent. 

Gent (23) conducted experiments on circular bearings with 
holes, for values of 	/4, and 4. He found that Eq. B-4a with 

f() = 1.0 gave reasonable correlation with the measured stiff-
ness, provided again that the free surface around the hole was 
included in the definition of S. 

Finite Element Analyses 

As a check on the accuracy and validity of the foregoing 
closed-form elasticity calculations, finite element analyses were 
performed on a sample circular bearing layer both with and 
without a hole. The program, AXISOL, (25) is based on con-
ventional elasticity and small deformations. Symmetry was used 
to reduce the size of the problem, so the analysis was performed 
on only one-half of the thickness of the real elastomer layer. 
Axisymmetric elements were used in a mesh of 6 x 24 elements, 
and their aspect ratio was restricted to 2:1 for accuracy. A shape 
factor of 2.0 was used, because a larger one would have required 
more elements or more elongated element shapes. The steel 
reinforcement was replaced by a rigid boundary. 

With no hole and a Poisson's ratio of 0.49975 (i.e., ElK = 
0.0015), the compressive stiffness was found to be 0.95 (1 + 
2S2), whereas Eq. B-21b gives 0.98 (1 + 2S2) for the same 
conditions. This close agreement lends support to Eq. B-2b, 
provided the materials behave in the linear elastic manner as-
sumed. 

For the case with a hole, two runs were done with different 
values of E/K which bracketed the values for the real material. 
The results are given in Table B-i. Also shown for comparison 
are values derived using Eq. B-21b, using Ck. = 0.75 and Ck. = 
1.0. It should be recalled that Gent suggested the formula with 
Ck, = 1.0 but provided no rigorous proof, and that the Ck, = 
0.75 value was derived from more rigorous theoretical data on 
rectangular bearings rather than the circular bearing analyzed 
here. Furthermore, neither bearing had holes. In both runs, the 
finite element value for f was 4bout 10 percent lower than that 
given by Eq. B-21b. 

Table 8-1. Compression stiffness: comparison of predicted values off, 
using finite element analysis and Eq. B-2b (8-In, diameter X 0.4-in. 
thick elastomer layer, 1-in. dia. hole). 

Run Number 1 2 

Poisson's Ratio 0.49995 0.490 

E/K 0.0003 0.06 

Finite Element 0.89 	(1+2S2) 0.26(1+252) 

Eqn. 	B-2b 	(ckc = 	1.0) 0.9884 (1+2S2) 0.2979 	(1+2S2) 

Ego. 	B-2b (ckc  = 0.75) 0.9845 (1+2S2) 0.2414 	(1+2S2) 

Similar analyses were done using the general purpose Finite 
Element Program STRUDL (26) on a 2:1 rectangular bearing 
with a central hole. For ElK values of 0.006, 0.0015, and 0.0006, 
the ratios of the computer-predicted stiffnesses to those of Eq. 
B-21b (with ck, = 0.75) were 0.9473, 1.0269, and 2.3433. The 
first two values show the same pattern as did the AXISOL 
analyses, namely that the finite element value for fc  was smaller 
than the one given by Eq. B-2b for high E/K. but was larger 
for lower E/K. In both cases the agreement was good. The last 
figure is seriously in error, and is believed to be caused by 
numerical problems associated with the size of the model (2,500 
nodes) and the fact that Poisson's ratio was so close to 0.50. 

Thus the finite element analyses provided verification that 
Eq. 13-2b, with Ckc = 0.75, simulates reasonably well the influ-
ence of bulk modulus on the compression stiffness. The differ-
ences are on the order of 5 percent when ElK = 0.0015, both 
with and without holes in the bearing. 

APPROXIMATE THEORIES 

Gent (10) presented an alternative, approximate expression 
for compression stiffness, namely 

fc  -. 1 + 2kS2 	 (B-5) 
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It was derived from experimental data on natural rubber, and 
k was found to vary with hardness, falling from 0.80 to 0.55 
for rubbers of 45 and 65 degrees IRHD. (The International 
Rubber Hardness Degree scale is simply an alternative to the 
Shore hardness scale for elastomers. It is more widely used in 
Europe, and for practical purposes the two scales are identical 
over the range of bridge bearing elastomers.) The reasons un-
derlying the need for the correction factor k were not clear at 
the time, but were thought to involve at least the effects of bulk 
compressibility. This expression has been used in specifications 
(27) for a number of years. 

NONLINEAR BEHAVIOR 

The above theories do not account for nonlinearities, which 
are clearly shown by test results to be present. Previous re-
searchers' efforts to include geometric nonlinearity are reviewed 
in Ref. 3. 

An alternative, and reasonably simple, approach would be to 
assume that incremental stress and strain, based on the instan-
taneous geometry, are related by elastic constants E and G which 
are independent of strain. If nominal stress and strain are defined 
by 

	

0-c  = P— 	 (B-6a) 
A0  

	

— 	(positive in compression) 	(B-6b) 
h,0  

where h,0  = original elastomer layer thickness, and i, = com-
pressive deflection. Then the assumption of incompressibility 
leads to 

h, = instantaneous elastomer thickness = h,0  (1 — 
(B-6c) 

	

A = instantaneous 	average plan area 
= 	

A0 
(B-6d) 

S = instantaneous shape factor 
= (1 

so 

—
(B-6e) 

Finite increments of stress and strain are then related by 

tion to an experimental stress-strain curve is made difficult by 
problems of establishing a zero for strain and by the initial 
"bedding in" of the bearing. Attempts were made to fit an 
equation of the form 

constant [(1 — 
)-' — 1] 	(B-9) 

to experimental curves using three points, the lowest of which 
was chosen arbitrarily to be 200 psi. It was found that the best 
fit for most test results occurred with n values greater than 4. 
For example, n = 10 was found to agree very closely with the 
data from tests on the 11.33 in. X 5.66 in. bearings used in the 
buckling experiments described in Appendix E. For this bearing 
shape, like many others, Eq. B-8b was therefore insufficiently 
nonlinear. No obvious rationale exists for the choice 
n = 10, but it indicates that even the incremental (instantaneous) 
stress and strain must be linked by a stiffening relationship. 

DEFORMATIONS AND STRESSES IN THE 
ELASTOMER 

The linear closed-form analyses are based on simplifying as-
sumptions, so they will not produce exact values for stresses in 
the elastomer any more than they do for load-deformation re-
lationships. Comparison with the finite element analysis of the 
circular bearing is illuminating. Figure B-S shows the outer part 
of the mesh in its deformed state, and significant vertical de-
formations can be seen. Figure B-6 shows the radial displace-
ment profile across the diameter, while Figures B-7 and B-8 
show the distribution of shear and direct stresses. In each figure 
it is clear that conditions at the outer edge are not a simple 
extrapolation of the parabolic bulging found in the interior of 
the bearing. The vertical stress is tensile, and the shearing stress 
and radial displacement depart significantly from the otherwise 
linear distributions, none of which are predicted by the closed-
form analyses. The effects appear to be sufficiently localized 
that by about half-way into the center of the bearing, conditions 
are very close to those predicted by the closed-form analyses. 
Unfortunately, the response at the outer edge of the bearing is 

	

E (Ac 
 + BS2) (1 — e)2 	

(B-7) 

If A. is taken as zero for simplicity, infinitesimal load incre-
ments give a tangent modulus, in terms of nominal stress and 
strain, of 

Ec 	
_c 
= EB S20  (1 — e.,)5 	(13-8a) 

leading to 

EB, 
0., A 	

(1 — ,)_
4 — 1)1 	(B-8b) 

0 
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.-- — — 
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Attempts were made to correlate this equation with experimental 	Figure B-5. Undeformed and deformed grid-section through outer 
data, but the fit was not very good. Matching a nonlinear equa- 	part of circular bearing. 
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Figure B-6. Computed radial displacements vs. radial distance 
for a 24-in, diameter bearing. 

the largest and so is the most important, but it is also subject 
to the greatest uncertainty. The finite element procedure is itself 
far from perfect (it is numerically sensitive because Poisson's 
ratio is so close to 0.5 and because the finite mesh size is 
incapable of detecting with any accuracy the shear stress sin-
gularity at the corner), but it demonstrates that conditions near 
the edge are not simple. The vertical tension is noteworthy. It 
can be shown using simple arguments and incompressible elas-
tomer that bulging will lead to vertical tension strain at the edge 
when the average compressive strain, e5, exceeds 1/652,  where S 
is the shape factor. For a typical bearing in practice S might 
be 5 and ç 5 percent, so the outer surface will be in tension 
both vertically and in the hoop direction. This finding is in 
qualitative agreement with the finite element results and with 
the horizontal splits at the crest of the bulge observed in both 
the laboratory and the field. It is not predicted by the closed-
form methods because they do not include geometric nonline-
arity. 

Perhaps the most serious concern is that none of the ap-
proaches is able to predict the true stress or deformation field 
where it matters most—at the corner of the elastomer. The 
implication for design is that one of two approaches must be 
adopted. The first would require a detailed stress analysis, ca-
pable of accounting for the stress singularity at the corner, 
coupled to a three-dimensional failure theory for elastomer 
(analogous to, say, von Mises' theory for metals), which incor-
porates large deflections. This could be thought of as a "mi-
croscopic" approach. The second, "macroscopic," approach 
would be to identify on a more general level those conditions 
that give rise to failure in the elastomer and to construct a 
failure criterion from them without regard to detailed stresses 
or strains. Although the requirements in most codes (27, 28, 
29, 30) today give the appearance of falling into the first cat-
egory, they in fact do not, because they depend on inadequate 
analysis and an unproven failure theory. By contrast the German 
regulations (31) have opted for the macroscopic approach. 

0 	3 	6 	9 	12 
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Figure B-7. Computed elastomer shear stress vs. radial distance 
for a 24-in, diameter bearing. 
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Figure B-8. Computed elastomer stresses in a 12-in, diameter 
circular bearing. 

STRESSES IN THE REINFORCEMENT 

In steel-reinforced bearings under service loads the steel be-
haves elastically, so its deformations are much smaller than 
those of the elastomer. Thus it is acceptable to analyze the 
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stresses in the elastomer assuming that the bonded boundary is 
perfectly rigid, and then to analyze the steel stresses by applying 
to the plate the shears in the elastomer at the interface. This 
procedure has the advantages of simplicity and numerical sta-
bility. 

It appears that the closed-form approaches could be used to 
give acceptable predictions for the stress in the steel. The theories 
are not exact. They tend to break down at the outside edges of 
the bearing, but this location is far from the center of the bearing 
where the maximum steel stress occur. Furthermore, the steel 
stress is an integration of the shear stress imposed by the elas-
tomer and the integral is inherently less sensitive to local in-
accuracies. 

Closed-form expressions for maximum steel stress can be 
found for circular and long thin rectangular bearings. For prac-
tical shape factors of 5 and greater, the latter is given (3) by 

- 	h 1  +h,2  
max = 1.5 

( 2 h, ) 
O 	(B 10) 

where o, max 	maximum steel stress, o-  = (P/A0 ), and h 1 , 
h 2  = elastomer layer thickness on each side of the reinforce-
ment. 

Steel stresses in a circular bearing have not previously been 
established. However, the assumptions of the closed-form the-
ories lead to a shear stress imposed by the elastomer on the 
steel of 

for an incompressible elastomer and a shape factor greater than 
about 5. Then it can be shown (32, 33) that the vertical, hoop, 
and radial stresses in the steel plate are 

r2 \ 
T = 2 0,, (i - 
	

(B-12a) 

/h 1  + h 2\ /3 + v 
T0 	

2hx 	2 

3 V' r2 ] { - (1 + + 

V x  ) I 

/h, + h 2\ /3 + v \ I 	r2 
) T, = 	

. 2hx  ) (. 2 	
(B-12c) 

These are plotted in dimensionless form in Figure B-9 using 
a Poisson's ratio for steel of 0.3, and h,1  = h,2  = 6h Yielding 
of the steel may be predicted by either the Tresca or von Mises 
criterion, which in this case both give the result 

Fy  = o, 11.65 	 + 2] 	(B-13a) 

where F, is the uniaxial yield strength of the steel required to 
prevent yield in the circular plates. This too is plotted in Figure 
B-9 as the "Equivalent Yield" stress. Its value is very similar 
to that for the infinite strip that is 

= a-, Ii.so 
(h,1  + h2) + 
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Figure B-9. Computed steel stresses in a circular bearing without 
a hole (absolute values shown). 

The effects on the steel stress of a hole in the bearing were 
investigated in (33). Only circular bearings were considered, 
and closed-form expressions were checked against finite element 
analyses using Program AXISOL (25). The stresses in the steel 
were found to be dependent on the value of ElK (or v) used 
for the elastomer, reflecting the fact that the elastomer stresses 
are themselves influenced by E/K. Without holes the finite 
element analyses gave stresses that had the same distribution 
but were smaller than those predicted by Eqs. B-12a—B-12c. 
They approached the closed-form predictions as Poisson's ratio 
approached 0.5. 

Two conditions with holes were studied. In the first, only the 
steel had a hole in it. This is the condition that would arise 
when a manufacturer uses dowels to locate the reinforcing plates 
during molding, and later plugs the dowel hole with elastomer. 
In the second case the hole penetrated the whole bearing. The 
incompressible analysis for the first case leads to 

r 2 \ 
= —2 a (i - 
	

(B-l4a) 

13 + v\ 1h 1  + h 2\ 
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R 2  2 a. 	 - i) } (B-14c) -- 

and 

Fy = ee - T 	 (B- 14d) 

where 4 = hole diameter/bearing diameter. 
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Figure B-b. Steel stesses in a circular bearing with a hole (ab-
solute values shown). 

These are shown in Figure B-lU for 4 = '/6, hrl = h,2  = 6k,, 
and v, = 0.3. The finite element analyses again gave stresses 
which depended on E/K and approached the closed form ones 
as v, approached 0.5. The hoop stress, Tee  appeared to be the 
most sensitive. The equivalent yield stress, F, was largest at 
the inner edge, at which point the agreement between the two 
solutions was close. There 

T = —2 0,, (1 - 2) 	 (B-15a) 

(3_+_v\ (hri  + h,2  
Tee= 	

2 	2k, 

.. 12 + 42 (4 - 2 v)1 	(B-15b) 
(3 + v) I 

For 4 values corresponding to typical dowel holes, 42 < < 1 
and can be neglected. So, for v = 0.3 

= Tee - T 	0,, 12 + 3.3 
(h,, ± h,2)1 	

(B-15c) 

This is roughly double the value without a hole, and for small 
holes, it is nearly independent of hole size. 

In the case of a hole through the whole bearing, satisfactory 
closed-form solutions could not be obtained, so finite element 
analyses were undertaken. They were found to be rather sensitive 
to E/K, or v,. As v, was increased up to 0.49995, they appeared 
to be converging to one solution, and the maximum steel stress 
was found about half way out from the inside edge. However, 
for v, > 0.49999, numerical problems appeared to influence  

the solution, because the location of the maximum steel stress 
moved to the inside edge. For practical bridge bearing elasto-
mers, E/K = 0.001 (so v, = 0.49983), in which range the 
results are believed to be reliable. They showed that for all hole 
sizes, Tee and F were both smaller than their counterparts in 
the case of a hole in the steel alone. 

Thus, for circular bearings, a conservative appraisal of the 
steel stresses under elastic conditions is given by using a stress 
concentration factor of 2, regardless of the hole size and whether 
it exists in the elastomer. 

Finite element analysis was also carried out (34) on square 
and 2:1 rectangular bearings with and without holes, using 
STRUDL (26). In each case only one quadrant by half an 
elastomer layer thick of the bearing was analyzed with a basic 
mesh for the 2:1 rectangle of 12 x 24 elements in plan by 4 
elements deep. Near holes, the mesh was refined, over a tran-
sition length of two-hole diameters, to elements of /., the linear 
dimensions of the standard ones. Poisson's ratio for the elas-
tomer was taken as 0.49975 (i.e., E/K = 0.0015). 

Despite the fine mesh, the stress distribution in the vicinity 
of the holes was not very smooth. The presence of the hole 
caused the largest increases in the tangential stress around the 
hole, and the largest of them occurred in the rectangular bearing 
with a central hole for the stress parallel to the short side, where 
the computed increase was 28 percent. 

This value should be treated as approximate. This is partly 
because of the approximations inherent in the finite element 
method itself, which prevent it from giving exact response at a 
free edge (verified in this case by the fact that the normal stresses 
at the edge were in many cases not exactly zero). Further ap-
proximations are introduced because the stresses are only given 
at element centroids, and they must be extrapolated to give edge 
stresses. The 28 percent increase is well below the value found 
for the circular bearing, and so it is believed that the approxi-
mations led to an underestimate of the true steel stress. 

For the square bearing the maximum computed stress increase 
over the case without holes was 21 percent. A square bearing 
might be expected to behave rather like a circular one, in which 
the increase in the circular bearing was on the order of a factor 
of 2.0. 

In addition to direct tension, some bending was computed in 
the plates around the holes and, to a much smaller extent, at 
the bearing edge. It was extremely localized, disappearing by 
approximately half a hole diameter from the free surface of the 
hole, and it is not clear whether it was real or just an idiosyncrasy 
of the model. In the extreme case, the bending stress in the steel 
was about half as big as the maximum direct stress. Mesh 
refinement for increased accuracy was not possible because of 
program limits on the number of elements. Thus, while these 
finite element results are believed to be qualitatively correct, the 
local extreme values almost certainly underestimate the true 
ones. 

The stress concentration factor must be less than 3.0, because 
that is the factor for a plate with a small hole subjected to 
uniaxial tension. Thus, the local hoop stress is increased by a 
factor between 1.21 and 3.0, but most likely close to 2.0. 

TEST RESULTS—GENERAL 

Tests were carried out to study the behavior of bearings in 
concentric compression. In some of the tests the load was applied 
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concentrically at first, then at different eccentricities. Eccentric 
compression and rotation are discussed in Appendix C. 

Three main test series were run: (l) concentric compression 
to failure, (2) concentric compression to service loads with strain 
gages attached to steel, and (3) concentric compression on glass 
fiber-reinforced bearings. 

A further test series was concerned with combined compres-
sion and rotation, and some results from it at zero rotation are 
included here. 

Specific effects studied included steel strength, shape factor, 
aspect ratio, size, and presence and location of holes. 

CONCENTRIC COMPRESSION TO FAILURE 

General Behavior 

Fifteen tests were conducted and are summarized in Tables 
B-2, B-3, and B-4. All testing was performed in a 2.4 million 
pound Baldwin Universal testing machine. Values of load, de-
flection, and where appropriate rotations were recorded, but 
steel strains were not. Most bearings behaved in a similar man-
ner. At low loads the elastomer bulged around its free surface 
in a roughly parabolic shape. As the load increased the bulging 
did also, obscuring the steel reinforcing plates as shown in Figure 
B-li. The elastomer has to deform considerably to obscure the 
plates in this way, but no permanent damage was visible. The 
compressive stress at which the plates were obscured for con-
centrically loaded bearings with 0.066-in, thick plates was be-
tween 1,000 and 1,500 psi for the shape factor 5 bearings and 
about 2,500 psi for shape factor 10. When a bearing was loaded 
eccentrically, this happened much sooner. For example, in the 
12 in. x 24 in. bearing the steel was hidden at stresses of 2,500, 
1,400, 700, and 500 psi when the eccentricity was 0 in., 1 in., 
2 in., and 3 in. In bearings used in the field the same conditions 
would not arise because the presence of the cover would change 
the deformations at the edge of the plates and reduce the local 
strains in the bearing. However, it is still a useful indication of 
the severity of the deformation in the elastomer. 

Table B-2. Effect of shape on bearing strength (A = area (in.'), S = 
shape factor (dimensionless), h, = elastomer layer thickness (in.), h, 
= steel layer thicknes (in.), c = strength coefficient for steel, L.B. 
= lowerbound, U.B. = upperbound). 

Unloaded L.B. 	Yield U.B. 	Yield Fracture 

Brg Shape A 	S hr hr hr 
No. 

hr 	h 5  c Cs c5  

51 	5.34 .318 .313 .225 

3 A Circle 5.098 6.078 16.627 
.377 	.066 .625 .733 1.048 

64 	5.29 .318 .313 .233 

4 B Square 4.688 5.313 14.453 
.378 	.066 .575 .641 .943 

69.8 	5.01 .338 .334 .294 
9 AA 2:1 5.814 5.731 10.745 

Rectangle .392 	.066 .653 .738 .885 

96.3 	5.28 .300 .296 .250 
10 A 4:1 4.673 5.192 9.865 

Rectangle .370 	.066 .540 .593 .691 

Table B-3. Effect of holes on bearing strength (terms as in Table B-
2). 

Unloaded L.B. 	Yield U.B. 	Yield Fracture 
Brg Shape A 	S hr hr hr 
No. c 

hr 	h 5  c5  c5  c5  

3 A 
51.0 	5.34 .318 

5.098 
.313 

6.078 
.225 

16.627 O .377 	.066 .625 .733 1.046 

3 C 
50.9 	5.41 .306 

4.912 
.300 
5.894 

.256 
9.823 

.372 	.066 .579 .682 .704 

3 0 © 51.0 	5.24 .312 
4.902 

.305 
5.882 

.269 
8.549 

.384 	.066 .590 .692 0.615 

4 B 
64.0 	5.29 .318 

4.688 
.313 
5.313 

.233 
14.453 LI . 378 	.066 .575 .641 .943 

4 C 
54.0 	5./h .283 

4.688 
.275 
5.469 

.030 
10.938 I  .347 	.066 .511 .582 .705 

7 B 
64.0 	5.44 .283 

6.250 
.2/9 
7.031 

.239 
14.391 

.368 	.118 .328 .364 .493 

b4.0 	5.41 .299 
4.688 

.295 
5.469 

.254 
9.875 L1  . 370 	.066 .540 .622 .702 

4 A 
54.5 	5.51 .294 

4.644 
.209 
5.410 

lOb 
9.093 

.365 	.066 .526 .604 .652 

AA 
69.8 	5.01 .338 

5.014 
.334 

5.731 
.294 

10.745 
.392 	.066 .653 .738 .885 

9 AB 
69.0 	4.95 .340 

5.014 
.335 

5.731 
.31/ 

8.095 
.397 	.066 .657 .740 .719 

10 A 
96.3 	5.28 .300 

4.673 
.295 
5.192 

.250 
9.865 

.370 	.066 .540 .593 .691 

10 B 
0 

93.8 	5.53 

.346 	.066 

.2/4 
4.797 
.507 

.267 
5.864 
.604 

.239 
9.051 
.605 

10 C 
93.8 	4.92 .312 

4.797 
.308 
5.330 

.281 
8.294 

0 	0 .389 	.066 .577 .633 .653 

Table B-4. Effect of size on bearing strength (terms as in Table B-2). 

Unloaded L.B. 	Yield U.B. 	Yield Fracture 
Brg Shape A 	5 hr hr hr 
No. c 1"c V'ç 

hr 	h5  c5  C 5  c5  

51.0 	5.34 .318 .313 .225 
3 A Circle 5.098 6.078 16.627 

.377 	.066 .625 .733 1.048 

203.4 	10.93 .311 .306 .253* 

5 A Circle 4.916 5.900 11.554 
.368 	.066 .589 .696 .819 

64.0 	5.29 .318 .313 .233 
4 A Square 4.688 5.313 14.453 

.378 	.066 .575 .641 .943 

256.0 	10.89 .311 .306 .274* 

6 A Square 4.688 5.469 9.180 
.368 	.066 .562 .645 .704 

* Note: Fracture not reached. Test stopped at 
capacity of loading systen. 

Debonding of the elastomer from the reinforcement occurred 
in all bearings tested to either failure or machine capacity. The 
compressive stress at which this was first noticed varied con-
siderably, from about 3,900 psi in bearing 8 A (16 in. x 16 in.) 
to 8,000 psi in bearing 7 A (8-in. dia with a 1-in. hole). This 
probably indicates a variation in the local bond strength between 
the two materials. The data are shown in Figure 12 of the main 
report. The eccentrically loaled bearings started to debond at 
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lower stresses than their concentric counterparts (e.g., 6,250, 
3,600, and 2,850 psi for eccentricities of 0 in., 0.97 in., and 1.46 
in. in bearings 9 AB, 9 AD, and 9 AC, respectively). The way 
that the bearings are manufactured also influences debonding. 
One of the early trial bearings was a 5:1 rectangle which de-
bonded badly along one short side at a low stress, although the 
maximum shear stress occurs at midlength of the long sides. 
After failure this bearing was taken apart, and it was found that 
during fabrication the steel plates had been kept spaced apart 
by disc-shaped spacers of partially cured elastomer. These had 
not adhered properly to the reinforcing and, because they were 
placed near the ends of the bearing, they had initiated the 
debonding failure there. 

Tests on the biggest bearings (5 A, 6 A) were stopped when 
the machine capacity of 2.4 million pounds was reached, but 
plate fracture had not occurred. Bearings 9 AC and 9 AB were 
tested in eccentric compression and had to be stopped before 
the plates ruptured because the rotations were large enough that 
parts of the loading rig came into hard contact. In all these 
cases debonding was extensive when the test was stopped. 

All the bearings had four layers of elastomer and five of steel. 
In most tests some shearing deformation occurred early in the 
test, and it increased with load. In some cases the top plate 
moved laterally with respect to the bottom one, in others the 
center plates moved laterally with respect to the top and bottom 
ones, and in yet others the center plates rotated about a vertical 
axis. These motions appeared to be related to instability, in the 
same way that an initially bent steel column will show increased 
deflection when axial load is applied. However, they occurred 
at loads well below the buckling load. They were probably 
exacerbated by the unavoidable slack (about '/8  in.) known to 
exist in the head of the test machine, which corresponds well 
with the approximate magnitude of the lateral movement ob-
served in the top plate. It is believed that this movement made 
little difference to the rupture load, although it could have 
influenced the debonding load. 

Yielding of Reinforcement 

Figure B- 12 shows the load-deflection curve for bearing 3 A, 
which was 8 in. in diameter. The curves for other bearings were 
similar. The upper line represents values read directly after 
reaching the new loads; and the lower one, reading taken 60 
sec later. Between readings the test machine was locked, so the 
displacement remained constant and the difference between 
readings represents relaxation in the materials. Three phases of 
behavior can be seen. In the first, behavior is elastic but, as 
expected, nonlinear and stiffening, and little relaxation takes 
place. That which does is attributed to the elastomer. At 250 
kip (5,000 psi) the stiffness dropped to about 70 percent of its 
last elastic value  and the relaxation increased significantly. Both 
signs indicate the onset of yielding in the steel. At 350 kip (7,000 
psi) the stiffness dropped again to about 40 percent of the last 
elastic value, and then stayed constant until one of the inner 
plates fractured at 848 kip (16,900 psi). (No reading could be 
taken on the data recorder at the peak load, so this point is not 
shown on the plot.) The second loss of stiffness is believed to 
represent the spread of yielding through the plate. After fracture 
the bearing could still carry some load, but was functionally 
useless. 

The bearing showed considerable strength after first yielding. 
Application of the Tresca yield criterion to Eqs. B-12a—B-12c 

Figure B-Il. Bulging pattern at large loads. 

shows that the hoop stress at the edge is only 34 percent of the 
yield stress when yielding starts at the center. Thus, considerable 
gains in strength through inelastic redistribution are possible, 
provided adequate ductility exists. The large inelastic steel 
strains observed in the tests suggest that it does. The steel used 
in the bearing was ASTM A569, which has no specified yield 
point. It was used because structural steels are not available in 
the desired /6  in. thickness. Coupon tests gave average yield 
and ultimate strengths of 39.3 and 54.1 ksi, which values were 
used for the calculations here. The elongation at break was 32 
percent in an 8-in, gage length, or 50 percent in the 2-in, gage 
in which fracture occurred. Such ductile steel behavior means 
that, in this and other bearings, both redistribution and strain-
hardening probably contributed to post yield strength. 

After failure the bearing had the approximate dimensions 
shown in Figure B-13, which also shows how the center plate 
(No. 3) fractured. The outer plates (1 and 5) had hardly stretched 
at all, and plates 2 and 4 had stretched considerably but had 
not fractured. 

The effect of bearing shape on first yield can be seen from 
Table B-2. Equations B-13a and B-13b relate the average corn-
presisve stress at first yield to the steel yield strength. If the 
second term in parentheses is neglected because it is small com-
pared to the first, they can be rearranged in the form 

2h. 
= c5F 	 (B-16) 

(h,, + h) 

where the constant c5  is '/, or 0.667 for the strip, and 0.606 for 
the circular bearing. It was expected that the analogous equation 
for bearings of other shapes would have a similar form but a 
different c value. 

Values for c5  can be obtained from the experimental data if 
o-c  is taken as the average compressive stress at the kink in the 
load deflection curve, which corresponds to first yield, and 1 
is the steel yield strength. Table B-2 and Figure B-14 show such 
a comparison, in which h, is the average thickness of the two 
central elastomer layers at the load in question. Upperbound 
and lowerbound yield values are given because a reading was 
not necessarily taken at the exact point at which the steel yielded. 
The data for bearings without holes are fairly consistent. The 
coefficient c5  varies from 0.540 (lowerbound yield for 4:1 rec- 
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Figure B-14. Effect of aspect ratio on strength coefficient. 

tangle) to 0.851 (upperbound yield for circle), suggesting that 
Eq. B-16 is applicable for a wide range of shapes. 

There appears to be one inconsistency in the data, because 
the circular bearing should theoretically have a slightly lower 
coefficient than the 4:1 rectangle, whereas the values based on  

first yield in the experiments are higher. However, yielding in 
the circular bearing initially takes place only at a single point 
(the center), whereas in a true strip it takes place along the 
whole length of the bearing. The former is much harder to 
detect on a load deflection plot, and it is therefore likely that 
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the quoted coefficient values for the compact shapes (square 
and circle) really correspond to a state somewhat beyond initial 
yield, whereas those for the strip correspond more closely to 
first yielding. 

Values of the strength coefficient c were also calculated for 
the fracture load, although they are less meaningful because the 
nature and the extent of the inelastic redistribution are not 
known precisely. However, the data show that the ratio of (c, 
at fracture)/(c, at first yield) becomes smaller for more elon-
gated shapes, all the more so if the measured coefficients at first 
yield for the compact shapes are reduced a little for the reasons 
stated above. This suggests that the compact shapes have a 
greater potential for inelastic redistribution of stress than do 
more elongated shapes. This experimental evidence is in keeping 
with theoretical steel stresses, since, in the absence of strain 
hardening, a truly infinite strip would fracture immediately after 
first yield (because the yielding would occur along its whole 
length), whereas a circular bearing would not fail until additional 
load had raised the hoop stress at the edge from its initial yield 
value of 0.34 F to 1.0 F. 

Information on the fracture strength of the bearing has limited 
usefulness for specifications such as AASHTO (22), which are 
based on working stress design. However, information on bear-
ing stresses needed to cause yield is directly applicable. Together, 
they serve to confirm the general understanding of the nature 
of the steel stresses. 

The foregoing arguments suggest that Eq. B-16, with a coef-
ficient of 2/3  for all shapes, is adequate to predict the load to 
cause first yield. That the value 2/3  slightly exceeds the theoretical 
0.606 for a circular bearing is offset by the circular bearing's 
greater potential for inelastic redistribution. The safety factors 
normally used in design would mask the slight discrepancy. 

Effect of Holes on Bearing Strength 

Table B-3 shows the relevant data for studying the effects of 
holes on the compressive stress needed to cause yield or fracture 
of the reinforcement. Measured shape factor, S. plan area, A, 
and steel and elastomer layer thicknesses h and h, are given 
for all bearings in the unloaded state. Then the instantaneous 
elastomer thickness, average compressive stress and strength 
coefficient c are given for lowerbound yield, upperbound yield, 
and fracture. All bearings but 7B were made with 0.066-in, thick 
ASTM A569 steel, for which the measured F and F. were 39.3 
and 54.1 ksi, and the elongation at fracture was 32 percent on 
8 in., or 50 percent on 2 in. Bearing 7B was made from 0.118-
in. thick ASTM 572 gr 33, for which F and F. were measured 
to be 45.6 and 59.0 ksi, and the elongation at fracture was 28 
percent on 8 in., or 48 percent on 2 in. In all cases the holes 
were 1-in, diameter and were cut clear through the bearing. 

For any bearing shape it is possible to compare values of the 
strength coefficient for a bearing with no holes and those for 
the same bearing with different arrangements of holes. Because 
the experimental compression stress to cause yield is bounded 
rather than known precisely, only general trends rather than 
precise relationships can be discerned. The most important are 
the following: 

Holes have more influence on bearings of compact shape 
than on long narrow ones. 

For compact shapes, holes appear to have a significant 
influence on fracture strength but almost none on the load to  

cause initial yielding. This latter is in direct contradiction to 
the theoretical findings but may be partly explained by the 
difficulties in detecting first yield from a load deflection plot, 
especially if it occurs in a highly localized region. 

Within the limits of experimental error, two symmetrically 
placed holes appear to be no more damaging than one central 
one. This is in agreement with the results of the finite element 
analyses on the 2:1 rectangular bearing. 

In the square bearing, placing the holes on the diagonal 
appears to reduce the strength slightly more than does placing 
them on a perpendicular axis. This observation is based on the 
facts that the bearing with one hole (4 C) fractured along the 
diagonals and the fracture load for 4 A (2 holes on the diagonal) 
was lower than 4D (2 holes on the perpendicular axis). However, 
4 A did not fracture cleanly along the diagonals but had a rather 
random crack pattern, so the effect is minor. 

Effect of Nonuniform Elastomer Thickness 

Two bearings (7A and 7B) had very uneven layer thicknesses. 
At one location in each bearing, the steel plates, which should 
have been separated by a 3/8-in. elastomer layer, were actually 
touching. They were both cut from the same stock made with 
0.118-in. ASTM 572 steel reinforcement. A central hole had 
been cut in each on the assumption that the test machine ca-
pacity would be too small to cause plate fracture in a bearing 
without a hole. 

Their strength coefficients are about one-half of those of the 
other bearings. (Only 7B is shown in Table B-3.) In both cases 
the middle plate fractured along a single line, one end of which 
coincided with the point where the two plates were in contact. 
The strength coefficients for all of the other bearings are suf-
ficiently close, despite the variety of geometries tested, to con-
firm that Eq. B-16 is fundamentally sound, so it is necessary to 
look elsewhere for reasons for the low strength of specimens 7 
A and 7B. Possible causes are uneven layer thickness or inability 
to redistribute the stresses concentrated around the hole. The 
latter could have been caused by a lack of ductility in the A572 
steel, but that is unlikely because the steel coupon test showed 
considerable ductility. Also, the strength coefficients are low at 
both yield and fracture. Thus, it is believed that the uneven 
layers caused the problem, although the exact mechanism for 
doing so is not clear. 

Effect of Size 

Table B-4 gives the test results for four bearings of different 
sizes cut from the same stock. If a size effect exists, it should 
be visible when the results from bearings of the same shape but 
different size are compared. In the two large bearings the steel 
yielded, but the test machine was not strong enough to cause 
fracture. 

The strength coefficients for the two bearing sizes were close 
for both shapes and for the upper and lower bounds on the yield 
point. It is thus concluded that no size effect exists, or that if 
it does, it is small enough to neglect. 

Compressive Strength of Glass Fiber-Reinforced 
Bearings 

Eight bearings were cut from a single sheet of 1-in, thick 
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material. The arrangement of layers is one commonly used in 
highway bridges in California and is shown in Figure B-15. The 
layer thicknesses were very consistent. Shore A durometer read-
ings taken on the top layer averaged 64, but the true elastomer 
hardness must have been smaller because the top layer of re-
inforcement must have influenced the readings. Pad data and 
test results are given in Table B-5. 

All specimens displayed similar behavior. At low loads the 
elastomer bulged, with virtually all of the vertical deflection 
occurring in the two /8  in. layers. The compressive stiffness of 
the bearings appeared to be essentially independent of shape 
factor or plan shape, which was surprising in view of the strong 
influence of shape factor in steel-reinforced bearings. At a ver-
tical stress between 0.8 ksi and 1.5 ksi horizontal splits started 
to occur around the edges of the bearing at the peak of the 
bulge. They followed the line of the joint between the individual 
/ in. layers of which the bearing was made up. Then at a stress 

between 2.1 and 2.8 ksi the reinforcement ruptured with a clearly 
audible popping sound, and the load dropped suddenly. Loading 
continued and the fiberglass continued to rupture, and in ad-
dition other, different, tearing sounds were heard which were 
attributed to delamination. After the tests, the bearings were 
inspected and found to have a maze of orthogonal cracks where 
the reinforcement had ruptured. In some instances, a fiberglass 
layer had also separated from the adjacent elastomer. 

Separation of the individual in. layers was the first sign of 
distress in all the bearings, and it occurred at a compressive 
stress and strain which were not clearly related to any bearing 
property such as shape factor, aspect ratio, etc. Bulging of the 
elastomer at the free edge causes an elongation in the vertical 
direction. Simple calculations suggest that it is a function of e,/ 
S2, which would mean that bearing F 8, whose shape factor of 
13.3 was twice that of the others, should not have started split-
ting until well after the others. Bearing F8 split at an average 
compressive stress and strain of 1.0 ksi and 7.8 percent, com-
pared to an average for the shape factor 6.67 bearings of 1.17 
ksi and 6.6 percent strain. The differences between these values 
are of the same order as the scatter in the data and, therefore, 
cannot be considered significant. Calculation of the elongation 
around the bulge, though rational, therefore fails to provide an 
estimate of load at splitting. Little choice remains but to take 
the minimum, or average, value from the tests. The minimum 
compressive stress at splitting was 0.8 ksi, the mean was 1.143 
ksi, and the mean minus two standard deviations was 0.691 ksi. 

The strength coefficients, c, at rupture varied from 0.64 to 
0.79. They were based on the code-required minimum rupture 
strength of 800 lb/in, for the fiberglass, because no test results 
were available. These c, values are close to the value of 2/3  which 
is proposed for use with steel-reinforced bearings of all shapes. 

The effect of aspect ratio can be studied using bearings Fl, 
F7, and F9. The square and 2:1 rectangle had essentially the 
same c, value, while that of the 4:1 rectangle (F-9) was 23 percent 
higher. These results are in agreement with the theory, but are 
the opposite of what was found for steel-reinforced bearings at 
fracture. They probably also reflect the fact that woven fiber 
reinforcement has little ductility and, therefore, unlike the steel 
bearings, the compact shapes gained little from inelastic redis-
tribution. However, the use of Eq. B-16 with c equal to 2/3  still 
gives acceptable results for fiber-reinforced bearings of all aspect 
ratios. 

The effect of holes on strength was surprising. Fiberglass yarn, 
like all cloth, has virtually no shearing stiffness or strength, so 
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Figure B-15. Cross-section through fiberglass-reinforced pad. 

Table B-5. Fiberglass-reinforced specimens. 

Brg 
No. 

Plan 
Dimensions 

(in) 

Stress at 
First Split 

(ksi) 

Stress at 
Rupture 
(ksi) 

F 	1 10 x 10 1.4 2.3 

F2 lOxlO 1.2 2.5 

F 3 10 x 10 0.8 2.1 

F 5 10 	in dia 1.5 2.2 

F 6 7.5 x 	15 - 2.1 

F 7 7.5 x 	15 1.1 2.3 

F 8 20 x 20 1.0 2.8 

F 9 6.25 x 25 1.0 2.8 

it cannot redistribute the stresses around a hole in the same 
way that a steel plate can. Yet, bearing F2 with one central hole 
failed at a load 10 percent higher than Fl which had no hole. 
Scatter in the results is larger than any trend, and it appears 
that holes representing a small percentage of the bearing plan 
area have only an insignificant effect on rupture strength. The 
test results do, however, show that holes make the bearing more 
flexible by an amount which is about twice that implied by using 
a shape factor modified to account for the extra free surface 
around the holes. 

Most of the bearings had saw-cut edges on all 4 sides. Bearing 
F9 had one untrimmed factory edge with about 0.1 in. of elas-
tomer cover over the ends of the fiberglass. Even after being 
loaded to 33 percent compressive strain and sustaining a lot of 
damage internally and to the other edges, the edge with cover 
appeared undamaged. This suggests that the cover is effective 
in preventing horizontal edge splits but also that undamaged 
cover should not be taken as an indicator that the interior of 
the bearing is functioning properly. However, most bearings will 
have no cover because they are manufactured in large sheets 
and cut to size with a band saw. 

DIRECT COMPRESSION AT sERvIcE LOADS 

General 

Seven pairs of bearings were tested at service load levels in 
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order to investigate steel stresses and overall load-deflection 
behavior. A variety of configurations were chosen to permit 
study of the effects of plan geometry and size. All bearings were 
designed to have the same shape factor (5.0), and all but two, 
to have the same area (64 in.') in order to eliminate any vari-
ations due to these two effects. The last two bearings had areas 
of 32 in.2  and 128 in.' in order to investigate the effects of size. 

Most of the bearings were fabricated with no top or bottom 
cover and had strain gages attached directly to the plates. To 
avoid crushing the gages, a spacer plate was placed between the 
instrumented plate of the bearing and the loading head. The 
spacer plate had slots milled in it which bridged the gages and 
allowed the lead wires to be brought out to the data acquisition 
system. Vertical deflection was measured by averaging the read-
ings from four LVDT's, one at each corner of the bearing. The 
bearings were generally tested in pairs in order to provide a 
greater total elastomer thickness (giving larger total deflections 
that were easier to read accurately) and to average out any 
effects of irregular layer thickness. The layer thicknesses were 
rather uneven and varied both over any given layer and among 
different layers of the same bearings. The load deflection rela-
tionships had the expected form, but great difficulties were 
experienced with the strain gages, as described below, and the 
data from them were ultimately of little use. 

Load Deflection Behavior 

Average stress-strain plots for four bearings are shown to-
gether in Figure B-16. They were superimposed by aligning the 
point on each curve at which the compressive stress is 250 psi, 
in order to eliminate spurious discrepancies caused by differ-
ences in the strain zeros. The curves are clearly nonlinear, and 
they can be approximated by any of the three proposed (3, 20, 
21) nonlinear expressions, or by Eq. B-8c, to give 

= IC 	 (B- 17a) 

E 
=f.(X 2  - it) 	 (B-17b) 

= f. E (it - 1) 	 (13-17c) 

= f 	[(1 - E)4 - 1] 	(13-17d) 

where it = 1 - 
These can be expanded to give, respectively, 

fE (e + 3 €2  + 6 e + 10 	+ . . . .) (B-18a) 

fE (€ + e 2  + Cc  + Cc  + ....) (Bl8b) 

0•,, 	fE (€ + e 2  + Cc3  + Cc4  + . . . .) (B-18c) 

orc =  fc E (ç + 2.5 E 2  + 5 
+ 8.75 e,' + . . . .) 	(B-18d) 

Equations B- 1 7b and B-i 7c, the kinetic theory and the incre-
mental approach, will clearly give very similar results, partic-
ularly for small e values. All four equations were fitted to the 
results from the square bearing (A 5) by shifting them along 
the strain axis and choosing a value for Ejso that they coincided 
with the test curve at250 psi and 3,100 psi. They are shown 
in Figure B-17. None of the equations is sufficiently nonlinear, 
and it was found that Eq. B-9 fitted well with n = 10 if the 

Figure B-16. Influence of plan 
shape on measured compressive 
stress-strain curves (each bear-
ing has area = 64 in., shape fac-
tor = 5). 
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2.0 

1.0 

0 
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strains were shifted so that the theoretical and experimental 
curves matched at 250 psi. This is shown on Figure B- 16, but 
it should be recalled that Eq. B-9 has no rational basis. 

Figure B- 16 shows that, of the rectangular bearings with the 
same shape factor, a larger aspect ratio leads to a less stiff 
bearing, which is in agreement with the predictions of linear 
theory (see Ref 1 Fig. 17). 

Steel Stresses 

Data from the strain gages attached to the steel plates proved 
disappointingly erratic. Strains bore little or no relation to the-
oretically predicted patterns or magnitudes, and in some cases 
even changed direction during monotonic loading of the bearing. 

Several potential causes of error were investigated. Lateral 
restraint of the reinforcement due to friction against the test 
platens was ruled out by greasing the interface between them. 
Effects of transverse bending of the reinforcement as it bridged 
the slot milled in the spacer plate were investigated theoretically 
and found to cause less than 1 percent error in the strain read-
ings. It is believed that flattening out of slight initial curvatures 
in the bearings may have been responsible for the difficulties. 
This has been shown theoretically (35) to cause errors in the 
strains that can be much larger than the tensile strain to be 
measured. 

SUMMARY AND CONCLUSIONS 

1. Reinforcement Stresses. Equations are available which pre-
dict reliably the load to cause first yield in the reinforcement 
of a steel-reinforced bearing without dowel holes. The equations' 
validity was demonstrated for a wide variety of shapes by the 
good agreement between the kink in the experimental load-
deflection curve and the theoretically predicted load to cause 
yield. Reliable, direct measurements of the steel strains could 
not be obtained. 

The average compressive stress to cause yielding of the re-
inforcement depends on the ratio of elastomer to steel layer 
thicknesses, but not on the plan area of the bearing. 

Elastomer layers of nonuniform thickness can reduce the loads 
to cause yield and fracture in the reinforcement by a factor of 
2. 

Considerable reserve strength beyond first yield exists in steel-
reinforced bearings of compact shape and without holes. This 
is attributed to strain hardening and to inelastic stress redistri-
bution. Less inelastic redistribution is possible as the plan shape 
becomes more elongated. 

A central hole in the steel but not the elastomer was shown 
theoretically to cause the stress to increase by up to 100 percent. 
Problems were encountered in predicting steel stress increases 
when the hole penetrated both steel and elastomer. The best 
estimate, based on linear finite element analysis, is that the 
increase is approximately 100 percent. 

Experimental confirmation of first yield was difficult because 
of the problems in detecting from a load deflection plot a highly 
localized first yield. The hole was also found to cause a signif-
icant reduction in the post yield strength, but the effect was 
most prevalent in square and circular bearings and virtually 
nonexistent in the 4:1 rectangle. Two holes placed away from 
the center were slightly less damaging than one at the center. 
Holes generally caused a smaller reduction in experimental frac-
ture load than the factor of 2.0 theoretically predicted for the 
load to cause first yield. 

01- 	 Eqn. B-17b 

Eqns. B-17a,b,c 

5 

Eqn.

Measured 
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Figure B-i 7. Comparison of nonlinear compression theories with 
measured data. 

Reinforcement failure in fiberglass-reinforced bearings can be 
predicted using the same equations as are used for steel-rein-
forced bearings, provided the actual, and not the nominal, layer 
thicknesses are used. 

Holes in fiberglass-reinforced bearings have a negligible effect 
on the rupture strength. 

Debonding. Debonding at the steel-elastomer interface in-
itiated at a wide range of stresses from 3,900 to 8,000 psi in the 
various bearings tested. It did not correlate well with any par-
ticular property of the bearing or applied stress. 

Conventional linear theories are inadequate to describe prop-
erly the true conditions of stress in the elastomer at the crucial 
corner of the steel-elastomer interface, at which a stress con-
centration exists. 

In the fiberglass-reinforced test bearings, the in. layers from 
which they were built up started to separate at their outer edges 
when the compressive stress reached about 1,000 psi. This stress 
appeared to hold true regardless of shape factor. In some spec-
imens the reinforcing layer completely separated from the ad-
jacent elastomer at about the load required to rupture the 
reinforcement. 

Load-Deflection Relationships. The load-deflection rela-
tionship of all bearings was found to be nonlinear before the 
reinforcement yielded. The various rationally derived theoretical 
expressions are not sufficiently nonlinear to describe the rela-
tionship well. 

Stiffness of steel-reinforced bearings is a function of both shape 
factor and plan shape. For a given shape factor linear theory 
shows compact shapes to be stiffer, and this was confirmed in 
the nonlinear test results. 

The stiffnesses of the fiberglass-reinforced bearings appeared 
to be essentially independent of shape factor and plan shape. 
This may have been due to elastic stretching of the reinforcement 
and, in the higher shape factors tested, to bulk compression of 
the elastomer. 

Holes made both types of reinforced bearing more flexible. 
In the steel-reinforced bearings the difference could be ade-
quately described by using a modified shape factor which ac-
counts for the perimeter added and plan area lost as a result of 
the hole. This procedure underestimated the, change in stiffness 
in the fiber-reinforced bearings. 
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APPENDIX C 

ROTATIONAL DEFORMATIONS 

INTRODUCTION 

Almost all bearings have to accommodate some relative ro-
tation between the top and bottom surfaces. It may be caused 
by a lack of parallelism between girder and seat, or by rotations 
of the end of the girder due to dead and live loads. The resulting 
deformations of the bearing are referred to in this study as 
rotational deformations. 

Two aspects are of interest to the designer: damage to the 
bearing and adverse effects on the adjoining structural com-
ponents. The bearing could suffer damage if the combination 
of compression plus rotational deformations causes excessive 
bulging and shear strains in the elastomer, leading to debonding. 
In extreme cases lift-off may occur and the nonuniform com-
pressive stress distribution could lead to bending of the steel 
plates. Rotational deformation also causes the location of the 
compressive force on the substructure to shift. In many cases 
the moment induced will be negligible compared with the mem-
ber capacities. However, if the members are quite slender, a 
reliable estimate of the bearing's moment-rotation characteris-
tics is needed to predict the eccentricity of the load. 

Theoretical analyses of rotational deformations are first re-
viewed. Two types of test were performed, and these are dis-
cussed next. Some were eccentric load tests, in which the 
eccentricity was held constant while the load was increased, and 
others were true rotation tests in which a variable rotation was 
applied to the top surface at a constant compressive load and 
the moment was measured. A number of true rotation tests were 
conducted at different average compressive stresses. 

THEORY 

Theoretical analyses based on small deflections have been 
presented (3, 16, 18, 36) which follow closely the lines of similar 
analyses for compression, except that the compressive strain is 
assumed to vary linearly across the bearing. The analyses all 
depend on the same assumptions as do the closed-form compres-
sion theories (i.e., small deflections, parabolic bulging, and plane 
sections remaining plane) so they are subject to the same short-
comings. 

The equations for rotational stiffness are all of the form 

M=E,I-=f,EI 	 (C-la) 

where 

f,=A,+B,S2 	 (C-lb)  

for the elastomer. Conversy (16) treated the problem in one step 
and covcrcd both compressible and incompressible csec His 
analysis gives A, = 0 for all rectangular shapes. This clearly 
becomes incorrect as h, tends to infinity and S tends to zero, 
under which conditions A, should approach 1.0. Rejcha (18) 
performed a similar analysis, but for the incompressible case 
only. 

Gent and Meinecke (36) split the problem into two parts, but 
treated only the incompressible case. In the first part, the ro-
tation is applied to the top surface, and the elastomer undergoes 
free lateral expansion. In the second, vertical displacements are 
held fixed while shear stresses are applied at the elastomer-steel 
interface to restore the conditions of zero lateral displacement. 
The first step gives the coefficient A,, for which the empirical 
expression 

2' WL+4h,2  ' 
A, 	- 	

+ L2  + 8h,2) 	(C-2) 

was presented, where L and W represent the sides of a rectan-
gulâr bearing or the axes of an elliptical bearing, and h, is the 
elastomer layer thickness. A, thus varies from 1.33 for an infinite 
strip to 1.00 for a compact shape. 

The analysis for the second step was not presented, but the 
final equation is identical to the special case of E/K = 0 (i.e., 
complete incompressibility) in Conversy's analysis. The more 
general form, adapted from (3), is 

24'
1 	

L' 	1 1 + 
	. 

IT'. 

( L 	nir WQ) 
1 - 	_____ tanh 	 (C-3a) 

nITWQ,, 	L 

where 

E L 2 

	

Q2 = 1 + 
k(h) 	

(C-3b) 

This expression is for the case whcn the top surface rotates 
about an axis parallel to the side which is W long. This axis is 
referred to as the transverse axis, because bearings are usually 
placed so that they are perpendicular to the longitudinal axis 
of the bridge girders. B, is plotted against aspect ratio L / Was 
a solid line in Figure C- 1 for E/K = 0. In this case B, is the 
same for all shape factors. When bulk compressibility is taken 
into account, B, decreases and depends slightly on ElK, 5, and 
L / W However, analysis of these results showed that the com-
pressible case could be approximated well by the empirical equa-
tion 

A, and B, are constants depending on the plan geometry and 
the value of E/K (Young's modulus divided by bulk modulus) E',E,ck,K 	

(C-4) 
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where E',, E, = effective moduli for rotational deformations, 
respectively, including and excluding compressibility; K = bulk 
modulus of elastomer; and Ck, = stiffness constant for rotational 
deformations. 

Correlating Eq. C-4 against the more rigorously derived the- 
oretical results from Ref. 16 showed that the constant Ck, lay 
between 0.64 and 0.70 in all cases for 3 < S < 12 and 0 < 
E/K < 0.002; therefore, a single value of 0.66 appears to be a 
reasonable compromise. Bulk modulus is difficult to measure 
precisely, but a value of E/K = 0.001 is often taken as rep-
resentative of common bridge bearing materials. The most ex-
treme case (S = 12, E/K = 0.002) is shown in Figure C-1 as 
a dashed line. B, lies in the range 0.5-1.0 for most practical 
bearing shapes, therefore, for practical shape factors of 5 and 
above the rotational stiffness depends primarily on B,, and the 
precise value of A, is relatively unimportant. 

No analysis of rotation of circular bearings is known. 
Tests show that the compressive load-deflection curve for a 

bearing is nonlinear, and the same might be expected for ro-
tation. On this basis Tamhankar and Chhauda (37) proposed 
that a stress-dependent value of rotational modulus be used, in 
which E, is taken to be the same as the stress-dependent 
compression modulus, E,, which can be determined experimen-
tally. Gent and Meinecke (36) point out that this could lead to 
substantial errors even in the linear range, where E, is 3 to 5 

times as large as E,. It is also reasonable to suppose that moment-
rotation curves will be less nonlinear than compressive force-
deflection curves because rotation requires no change in volume 
of the elastomer between the steel plates, whereas compression 
does. However, Eq. C- 16 suggests that the rotational stiffness 
will increase when the bearing is compressed because h, becomes 
smaller and S, larger. Both aspects of behavior were confirmed 
in the tests performed in this study. 

Shear strains in the elastomer (16) may be expressed in the 
form 

= g, 9 - 	 (C-5a) 

where 

	

g, = C,S 	 (C-5b) 

o = relative rotation between top and bottom surfaces of the 
bearing 

and 

12 	L  nITW 
= (i + 	 ( - sech 

L Q.) (C-Sc) 

C, is plotted against L/ Win Figure C-2. As with B,, Cr is the 
same for all shape factors when E/K = 0, and Cr decreases 
somewhat for the compressible case, in a manner depending on 
ElK, S, and L/W. 

It is useful to compare y, with y, (the shear strain caused by 
compression) when both cause the same compressive strain at 
the edge of the bearing. If this strain is E, then 

	

= C,Se 	 (C-6a) 

	

Yr = C,S€ 	 (C-6b) 

Incompressible 

1~i = E .002 
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Figure C-I. Rotational stiffness coefficient B vs. aspect ratio. 

where C, is defined in Appendix B. 
Thus 

2 	 (C-7) 
ye Ce 

and this ratio is plotted against L/Win Figure C-3. 
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Figure C-2. Dimensionless shear strain due to rotation vs. aspect 
ratio. 
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Figure C-3. Ratio ofshear strains due to rotation and compression 
vs. aspect ratio. 

Figure C-4. Nondimensionalized allowable rotation vs. aspect ra-
tio. 

The solid line represents the incompressible case for all shape 
factors, and the dashed line represents the extreme case of com-
pressibility considered. The shearing strain for rotation is seen 
to be /3  to 2/3  of that caused by compression for common bearing 
shapes with LI W < 1.0. 

Three significant stages of rotation may be defined which 
could be used as criteria for design. They are: 

Net upwards movement of the rising edge of the bearing 
(i.e., the upward movement due to rotation exceeds the down-
ward movement due to compression). 

Reversal of shear strain at the rising edge (i.e., the shear 
strain due to rotation becomes greater than and opposite to that 
due to compression). 

Edge loading (i.e., lift-off has occurred and the rotation 
of the girder is greater than the rotation of the top surface of 
the bearing, so the girder lifts off everywhere except at one 
edge). 

The rotations needed to cause the first two are plotted in 
Figure C-4. 

The first criterion must result in vertical tensile stress in the 
elastomer at the outer edge. However, such tensile stress may, 
in fact, occur at smaller rotations. Simple calculations, taking 
into account bulging, show that overall compression on the 
bearing causes the outer face of the elastomeric layer to stretch 
vertically if the shape factor is low. If, for medium shape factors, 
this effect is combined with rotation, net tension could occur 
earlier than it would if it was predicted on the basis of rotation 
alone. 

The second criterion could be important in light of the fact 
that resistance to fatigue damage has been found to be signifi-
cantly better (38) when the material does not undergo strain 
reversals. However, it should be noted that Eq. C-5a predicts 
only the maximum shear strain, which occurs in the middle of 
the sides parallel to the rotation axis. 

The third criterion represents a highly undesirable limit state 
but requires rotations about 5 times as large as those for the 
second criterion. The calculations used to predict it are based 
on the assumption that the top surface of the bearing rotates 
as a rigid body. In practice, such edge loading would probably 
cause the reinforcement to bend; therefore, the calculated value 
represents an upperbound to the rotation required to cause edge 
loading. 

EXPERIMENTS 

Two sets of tests were performed to evaluate rotation: true 
rotation tests in which moment was applied at a constant 
compression load, and eccentric load tests in which increasing 
load was applied at constant eccentricity. Previous tests con-
ducted by others have used eccentric loads or a fixed rotation 
applied through a tapered load plate (36, 37), largely because 
no special equipment is required. However, the applied moment 
is difficult to control and measure accurately; therefore, any 
moment-rotation curves at constant load derived from the data 
are subject to larger potential for error. 

True Rotation Tests 

The test rig shown in Figure C-S was designed and built for 
rotation tests at constant compression. The test bearings are 
placed between two partial cylinders of hardened steel, inter-
leaved with enough steel packer plates to ensure that the two 
cylindrical surfaces lie on a circle. Two lever arms are attached 
to each partial cylinder, and moment is applied by means of a 
threaded rod between them acting through a load cell. Com-
pressive load is applied by a universal test machine through the 
partial cylinders. When the nut on the threaded rod is advanced, 
the lever arms are pulled together, the two partial cylinders roll, 
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and the upper and lower surfaces of the test bearings rotate with 
respect to each other. The only resistance to rotation inherent 
in the rig is that due to rolling friction, which is small. 

The vertical displacement of the bearings changes by only a 
second-order amount, given in this case by 2(1 - cos 0) in., 
where 0 is the total rotation of one lever arm with respect to 
the other. If the compressive load applied on the universal test 
machine is kept constant, the total compressive load on the 
bearings increases slightly with moment, due to the load in the 
threaded rod. However, the effect is small. Vertical deflections 
are measured using four LVDT's at the corners of the partial 
cylinders, and rotations are calculated from them. 

Several pilot tests were run, and details of the rig were mod-
ified to improve performance. Then, in the main test sequence, 
three pairs of bearings were tested in four configurations, shown 
in Table C-i. Each set of bearings was first subjected to a 
concentric compression test in the rig up to 2,000 psi, to establish 
a load deflection relationship. That load was released, and then 
rotation tests were conducted at constant compressive stresses 
of 500, 750, 1,000, and 1,250 psi. 

The test procedure was as follows. The arms of the rig were 
first blocked up in a horizontal position, with no vertical load 
on the specimen. Zero readings were taken. A 1 -kip compressive 
load was applied, which was enough to hold the rig in place, 
and the arms were released. Their weight caused them both to 
drop slightly, thereby imposing a small amount of shear dis-
placement on the bearings. The compressive load was raised to 
the desired value, and relative rotation was then imposed using 
the nut and threaded rod. 

The bearings eventually lifted off the center plate placed be-
tween them. Lift-off was detected by means of trying to insert 
a piece of paper in the gap or by placing a cotton thread between 
bearing and plate before the test, hanging a small weight on it 
and watching for its release. Neither method was perfect, but 
they indicated roughly when lift-off occurred. Lift-off always 
started at the corners of the bearings and then progressed to 
the middle of the tension edge, which is the location for which 
it is reported. 

Table C-i. Bearings for true rotation tests. 

Bearing Shape 
Elastomer Layers 
Number/Thickness 

Steel 	Layers 
Number/Thicksess 

A 5 x 	8' 4 / 0.375 5 / 0.066 

A 7 dia 2 / 0.375 3 / 0.118 

A 	11 11.33'x5.66" 2 / 0.375 3 / 0.118 

Note: Type A 11 bearings were tested about strong and weak 
ases separately. 

The maximum relative rotation was limited so as not to inflict 
damage on the compression edge of the bearings. In the case 
of the Type A 11 bearings tested about their strong axis, it was 
limited by the test rig capacity. 

Results are plotted in Figures C-6 through C-9. Each figure 
shows moment-rotation curves for one bearing at the four dif-
ferent compressive stresses. Lift-off is also indicated. The four 
curves have been slightly shifted along the rotation axis so they 
all pass through a common origin. 

Several aspects of the behavior are worth noting. First, the 
curves are close to linear after an initial slightly stiffer segment. 
This linearity is in marked contrast to the distinctly nonlinear 
shape of measured compressive load-deflection curves. Second, 
some hysteresis is present, as is almost always the case in tests 
on elastomer products. Third, the rotational stiffness consist-
ently increases with applied compressive stress for all bearings. 

An attempt was made to correlate the measured and predicted 
rotational stiffnesses, but the accuracy of the results is limited 
by the fact that no experiments could be done at zero com-
pressive stress, whereas that is the only condition for which a 
formal theory exists. The apparent variability of material prop- 
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erties with strain (discussed in Appen. G) and the (slight) non-
linearity of the moment-rotation curves both created difficulties 
as well. 

The stiffness selected for comparisons was the secant value 
at the largest practical rotation for each bearing (1.0° for A 9 
and A 11 (weak), 0.90  for A 5 and 0.5° for A 11 (strong)). These 
are given in Table C-2, and in Figure C-10 as multiples of the 
stiffness at 500 psi. The increase in stiffness with compressive 
stress is different for each bearing, and was largest for the A 
11 (strong) bearing. The fact that the A 11 (weak) bearing 
showed the next greatest stiffening suggests that stiffening is 
more closely related to material properties than plan shape, but 
this hypothesis is tentative because of the difficulties noted pre- 

viously. Back-projecting the curves to a compressive stress of 0 
psi suggests that the stiffness at 0 psi lies between 0.8 and 1.0 
times the stiffness at 500 psi. Assuming the 0.8 figures, E = 
351 psi (from the shear tests described in Appen. G), and A, 
= 1.0, the "measured" B, values given in Table C-2 are obtained. 
No basis for comparison exists for the circular bearing, but the 
three rectangular bearings are compared with theoretical B, 
values from Figure C- 1. ElK was taken as 0.001 . The measured 
values are smaller than the theoretical values, with the difference 
steadily increasing with L / W. In all cases the correlation would 
be slightly closer if A, was taken as 0.0, as implied by Conversy 
(16). The ratio of measured/theoretical stiffness would then 
reach 0.90 for the narrowest bearing (A 11), which is reasonable 
in view of the uncertainties involved. 
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No reliable way of measuring the shear stress or strain in the 
elastomer was found, so the predicted values could not be ver-
ified. The theoretical strains are based on assumptions such as 
plane sections remaining plane and parabolic bulging of elas-
tomer. Observations during the experiments suggest that these 
assumptions are approximately correct, but it is likely that local 
strains would be very sensitive to minor variations from the 
assumed displacement field. This is particularly true at the crit-
ical location, at the edge of the steel-elastomer interface. As a 
result, only theoretical predictions are available for the strains 
in the elastomer, and these results should be viewed with caution. 
Strain gages were attached to the steel reinforcement during 
some of these tests. Readings from them were often erratic under 
increasing compressive load, which was attributed to initial im-
perfections. However, the measured strains were insensitive to 
increased rotation, indicating that the stress (and strain) in the 
reinforcement are not greatly influenced by moment or rotation. 
This finding is in agreement with theoretical predictions. 

Eccentric Load Tests 

A number of bearings of different size, shape, and shape factor 
were tested under rotation induced by eccentric loading. The 
load was applied through a I in. X 1 in. steel bar, which was 
chamfered so that the loaded area was /4 in. wide, causing the 
bar to act much like a knife edge. The use of a knife edge 
required heavy plates to distribute the load evenly to the bearing, 
as shown in Figure C-Il. The knife edge loading was applied 
at different eccentricities, and the compressive deflection and 
rotation were measured with 4 LVDT's as shown in the pho-
tograph. The thick loading plates rotated with the bearing, in-
troducing a shear deformation in addition to compression and 
rotation, and increasing the eccentricity of the load on the bear-
ing. This added eccentricity must be added to the knife edge 
eccentricity in computing the true moment on the bearing. 

Square, circular, and rectangular bearings were tested with 
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Figure C-JO. Comparison of the normalized experimental rota-
tional stiffness for different bearing shapes. 

Table C-2. Stiffnesses from true rotation tests. 

Meas. 	Stiffness E1(ci.0)  
Bearing shape (In-kip/deg) (in-kip) (mean) (then) theo 

A S 8 	a 8 25.0 1719 0.470 0.713 0.659 
26.7 
32.5 
38.9 

A 7 9 	dia 42.2 1455 0.330  
48.5 
58.2 
69.0 

A 	11 5.66xJl.33" 19.6 674 0.404 0.495 0.817 
(Weak) 22.6 

28.4 
33.4 

A 11 11.33'x5.66' 108.0 3713 0.570 0.995 0.573 
(Strong) 137.0 

163.0 
198.8 

shape factors varying between 5 and 10. The material was nom-
inally the same 55 hardness elastomer for all tests. The loads 
were applied with a 2.4 million pound Baldwin Hydraulic Test 
machine, and the loads and deflections were recorded with a 
Hewlett Packard computerized data acquisition system. The 
tests are summarized in Table C-3. A typical load vs. rotation 
curve for a 16-in, square bearing with different eccentricities is 

I 

— 
Figure C-Il. Test setup for the eccentric load rotation tests. 
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Table C-3. Eccentric load test specimens. 

Max. 
Elastsmer Shape Ecc. Load 

Bearing Shape Layers Factor (in) (kip) 

5 A 16" dia 4 9 0.368 10.93 0 600 
1 600 
2 600 
4 600 

6 A 16" 	x 	16" 4 @ 0.368 10.89 0 300 
1 750 
2.67 750 
4 750 

8 A 16' 	x 6" 4 9 0.369 5.95 0 300 
1 225 
1.5 150 

9 A 11.75"x 23.75 4 8 0.392 10.26 0 775 
1 700 
2 700 
3 775 

9 AA 5.88x 11.88 4 8 0.392 5.0 0 750* 
9 AB 5.88x 11.88 4 8 0.392 5.0 0 565* 

9 AC 5.88"x 	11.88' 4 	8 	0.392' 5.0 1.46 240 
9 AD 5.88"x 	11.88' 4 	8 	0.392' 5.0 0.97 420 

(Note: * denotes test to reinforcement failure) 

shown in Figure C-12. The figure shows that there was a small 
amount of rotation when the eccentricity was nominally zero. 
This is attributed to the fact that the specimen could only be 
aligned to an accuracy of about ± X6in. in the rig. The effect 
was observed in all tests with this rig. Moment-rotation curves 
at fixed compressive stress levels were then obtained by taking 
a single moment-rotation pair from each eccentric loading curve. 
Figure C-13 illustrates typical moment-rotation curves for the 
bearing in Figure C-12. All four curves are nearly linear for 
small eccentricities, but they become nonlinear for large eccen- 

tricities. This nonlinearity appeared to be caused by lift-off of 
the load plates from the bearing, which invariably occurred at 
the largest eccentricities. Lift-off did not appear to cause any 
distress within the elastomer, but it caused severe bending of 
the plates and increased bulging and strains in the elastomer. 
It is believed that these deformations greatly increase the po-
tential for fatigue damage, rupture of the plates and delamination 
of the elastomer, and should be avoided. The slope of the mo-
ment-rotation curves generally increased as the compressive load 
increased, as observed in the true rotation tests. 

Attempts were made to test two steel-reinforced bearings (9 
AC and 9 AD) and one fiher.reinforreil hearing to failure under 

eccentric compression. The two steel-reinforced bearings suf-
fered extensive debonding, and the loading was stopped before 
the reinforcement fractured. Specimen 9 AC was tested at 1.5-
in. eccentricity (one-fourth of the bearing width) up to 740 kip 
(3,300 psi), at which load the rotation was large enough to cause 
hard contact at one of the plates supporting the knife edge. At 
the tension edge, lift-off occurred and the elastomer displaced 
inwards to a concave shape. Debonding occurred on both sides 
of the bearing, but on the tension side it was aggravated by 
debonding damage from a previous test. Speciman 9 AD was 
loaded at 1-in, eccentricity (at the kern) to 420 kip (5,830 psi), 
at which load extensive debonding had taken place. The test 
was again stopped because of hard contact. Yielding and stretch-
ing of the plates was also evident because they buckled when 
the elastomer tried to return to its original shape on unloading. 

An attempt was made to test a fiberglass-reinforced bearing 
(specimen F-6) to destruction at an eccentricity of 2.0 in. (well 
outside the kern) but the bearing squeezed out of the test rig 
sideways. It was repositioned in the rig, and then loaded to 
failure of the reinforcement (at 2.1 ksi average compressive 
stress) at an eccentricity of 0.75 in. This is about 25 percent 
below the strength of the concentrically loaded bearing with no 
holes, and about the same as the concentrically loaded bearing 
with 2 holes. 
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Figure C-12. Load-rotation test results at different eccentricities 	Figure C-13. Moment-rotation curves derived from the eccentric 
for a 16-in, square bearing, 	 load tests for a 16-in, square bearing. 
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SUMMARY AND CONCLUSIONS 

Tests were conducted to study eccentric compression and 
constant compression accompanied by variable moment. 

Eccentric load tests on steel-reinforced bearings showed a 
moment rotation curve that was roughly linear (but softened 
slightly in most cases at higher moments) and had a slope which 
increased with increasing compressive load. 

The true rotation test showed a moment-rotation curve 
that was closer to linear. The rotational stiffness increased with 
compressive load. 

Eccentric load tests on a fiberglass-reinforced bearing 
showed an almost linear, but slightly softening, moment rota-
tion-curve, whose slope was predicted by linear theory, counting 
only the thicker (3/8 in.) layers. 

In tests to failure with eccentric load: 

The fiberglass-reinforced bearing slid out of place when the  

eccentricity was 2 in. (158 percent of the kern distance). 
The fiberglass reinforcement broke at a load about 25 per-
cent lower than the concentric failure load when tested at 
0.75-in, eccentricity (60 percent of the kern distance). 
In the steel-reinforced bearing loaded at the kern point, the 
reinforcement yielded and debonded, but limitations of the 
rig caused the test to be stopped before fracture of the 
reinforcement. 
In the steel-reinforced bearing loaded at 1.5 in. (150 percent 
of the kern distance) no yield occurred, but the test was 
stopped because the test rig reached its maximum rotation. 
Debonding was extensive. 

6. The linear elastic analysis methods were evaluated. They 
appear to provide good general comparison with experimenal 
results for rotational stiffness. It was not possible to verify ex-
perimentally the strains in the elastomer predicted by theory. 

APPENDIX D 

SHEAR AND COMBINED LOADING 

INTRODUCTION 

Shear deformation is a very important aspect of elastomeric 
bridge bearing behavior. Shear deformation accommodates ther-
mal expansion and contraction of the bridge superstructure and 
creep and shrinkage of concrete girders. In some elastically 
restrained structures, shear stresses in the bearing also resist 
vehicle acceleration and braking forces. Previous research (3) 
has suggested that a shear stiffness test on a completed bearing 
is the most reliable measure of quality control for the elastomer 
used. Therefore, a good understanding of shear behavior is es-
sential to bearing design. 

Many factors (3) affect the shear stiffness and general shear 
behavior of elastomeric bearings. The force deflection behavior 
generally appears to be nearly linear and can be approximated 
by the equation 

H=G_s 	 (D- 1) 

where G. is the apparent shear modulus, A is the plan area of 
bearing effective in shear, A is the shear deformation as defined 
in Figure D- 1, H is shear force, and h,, is the total thickness of 
the elastomer. It is generally not practical to test bearings under 
pure shear or even simple shear, because a substantial com-
pressive load is needed to develop the friction required to prevent 
slip under shear loading. This compression causes the bearing 
to bulge, which introduces uncertainty as to the loaded area 
that should be used in Eq. D- 1 (40). Further, the addition of a 
compressive load introduces the potential for instability and 
buckling, which may greatly modify the apparent shear stiffness 

of the elastomer. Porter and Meinecke (40) suggest that there 
is a geometric effect associated with shear deformation. They 
included a horizontal component of the compression load when 

1 

(a) 

Figure D-1. Geometry and typical shear deformation of an 
elastomeric bearing. 



Figure D-3. Test rig for shear loading. 
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analyzing the experimental results of bearings with a shape 
factor of 0.6. It has also been suggested that the shape and shape 
factor of the bearing may affect the shear behavior, but it is 
generally believed that this effect is smaller than that observed 
for stability and the bulging effect. An experimental program 
was performed to evaluate these effects and to determine which 
effects are important in elastomeric bearing design. Many shear 
tests were performed. Some were used to estimate the material 
properties of the bearings used in the stability tests, and these 
are described in Appendix G. Others were conducted at intervals 
throughout the fatigue tests to obtain a measure of the change 
in bearing stiffness due to cracking, and these tests are discussed 
in Appendix F. This appendix provides an overview of shear 
behavior. The general test configuration is described, and a few 
tests on bearings with different sizes, shapes, and shape factors 
are described in greater detail. General observations from the 
test results and the basic requirements for the performance and 
interpretation of shear test results are presented. The tests de-
scribed in this appendix were conducted in an attempt to address 
several specific questions raised in earlier research (3). These 
include: 

Is the simple shear model (Eq. D-l) reliable for designing 
bearings and predicting their behavior? 

What, if any, failure modes are associated with shear de-
formation and what is a reasonable design limit for it? 

What are the requirements for a repeatable shear test? 
How should the test be performed? How should the results be 
interpreted? What variation in the results must be expected? 

TEST APPARATUS 

Shear tests were performed on different bearings with different 
materials, sizes, shapes, shape factors, loads, and load rates. The 
bearings were always tested in pairs as shown in Figure D-2, 
in conjunction with an applied compression load. The two bear-
ings were separated by a steel plate, to which a horizontal load 
2H was applied. The steel plates were part of a self-equilibrating 
shear frame, which maintained a balance of horizontal shear 
loads but allowed the bearings to deform freely in compression. 
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Figure D-2. General shear test configuration. 

The shear and compressive deformations and the applied loads, 
P and 2H, were measured with LVDT's (linear variable differ-
ential transformers) and load cells, respectively. The data were 
accumulated with a Hewlett Packard computerized data ac-
quisition system. 

Figure D-3 shows two photographs of the test rig, although 
a modified rig (42, 43) was required for the larger circular 
bearings. The compression was applied with a Baldwin hydraulic 
testing machine, and it was held as nearly constant as possible 
during the shear deformation. The applied shearing load, 211, 
was applied with a pair of hydraulic center-hole rams to which 
the hydraulic pressure was applied by a pump. Each ram acted 
only in compression, and the pair were oriented in opposing 
directions to permit cyclic loading. The vertical deflections were 
measured at the four corners of the test rig, and shear deflections 
were measured at two locations. 



Figure D-5. A typical bearing fully strained in shear. 
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The shear load was cycled in all tests, including those de-
scribed in Appendixes E, F, and G. In the tests described here, 
the shear strain varied between ± 100 percent strain, and the 
average compressive stress varied between 0 and 3,000 psi. The 
compressive stress was applied and held for a short period before 
the two complete cycles of shear deformation were slowly but 
continuously imposed. Data were taken at intervals during load-
ing. For most tests (43), the two bearings were cut from a single 
sheet so that the material properties and geometry were theo-
retically the same. However, this was impractical for the two 
large circular bearings (42), Table D-1 summarizes the bearing 
sizes, geometry, and load ratios employed in these tests. Strain 
gages were attached to the steel laminates for several of these 
tests, and the steel strains were monitored with the load and 
deformation. 

TEST RESULTS 

Figure D-4 shows a typical cyclic stress strain curve from a 
test conducted with constant compressive load. The nominal 
shear stress is 

T'  = 	 (D-2)  

Table D-1. Properties of bearings used in shear tests. 

Coprvssvv 
lotal Stress Shear 

Plan Layer Elastomer Level Strain 
Dimensions Thickness Thickness (kips) Range 

8' x 8' .375' 1.50' 25 -.60 	to 	..60 
50 .80 to 	*80 
75 -1.0 	to +1.0 
100 -1.0 	to 	+1.0 

4' s 16' .30' .60' 40 75 to 	v.75 
80 -1.0 	to 	+1.0 
120 -1.0 	to 	+1.0 
150 10 	to +1.0 

9 	Ola .425' .85' 25 50 to 	-.50 
50 -1.0 	to 	.1.0 
75 -1.0 	to 	*1.0 
100 -1.0 	to 	+1.0 

5.66' 	x 	1.3' .385' .77' 50 -1.0 	to 	+1.0 
100 10 	to +1.0 
150 -1.0 	to 	*1.0 
200 -1.0 	to 	*1.0 

24' Dia .625' 2.62' 226 -0.0 	to 	+60 
488 -0.0 	to.60 
905 -0.0 	to 	.60 
1357 -0.0 	to 	v.60 

and the nominal strain is 	
200 

Ys = 	 (D-3) 

The curves invariably were approximately linear with a distinct 
observable hysteresis. The stiffness of slope of the curve generally 
decreased for the second and subsequent cycles, but the stiffness 
remained more stable for later cycles. This suggests that a shear 
test will produce more repeatable results if the stiffness of a 
later cycle is employed. Further, the stiffness generally was 
larger at small values of strain than at large values of strain. 

All specimens were cycled to relatively large strains. Figure 
D-5 is a photograph of a typical fully deformed bearing. The 
bearing deformation approximates simple shear with roll-over 
at the corners as noted in previous research (3) and is probably 
due to the stress free boundary that must exist at the edge of 
the bearing. The roll-over is not clearly seen in the photograph. 
It is first visible at shear strains, A,, greater than 50 percent 
and increases dramatically at higher values. Observations during 
the tests showed that extreme roll-over could aggravate de-
bonding of the steel laminates and could potentially damage the 
laminate in bearings with thin reinforcement. Some debonding 
was observed at large shear strains in several of the tests. How-
ever, there was no clear evidence of failure of the reinforcement 
due to shear deformation in any of the bearings. 

Figures D-6, D-7, D-8, and D-9 show the shear stress-strain 
curves for a circular, square, 2 to 1 rectangular, and 4 to I 
rectangular bearing, respectively. The material and shape factors 
were nominally the same for all bearings. The curves represent 
the tirst halt cycle of shear loading of each specimen at different 
compressive loads and clearly illustrate that the shear stiffness 
is influenced by the compressive load. However, the form of 
this inf1iitnci' is not obvious from the plots. It is generally 
believed (3, 41) that the apparent shear modulus, G, is reduced 
with increasing compressive load due to stability effects, as 
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Figure D-4. Typical cyclic shear stress-strain curve. 
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Figure D-6. Shear stress-strain behavior for a circular bearing. 	Figure D- 7. Shear stress-strain behavior for a square bearing. 

Figure D-8. Shear stress-strain behavior for a 2 to 1 rectangular 
bearing. 

Figure D-9. Shear stress-strain behavior for a 4 to 1 rectangular 
bearing. 

Q4Nn DATA 

discussed in detail in Appendix E. However, an increase in G 	100 

also occurs with increasing compressive load because of the 
reduced thickness, the increased bulging, and the correspond- 	75 
ingly increased shear area of the bearing (3, 40). Figure D-10 
combines all of the data of the preceding four figures. This 
suggests that the shape of the bearing does not have a great 	50 

influence on the shear stiffness. Any influence of shape, pre- 
sumably caused by differences in the bending and compression 	

2 stiffness for different shaped bearings, is probably less significant 
than the influence of the applied load. This is particularly true 
if the strains are limited to less than 50 percent. The analysis 
of these effects is discussed in Appendix E, but it should be 	0 	0.25 	0.50 	0.75 	10 

noted that these stability concepts were applied to the four test 	 SHEAR SA 
 

IN 

bearings with only partial success, because the stability and 	Figure D-10. Combined shear stress-strain data for all four bear- 
bulging corrections did not remove all scatter from the data. 	ings. 
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Strain gages were attached to the steel reinforcement for the 
four specimens described earlier. The strains were monitored 
during the application of the compressive load and during ap-
plication of the cyclic shear deformation with the constant 
compression. The steel strains varied significantly with the ap-
plication of the compression load, but they were relatively in-
sensitive to the cyclic shear loads. This suggests that considerable 
stress is introduced into the reinforcing steel by compressive 
load but not by shear force. 

The vertical deflection of the test specimens were monitored 
at the four corners of the bearings. Figures D- 11 and D- 12 show 
typical plots of the average compressive strains (i.e., the average 
vertical deflection divided by the total unloaded elastomer thick-
ness) as a function of shear stress from different compressive 
loads. These figures indicate that the average compressive strain 
tends to increase during shear cycling when the compressive 
load is held constant. The strain increase is largest for the first 
cycle and generally tends to grow smaller for later cycles. This 
apparent softening of the material with cycling is somewhat 
analogous to the reduction in apparent shear stiffness that occurs 
with shear cycling. The average compressive strain also tends 
to be smaller at large shear strain levels. The reason for this 
phenomenon is not clear. Generally, an increase in compressive 
strain implies that bulging is increasing, and therefore the ap-
parent shear stiffness should increase. Thus, the behavior illus-
trated in Figures D- 11 and D- 12 may be symptomatic of a 
nonlinear material behavior, or it may reflect the fact that the 
shear displacement reduces the area effective in resisting 
compression, leading to larger compressive strains. The cause 
cannot be determined with certainty because the effects were 
too small and were not sufficiently consistent from one test to 
another. 

Several shear tests were also performed on a pair of large 
(24-in, diameter) bearings made of natural rubber of nominal 
60 Shore A durometer hardness and a nominal shape factor of 
9.3. The elastomeric compound used in these bearings was dif-
ferent from the others discussed in this appendix, and so the 
curves cannot be compared directly. However, the general stress-
strain behavior was similar to that of the smaller specimens. 
That is, the stress-strain behavior was approximately linear with 
an observable hysteresis. Local debonding was observed at a 
few locations at the extreme loads and deformations. 

SUMMARY AND CONCLUSIONS 

Shear stiffness is an important property in elastomeric 
bridge bearing design, because it controls the magnitude of 
bearing shear forces that are transmitted to the bridge due to 
movements such as creep, shrinkage, and thermal expansion. 
Further, the shear stiffness is probably the most reliable measure 
of the elastic properties of the elastomer, and therefore is a 
reasonable acceptance criterion for elastomeric bearings. 

In evaluating shear behavior, the simple linear model pro-
vided by Eq. D- 1 is suitable for most practical applications. The 
experiments described in this appendix confirmed that the force-
deflection relationship is approximately linear. There is some 
hysteresis and other evidence of nonlinear material behavior, 
but these effects appear to be acceptably small if the apparent 
shear modulus, Ga, is corrected for instability and for bulging 
due to compression. These corrections are discussed in greater 
detail in Appendixes E and G. However, these corrections are 
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Figure D-11. Average shear stress vs. average compressive strain 
for a 4 to 1 rectangular bearing. 
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Figure D-12. Average shear stress vs. average compressive strain 
for a circular bearing. 

not precise, and some scatter in the shear stiffness data must 
be expected. 

A shear test, which is used for the accceptance testing of 
bearings, is best performed with bearings in pairs, because this 
produces a symmetrical test configuration. Further, it tends to 
average out variations in material properties. A compressive 
force is needed to clamp the pair of bearings and to develop the 
friction needed to prevent slip. The shear stiffness decreases 
significantly with the first few cycles of loading, but remains 
fairly stable after that. This suggests that acceptance tests should 
be based on the stiffness of later cycles such as the 5th, inasmuch 
as these are likely to be more repeatable. However, it should be 
remembered that the bearing stiffness relevant to stability or 
deformation in the field is more likely to be related to the stiffness 
during the first cycle and will be slightly larger than the ac-
ceptance test value. 

Bearings subjected to combined shear and compressive 
load exhibit a simple shear type of deformation. However, the 
corners of the bearing begin to roll over if the shear strain 
exceeds approximately 50 percent. The combined shear and 
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compression loading causes a concentration of shear strain at 
the edge of the bearing. This strain concentration causes local 
delamination in some cases. The roll-over effect exacerbates the 
strain problem. Further, roll-over increases the probability of 
damage to the edge of thin steel laminate. In view of these 
factors, it is believed that the shear strain, y, should be limited 
to 50 percent rather than the 70 percent employed in some 
specifications (3). 

Shear stiffness may be affected by the shape of the bearing, 
but the effect appears to be smaller than the compressive load 
effects and may well be caused by differences in the bending 
stiffness of the different shaped bearings. 

Shear deformation does not appear to cause any significant 
stress in the reinforcing steel. 

APPENDIX E 

STABILITY 

INTRODUCTION 

Tall, slender structural components may fail by instability 
rather than material rupture. Elastomeric bearings are no ex-
ception. In addition, their unusual mechanical properties lead 
to complex buckling behavior not found in columns made of 
conventional structural materials, and buckling controls their 
failure at slenderness ratios that seem very low. 

The present AASHTO Specifications (1) require the height 
of a rectangular bearing to be no greater than one-third of its 
least lateral dimension, effectively eliminating any possibility of 
buckling failure. The least restrictive specifications are the now 
outdated BE 1/76 (27), which contain no formal limits but 
advise the designer to investigate buckling when the bearing's 
height-to-width ratio exceeds 1.0. The Australian specifications 
(28) follow BE 1/76, and some bearings have been installed 
there with heights about equal to their widths. Seismic isolation 
bearings often have similar proportions. 

Low bearings with large plan areas resist vertical loads well, 
but they must undergo large shear strains in order to accom-
modate the necessary bridge movements. These strains cause 
large horizontal forces, which can increase the costs of bridge 
piers and foundations. Taller bearings would be less stiff in shear 
and could lead to cost savings in the substructure which would 
more than offset the extra bearing cost. Buckling controls the 
maximum height, so an understanding of it is important if 
designers are to take advantage of the benefits of more slender 
bearings. 

In practice, potential buckling problems are restricted to rein-
forced bearings. An unreinforced pad tall enough to buckle 
would be far too flexible in compression and would have no use 
in bridge engineering. 

THEORETICAL BACKGROUND 

General 

Two features of tall bearing behavior are important: the crit-
ical compressive load to cause buckling and the effective shearing 
stiffness, or transverse stiffness, when a compressive load acts 
simultaneously. The basic Euler theory (45) proves inadequate  

for calculation of either quantity because it is necessary to ac-
count for shear deformations in the bearing (which are ignored 
in the Euler theory but may be large compared to the bending 
deflections in a bearing) and because the bearing geometry 
changes significantly under compressive load. Theories exist for 
modifying the linear Euler theory to include the effects of shear 
flexibility, and they are discussed in the following section. Ac-
counting for the nonlinearities caused by changes in bearing 
geometry is more difficult, and is discussed later in this appendix. 

Linear Theories Including Shear Flexibility 

At least two different ways of including shear deformations 
in a linear buckling theory exist (45). When the shear flexibility 
of the column becomes negligibly small, both approaches return 
the traditional Euler solution, but they give very different critical 
loads for shear-flexible columns. Both are continuum theories 
appropriate for a homogeneous medium, whereas a reinforced 
bearing is a nonhomogeneous composite in which the steel and 
elastomer components have very different properties. If these 
theories are to be applied to reinforced bearings, the way in 
which the equivalent continuum properties are derived and the 
choice of theory are both important. 

Figure E-1 shows free body diagrams for the two theories. 
In both, place sections are assumed to remain plane, but planes 
normal to the center line of the column before loading do not 
remain so after loading. The following relationships then hold. 

The deflection at any point along the center line is defined 
as (u(x), v(x)), and the total rotation of any cross section is 
ii(x). Assuming deflections small enough that (dv/dx) << 1, 
the displacements of a general point (x, y) are 

u(x,y) = ü(x,y) - yiji(x) 	 (E-l) 
v(x,y) 	(x) 	 (E-2) 

Strain-displacement relations: 

_au a aip 
C - - = - - - 

ax ax ax 	
(E-3) 

Yxy 
8u av 

(E-4) 
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Constitutive relations: 

	

= Eç, = E — y 	 (E-5) 

= Gy = G 
G

a

v 
- 	(E-6) 

where E is Young's modulus and G is the shear modulus of the 
material. Force-displacement relations: 

M(x) = 	o-dA - El 	 (E-7) 

V(x) = f ~F sy dA = GAS ( - 	(E-8) 

where A is the area effective in shear, and I is the rotational 
moment of inertia of the cross section. 

The above equations hold for both theories. In Engesser's 
theory (46) (Fig. E-la) the shear force defined by Eq. E-8 is 
assumed to act in a direction perpendicular to the deflected 
center line of the column, giving equilibrium equations 

M=M0 +H(x+)=P 	 (E-9) 

V = H cos () + p sin 
Fx 	

(Ply) 	
(E-lO) 

Fx 

=H+P 
ax 

if second order terms are ignored. 
Combining Eqs. E-7 through E-lO, assuming that u is neg- 

ligible compared to x, and eliminating u gives 

(E-ll) 
~P ( — _6T~) 

In Haringx's theory (47) (Fig. E-lb), the shear force V is 
assumed to act parallel to the rotated plane section, so Eq. E-
9 holds true but Eq. E-lO is replaced by 

V=H+P4i 	 (E-12) 

leading to 

N 
	

N 

	

a) Engesser 	 b) Haringx 

Figure E-1. Free body diagrams for shear-flexible buckling the-

ories. 

Then 

= 2(1 —cos qL) —qL sin qL 

	

H 	 Pq sin qL, 	 (E-16) 
= L (tan qL/2 - 

P \ qL/2 

This is the transverse flexibility of the column. For small 
values of P (i.e., qL < <1), it reduces to 

- 11 / L,L3 " 

-k- - ) 	+ -) 	
(E-17) 

as it should. The flexibility becomes infinite (i.e., the stiffness 
falls to zero) when qL, = nit, where n = 1,2,3 . . . . , or 

FL 2 
=n 2 ,..2 	 (E-18a) 

so 

EI- 
+Pi=—M0 —Hx 	(E-13) 

(1 + 	 where 

(E-18b) 
rr P. 

For a column of length L, which is fixed against rotation at 
both ends but is free to translate, the boundary conditions (for 
both theories) are 

= iJi(L) = 0 	 (E-14) 

For Engesser's approach, setting 

_) 	(E-15a) ZPFA 

q2 
p 

= (E-l5b) 

p = 22 EI/L,,2 	 (E-19a) 

P. = GA. 	 (E-19b) 

Solving the same problem using Haringx's approach, but set-
ting 

= 	lp 	
(E-20) 

1+ 

the solution is once again defined by the same equations (Eqs. 
E-16, E-17, and E-18a). Substituting for gives 
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Pjl+±_l} 	(E-21) 

The critical loads for the two theories are plotted in Figure 
E-2 in dimensionless form, for the first mode (n = 1). For the 

CL 
special case of n = 1, P is designated PE. At low PEIP, (i.e., 

	

slender columns dominated by flexural effects) both approaches 	CL 

tend towards the Euler formula, as might be expected. At high 

1E/'2s (i.e., short columns dominated by shearing effects) they 
give different solutions, converging to asymptotes 

F,, = F 	(Engesser) 	(E-22a) 

and 

F,, = 	 (Haringx) 	(E-22b) 

Since shear-flexible columns are the ones of interest, the selection 
of the right approach is important. 

Gent (41) adapted Haringx's approach to reinforced bearings 
by substituting for El and GA the average rotational stiffness, 
K,, and shear stiffness, K of a multilayer bearing. They were 
derived from the properties for a single elastomer layer, then 
adjusted to allow in the averaging process for the steel thickness. 

The transverse stiffness (the inverse of Eq. E- 17) and the 
buckling load (Eq. E-21) then become 

KT = 
P 	I 	

(E-23) 
4)h,,tanw —1 

0) 

and 

4EIf,f 	2 IT \ 	

I 

- 1 	(E-24) P={.jl+_(_) 

where 

- 	

and
4)h,,V

~O 

__

0) 2EIf, 
l+ 

in which h,, = total elastomer thickness, 4) = total bearing 
thickness (including steel)/h,1, andf, = bending stiffness coef-
ficient. 

Equation E-24 is referred to hereafter as the "Basic Theory." 
Gent performed experiments which demonstrated generally 

good agreement with the theoretical predictions of both buckling 
load and transverse stiffness in the presence of axial load. How-
ever, the test bearings had thick, rigid steel reinforcing plates 
and were relatively slender. The stresses and strains were con-
sequently low, and the conditions in his test resembled closely 
the assumptions underlying the Basic Theory. However, they 
did not reflect conditions to be expected in field bearings. 

This experimental evidence lends strong support to the use 
of Haringx's rather than Engesser's approach for the conditions 
of the tests. Taking the shear force defined by Eq. E-8 as being 
parallel to the rotated plane section also seems reasonable, be-
cause the flexurally rigid reinforcement defines such a plane 

FE/PS 

Figure E-2. Comparison of dimensionless buckling load.' Enges-
ser's and Haringx theories. 

and the shear stresses applied by the elastomer to it would appear 
to be well described by Eq. E-6. Thus, Haringx's approach 
appears to be the most suitable when the reinforcement is flex-
urally rigid and is initially perpendicular to the column center 
line. 

By contrast, the sandwich panel shown in Figure E-3 is better 
characterized by Engesser's equations. If the face sheets are 
idealized as being inextensible and having no bending stiffness, 
and the core has a (low) shear modulus of G, on buckling, the 
change in strain energy of the system is close to 

ALT 	
MIV 

\2
= 1/2Ghb 

,.L 

	J dx 	(E-25a) 

and the change in potential of the load is 

ace Sheet 

1' 
p 

Figure E-3. Buckling of shear panel. 
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v = 1/2 	dx 	(E-25b) J0 (
5x, 

so 

F,, = G bh = GA, = F, 	(E-26) 

This is the Engesser solution for columns short enough to be 

controlled by shearing deformations, and is always lower than 
the Haringx solution. It appears to be the appropriate choice 
when the stiff reinforcement of the composite runs parallel to 
the column axis. If the bending stiffness is truly negligible the 
theory has the surprising property that any shape is a buckling 
mode shape, and all mode shapes give the same buckling load. 

Questions must arise over the choice of theory when the 
column has plates that are either flexible (such as in a fiber-
reinforced bearing) or nonexistent, or when the steel plates are 
poorly aligned. Schapery and Skala's work (48) on helicopter 
rotor bearings with initially curved plates provides a useful 
starting point, but is not conclusive. In the remainder of this 
study only well-made steel-reinforced bearings with flat, parallel 
plates stiff enough to satisfy the Haringx assumptions are con-
sidered. 

The foregoing calculations were made for a column with ends 
that are free to translate but not rotate. An effective length 
factor can be introduced into Eq. E-2 1 to account for other 
boundary conditions, giving 

4 i, 2 EIf, = 	

--' I 	+ 
ci, (4)kh,,)2 

— 1 } (E-27a) 

This gives exact results for three cases (both ends fixed against 
rotation and either free to sway or not, and pinned ends with 
no sway possible) but not when one end is fixed, the other is 
pinned and sway is prevented. Then, the solution is given by 
the roots of the transcendental equation: 

(1 — h,, cot qh,,) = — P,,/F, 	(E-27b) 

In that case Eq. E-27a errs on the unsafe side, but a bearing 
with such boundary conditions is unlikely to occur in practice. 
The error is a factor of 1.36 for a square bearing half as high 
as it is wide, with a shape factor of 6. For taller bearings (in 
which buckling is more likely) the error is smaller. 

Buckling by tension is also predicted by the Basic (Haringx) 
Theory. If in Eq. E-23 the load F is negative, the transverse 
stiffness tends to zero, and so buckling occurs, when 

I 	= 4) GA. 	 (E-28) 

No experiments are known of to confirm such behavior, but 
it would presumably involve rotation of the reinforcement to 
an orientation parallel to the column axis. Its only practical 
application would be in cases of extreme uplift when lift-off is 
prevented, in which case it could occur before the material 
suffers the internal rupture discussed by Gent and Lindley (54). 

Extensions to Include Geometric Nonlinearity 

In the linear theory of structures the geometry under load is  

assumed to be identical to the initial undeformed geometry. This 
vastly simplifies the calculations, and in most cases it produces 
accurate enough results. In any buckling analysis the transverse 
deformations must be included, but, in the case of elastomeric 
bearings, further complications arise because the axial defor-
mations may also be important. 

Elastomeric bearings are peculiar among structural elements 
in that, before material distress occurs, they may undergo a 
significant decrease in height and increase in effective plan area. 
Both changes will increase the buckling load over the value 
calculated using the original dimensions, so in practice Eq. E-
27a may be expected to under-predict real buckling loads, es-
pecially for short bearings in which the effect is most prevalent. 
It is also possible that the material itself experiences changes in 
its moduli under stress, which could further increase the buck-
ling load if they represent stiffening. (For example, in indepen-
dent tests for moment-rotation curves at a constant axial stress, 
the moment was found to be linearly related to rotation angle 
over a wide range of deformation, but the constant of propor-
tionality increased significantly with simultaneous axial stress.) 

One consequence of this behavior is that buckling may be 
impossible for bearings with a slenderness ratio kh,,0/r0 less 
than a limiting value. When an increment of load is added, the 
geometric changes it causes may increase the buckling strength 
by an amount that is greater than the load increment. The 
applied load thus becomes an increasingly small percentage of 
the buckling strength for that instantaneous geometry, rendering 
buckling impossible. Timoshenko (45) discusses such behavior 
using a simple stiffness model for a helical spring. 

Consider a shear-flexible homogeneous column and define 

= L— L, 	
(E-29) 

Let the axial, shearing and rotation stiffness be load (or strain) 
dependent and be denoted by K(e,), K,(e,) and K,(e,), so that 

N = K,(e,) 
aii 	

(E-30a) 
3x 

M = K,(ç)
alp 	

(E-30b) 

IV= K,(€) 
aj 	1 (E-30c) 

The equation for the buckling load written in terms of the 
instantaneous stiffnesses K, K,, and K, is 

42K, 	1 

	

P~l = { V + 
K,/(kL)2 

— 1 

j 	
(E-31a) 

where L = instantaneous length = L 0 (1 — 

If e, has the value ç, at buckling, Eq. E-3 la can be rearranged 
to give 

c 	( 	— ecr )2 
K(E,) 

ed + } K ( E) 

=

( 
ii 

) 
2 

(E31b){ K( e,) 	K(Ec:) 	z  
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This equation can be used to solve for e,, if the stiffnesses 
are known as functions of strain, and Eq. E-30a then gives the 

	

critical axial load. In practice, however, efforts to establish stiff- 	f(c) 

nesses at zero load, let alone a good description of their variation 
with load, met with difficulties. 

As a simple example (referred to here as the Poisson model) 
assume that the increase in plan dimensions of the bearing due 
to bulging can be approximated by: 

= ,EAO  (1 + v )2 	(E-32a) 

= f,E10  (1 + v ç)4 	(E-32b) 

K(€,) = GA 0  (1 + v )2 	(E-32c) 

0 

where v is chosen arbitrarily to represent the average increase 
in area of the elastomer-steel composite. It is not the same as 
the Poisson's ratio for the elastomer alone, which for most 
practical purposes may be taken as 0.5. Coefficients J and  f, 
account approximately for the stiffening caused by the steel's 
restraint of the elastomer's bulging. Theoretical values are given 
by Gent and Meinecke (36), and they are discussed in more 
detail in Appendixes B and C. They have the general form 

	

= A, + B,S2 	 (E-33a) 

	

f, = A, + B,S2 	 (E-33b) 

For practical S values A, and A, may be neglected without 
serious error, and that is done here. Setting E = 3 G, 10  = A 0  
r02, and A 0  = A0, Eq. E-31b then becomes 

(

IE1 + v
AO = I 	

V (1 + 3B,S2  c,) c, 
B , 

	
IT 

A plot off(e,) vs. c, is shown in Figure E-4 using B, = 1.3, 
B, = 0.75, and v = 0.3. Its intersection with the horizontal 

line f(c,) = 	gives the c,, at which buckling happens for 
r0  

that particular slenderness. The minimum of f(c,) represents 
the limiting kL,0/r0  for which buckling is possible, because for 
lower values no real value exists for e,,. It occurs when the 
differential of Eq. E-34 vanishes, namely 

Figure E-4. Strain at limiting slenderness below which buckling 
is impossible. 

where 

= (1 +0.5v)
BL  (E-37b) 

167T 2  B, 

The constant C1  is relatively insensitive to the equivalent 
Poisson's ratio, v, but depends quite strongly on the compressive 
stiffness coefficient B,. 

The load at this limiting slenderness is calculated from Eq. 
E-32a with the strain from Eq. E-36, giving 

lim = B,S2 A 0  (1 + i + v) 	(E-38) 

A different model (66) (referred to here as the Tangent Stiff-
ness model) may be constructed which includes the effect of the 
steel plate thickness on the column length and accounts explic-
itly for the change in S with compressive deflection. Let the 
subscript 0 signify unloaded conditions and 

0•, = P/A0 	 (E-39a) 

(P = h,,0/h,,0 	 (E-39b) 

kL,0  
ro  

(E-34) 

(1 + v) c, 	
= 1 - 
	1 	

(E-35) 	The assumption of constant volume requires that the average 
(1 + vc,)(1 - c,) 	(6B,S2  c, + 2) 	 plan dimensions under load be 1/(1 - €,) times their value 

under no load. This gives 
For practical S values and short columns, (6B,52  €, + 2) is 

much larger than 1.0, so Eq. E-35 is essentially independent of 
S. Then 

Clim = (j1 + v - 1) = 	 (E-36) 

Substituting back into Eq. E-34 shows that 

= 	 (E-37a) r1, 'urn 	C,S  

A(e,) = A0/(l - c,) 	 (E-40a) 

I(c,) = I/(l - c,)2 	 (E-40b) 

S(c,) = S0/(1 - c,)" 	(E-40c) 

The tangent compressive stiffness, developed in Appendix B, 
is 

do-, - EB,S02  
- (1 - c,)' 	

(E-41) 
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SO 	 plates. The buckling load for a column of units may now be 
calculated from Eq. E-24, incorporating the stiffnesses and 

= EB,S02 
j 	

1 	
- 1 1 	(E-42) 	

lengths from Eqs. E-46, E-47, and E-50. O-C
4 	1(1 —E34 	J 

if A, in Eq. E-33a is again neglected. 
The shearing stiffness Ks is defined as the force required to 

impose on the column a transverse deflection equal to the col-
umn length. Consider a unit with steel of total thickness Ii,, and 
a total unstrained elastomer thickness of h,,0, giving a combined 
thickness of h,,0 under no load. The shear force Vfor a deflection 

A. is given by 

= 
A: ) GA, h ( 
	

(E-43) 

but 

Ks 	Pfji+ 	4i2K, 
	I __ 1(E-51) 

K5 (kh,,0 (1 - ,/4))2  

or 

G (4, - 
2 (1 - 

f 
V1 + ( 	47r2E/G 	

) (, 
+ B,S,' ) - I 

(I - 	 - 	 (1 - c,)' 	J 

(E-44a) 	where X0 = 
ro 

 
= the unloaded slenderness ratio. 

Equation E-52 defines the nominal buckling stress in terms 
of the nominal strain, which is unknown. However, they are 
also related by Eq. E-42; therefore, simultaneous solution of 

(E-44b) 	these two equations gives the buckling stress. The approximate 
equation equivalent to Eq. E-22b (assuming the shear flexibility 
dominates buckling) becomes, for A, = 0, 

(E-45) 
7rES0 	4) 	

(E-53) c, 
= 	 '(1 - c,)4 

This can be solved with Eq. E-42 in closed form to give 

h,,(e,) = h,,0(1 
- e,) 	( - 

and 

A,(e,) = A,0/(l - 

so 

V::= 4)&GASO 

h,,0(1 - 

but the total thickness under load is 

h,,(e,) = h,,(e,) + h,,(e,) 

EC 
= h,,0 (i 

- ~~) 

(E-46) D1S0 EB, 

= - 	

(E-54a) 

So for a shear deflection As equal to the compressed thickness 
of the unit, Eqs. E-45 and E-46 combine to give 

	

- 	
= GASO(4) -  K5 — V 	

(1 — E,) 2 

Treating a similar steel and elastomer unit for rotation 

Eleff = E,I 	
E,) 

 
(1 	e,) 

But 

E(A, + B,S2 (e,)) 1 

	

E,I = 	 (E-49) 
(1 - 

so 

- Ej 
 K, = EI,ff 	

B,SO 2 (4) 
= El0 A, + 

(1 - )3 (1 - )3 
(E-50) 

The foregoing equations were developed for a single unit 
consisting of one elastomer layer bonded between two steel  

where 

Thus the Tangent Stiffness model predicts a limiting slen-
derness XO,Iim below which buckling will not occur. Its value is 
close to that predicted by the Poisson model (Eq. E-37a), apart 
from the terms in 4) and v. The models also differ in that the 
Tangent Stiffness model predicts an infinite buckling load and 
100 percent strain when the slenderness reaches its limiting 
value, but the less refined Poisson model shows a finite buckling 
stress. This latter is somewhat surprising because it means that 
at the limiting slenderness buckling occurs at a finite load, but 
that an infinitesimally stockier column will never buckle' How-
ever, such discontinuous behavior is not peculiar to the Poisson 
model, because Timoshenko (45) finds similar response for hel-
ical springs using linear stiffness models. For physical reasons 
it is unlikely in practice and, therefore, represents only a short-
coming of the model. 

Both of these models predict buckling loads that converge to 
those predicted by the Basic Theory (Eq. E-27a) for tall slender 
columns, but are larger for stocky columns. In both cases a 
limiting slenderness is predicted below which columns will not 
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buckle. It is inversely proportional to the shape factor, which 
means that a high shape factor bearing may theoretically be 
made to buckle, when one with the same external dimensions 
but a lower shape factor would never do so. 

It should be emphasized that many nonlinear models are 
possible. The Poisson model was chosen as a simple illustration, 
and the Tangent Modulus model is an attempt to provide a 
more precise characterization of the changes in geometry that 
occur. In both cases the possibility of material failure prior to 
buckling is ignored. 

Transverse Stiffness 

The linearized elastic theory of buckling used for conventional 
columns shows that the transverse stiffness of an axially loaded 
member reduces as the axial force increases. As the axial load 
approaches the buckling load the transverse stiffness approaches 
zero. The same phenomenon underlies the magnification factors 
used for moments that are applied at the same time as axial 
load. 

Similar behavior is to be expected from elastomeric bearings, 
although their shear flexibility and finite changes in height under 
compressive load complicate the relation between axial force 
and transverse stiffness. 

Equation E- 16 relates axial force and transverse stiffness for 
the physical conditions underlying the Basic Theory (i.e., the 
composite bearing is characterized as a homogeneous material 
and shortening under compression is ignored). Development of 
more elaborate theories which take into account some of these 
complexities, along lines similar to the Tangent Modulus ap-
proach, for example, was considered. However, it was not pur-
sued, because correlation of the buckling loads measured in the 
experiments with any rational modification of the Basic Theory 
for buckling proved somewhat unsatisfactory. It was felt that 
even greater difficulties would exist for transverse stiffness. 

EXPERIMENTS 

General 

Tests (66) were performed to measure the buckling load and 
the variation in transverse stiffness with axial load of different 
columns made from steel-reinforced bearings. Because the the-
ory requires a knowledge of the axial, rotation and shear stiff-
nesses, experiments were also performed to investigate those. 

2b 

ht

2a1 	
...f. 	

1/8" steel plates 

PLAN 	 ELEVATION 

Figure E-5. Typical dimensions of bearing units used in stability 
tests. 

Table E-1. Dimensions of units employed in stability tests. 

Unit A 11 A 12 

Length, 	L 	(in.) 11.33 8.50 
Width, 	W 	(in.) 5.66 4.25 
Elastonieric layer thickness, 	h 	(in.) 0.375 0.400 
Total 	unit thickness, 	hrt 	(in. 1.125 1.175 

Shape factor, 	S 	(-) 5.03 3.54 

Cross-sectionalrea, 	A0 	(in.2 ) 64.2 36.1 
Nominal 	I ox 	(in. 	) 171.9 54.3 

Radius of gyration, 	r5 	(in.) 1.64 1.23 

They are reported in Appendixes B and C. Special tests to 
establish the shear modulus of the buckling test bearings are 
reported in Appendix G. 

Buckling Load Tests 

The tests were conducted on columns made from stacks of 
steel-reinforced bearing units. Two different types of units (des-
ignated A 11 and A 12) were used, and their geometric prop-
erties are given in Figure E-5 and Table E- 1. The elastomer was 
neoprene of nominal Shore A hardness 55, and the steel was 
ASTM A570 grade 40 CE with a measured yield stress of 46 
ksi. Each unit consisted of two elastomer layers bonded between 
three /8-in. steel plates. They were cut with a band-saw in the 
University machine shop from large sheets of material made up 
by a commercial manufacturer, therefore they had no cover. 
Consistency of the elastomer hardness and layer thickness was 
good. 

Tests were conducted on the following columns: 

Stacks of 16, 14, 12, 10, 8, 5, 4 and 3 units 
Stacks of 16, 14, 12, 10, 8, 6, 4 and 3 units 

The typical test setup for the A 11 tests is shown in Figure E-
6. A 300 kip Baldwin Universal test machine was used. Vertical 
load was recorded electronically by means of a potentiometer 
connected to the test machine dial. Vertical deflections of the 
stack and horizontal displacement at the one-quarter points were 
measured using the LVDTs shown. For the tests on the 5, 4, 
and 3 unit A 11 stacks and all of the A 12 tests, only the 
horizontal LVDT located at the column mid-height was em-
ployed. 

For the setup shown, the end conditions of the stack may be 
considered as fixed against rotation. The individual bearing units 
used in any one test were not bonded to each other and therefore 
depended primarily on the development of friction between the 
steel plates to transmit shearing forces between units and to 
prevent any relative slip. In addition, under large lateral dis-
placements, the units could (and did) separate locally because 
of roll-off at the edges. The effect of roll-off has been studied 
analytically by Simo and Kelly (49). 

All columns required shimming to establish a flat initial con-
tact surface due to an unavoidable slight tilt of the topmost 
bearing relative to the loading surfaces. The tilt varied from 
column to column in both magnitude and direction, but had no 
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Figure E-6. Typical test setup for stability tests. 

significant effect on the test results. This was checked by rotating 
several of the bearings in a stack by 180 deg about the vertical 
axis, which changed the tilt of the top bearing and had some 
effect on the initial lateral deflections, but had an insignificant 
effect on the buckling load. 

To check for the possible effects of creep, several tests were 
repeated with different time intervals between load increments. 
While transverse and vertical creep deformations were clearly 
evident, there again was no significant difference in the measured 
buckling loads. 

After several trial runs to establish the relative effects of the 
above factors, the following typical test procedure was adopted: 

Apply load increment (varied with test and with load pre-
viously applied). 

Hold load for 1 mm. 
Record load and LVDT measurements. 

This pattern was continued until the lateral deflection became 
excessive and roll-off began or until the column would no longer 
accept additional load, i.e., the incipient collapse load had been 
reached. 

The buckling load was determined in each case by the South-
well plot method. The values so determined agreed closely with 
the maximum applied load in those cases where the incipient 
collapse load had been reached. In addition, the buckling loads 
in each test were estimated by two modified versions of the 
Southwell technique. In the first, the transverse deflection A, is 
plotted against A,/P2. This technique, originally credited to 
Massey, can be shown to be suitable for certain structural sys-
tems such as the lateral-torsional buckling of beams. In the 
other modified method, the transverse deflection is plotted 
against the product of the load and the deflection. This is an  

empirical method suggested by Trahair (50). A detailed dis-
cussion of both of these methods is available in (50). For the 
bearings tested here, the buckling loads as estimated by the 
modified techniques agree closely with those determined by the 
traditional Southwell method. The experimental buckling loads 
reported herein are those obtained by the Southwell method. 

The results of all of the tests are summarized in Table E-2. 

Table E-2. Summary of the results of the stability tests. 

No. 	of 
units 

PCr* 
(kips) 

cr 
(psi) 

Lr  
(in.)  

kLr/2a kLr/2aS 
Comments 

A 11 	units 

16 37.5 584 12.00 1.060 0.211 Incipient colIpse 

14 42.2 657 10.50 0.928 0.184 
at 7ma 	- 36 

Incipienl collpse 
at 	na5 - 42 

 12 53.0 826 9.00 0.795 0.158 
10 74.8 1165 7.50 0.663 0.132 Incipient collpse 

at Tmax = 72 
 8 

5 
115.3 

- 
1796 
. 

6.00 
3.75 

0.530 
0.331 

0.105 
0.066 max - 

100K 

4 - . 3.00 0.265 0.053 Tmax - 
100K 

- 150K 3 - - 2.25 0.199 0.040 'max 

A 12 units 

16 9.5 263 12.80 1.506 0.425 
14 11.2 310 11,20 1.318 0.372 
12 12.7 352 9.60 1.129 0.319 
10 16.6 460 8.00 0.941 0.266 

8 20.8 576 6.40 0.753 0.213 
6 30.6 848 4.80 0.565 0.160 
4 68.8 1906 3.20 0.376 0.106 - 3 - - 2.40 0.282 0.080 'max 

* 	Determined from Southwell plot 
** No evidence of instability 
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Figures E-7 and E-8 are typical examples of the vertical load-
transverse deflection curve and the Southwell plot obtained for 
a given test. Figure E-9 is a plot of the test results for both 
sections in which the buckling stress o- . (defined by o-,, = P/ 
A,) is plotted against a measure of the column slenderness given 
by kh,,0/L, where h, 0 is the total height of the elastomeric 
blocks in the column, L is the unloaded short plan dimension 
of the bearing, and the effective length factor k is equal to 
'/2 for fixed-fixed end conditions. 

As can be seen in Table E-2 and in Figure E-9, several short 
columns showed no evidence of approaching instability at any 
level of applied load. Figures E-10 and E-1 1 show the load 
deflection plot and the Southwell plot for five units of the A 11 
bearing. Loading was terminated at the indicated point to pre-
vent damage to the bearings.  
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Figure E- Z Vertical load and lateral deflection for six Type A 
12 bearing units. 
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Figure E-8. Southwell plot for six 
Type A 12 bearing units. 
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Figure E-9. Measured buckling 
stress 0cr vs. slenderness ratio 
kh,,o/L for Type A 11 bearings. 
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All BEARINGS 
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02 	.04 	.06 	.08 	.1 	.12 	.14 	.16 
HORIZONTAL DISPLACEMENT AT MIDHEIGHT, Dl, INCHES 

Figure E-10. Measured vertical load and lateral deflection for 
five Type A 11 bearing units. 

SOUTHHELL PLOT 
STABILITY TEST, 5 BEARINGS 

.02 	.04 	.06 	.08 	.1 	.12 	.14 	.16 
HORIZONTRL DISPLACEMENT AT MIDHEIGHT, III, INCHES 

Figure E-11. Southwell plot for five Type A 11 bearing units. 

In all of the tests in which instability effects were clearly 
evident, the lateral deflections were observed to be significant 
compared to the specimen dimensions even for axial loads con-
siderably less than the buckling load. This is due to the una-
voidable initial out-of-true present in a column of this sort, 
caused by local internal imperfections (e.g., uneven elastomer 
layers), slight lack of verticality in the column, etc. Rearrange-
ment of the units within the column had no noticeable effect 
on the buckling load although the deflection pattern under light 
load changed. In fact, in three tests (A 11-14 units and 10 units, 
and A 12-12 units), the initial deflections were substantially 
dominated by second mode (S-shape) deformations, and it was 
not until P reached a fairly high fraction of Pt,, that the fun-
damental mode became visibly dominant. 

Thus, as expected, the elastic buckling load was independent 
of geometric imperfections. The close agreement between the 
four measures of buckling load (three Southwell-based methods 
and observations of incipient collapse) suggests that the mea-
sured results are reliable. 

Figure E-9 shows that in both series of tests the buckling load 
increased at lower slenderness ratios, as expected. However, the 
consistent separation between the two curves shows that o- , 
also depends on some other parameter(s). The major difference 
not accounted for in Figure E-9 is the shape factor S. and in 
Figure E-12 o,, is plotted against kh,,0/LS. The results from 
the two different series then agree closely, and the empirical 
equation 

= kh0 

C4 	
(E-55) 

- C 5  

was found to fit well with C4  = 90 psi, C5  = 0.055. It is shown 
as a full line in Figure E-12. The fact that C5  is greater than 0 
suggests a lower limit of slenderness below which buckling is 
impossible (o = 00), although using the experimental data to 
find it is not very reliable because of the extrapolation required. 
Of the four columns that did not buckle, two (three and four 
units of A 11) had kh,,0/LS0  ratios lying below the limiting 
value of 0.055, so their failure to buckle is in agreement with 
Eq. E-55. For the other two (three A 12 and five A 11 units), 
Eq. E-55 predicts buckling stresses of 3,600 psi and 8,200 psi, 
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C 	.05 	.10 	.15 	.20 	.25 	.30 	.35 	.40 	.45 	.5 
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Figure E-12. Buckling stress 	vs. slenderness ratio khrto /LS. 

respectively, which far exceed the highest stresses imposed dur-
ing testing. 

Column Shear Stiffness Tests 

Tests were conducted on columns consisting of Type A 11 
rectangular bearing units to measure the transverse stiffness of 
the columns under varying amounts of axial load. The test 
parameters and results are summarized in Table E-3. 

The test setup is shown in Figure E- 13. The test machine was 
the 300K Baldwin used in the stability tests. Vertical displace-
ments were monitored using two LVDTs mounted on the center 
plate of the rig along the long axis of the bearings. Horizontal 
displacements were measured using two potentiometers 
mounted on the north column of the test rig. Vertical load was 
measured and recorded by means of a potentiometer connected 
to the test machine dial. Horizontal load was applied manually 
using center-hole hydraulic rams and was measured using 25-
kip load cells positioned as shown in the figure. 

A vertical load was chosen for each test. Horizontal load was 
applied in increments in each direction in turn, and after each 
increment the vertical load was readjusted to its preselected 
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Figure E-13. T 
rig and setup .1 
column shear res 

Table E-3. Summary of the column shear tests. 

No. 	of 
units 

6 
(psi) 

• 
6* 

(psi
r  hrt 

(in.) 

Max. 

(in.) 
K 

(lb/in.) 

2 x 3 500 - 4.50 1.85 2045 
2 x 3 1000 - 4.50 1.85 1365 

2 x 4 500 1796 6.00 2.3 1535 
2 x 4 750 1796 6.00 2.3 1064 
2 x 4 1000 1796 6.00 2.3 600 

2 x 6 375 826 9.00 2.6 750 
2 x 6 500 826 9.00 2.6 452 
2 x 6 625 826 9.00 2.6 92 

2 x 8 100 584 12.00 0.75 1102 
2 x 8 250 584 12.00 2.3 619 
2 x 8 400 584 12.00 2.3 248 

* Experimental resu ts 	(Table E-2.) 
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Figure E-14. Shear force vs. transverse displacement for two 4-
unit stacks at 750 psi compressive stress. 

value. The maximum displacement was limited either by incip-
ient slip between individual units or by lift-off of the most 
critically loaded unit over one-half to one-third of its width. 
The latter did not occur suddenly at a clearly defined load, but 
rather it started at the corners and progressed in towards the 
center of the edge in question. 

For each test, a plot of H, defined as one-half of the measured 
transverse force versus the transverse displacement i, was made. 
A typical plot is shown in Figure E- 14. On the basis of all of 
the tests, the following general observations can be made: 

The force-displacement curve is relatively linear over a 
wide range of displacement. 

Considerable hysteresis is evident in each load cycle. This 
appears to increase with increasing axial load. 

The shape of the curve is essentially the same for both 
cycles of applied load; no degradation is apparent even though 
the displacements are quite large. 

For a given column height, the slope of the force-displace-
ment curve decreases with increasing axial load. This is in qual-
itative agreement with all of the theoretical predictions. The 
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slope K, of the force-displacement curve was estimated in each 
case and is recorded in Table E-3. 

CORRELATION OF TEST RESULTS WITH 
THEORETICAL PREDICTIONS 

Buckling Loads 

Gent (41), Schapery (48), and Buckle (51) have each shown 
that the basic shear-flexible theory embodied in Eq. E-24 pre-
dicts buckling well for tall columns at relatively low stress when 
length and area changes are negligible compared to the original 
specimen dimensions. However, even under these circumstances 
difficulties exist because the calculation of a rotation stiffness 
is clouded in some uncertainty. Gent used a measured value for 
rotation stiffness without specifying how it was measured, and 
still had to change it by 25 percent to obtain good correlation 
with measured buckling loads for one bearing size. Buckle 
adopted a relation from EDS 19 (52) in which E is taken to 
be 4G. implying a Poisson's ratio of 1.0. If E and G are tangent 
moduli, this relation implies a material that expands under 
pressure, violating the 2nd law of Thermodynamics. If one is a 
secant and one a tangent modulus, then use of both simulta-
neously is inconsistent. 

Shorter columns have higher buckling loads that are unlikely 
to be reached in practice, but still form an important step in 
calculating shear stiffness reductions. They could be critical in 
quality assurance shear tests which might be carried out at 
relatively high compression stresses. At such high stresses ad-
ditional difficulties arise concerning the appropriate way of in-
corporating the changes in height, cross-section dimensions, and 
material properties. In closed-form the best that can be done is 
to approximate these changes by modified theories such as the 
Tangent Modulus, because the true problem is nonlinear in both 
material and geometry, whereas the analysis is based on classical 
linear elasticity. More precise solutions require the use of non-
linear finite element programs (53). 

The Tangent Stiffness model is theoretically the more defen-
sible of the two presented here. Nominal buckling stresses corn- 

puted using Eqs. E-42 and E-52 together are computed for the 
Type A 11 and Type A 12 bearings and are plotted against 
slenderness in Figures E- 15 and E- 16. The geometric and ma-
terial parameters used were: 

E420psi 	G=l4Opsi 

A,=l.0 	 B,=1.3 

A, = 1.0 	 B, = 0.5085 

Moduli were derived for a 55 hardness elastomer from the 
relations in Ref. 9. The geometric properties excepting B, were 
obtained from Ref. 15, using a 2:1 rectangle. B, was obtained 
from Ref. 16, using B, = 2k = 1.3, as recommended for 55 
hardness. The curves thus represent the predictions of the most 
rational theory in which "standard" material and geometric 
constants are used. 

The figures show that the experimental and theoretical results 
display a common trend of increased buckling stress at lower 
slenderness, but that the match is certainly not perfect. The 
buckling stresses predicted by the Tangent Modulus theory (Eqs. 
E-42 and E-52) and the Basic Theory (Eq. E-24) approach each 
other at high slendernesses. This is to be expected, because under 
those circumstances the compressive stress and strain fall, and 
as the strain approaches zero the two theories become identical. 

Changes to the theory to improve the correlation can be 
addressed in two steps. The first is to improve the fit at high 
slendernesses (low stress) when the dependence of the various 
stiffnesses on stress or strain may be expected to be low, because 
little bulging has taken place. In the second step, different strain 
dependencies for the stiffnesses may be considered in an attempt 
to improve the fit for squat bearings. For small compressive 
strains Eq. E-24 may be expected to suffice. Others (41, 48) 
have already found it adequate, within the limitations cited 
earlier. Thus, it is reasonable to accept the basic form of the 
equation, but to adjust the constants to optimize the fit. If the 
ratio E/G is assumed equal to 3.0 for the materials used in the 
tests, the two constants available for adjustment are G and f, 
where 
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Figure E-15. Buckling of Type A 11 bearings. 
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V 

	

f, = 	= A, + B,S2 	 (E-57) 

Since A, = 1.0 and S02 > 12.5, the value of B, is the most 
important geometric parameter. The theoretical value of B, for 
a 2:1 rectangle and incompressible material is 0.5085, as shown 
in Appendix C. The unmodified predicted buckling loads are 
about 20 percent too high; therefore, to obtain a good fit either 
G must be multiplied by about 0.84, or f, (or essentially B,) 
must be multiplied by 0.842. There is no independent evidence 
on which to base the choice. However, G was selected for ad-
justment here for three reasons: (1) Linear elastic equivalents 
for material properties of elastomers are difficult to obtain ac-
curately, show scatter, are not highly repeatable and are subject 
to interpretation (i.e., fitting a "best" straight line to points lying 
on a slight curve). (2) No substantiated reasons to doubt the 
theoretical developments in Refs. 36, 16 have been presented, 
other than the fact that a nonlinear material is treated as linearly 
elastic. (3) The coefficient f, lies inside the square root sign in 
Eq. E-24 and so must be changed by nearly twice as large a 
percentage as G in order to achieve the same quality of fit. 

Equation E-24 can be rewritten 

 

where X, = h,,0 /r0. 
For practical X, values, o-,,/G is almost independent of 4); 

therefore, if the equation is valid, a plot of 

GX 
o-,,/G vs. -f 	or 	- vs. - 

	

Xr 	 0,,, 

should predict critical stresses for all bearings, regardless of 
height, shape factor, or materials. Furthermore, Eq. E-55, which 
was found to predict well the critical stresses of both sets of 
bearings tested in this study, can be rewritten as 

= kh,,0/LS - C3 
 

	

a-,,, 	C2/G 

which is of the same form, because S is nearly proportional to 
q. 

X, 	khrl 	kh,,, fi 
Defining X = - = 	 '- 	 (E-60a) 

,.J] r 1j LS 

Figure E- 17 shows the variation of 	a-,,, with respect to the 
modified slenderness, with G taken as 117 psi, and the geometric 
parameters as before. The data from both sets of experiments 
now lie on what is very close to a straight line given by 

= 0.268 (X - 0.225) 	(E-61a) 

or for low A values a slightly better fit is obtained from 

= 0.311 (A - 0.290) 	(E-61b) 

Equation E-61a is essentially an asymptote to Eq. E-24 at 
high X. Only one curve for Eq. E-24 is shown. There should 
strictly be two, based on 4) = 1.46875 (A 12 bearings) and 4) 
= 1.50 (A 11 bearings), but they are so close as to be identical 
for practical purposes. 	 - 

The Basic Theory for buckling is verified at high X by the 
fact that the experimental results for the two different bearing 
types lie close to the predicted curve. The main concerns center 
around the choice (or measurement) of the appropriate G. At 
high X the Tangent Modulus theory also predicts buckling ad-
equately. (The errors are magnified on the plot because the 
ordinate is G/o,,, rather than cr,,,). It gives different curves for 
the two bearing types. This is almost entirely because they have 
quite different compressive stiffnesses. In each case, the pre-
dicted G/o,,, for all X greater than about 0.75 is closely ap-
proximated by 

= 

(~7_ 

 
+ constant 	(E-62) 

where subscripts TM and B stand for the Tangent Modulus and 
Basic formulas. The constant depends on bearing type. 

The predictions are all based on a G of 117 psi because that 
gave the best fit between the Basic Theory and the experimental 
data. A different G value could have been chosen to achieve a 
better fit between the Tangent Modulus Theory and the data 
at high X, but the overall match would have been worse. 

At lower X the Basic Theory underpredicts the experimental 
buckling stress as expected, but the geometric corrections in the 
Tangent Modulus Theory appear to be too strong, because it 
overpredicts the experimental results. Furthermore, the amount 
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Figure E-1 Z Inverse buckling plot for all bearings. 
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by which it does so is very different for the two bearing types, 
although at the lowest X tested, all the experimental results 
approach the Tangent Modulus Theory predictions for the A 
11 bearings. 

Perhaps the most serious criticism is that the experimental 
data for both bearing types lie on one line, but the Tangent 
Modulus Theory predicts two separate ones. To predict one 
curve for all bearings requires either that geometric changes 
should be ignored (as is done in the Basic Theory), or that all 
the nonlinearities, both material and geometric, should exactly 
cancel each other for all the test bearings in the range tested, 
or that the theory used is not valid. The geometric changes 
clearly happen and were observed in the tests, so presumably 
the first possibility must be ruled out. The second seems highly 
improbable because it depends on errors from different sources 
cancelling out everywhere. It is therefore concluded that the 
weakness lies in the use of a continuum theory for a structure 
that is made of sufficiently few discrete components that a 
continuum approximation is not valid. 

The first step in correlating the results has thus been achieved 
by using G = 117 psi. For the second step the Tangent Modulus 
approach, though apparently rational within the limits of using 
a continuum theory, proves inadequate in the range in which 
it really is needed, namely at low X. Some other adjustments 
must then be made to Eq. E-24 to raise its predictions for squat 
bearings. This could be done by introducing empirical expres-
sions that have no rational basis but fit the experimental data 
for individual stiffnesses. For example, the measured nominal 
compression stress and strain of the A 11 bearings are well 
represented by 

o = 0.80 1(1 - E) °  - 11 ksi 	(E-63) 

An equation such as this could then be combined with Eq. 
E-52 in a manner similar to the construction of the Tangent 
Modulus approach. However, without a rational basis for such 
a scheme it would have little predictive use unless the same 
formulas were found to fit a wide variety of bearings. Its success 
also appears dubious because the stiffnesses are strain-depen-
dent, which is the very feature that appears to underlie the 
inadequacy of the Tangent Modulus theory. 

A simpler empirical approach would be to adopt as a buckling 
curve the tangent at some arbitrary but large slenderness to the 
Basic curve (Eq. E-24). This procedure is partly rational, be-
cause it agrees with the Basic Theory at high X and coincides 
with the test data over the whole range tested. More testing 
would clearly be needed to establish its validity for other bearing 
shapes and materials, but at present it offers the best hope for 
a unified solution. 

The use of such a procedure would give rise to the_dashed 
line in Figure E- 17, and suggests a limiting slenderness X below 
which buckling is impossible (and which happens to be between 
the two limiting slendernesses predicted for the A 11 and A 12 
bearings by the Tangent Modulus formula). The validity of this 
procedure in the range G/o < 0.05 remains speculative be-
cause no experimental data exist there. However, that portion 
of the curve has little application in practice because bridge 
bearings in the United States are presently neither used nor 
tested at stresses higher than 2,000 psi. 

Column Shear Stiffness 

Basic Theory values for the transverse stiffness of a com-
pressed homogeneous shear-flexible column are given by Eq. E-
23. It reduces to 

K,0 = 	o (i + 
42h2,,0\ 	

(E-64) 
GA,12E10 j'r) 

when the axial load is zero. 
In a conventional Euler column the reduction in transverse 

stiffness caused by axial load can be very closely approximated 
by 

K, - 
	

F' 
k( -:) 	

(E-65) 

In a shear-flexible column a rational derivation becomes very 
complex but the reduction can be approximated by 

Kt = (i 
- fl '" 	1 .< m < 2 	(E-66) 

The exponent m varies with the degree to which shear defor-
mations are important, reaching 2 for very short columns com-
pletely dominated by shear. The variable X is a measure of the 
importance of shear, and, over the range of columns tested, the 
best relationship between the approximate predictions of Eq E-
66 and the "exact" predictions of Eq. E-23 was found with 

m = 2.08 - 0.54 X 	 (E-67) 

but 1.0 < m < 2.0. Equation E-67 was obtained by correlating 
results at P = 0.5 Pr,, and was found to provide a good fit 
elsewhere. 

Experimental and theoretical transverse stiffnesses are com-
pared in dimensionless form in Figure E48. Four theoretical 
curves relating to K,/K,0  to P/Pa,  are presented. Two are ob-
tained using Eq. E-23, for the shortest and highest columns of 
bearings. Results for intermediate lengths lie in between. The 
other two curves were obtained from Eq. E-66 with m = 1. and 
2, respectively, so they bracket the more exact theoretical so-
lutions. G was taken as 117 psi, in keeping with the buckling 
load correlations, although its influence on the dimensionless 
results is small. 

For each experimental point, the measured P was divided by 
the P, obtained from the buckling tests, and the K, measured 
in the column shear tests was divided by the value of K,0  derived 
from Eq. E-64 with G = 117 psi. This was used in place of an 
experimental value for K,0  which could not be obtained because 
a compressive load is needed to prevent slip between units. 

The correlation between experimental and theoretical results 
is poor, particularly for the 2 x 3 unit column (3 units above 
and 3 below the central shear plate). First, the points are nearly 
colinear instead of lying on a curve. The points representing the 
column of 2 x 8 units even curve slightly in the wrong direction, 
although they are close to the predictions of Eq. E-65. Second, 
the experimental values are all significantly smaller than the 
predicted values. At first sight this appears to be in keeping 
with the results of the shear modulus tests of Appendix G, in 
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as can be seen from Figure E-19. However, there is no rational 
basis for doing so, particularly for the 2 x 4 unit column for 
which a measured buckling stress is available. 
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which evidence was found that the shear modulus itself decreases 
under simultaneous axial stress, but in Figure E- 18 the reduction 
found in those tests has already been taken into account by 
using G = 117 psi. If the experimental points were based on 
K,0  using G = 140 psi (the value found under low compressive 
stress), the discrepancies in Figure E-18 would increase. 

The fact that the experimental transverse stiffnesses were 
lower than expected appears to be beneficial in practice because 
it means that the forces transmitted to the substructure will be 
reduced. However, there may be occasions (such as when re-
sistance to braking forces is needed) when the lower stiffness 
may prove disadvantageous. It also poses problems for quality 
assurance shear tests on complete bearings, which of necessity 
are performed under significant compressive stress. 

None of the obvious potential causes for error could plausibly 
cause such consistent and large differences as were found. The 
load displacement plots from which measured stiffnesses were 
obtained (e.g., Fig. E-14) were remarkably linear. The experi-
mental buckling loads for the 2 >< 8 unit and the 2 X 6 unit 
columns were predicted within 5 percent by the Basic Theory, 
yet the same theory with the same material properties shows 
much larger errors in predicting the measured transverse stiff-
ness. 
- The critical stress for the 2 x 3 unit column was obtained 

by extrapolating the straight line through the other experimental 
results, because no 6-unit column was tested. This gave a best 
estimate buckling stress of 4,850 psi. If, instead, critical stresses 
for both the 2 x 3 unit and 2 >( 4 unit columns are taken from 
Eq. E-24 with G = 117 psi, rather than using the measured 
(or best estimate) values, the correlation improves considerably 

Figure E-19. Influence of 	on transverse stiffness (using 
predicted 1 , for measured stiffness). 

SUMMARY AND CONCLUSIONS 

The following conclusions may be drawn: 
Buckling loads predicted by Eq. E-24 for bearings made 

of any material and of any geometry can be represented in 
dimensionless form by a single curve relating G/ o-,, to A. 

Experimental buckling loads, using two different bearing 
geometries and a range of column heights for each, showed 
excellent correlation with predictions of the Basic Theory at 
slendernesses, A, greater than 0.8. Shorter column heights re-
sulted in measured buckling loads increasingly higher than those 
predicted by the Basic Theory. The section properties used (such 
as f,) were those derived theoretically by others, but to obtain 
a good fit the shear modulus had to be reduced 17 percent below 
the value measured at low compressive stress. 

Experimental values of transverse stiffness under simul-
taneous compressive stress were found to be significantly smaller 
than predicted ones. Theory shows that the transverse stiffness 
should be a function of P/Pa,. Difficulties were encountered in 
confirming that relationship experimentally with medium to 
short columns because material failure preceded buckling, 
thereby making it impossible to obtain a reliable estimate of Pr,, 
even using Southwell techniques. Even for higher columns, the 
correlation was found to be quite sensitive to the conditions 
assumed. Positive verification of the Basic Theory predictions 
was therefore not possible. 
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INTRODUCTION 

Fatigue is regarded (3) as an important potential mode of 
failure in elastomeric bearings, but it has received only sporadic 
study. The earliest known investigation of fatigue in elastomers 
(38) consisted of experiments on small natural rubber blocks 
that were attached to the heads of bolts. The blocks were tested 
in cyclic shear and compression, and it was noted that longer 
fatigue life resulted for strain crystallizing rubber if complete 
relaxation was not permitted after each load cycle. The study 
showed a strong correlation betweer,j the magnitude of the strain 
and the fatigue life, and the temperature of the rubber was also 
found to influence the results. It was observed that harder rubber 
generally had shorter fatigue life. The specimens were very small 
and had very small shape factors, and so the results may or 
may not be relevant to practical bridge bearings. 

Despite these limitations, this study was used as the rationale 
for the shear limit employed in the BE1/ 76  design specification 
(27). This specification limited the sum of the shear strain due 
to compressive loading and shear deformation (see Fig. F-i) to 
a percentage of the elongation at break. That is, 

y + y. !~ qEB 	 (F-i) 

where y and y are the maximum shear strain caused by 
compression and shear loading respectively, EB is the elongation 
at break of the material, and is a numerical constant. The 
strains are illustrated in Figure F-i. This approach is somewhat 
rational because it limits the value of the maximum total strain 
in the material to a fraction of the material capacity. Further-
more, harder elastomers usually have smaller Effvalues, there-
fore their allowable shear strains are lower, in keeping with the 
test results. However, Eq. F-1 is a significant extrapolation of 
the findings of the study, which were based on specimens whose 
sizes and shape factors were significantly different from those 
found in bridge bearings, and which did not explicitly correlate 
fatigue strain capacity with the material elongation at break. 
Equation F-i also implies that strains can be superimposed even 
though they are much larger than the infinitesimal values on 
which the validity of superposition is based. 

A later series of tests (55), including a few specimens tested 
under cyclic load, were performed on full size bridge bearings, 
and the results were used as the basis for UIC 772 Specification 
(30). These test results are not well documented, and many 
details are missing. However, the results of the fatigue tests led 
to the recommendation that the shear stress be limited to 5G. 
That is, 

r,, + r + r, < 5 G 	 (F-2) 

For a linear elastic material, Eq. F-2 may be divided by G, 
resulting in a limit of 500 percent on the total shear strain. 
However, UIC 772 (30) specifies that the shear stresses in Eq. 

F- 1 should be taken as the static components plus 2.0 times the 
dynamic components to reflect the more damaging effects of 
dynamic loads. These provisions are quite different from those 
in BE1/ 76.  The UIC provisions are more generous for harder 
elastomers, which generally have a smaller elongation at break. 
Further, the UIC specification suggests a preference for neo-
prene, while BE1 /76 appears to favor natural rubber, because 
natural rubber usually has a lower G value and higher elongation 
at break under similar compound conditions. The UIC approach 
of limiting the total shear stress to a value independent of the 
elongation at break is also carried forward to the recent BS 
5400 Specification (8). 

Theoretical studies have also been made of fatigue. Propa-
gation under cyclic compression load of cracks initiated due to 
ozone cracking or mechanical cracking was studied (56, 57, 58), 
and it was found that fatigue cracks in elastomeric bearings 
become significant primarily in the elastomer near the steel 
laminate interface. Most cracking was found to propagate in 
directions which led to a stable self-limiting crack, and these 
results (56, 59, 60) led to suggested bearing details that would 
theoretically minimize fatigue crack problems. 

Other experimental studies (61, 62, 63) have been performed. 
One (62) provided some understanding of the sequence of fatigue 
cracking under cyclic shear loading, but there were insufficient 
tests to develop any far reaching conclusions. Other (61, 63) 
focused on unreinforced pads. These pads behave differently 
from reinforced bearings because bulging in them is restrained 
only by frictional resistance (3). It appears that the test results 
were influenced by damage initiated by frictional effects, and 
so the results may not be relevant to reinforced bearings. Some 
reinforced bearings (63) were also tested, but they were of an 
unusual design so the results are probably not a good indicator 
of reinforced bearing performance in general. Finally, the ma-
terial properties, size, and shape factor of many of the bearings 
tested in these studies would not be relevant to present day 
practice. 

FATIGUE TEST PROGRAM 

The existing literature on fatigue does not present a very clear 
picture of this mode of failure. As a result, an experimental 
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Figure F-i. Shear strain components of elastomeric bearings. 
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program was performed to understand the phenomenon better. 
The normal objective of fatigue research is the development of 
S-N curves such as those shown in Figure F-2. Such curves 
indicate the number of cycles of a given type of loading which 
can be safely sustained by a specific structural detail. A sub-
stantial number of tests are required to generate a single S-N 
curve, and the curve is still specific to a given material, detail, 
and loading. Fatigue of elastomeric bearings is even more com-
plex. Elastomers are viscoelastic materials, and so the rate of 
loading and temperature of testing are interrelated and impor-
tant. Further, elastomers may be materially nonlinear, and the 
very large strains which they can sustain without failure render 
them geometrically nonlinear, so the usual fatigue concepts of 
accumulated damage and fatigue failure may not apply. 

In view of these problems, it was not practical to attempt to 
develop design S-N curves, because the time and funds were 
not available. Instead, the research was directed toward finding 
the factors that have the greatest impact on fatigue life and 
toward determining how these factors can be controlled to pro-
duce a satisfactory design. Therefore, certain parameters were 
selected for study, and a test matrix was set up. The matrix was 
defined to cover the range of practical application of each pa-
rameter. If all test points in the matrix were filled, hundreds 
and perhaps thousands of fatigue tests would be required. In-
stead, one parameter at a time was varied over the range of 
practical importance while attempting to hold all other param-
eters fixed in so far as possible. This approach permitted com-
parison of the relative importance of the different parameters. 
The investigation was clearly not exhaustive, but the resulting 
analysis should lead to better guidelines for design. 

The most important variables for consideration in a test pro-
gram are the following: 

Type and magnitude of loading. Elastomeric bearings usu-
ally support large compressive loads while accommodating shear 
deformations introduced by creep, shrinkage, or thermal effects. 
In addition, rotation of the bearing caused by deformation or 
initial camber of the bridge girders must also be permitted. The 
compressive load will have a constant component due to the 
dead weight of the bridge, and a cyclic component due to bridge 
traffic. Shear deformations will have one cyclic component due 
to the daily temperature cycle, and they may have another, 
higher frequency one due to bridge traffic if the bearings provide 
elastic restraint. These different types of loading require separate 
consideration in the development of reliable fatigue design cri-
teria. 

Rate of loading. This is important for fatigue of elastomeric 
bearings for three major reasons. First, elastomers are viscoe-
lastic, and so it is reasonable to expect that the rate of loading 
will affect the fatigue life. Second, the rate of loading in actual 
bridge bearings will vary widely for different types of loading 
as outlined in Item 1. Finally, fatigue tests require many cycles 
of loading, and time becomes critical. A good understanding of 
rate effects is necessary to gain the maximum benefit from the 
available testing time. 

Mean stress and stress range. These influence fatigue life 
significantly, and so they are a primary criterion in design of 
any experimental program. The question of the relative impor-
tance of cyclic strain as opposed to cyclic stress must also be 
considered. 

Material properties of the elastomer. Present code provisions 
for fatigue design vary widely. Some specifications appear to 
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Figure F-2. Typical S-N curves for fatigue design. 

favor harder elastomers (8, 30) while others (27) favor softer 
elastomers with larger elongation at break. Study is needed to 
determine which material properties are most important and 
how they affect the fatigue life. 

Shape factor, size and geometry may also affect the fatigue 
life and tests are required to evaluate the importance of these 
parameters. 

CYCLIC SHEAR TESTS 

The type of loading is a major parameter in fatigue of elas-
tomeric bearings, and so separate fatigue experiments were per-
formed in cyclic shear and cyclic compression. Fourteen 
specimens were tested in cyclic shear, and the test conditions 
and results are summarized in Table F-i. The primary source 
of cyclic shear deformations imposed on elastomeric bridge bear-
ings is the lengthening and shortening of the entire bridge in 
response to temperature variations. A typical bearing is thus 
subjected to one shear cycle per day as the bridge structure 
responds to day-to-night temperature variations, causing ap-
proximately 20,000 such cycles over the course of 55 years. The 
fatigue tests were conducted at constant amplitude about a zero 
mean. However, the severity of daily cycles for the actual bridge 
will be smaller for many days, so the test results should be 
conservative for these cases. Bridge bearings experiencing shear 
deformation due to traffic loading may experience many more 
cycles at a more rapid rate than were imposed in the tests, and 
so the results may be unconservative for these cases. However, 
it is likely that the amplitude of loading would be smaller. 

Shear testing invariably requires a simultaneous compressive 
load, which simulates the gravity load on the bearing and pre-
vents slip under shear deformation. A test frame was built to 
develop an approximately constant compression load and a 
cyclic shear deformation, and the general design of the rig is 
shown in Figure F-3. The test frame was arranged so that the 
bearings (a) were tested in pairs. The compressive load was 
applied to the bearings by means of high-strength threaded rods 
(b) which were tensioned by means of a center-hole hydraulic 
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Table F-i. Shear fatigue tests. 

Test 
No. 

Shape 
Fac- 
tor 

Mater- 
ial 
Type 

Shore A 
Hardness 

Tensile 
Strength 

(psi) 

Elong. 
@ Break 

(%) 

Compressive 
Stress Strain 

Applied 
Shear 

(in/in) 

Cycle 
Rate 
Hz. 

Total 
No. 

Cycles 

Total 
Debo9d-

ing 
in/100 (psi) (in/in) 

1 5.3 CR 52 	(52) 2777 591 550 .04 0.6 0.2 21000 182 

2 5.3 CR 52 	(52) 2777 591 1550 .11 0.5 0.2 20100 308 

3 5.3 CR 52 	(52) 2777 591 1680 .11 0.5 1.0 20000 697 

4 5.3 CR 52 	(52) 2777 591 1530 .12 0.5 .04 20000 83 

5 5.3 CR 52 	(52) 2777 591 2300 .14 0.5 0.2 20000 356 

6 5.3 CR 52 	(52) 2777 591 1450 .12 0.85 0.2 20000 1081 

7 5.3 CR 52 	(52) 2777 591 

-- 

1580 .11 0.15 0.2 20000 0 

8A 4.4 CR (54) -- -- 1000 .10 0.5 0.2 20000 -- 

88 4.4 CR (54) -- 1010 .10 0.85 0.2 10000 -- 

9 5.3 CR 74 	(65) 2559 351 2470 .11 0.85 0.2 20000 1186 

10 5.3 CR 60 	(62) 2876 439 2240 .13 0.85 0.2 20000 1350 

11 5.3 NR 60 	(64) 2801 575 2200 .12 0.85 0.2 20000 951 

12 5.3 CR 49 	(51) 3123 678 1500 .13 0.85 0.2 20000 1188 

13 5.3 NR 53 	(58) 2865 602 2220 .13 0.85 0.2 20000 919 

Notes 

1 Nominal hardness (measured hardness). 
2 Sum of debonding measurements at all locations - 2 bearings. 

Manufacturer's data. 
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a = test bearings 
b = threaded rods 
c = center plate 
d = hydraulic activator 
e = intermediate plates 
f = clamping plates 
g = cross beams 
h = elastomeric springs 
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Figure F-3. Load frame for shear fatigue testing. 
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ram. A plate (c) between the two test bearings was moved 
cyclically upward and downward by a 55,000-pound capacity 
hydraulic actuator (d) which is part of a closed-loop MTS 
hydraulic testing system. The actuator was programmed to im-
pose a precise shear displacement on the test bearings. Two 
intermediate plates (e) and two clamping plates (f) were held 
in position vertically by cross beams (g). Preliminary tests re-
vealed that each time the test bearings were deformed in shear 
their thickness changed slightly, and as a result the compressive 
load changed. Therefore, in order to supply a more nearly con-
stant compressive load, additional elastomeric bearings (h) were 
positioned between the clamping plates and the intermediate 
plates. These bearings acted as springs to smooth out variations 
in the compressive load applied to the test bearings. The test 
bearings were held in position in the rig by friction between the 
steel reinforcing plates of the bearings and the steel plates of 
the test rig. In all of the tests the ratio of compressive force to 
maximum shear force was large enough to prevent slip. 

Compressive load on the test bearings was measured using 
four load cells (i) placed over the high strength threaded rods. 
Shear load applied to the test bearings was measured by means 
of a load cell placed between the end of the hydraulic actuator 
piston and the center plate of the test rig (j). Compressive 
displacement of the test bearings was measured using four 
LVDTs (k), mounted on the corners of the intermediate plates. 
An LVDT mounted permanently inside the hydraulic actuator 
measured shear displacement of the test bearings. Because re-
peated shear cycling of the bearings resulted in a buildup of 
heat, it was necessary to monitor the temperature of the bearings. 
This was accomplished by inserting a thermocouple into a hole 
drilled into the edge of the center plate (c), and the temperature 
was monitored with an Analogic AN 2572 Digital Indicator. 
The location of the thermocouple was near the center of mass  

of the two test bearings, and the temperature was dependent on 
the heat conducted from the test bearings clamped on both sides 
of the center plate. It was found that the thermocouple re-
sponded quickly to changes in the rate of shear cycling, indi-
cating that the thermocouple was a sensitive indicator of the 
variation of temperature in the test bearings. All load cells and 
LVDTs were monitored by a Hewlett Packard HP9816 com-
puter and HP3497 Data Acquisition Unit, permitting nearly 
simultaneous measurement of voltage from all instruments and 
rapid recording of data. 

The test specimens (except no. 8) were 8.5-in, square bearings 
with two 0.4-in. elastomer layers and three 0.125-in, plates (see 
Fig. F-4a). The nominal shape factor of these bearings was 5.3. 
All of the specimens except no. 8 were cut with a band saw 
from sheets of bearing material, and therefore they had no edge 
cover. This permitted ready observation of crack development. 
It is believed that cracks develop more quickly without edge 
cover and, thus, the fatigue results should be conservative. The 
specimens for shear test no. 8 were of a different size and had 
top and bottom cover, as well as edge cover on three sides (see 
Fig. F-4b). They also had double steel plates on the top and 
bottom as shown in the figure. This allowed the top and bottom 
cover to be removed easily by slitting the edge cover at the level 
where the two plates were in contact. The same specimen could 
then be tested with and without cover. The edge without cover 
was cut using a band saw to expose the edges of the steel plates. 
This test specimen was used to illustrate the effect of edge cover 
on fatigue behavior. 

All bearings were measured and inspected for defects before 
being tested. The test specimens and spring bearings were then 
placed in the rig, and the compression load was applied. The 
shear fatigue cycles were then started at a prescribed rate and 
displacement range. Soon after starting the shear fatigue cycles 
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Figure F-4. Dimensions of bearings for shear fatigue tests. 
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the shear stiffness of the test bearings was measured by applying 
several shear cycles at a rate of 0.3 Hz, and using the computer 
to take load and displacement measurements at closely spaced 
time intervals. Periodically during the test, the shear fatigue 
cycles were again slowed temporarily to take shear stiffness 
readings. Throughout the test the temperature of the bearings 
was monitored in order to avoid overheating the bearings. In 
most of the tests the temperature did not rise above 52°C (126°F), 
which was considered acceptable. If the temperature was still 
rising at a significant rate when it reached about 50°C, the test 
was stopped to allow the bearing to cool. In later tests a fan 
was used to keep the temperature down. Occasionally it was 
necessary to stop the test overnight in order to allow the bearings 
to cool. These interruptions of the test did not appear to have 
any effect on the shear fatigue damage suffered by the bearings, 
and provided the opportunity to study the change in shear 
stiffness of the bearings resulting from changes in temperature. 
In some tests abrasion and fretting of the elastomer occurred. 
The debonded elastomer lips (see Fig. F-5) worked against the 
edges of the steel plates as the bearings were cycled in shear. 
The abraded material shed by the bearings was collected and 
weighed. 

After the start of testing, fatigue cracks frequently developed 
in the elastomer near the interface of the steel laminate. The 
cracking generally progressed in a sequence and was similar to 
that reported by Chhauda (62). No cracking was observed for 
any of the specimens until cyclic loading was started. Generally 
cracking was first observed at the steel and elastomer interface 
for outer plates (i.e., locations 1, 2, 3, or 4 shown in Fig. F-6), 
where the combination of compressive and shear loading causes 
high shear strains. The cracking then progressed through lo-
cations 5, 6, 7 and 8 for most specimens and, in severely damaged 
bearings, progressed to the less severely strained edges of lo-
cations 9 through 16. The fatigue cracks grew quite severe for 
some specimens, but none of the specimens failed. That is, all 
bearings continued to support their loads and accommodate 
movements, although some were in a severely deteriorated con-
dition. A measure of relative damage was needed to compare 

Extruded Lip 

Elastomer 

Edge View 	 Plan View 

Figure F-5. Protruding lila  of elastomer caused by the fatigue 
cracks in the bearing. 

the condition of individual bearings, and to define when the 
bearings were no longer acceptable. Two major damage mea-
sures were employed. 

The first was the distance by which the delaminated elastomer 
projected beyond the steel. It was easily measured and appeared 
to be a good relative indicator of cumulative fatigue damage. 
First, the test was stopped at various points in the test, and a 
sketch was made of the locations where debonding had occurred 
on each edge of the test bearings. Next, a depth gage was used 
to measure the height of the debonded lip of elastomer, which 
projected from between the steel plates, as shown in Figure F-
5. This maximum height was measured at the four steel to 
elastomer interfaces, one on each edge of each bearing. These 
heights were recorded on the sketch of debonding locations. 
Details of the appearance of the debonding were also noted at 
a number of times during the test, and the total crack depth 
was plotted as a function of the cycle number as shown in 
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Figure F-7. The total debond height was the sum of the height 
of the maximum protruding elastomer at all cracked interfaces 
on all four edges. The value given is the total for the pair of 
bearings in the shear fatigue tests. 

This measure is incomplete because it does not include the 
depth of crack penetration into the bearing. Further, it will have 
different importance for different shape factor bearings. The 
rate and the extent of crack growth depended on several factors 
described in later discussion, but all crack depth curves appeared 
to exhibit similar charactertistics. That is, the cracks propagated 
relatively rapidly during the early part of the test, and they then 
reached a plateau where the cracks grew very slowly. This 
observation appears to support the suggestion (56, 59) that 
fatigue cracks are a self-limiting phenomenon for elastomeric 
bearings. 

Change in bearing stiffness was used as the second measure 
of fatigue damage. The reduction in shear stiffness was small, 
and was often overshadowed by temperature effects. Therefore, 
the change in compression stiffness, which was larger, appeared 
to be a more reliable indictor of fatigue damage; however, it 
was much more difficult to perform compression stiffness tests 
at intervals during the shear fatigue tests. As a result, much 
less data for compression stiffness are available. However, mea-
surements of both types of stiffness were compiled and compared 
as a measure of the fatigue damage. These data are summarized 
in Table F-2. 

RESULTS OF THE SHEAR FATIGUE TESTS 

The effect of the rate of loading was the first parameter 
considered. A daily shear cycle due to temperature effects sug-
gests a load rate of 0.000015 cycles per second. This load rate 
may be realistic for temperature-dependent loading, but impos-
sible for testing inasmuch as 20,000 cycles require 55 years to 
complete. As a result, rates of 1, 0.2, and 0.04 cycles per second 

Table F-2. Shear fatigue damage. 

Test 
Shear Stiffness Max. 

Debond 
Compressive Stiffness 

Initial Final Change Initial Final Change 
No. (lb/in) (lb/in) % in/100 (K/in) (K/in) % 

1 8380 7580 -9.5 182 1340 1430 +6.7 
2 7540 7760 2.9 308 1340 1360 +1.1 
3 7170 7280 1.5 697 1340 1460 +8.5 
4 8630 8800 2.0 83 1340 1360 +1.1 
5 8810 8150 -7.5 356 -- -- -- 

6 6200 5400 -12.9 1081 -- -- 
-- 

-- 
-- 7 13470 12890 -4.3 0 

-- 
-- 
-- 8A 3770 3680 -2.4 

-- 
-- 
-- 

-- 
88 3220 3190 -0.9 -- -- 
9 11100 10900 23 1186 2530 2260 -10.4 

10 10560 10480 -0.8 1350 2210 2130 -3.6 
11 9160 9170 0.1 961 2390 1810 -24.2 
12 7250 6780 -6.5 1188 1430 1530 +6.8 
13 7780 7570 -2.7 919 2130 1570 -26.4 

were investigated. Figure F-6 shows the results of these tests. 
The amount of fatigue damage increases with increasing load 

rate. Further, rapid cyclic load heats up the elastomer more, 
and it was presumed that fatigue resistance of the material would 
depend in some way on the temperature. Thus, the standard 
rate selected for all tests was the slowest practical rate of 0.2 
Hz (one cycle every 5 sec). Although this is faster than the 
probable rate in the field, the results obtained from tests con-
ducted at this rate should be conservative. The results may be 
unconservative for traffic-induced shear deformation because 
more cycles may be applied with a more rapid load rate than 
used in the test program. 

Heat buildup also appeared to be an important parameter in 
the fatigue test program. Elastomers are viscoelastic materials, 
and heat is developed due to the internal work done during the 
testing. In the tests, the heat dissipated very slowly, and spec- 
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imens which generated higher temperatures usually had a 
shorter fatigue life. The elevated temperatures apparently led to 
premature deterioration in the elastomer and the bond. Higher 
temperatures generally occurred with larger shear strains, larger 
compressive stress levels, and rapid test rates. Some elastomeric 
compounds and bearing geometries appeared to be more sus-
ceptible to heat buildup than others. The elevated temperatures 
also reduced the stiffness of the bearing. Stiffness was one of 
the criteria used to measure fatigue deterioration, and so the 
temperature effect seriously complicated this analysis. A sepa-
rate study of the effect of temperature on bearing stiffness was 
performed to correct the data for this problem. 

The magnitudes of the mean stress and the stress range are 
usually critical parameters in a fatigue test, and so they were 
monitored during these experiments. However, because of the 
nonlinear viscous characteristics of elastomers, reversed cyclic 
loading between constant shear strain limits was used, because 
strain and displacement control would produce more repeatable 
experimental results than stress control. Strain control may also 
be more relevant to bridge bearing field conditions. This cyclic 
shear strain provided the stress range component. The com-
pressive load was applied at the start of the test and effectively 
provided the mean stress. However, it should be noted that 
bearings that were severely damaged by fatigue cracking did 
not maintain a constant compression load at a constant average 
compressive strain level. Instead, the compressive load decreased 
slightly during the test while the average compressive strain 
increased. This effect was relatively small (20 percent or less), 
but it suggests that the severely damaged bearings would have 
sustained somewhat greater damage during the fatigue test if 
the compressive load had been truly constant. 

Figures F-8 and F-9, respectively, show the effect of mean 
stress and stress range on the fatigue damage. Increasing the 
compressive stress increased the mean strain and the fatigue 
damage, but the effect of increasing the shear strain range is 
much more dramatic. The detrifnental effect of cyclic shear  

strain is particularly dramatic for shear strains in excess of ± 
0.5. This increased damage may be caused by the rollover noted 
in Appendix D for shear strains larger than 0.5, and it provides 
further evidence to support the 0.5 shear strain limit proposed 
in that appendix. 

The tests described in earlier discussion were all performed 
on bearings of 52 nominal Shore A hardness neoprene. The 
compound and material properties were theoretically the same 
for all specimens. However, it is frequently suggested that some 
material properties affect the fatigue life, and so a series of tests 
were performed on a wide range of neoprene and natural rubber 
compounds. The compounds were chosen to cover a range of 
practical materials that still satisfy AASHTO (1) requirements. 
The measured fatigue damage for these tests is shown in Figures 
F- 10 and F-li. Figure F- 10 shows the progression of cracking 
for the different materials under comparable loadings. It should 
be noted that the mean stress and stress range were different 
for each specimen, but the cyclic shear strain and average com-
pressive strain were nearly the same for all specimens. Figure 
F- il indicates that the natural rubber bearings generally had 
less cracking than neoprene of comparable hardness, but the 
difference was not dramatic. There was no strong correlation 
between the degree of shear fatigue damage and the elastomer 
hardness, the elongation at break or the tensile strength. 

The fatigue tests described above were performed without 
cover. This was done because it permitted ready observations 
of the fatigue cracks, and it was believed to be conservative. 
One test was performed to investigate the effect of edge cover 
on the shear fatigue behavior. Edge cover is used to seal the 
edges of the steel reinforcing plates against moisture, thereby 
preventing rust, and top and bottom cover is sometimes em-
ployed to encapsulate the steel reinforcing plates within the 
elastomer. The covered test bearing was Specimen 8a and 8b 
and was made as shown in Figure F-4b. It had cover on three 
edges and was cut on the fourth edge to permit observation of 
crack progression. The bearings were arranged in the test rig 
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so that the edge without cover of one bearing was vertical in 
the test rig and the edge without cover of the other bearing was 
horizontal; in other words, the bearings were rotated 90 deg 
relative to one another. In this way, the performance of vertical 
and horizontal edges with and without cover could be compared. 
They both had the same surface areas and therefore the same 
nominal shear stiffness. Because the bearings had top and bottom 
cover they tended to walk or creep in the test rig when cyclic 

shear loads were applied, and so it was necessary to epoxy the 
bearings to the steel plates of the test rig. This effectively pre-
vented all movement. 

The tests were conducted in two parts: the bearings were first 
subjected to 20,000 cycles at ± 0.5 shear strain, then an ad-
ditional 10,000 cycles at ± 0.85 shear strain. Only a moderate 
amount of damage was observed during the first 20,000 cycles, 
and the last 10,000 cycles produced more extensive damage. On 
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edges without cover, observations of debonding damage were 
made in the usual manner. On edges with cover, debonding was 
observed by noting the changes in the bulge patterns beneath 
the cover, by examining in cross-section the edges with cover 
where they were exposed at their ends, and by inserting a wire 
probe down the length of the cracks in the edges with cover. 
In addition the bearings were cut into quarters following the 
tests in order to determine the extent of debonding cracks be-
neath the cover. 

It was found that the nature of the shear fatigue damage with 
and without cover was different. Without cover, the elastomer 
debonded from the steel plates at their edges as shown in Figure 
F-5, whereas with cover the elastomer debonded near the edges 
of the plates in some locations and cracks propagated through 
the elastomer in others. These cracks along the covered edges 
initiated at the edges of the steel plates and propagated at an 
angle into the elastomer layers away from the edge cover, as 
shown in Figure F-12. Since the shear fatigue damage is different 
with and without cover, it is difficult to compare directly the 
extent of damage occurring on the two types of edges. However, 
it appears that covered edges sustain slightly less damage than 
uncovered edges, but that edge cover may conceal considerable 
debonding. The covered edges appeared undamaged throughout 
the test but later revealed extensive debonding and cracking 
beneath the cover when the bearings were cut into quarters for 
inspection. 

The discussion to this point has focused on the extent of 
cracking. This may be a good relative measure of fatigue damage, 
but there is no clear cut measure of what level of damage is 
unacceptable. As a result, the shear and compressive stiffnesses 
before and after testing were compared and the results are given 
in Table F-2. The shear stiffness was measured after several 
cycles of loading, because the stiffness had usually stabilized by 
this time. The compressive stiffness is more difficult to determine 
uniquely because of the very nonlinear stress strain behavior of 
a bearing in compression. Therefore, the stiffness was defined 

Figure F-12. Photograph of shear fatigue cracking in a bearing 
with edge cover. 

as the secant modulus between the stress and strain at 1,330 
psi and the stress and strain at 443 psi. It should be noted that 
the unloaded stiffness was sometimes measured on different 
bearings (of nominally the same material) for the shear fatigue 
tests. This was necessary because no initial shear stiffness reading 
had been taken at the start of those fatigue tests, and this fact 
may have contributed to the limited correlation between stiffness 
change and measured cracking. 

The shear stiffness did not appear to be a particularly sensitive 
indicator of fatigue damage. The maximum change was 12.9 
percent, and it did not seem to be well coordinated with the 
observed and measured damage. The maximum compressive 
stiffness reduction was 26.4 percent. The correlation was not 
perfect, but generally the greatest reduction in compressive stiff-
ness occurred on bearings with large measured delamination. 
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This observation appears to be consistent with theory, since 
delamination cracking effectively reduces the shape factor of 
the bearing. A S to 10 percent reduction in compression stiffness 
may be intolerable for some practical situations, and this may 
help define an acceptable limit for fatigue damage. 

CYCLIC COMPRESSION TESTING 

The compression loading on elastomeric bridge bearings con-
sists of the static dead load of the structure and the dynamic 
live load due to vehicle loading. The traffic loading is highly 
variable in amplitude and frequency, and many millions of cycles 
must be expected during the life of the structure. However, the 
vast majority of these load cycles are very small compared to 
the maximum truck load and the dead load of the bridge. The 
smallest cycles contribute little or nothing to the fatigue damage 
to the structure. As a result, the spectrum of real loads on the 
bridge are represented for design purposes (1) by a smaller 
number of cycles of AASHTO HS-20 truck loading. Although 
the procedure is not completely rational, it is generally approx-
imately valid (64) for a 50-year bridge life, and so this approach 
was used in the compression fatigue test program. 

The testing was directed toward the development of a better 
understanding of elastomeric bearings. Because of the many 
variables involved in the study, it was again not possible to 
generate complete S-N curves. Instead the relative importance 
of different parameters was assessed, and an approximate design 
procedure was chosen. The rate of testing was one important 
consideration, and it was selected based on three major consid-
erations. These included the expected load rate in the actual 
structure, the time-dependent characteristics of elastomers, and 
the practical necessity of completing testing in a reasonable 
period of time. The maximum rate of loading in service is likely 
to be no greater than 1 Hz—this rate would require a continuous 
line of trucks 60 ft long spaced 50 ft apart, traveling at 41 mph. 
Previous investigations of the shear fatigue properties of elas-
tomeric bearings indicated that the fatigue damage to elasto-
meric bearings increases with increasing frequency of the applied 
load. Therefore, laboratory tests performed at a rate of 1 Hz, 
the maximum rate expected in service, should give conservative 
results. Second, in order to apply a high number of cycles to 
each test specimen during the time available for the test program, 
a test rate no less than 1 Hz was required. Finally, pilot tests 
showed that cycling the bearings at a rate greater than 1 Hz 
gave rise to excessive heat buildup, and temperatures well above 
those expected in service. For these reasons all of the compres-
sion fatigue tests except No. I were conducted at a rate of 1 
Hz. Test No. 1 was run at 2 Hz because the relatively small 
stress range reduced the hysteresis in the elastomer and con-
sequently the temperature rise was small. 

The tests also investigated different load levels and cyclic load 
ranges, different materials, and different bearing sizes and shape 
factors. The bearings were loaded in compression by using two 
different load frames (see Fig. F-13), which were identical in 
operation and had compressive load capacities of 100 and 200 
kip. In both frames, compressive load was applied by an MTS 
hydraulic actuator which was part of a closed-loop hydraulic 
testing system. The test bearings were positioned between two 
steel platens, each 2 in. thick (Fig. F-14). The surfaces of the 
platens were smooth and parallel, and they were rigidly fixed 

-1 I 1L -`-.Ago 

Figure F-13. Photographs of the two load frames used in compres-
sion fatigue testing. 

to the load frame so that no rotational deformation of the bearing 
could occur during testing. Retaining stops attached to the face 
of the lower platen prevented lateral movement of the bearing. 

Instrumentation consisted of a load cell to measure com-
pressive load applied to the test bearing, and four LVDT's to 
measure compressive displacement. The load cell and LVDT 
voltages were monitored by an HP9816 computer. A miniature 
thermocouple probe was installed to monitor the internal tem-
perature of the bearing. It was inserted in a /32-in. diameter 
hole, I in. deep, drilled into the edge of the center reinforcing 
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Figure F-14. Photograph of test specimen in shear fatigue test 

rig. 

plate of the test bearing. In this location the thermocouple was 
able to sense variations in the internal temperature of the bear-
ing. 

The specimens tested were all 1.18 in. thick with two elas-
tomeric layers 0.4 in. thick and three steel plates 0.125 in. thick 
(Fig. F-4). The plan dimensions of the bearings were 8.0 in. 
except for one 4.8 in. by 4.8 in. and one 10.2 in. by 10.2 in. 
bearing which were also tested to evaluate the effect of shape 
factor. The shape factor of the standard size specimens was 5.0; 
and of the two nonstandard specimens, 3.0 and 6.4. The elas-
tomer for most of the specimens was neoprene with a 52 du- 

rometer Shore A hardness. Bearings made of both neoprene and 
natural rubber with a range of hardnesses were also tested. The 
properties of all the specimens tested are given in Table F-3. 
The material properties listed are those provided by the man-
ufacturer of the bearings; the measured hardness is provided in 
parentheses. Sometimes there were considerable discrepancies 
between the manufacturer's hardness measurements and those 
measured by the investigators. The investigators measured the 
hardness on the edge of the elastomer layer under less than 
ideal conditions, but it is believed to be a reliable indication of 
true hardness. All the specimens were cut from sheets of bearing 
material using a band saw, and so they had no edge cover. The 
absence of edge cover permitted observation of the development 
of cracks in the edges of the elastomer layers. Based on the 
results obtained in previous shear fatigue tests it is believed that 
cracks develop more quickly without edge cover, and the fatigue 
results obtained in these tests should be somewhat conservative. 

Each test bearing was measured and inspected carefully before 
testing. The bearing was then centered on the lower platen of 
the test apparatus, and retaining stops were installed to prevent 
lateral shifting of the bearing. Next the lower platen was raised 
so that the bearing was in contact with the top platen, but no 
compressive load was applied. Zero reference voltage readings 
were taken from the load cell and LVDT's and the initial tem-
perature of the bearing was noted. The initial compressive stiff-
ness of the bearing was measured by applying a cycle of 
compressive stress between 0 and 1,500 psi at a rate of 25 psi/ 
sec. After this first cycle of loading, several more cycles were 
applied and the stiffness of the bearing was measured again, 
because elastomeric bearings exhibit a somewhat greater stiffness 
during the first cycle of applied load than during subsequent 
cycles. It was found that the compressive stiffness of the test 

Table F-3. Compression fatigue tests. 

Mean ylcLodjj_ 

Test 
Shape 

Fac- Material 
Shore 

A 
Tensile 

Strength3  
Elong. 

@ Break 
_çpressive Total 

Debond 
Stress 
Range 

Strain 
Range 

No. 
Cycles Stress Strain 

No. tor Type Hardness (psi) (%) (psi) (in/in) (psi) (in/in) x1000 in/iD 

17 5.0 CR 52 	(52) 2777 591 1125 .066 750 .041 2121 12 
18 5.0 CR 52 	(52) 2777 591 800 .053 1400 .075 245 690 
19 5.0 CR 52 	(52) 2777 591 962 .075 1075 .056 254 539 
20 5.0 CR 52 	(52) 2777 591 637 .045 1075 .063 338 495 
21 5.0 CR 52 	(52) 2777 591 1044 .075 912 .046 2003 308 

22 3.0 CR 52 	(52) 2777 591 582 .092 651 .091 2053 545 
23 5.0 NR 53 	(58) 2865 602 1360 .078 1520 .053 662 273 
24 5.0 CR 49 	(51) 3123 678 950 .071 1060 .057 1205 520 
258 5.0 CR 52 	(52) 2777 591 1288 .084 1075 .050 554 224 
26 6.4 CR 52 	(52) 2777 591 1221 .058 1364 .047 499 438 

27 5.0 CR 74 	(65) 2559 351 1585 .086 1770 .051 484 131 
28 5.0 NR 60 	(64) 2801 575 1585 .084 1770 .052 490 130 
29 5.0 CR 60 	(62) 2876 439 1360 .071 1520 .051 663 98 

Notes 

1 Nominal hardness (measured hardness). 
2 Sum of debonding measurements at all locations - 1 bearing. 

Manufacturer's data. 
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Figure F-15. Photograph of typical fatigue cracking from the 
compression fatigue tests. 

bearings decreased to a nearly constant value after two or three 
cycles of loading. Next, a static stress equal to the minimum 
stress of the applied stress range was applied to the bearings, 
and cyclic loading was started by adding a sinusoidally varying 
stress. The temperature of the bearing was monitored by means 
of the thermocouple probe. The maximum temperature per-
mitted was generally 54°C (129°F), although in one test, No. 2, 
the temperature rose to 59°C. Precise temperature control was 
not possible because the test rig was not continuously monitored. 
Compression stiffness readings were taken at intervals through-
out each test. The cyclic loading was stopped and the bearing 
was permitted to cool to room temperature, 21°C to 26°C (70°F 
to 79°F), before making stiffness readings. In order to obtain 
data comparable to the initial compressive stiffness readings, 
several cycles were applied to the cooled bearing before these 
latter stiffness readings were taken. 

During the compression fatigue tests the bearing exhibited 
two major types of damage. Delamination of the elastomer layers 
from the steel plates occurred, and consequently there was a 
reduction in compressive stiffness. This reduction in compressive 
stiffness was monitored by means of the compressive stiffness 
readings taken throughout the test. Debonding measurements 
were made in the same way as during the shear fatigue tests, 
except that these measurements were from a single bearing. It 
was not possible to measure the full depth of crack penetration 
into the elastomer, but only the debonded lip heights projecting  

from between the steel plates, as shown in Figure F-5. In sonic 
tests, abrasion and fretting of the elastomer occurred against 
the edges of the steel plates. In each test, the abraded material 
shed by the bearing was collected and weighed. 

ANALYSIS OF COMPRESSION FATIGUE RESULTS 

The compression fatigue tests were conducted at a rate of 1 
Hz for reasons discussed previously, with a target of 2 million 
cycles. This test rate permitted completion of a test in a rea-
sonable period of time, and it was also consistent with the 
maximum load rate to be expected during heavy truck traffic. 
The shear test results indicate that a more rapid test increases 
the rate and extent of fatigue cracking, and so one compression 
fatigue test (Specimen 17) was performed at 2 cycles per second 
to measure the sensitivity to load rate. Specimen 17 did not 
exhibit exceptional damage, and so it is believed that variations 
in load frequency may be less important for compression than 
for shear loading. 

Fatigue cracks initiated in the elastomer rear the steel lam-
inate interface. The cracks grew with the number of repeated 
load cycles, and a typical cracked specimen is shown in Figure 
F-15. The cracks were in many ways similar to those observed 
in the shear fatigue tests, but there were also definite differences. 
First, the shear fatigue cracks grew quickly, and then appeared 
to stabilize after a number of cycles. Compression fatigue crack-
ing did not appear to exhibit this stabilizing effect, as can be 
seen in Figure F-16. However, the compression cracking is plot-
ted as a semiog curve, while the shear fatigue cracking employs 
a linear axis. The change in the horizontal axis distorts the 
curves, and so it is very possible that crack size could increase 
if many more shear cycles were added. Second, the locations 
for initiation of cracking were different for compression fatigue 
cracking. The total debonding height was somewhat smaller for 
the most heavily damaged compression tests than for the most 
heavily damaged shear specimens. It should be noted that the 
heights given in Tables F-I and F-2 are for a pair of bearings 
and should be divided by two when they are compared to the 
compression tests. 

Figure F-16 illustrates the effect of stress range on the fatigue 
crack rate. The degree of cracking and rate of cracking increased 
dramatically with increasing stress range. Figure F-17 shows 
the effect of mean stress on the fatigue damage. All three spec-
imens had an identical stress range, but the mean stress increased 
by 50 percent for specimen 19 over that used for specimen 20 
and by 92 percent for specimen 25. However, specimen 25 had 
the smallest measured cracking, while specimen 19 had the 
largest. The meaning of these results may be subject to some 
differences in interpretation. However, it may suggest that an 
increase in mean stress decreases the fatigue life slightly as 
suggested in the shear fatigue tests, while a dramatic reduction 
in fatigue life can be expected if the stress range is large com-
pared to mean stress. This latter observation is consistent with 
the observations (38) made in earlier research, and it may occur 
because the benefits of strain crystallization are not realized 
when the mean stress level is relatively small. 

Six different materials were tested for compression fatigue, 
and the results are shown in Figure F-18. The materials were 
selected to cover a wide range of properties expected with natural 
rubber or neoprene bridge bearings, and they were identical to 
those used in the shear fatigue testing. The bearings' load pro- 
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Figure F-16. Compression fatigue tests—variation in measured 
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Figure F-i Z Compression fatigue tests—variation in measured 
elastomer protrusion with mean compressive stress. 

grams were selected to achieve nearly identical cyclic strain 
ranges and mean strains for all specimens, but the time-depen-
dent characteristics of the elastomer produced some minor dif-
ferences in the test results. The bearings with smaller elongation 
at break had smaller fatigue cracks. This is in direct opposition 
to the rationale employed in the BE1 / 76 specification. Harder 
specimens also sustained less cracking, and this appears to be 
in conflict with the damage observed in the shear tests. There 
did not appear to be any correlation between the tensile strength 
of the elastomer and the compression fatigue behavior. 

Figure F- 19 shows the crack growth rates for three different 
bearings with different shape factors and identical material and 
strain levels. The cracking was significant in all three specimens, 
but the onset of severe cracking occurred at quite different 
numbers of cycles. It is difficult to evaluate the differences, 
because the debonding measure is imprecise and the extent of 
cracking is of different importance with different size and shape 
factor bearings. As a result, the compressive stiffness of the 
bearing before and after cracking was examined. The stiffness 
typically decreased with fatigue damage as illustrated in Figure 
F-20. While the tangent stiffness decreased, there usually was 
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Figure F-19. Compression fatigue tests—variation in measured 
elastomer protrusion with different shape factors. 
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elastomer protrusion with different elastomeric compounds. 
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Table F-4. Compression fatigue damage. 

Test 
Maximum 
Debond 

Compressive_Stiffness 
Initial Final Change 

No. in/100 (K/in) (K/in) 

17 12 1099 999 -9.1 
18 690 1139 929 -18.5 
19 539 1135 977 -13.9 
20 495 1103 895 -18.9 
21 305 1095 993 -9.3 

22 545 208 211 +1.3 
23 244 1550 1232 -20.6 
24 461 1147 1103 -3.9 
25 224 1052 1019 -3.2 
26 438 2582 2328 -9.8 

27 131 1589 1513 -4.2 
28 130 1520 1270 -16.4 
29 79 1399 1340 -4.2 

also an increase in the permanent deflection as the test pro-
gressed. Table F-4 summarizes the stiffness changes observed 
for all specimens. The greatest reduction was 20.6 percent for 
specimen 23. In 13 of the 14 specimens the stiffness reduced 
due to compression fatigue cracking. The correlation between 
measured crack size and the reduction in stiffness is not perfect. 
This may be caused by lack of precision and repeatability in the 
crack measurements and the compression test results, or it may 
suggest that one or both are not good indicators of fatigue 
damage. 

SUMMARY AND CONCLUSIONS 

This appendix has described an experimental study of fatigue 
of elastomeric bearings. The objectives of the tests were to de-
velop a general understanding of fatigue and to develop rational 
but approximate design guidelines. Too few tests were conducted 
to develop  S-N curves or precise fatigue limits. 

1. The shear tests were designed on the assumption that shear  

fatigue is controlled by the daily temperature cycle, and a test 
procedure was developed that is believed to be conservative. 
The shear tests described in this appendix are not conservative 
for bearings in which shear deformations are induced by traffic 
loading. As a result, shear strains should be severely limited for 
these circumstances. 

The compression fatigue tests were based on the hypothesis 
that compression fatigue is controlled by truck loading, and the 
assumption of 2 million cycles of HS-20 loading was used as 
the fatigue design service load. This design load is larger than 
warranted by actual truck loads, but the number of cycles is 
much smaller than actually expected. However, this procedure 
has generally resulted in a simple, approximate method for 
design of bridge members. 

The test results showed that the strain range is an important 
parameter in assessing fatigue life. Larger strain range results 
in increased fatigue cracking and reduced fatigue life. An in-
crease in mean strain reduced the fatigue life of the shear spec-
imens, but had less influence on the cracking than did strain 
range. Further, dramatic reductions in fatigue life may occur 
when the mean stress is small compared to the stress range, but 
the strain crystallization of the elastomer is not utilized. 

Rapid cycling of loading increases the specimen temper-
ature and the rate of fatigue cracking. Since heat buildup ap-
peared to accompany serious fatigue cracking, the most reliable 
indicator of potential fatigue problems with elastomers may be 
the hysteresis observable in the shear and compression test. 

The elastomeric compound affects the fatigue behavior, but 
there is no good correlation between the expected fatigue damage 
and any of the material properties commonly measured in elas-
tomeric compounds. The shear test results suggested that natural 
rubber has better fatigue performance, while the compression 
test results suggested that harder compounds of natural rubber 
or neoprene have less cracking. Fatigue cracking appears to 
reduce the compressive stiffness significantly, but it has much 
less effect on the shear stiffness. Fatigue cracks appear to be 
limited in size under cyclic shear loading, but there is no evidence 
of this limit in the compression fatigue tests. 

Edge cover appears to reduce the rate of fatigue cracking. 
Additional research is clearly needed to evaluate fatigue behav-
ior fully. It would be desirable to develop S-N curves for shear 
and compression loading, because this will be needed when more 
refined variable amplitude fatigue design procedures, are em-
ployed. 

APPENDIX G 

SHEAR MODULUS TESTS 

Tests were conducted to investigate the dependence of shear 
modulus on axial stress for the material used in the buckling 
and column shear tests. They were undertaken because buckling 
loads and transverse stifTnesses measured in the column shear 
tests did not correlate well with theoretical values obtained using  

the Basic Theory and nominal values of G. They were performed 
on pairs of bearings separated by a shear plate so as to avoid 
the geoi4ietric (buckling) effects that would occur with a taller 
stack of bearings. 

Five bearing types were examined, and details are given in 
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Table 0-1. They were tested in the rig that had been specially 
built for the simultaneous application of compression and shear 
and had been used for the shear fatigue tests. The axial loading 
arrangements were such that displacement rather than force was 
maintained constant. Several previously tested specimens were 
introduced into the axial load train to act as springs, and by 
this means the axial load variation during each cycle was limited 
to about 3 percent. At high stresses the load tended to creep 
down with time. The values of the apparent shear modulus, Ga, 
were obtained by fitting the best straight line to the second cycle 
of the shear force-deflection curve near the origin. G. was then 
obtained from 

Kthrtø 
G. = 	 (G-l) 

where K, = measured transverse stiffness of two bearings, A0 
= unloaded plan area of one bearing, and h,,0 = unloaded total 
elastomer thickness of one bearing. 

The loading curves were very nearly linear, as can be seen 
from Figure G-1 which shows shear force-displacement curves 
for 5.66 in. X 11.33 in. bearings under different compressive 
stresses. Some material hysteresis was present in all cases. Dur-
ing the test at 110-psi compressive stress, the bearing slipped 
in shear, which accounts for most of the hysteresis in that curve. 
The shear load was limited either by slip or by keeping the 
shear strain below 0.83. 

The test results are plotted in Figure G-2. The apparent shear 
modulus G. was divided by G 0, its value at zero compressive 
load, to give a dimensionless result. G 0 values were obtained 
from tests at a compressive stress of 100 psi, because some 
compression is needed to prevent slip. The abscissa in Figure 
0-2 was chosen to be o/o,, because the results from the 
different shaped bearings would be expected to lie on a single 
line if the reduction in transverse stiffness (or apparent shear 
modulus) depended only on the stability effects outlined in 
Appendix E. 
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Figure G-1. Shear force vs. displacement at different compressive 
stress-5.66 in. X 11.33 in. bearings. 

Table G-1. Material shear tests. 

Axial 

Specimen Plan Stress Shear 

Dimensions Elastomer Steel Shape Range Strain! 

(in.) Layers Layers Factor (psi) sec 

4 x 16 	Rectangle 2 @ 0.306 3 9 1/8 5.2 106 - 958 .01 

5.66 x 	11.33 Rectangle 2 @ 9.383 3 9 1/8 4.9 100 -1920 .01-02 

808 	Square 4 @0.370 591/16" 5.3 100-942 .01 

9 dia. 	Circle 2 @ 0.4375' 3 9 1/8" 5.1 106 - 973 .01 

8016 	Rectangle 2 @0.503" 391/8" 5.3 103- 973 .01 

Note: All rectangalar bearings were sheared parallel to their long dimension. 

Two values for observed shear stiffness ratio are shown for 
each test. The higher one is derived using Eq. G-1, which in-
cludes no correction for changes in thickness and area, while 
the lower one includes a simple correction for each, giving 

G. = (1 - e)2 	 (G-2) 
2A0  

Continuous curves are drawn through each set of points to 
represent approximately the trend of the experimental results. 
In all cases the component of deflection due to bending was 
less than 0.1 percent of the total, and therefore was ignored. 
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In Figure G-2 the apparent shear modulus can be seen to 
drop significantly with increasing 	Stability theory, char- 
acterized in this case by Eq. E-23 of Appendix E, predicts some 
reduction in transverse stiffness with higher compressive stress, 
but the effect is small because the bearings were squat. It is 
shown as a dashed line in Figure G-2. 

The experimental stiffness ratio falls much faster than the 
predicted one, and so either Eq. E-23 is wrong or other forms 
of behavior are more influential than the geometric ones. One 
plausible explanation is that the shear modulus of the material 
itself was falling under axial stress. To investigate this, the data 
are replotted against compressive stress in Figure G-3. If the 
area and height corrections of Eq. G-2 are ignored the observed 
shear modulus ratio appears to level out at about 0.80. When 
the corrections are included, it continues to fall. 

Other explanations may also be offered. For example, the use 
of a continuum theory to predict stiffness reductions is clearly 
wrong when the bearing is made of only two discrete layers. 
Although this probably contributed to the error, it seems un-
likely to account for all of it, because the discrepancy between 
the measured loss of stiffness and that predicted by Eq. E-23 is 
so large. 

No cases are known of similar behavior being reported by 
other researchers. The findings contrast with Wong's (42) test  

results on circular natural rubber bearings in which he found 
that compressive stresses of up to 3,000 psi made almost no 
difference to the shear modulus after correction for area and 
thickness changes under load. However, Stevenson (65) reports 
that the shear moduli of some highly filled elastomers are very 
dependent on shear strain amplitude. Since compression causes 
shear strains, applying compressive and shear loads together 
causes some parts of the bearing to be subjected to higher shear 
strains than they would be under shear loading alone. If G falls 
with increasing shear strain, the simultaneous application of 
compression would reduce the transverse bearing stiffness, as 
was found here. The main difficulty with this argument is that 
a nominal 55 hardness elastomer would not normally have a 
high filler loading. 

Gent (41) performed tests under simultaneous compressive 
stress and transverse load, but they were intended to investigate 
buckling; therefore, the specimens were slender columns and 
the stresses were low (less than 200 psi). It is not surprising,then, 
that he did not observe this effect. 

It is concluded that the reduction in shear modulus observed 
in the tests described here was most probably a property of the 
particular elastomer used. Because that was a typical bridge 
bearing neoprene compound from a major manufacturer, the 
same effect may be expected to occur elsewhere. The significance 
is that any reduction in material modulus must be included in 
any predictions for transverse stiffness. It may prove important 
in quality assurance tests in which shear stiffness is measured 
under simultaneous compressive load. 

The reduction was included in a simple way in the correlation 
between experimental and theoretical transverse stiffness values 
in Appendix E. By taking a G value of 117 psi in the theoretical 
predictions rather than the value of 140 psi found at low com-
pressive stress, better correlation was achieved for both buckling 
loads and transverse stiffness. For a stack of bearings high 
enough to buckle at a compressive stress of about 100 psi, better 
correlation between theory might be obtained using a G of 140 
psi (i.e., the value measured for low stresses). However, no tests 
were performed in this range. The use of a single reduced mod-
ulus does not reflect the trend of a continually reducing stiffness 
suggested by Figures G-2 and G-3, but at least its value lies 
within the range of measured values shown in those figures. 

SUMMARY AND CONCLUSIONS 

Shear tests on pairs of bearings subjected to simultaneous 
compressive stress showed a reduction in shear modulus with 
increasing compressive stress. The reduction was about 20 per-
cent at compressive stresses in the range 500 to 1,000 psi. It 
appeared to be a material phenomenon rather than one asso-
ciated with buckling. Such behavior was not observed in earlier 
tests (42) on bearings made from different material. 
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SECTION 14—ELASTOMERIC BEARINGS 

14.1. General 

An elastomeric bridge bearing is a device constructed partially 
or wholly from elastomer, the purpose of which is to transmit 
loads and accommodate movements between a bridge and its 
supporting structure. This section of the Specification covers 
the design of plain pads (consisting of elastomer only) and 
reinforced bearings (consisting of layers of elastomer restrained 
at their interfaces by integrally bonded steel or fabric reinforce-
ment). Tapered elastomer layers are not permitted. In addition 
to any internal reinforcement, bearings may have external steel 
load plates bonded to the upper or lower elastomer layers or 
both. Such load plates shall be at least as large as the elastomer 
layer to which they are bonded. 

The materials, fabrication, and installation of the bearings 
shall be in accordance with the requirements of Section 25 of 
Division II of the Specification. Two design procedures are 
provided in this section. Bearings reinforced with steel may be 
designed either by the procedure defined in 14.4.A or the one 
in 14.4.B. Bearings with fiberglass reinforcement or unreinforced 
pads shall be designed by 14.4.A. Both design procedures are 
based on service loads. 

for circular bearings 

W = Gross dimension of rectangular bearing parallel to the 
transverse axis 

0 = Relative rotation of top and bottom surfaces of bearing. 
Subscripts: 
TL - total load 
LL = live load 
x = about transverse axis 
z = about longitudinal axis 

/3 = Modifying factor having a value of 1.0 for internal 
layers of reinforced bearings, 1.4 for cover layers, and 
1.8 for plain pads. Note that /3 = 1.8 applies only to 
l4.4.A. 

= Instantaneous compressive deflection of bearing (in.) 
= Shear deformation of the bearing in one direction from 

the undeformed state (in.) 
= Compressive strain in elastomer layer number i (change 

in thickness divided by the unstressed thickness) 
o- = P/A = Average compressive stress on the bearing 

caused by the dead and live load, excluding impact 
= Average shear stress induced in the elastomer by shear 

deformation 

14.2. Definitions 

Longitudinal Axis: The axis of the bearing parallel to the lon-
gitudinal axis of the bridge girder(s) 

Transverse Axis: The axis of the bearing perpendicular to the 
longitudinal axis 

D = Gross diameter of a circular bearing (in.) 
= Effective compressive modulus of the elastomer, taking 

account of restraint of bulging = 3 G(l + 2kS2 ) 

(psi) 
H = Shear force on bearing (lb) 
F = Yield stress of the steel reinforcement (psi) 
G = Shear modulus of elastomer (psi) at 73°F 

= Total elastomer thickness of the bearing (in.) = 
h, = Thickness of elastomer layer number i (in.) 

= Thickness of the steel reinforcement (in.) 
I = Moment of inertia of the bearing about its transverse 
- 	axis (in.') 
k = Constant dependent upon elastomer hardness 
L = Gross dimension of rectangular bearing parallel to the 

longitudinal axis (in.) 
M = Moment required to rotate the bearing (lb-in.) 
P = Compressive load on the bearing (lb) 
S = Shape factor of one layer of a bearing 

- 	= Effective Area Free to Bulge 

Loaded Area 
2h.(L+ 

= 	L 	
for rectangular bearings  

14.3. Material Properties 

Values for the material properties of the elastomer are needed 
for design. However, the properties of elastomeric compounds 
depend on their constituents and on the temperature of the 
material. 

The shear modulus at 73°F shall be used as the basis for 
design for compression and stability. When the properties of 
the elastomer from which the bearings are to be made are known, 
they shall be used. The shear modulus shall be determined using 
the test specified in Section 25 of Division II of this Specification. 
When only the hardness is specified, the other properties shall 
be taken as the least favorable values from the range for that 
hardness given in Table 14.3.1. Values for intermediate hard-
nesses shall be obtained by interpolation. 

Table 14.3.1. 

Hardness (Shore 'A') 50 60 70 

Shear Modulus at 730  F (psi) 
(MPa) 

85-110 
(0.6-77) 

120-155 
(0.85-1.1) 

160-260 

Creep Deflection at 25 Years 25% 35% 45% 

Instantaneoss deflection 

k .75 .60 .55 
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Material with a nominal hardness greater than 60 shall not 
be used for reinforced bearings. 

For the purposes of bearing design, all bridge sites shall be 
classified as being in temperature zone I, II, or III. Zone I 
consists of all regions where the 50-year extreme low temper-
ature does not fall below 0°F (18°C) and the overnight low 
temperature does not drop below 25°17  (— 5°C) for more than a 
6-hour duration on three nights in succession. Zone II consists 
of all regions not qualifying for Zone I, but in which the 50-
year low temperature is not less than — 30°F (-3 5°C). All other 
regions fall into Zone III. 

Bearings shall be made from grades of elastomer in accordance 
with Table 14.3.2. A grade of elastomer higher than that re-
quired may be used. The special provisions required in Table 
14.3.2 are that either a positive slip apparatus be installed or 
that the components of the bridge be able to resist the forces 
arising from a bearing force four times the design shear force. 
The design shear force is defined as the shear force induced in 
the bearing when it is subjected to a shear deformation, i, 
(defined in Section 14.4.A4 or 14.4.132) at 73°F. If a positive 
slip apparatus is installed, the components shall be able to with-
stand forces arising from a bearing force equal to twice the 
design shear force. All bearings made from Grade 5 elastomer 
shall be tested in accordance with Section 25.9.1 of Division II 
of this Specification. 

14.4. Design Methods 

14.4.A. Design Method A 

14.4.A.1. Compressive Stress 

Unless shear deformation is prevented, the average compres-
sive stress a-, in any layer shall not exceed the least of: 

GS//3 

and either 1000 psi, for steel-reinforced bearings 
or 800 psi, for plain pads or fiber-reinforced bearings 

In bearings containing layers of different thickness, the value 
of S used shall be that for the thickest layer. Allowable com-
pressive stress may be increased by 10 percent where shear 
deformation is prevented. 

14.4.A.2. Compressive Deflection 

Compressive deflection, A,, of the bearing shall be so limited 
as to ensure the serviceability of the bridge. 

Instantaneous deflection shall be calculated as 

= 	h,1 

Values for ed,, shall be obtained from design aids based on tests 
such as presented in Figures 14.4.A.2A and 14.4.A.2B, by testing 
or by rational analysis. 

The effects of creep of the elastomer shall be added to the 
instantaneous deflection when considering long-term defiec-
tions. They shall be computed from information relevant to the 
elastomeric compound used if it is available. If not, the values 
given in Article 14.3 shall be used as a guide. 

Table 14.3.2. ASTM 4014 elastomer grades to be used 
in different temperature zones. 

Zone I II III 

Without 
Special 2 3 5 

Provisions 

With 
Special 1 2 5 

Provisions 

14.4.A.3. Rotation 

The relative rotation between top and bottom surfaces of the 
bearing shall be limited by 

LOTL  + WOTL < 2, for rectangular bearings 

D ..J02TL  + 02TL, < 2&,, for circular bearings 

14.4.A.4. Shear 

The horizontal bridge movement shall be taken as the max-
imum possible deformation caused by creep, shrinkage, post-
tensioning, and thermal effects computed between the instal- 

2.000 
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5 	 1U 	 15 
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Figure 14.4.A.2A. Compressive stress-strain curves for 50 durom-
eter elastomer. 
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lation temperature and the least favorable extreme temperature. 
The maximum shear deformation of the bearing, A, shall be 
taken as the horizontal bridge movement, modified to account 
for the pier flexibility. If a positive slip apparatus is installed, 
A. need not be taken larger than the deformation corresponding 
to first slip. 

The bearing shall be designed so that 

h, > 2 As  

The shear stress induced by shear deformation is given by 

14.4.A.5. Stability 

To ensure stability, the total thickness of the bearing shall 
not exceed the smallest of: 

L/5, W/5, or D/6 for plain pads 
L/3, W/3, or D/4 for reinforced bearings 

14.4.A.6. Reinforcement 

The reinforcement shall be fiberglass or steel and its resistance 
in pounds per linear inch at working stress levels in each di-
rection shall not be less than 

1400 h, for fiberglass 
1700 h,1  for steel 

For these purposes, h,1  shall be taken as the mean thickness 
of the two layers of the elastomer bonded to the reinforcement 
if they are of different thicknesses. The resistance per linear 
inch is given by the product of the material thickness of the 
reinforcement and the allowable stress. The allowable stress shall 
be calculated taking into account fatigue loading but ignoring 
holes in the reinforcement. Holes shall be prohibited in fiber 
reinforcement. They are not recommended in steel reinforce-
ment, but if they exist, the steel thickness shall be increased by 
a factor 

2 X gross width 
net wiutn 

14.4.B. Method B Optional Design Procedure for 
Steel Reinforced Bearings 

14.4.B.1. Pure Compression 

In any internal layer of the bearing, the average compressive 
stress, o-, due to the total dead and live load on the bearing, 
shall not exceed 1600 psi or 1.66 GS. The average compressive 
stress due to live load shall not exceed 0.66 GS. For bearings 
fixed against translation, these limits may be taken as 2.0 GS 
and 1.0 GS, respectively. No increase in load for impact need 
be included. 

Instantaneous changes in deflection due to short-term loading 
shall be calculated by 

= 

Shape Factor 
	 where 

20 16 12 9 6 	5 	4 
P 

3 

2 

1 	
and 

0 	 = 3G(l + 2kS2) 

to 
0 
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Ct 
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1.00( 

U, 
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J) 

40( 

201 

0 	 IU 

Compressive Strain (%) 

Figure 14.4,A.2B. Compressive stress-strain curves for 60 durom-
eter elastomer. 

In these equations F, Ac, and 4E, refer to the changes in load, 
deflection, and strain caused by the instantaneous load. The use 
of test results and design curves for deflection calculations is 
also acceptable. The effects of creep of the elastomer shall be 
added when considering long-term deflections. They shall be 
computed from information relevant to the elastomeric com-
pound used if it is available. If not, the values given in Article 
14.3 shall be used as a guide. 

14.4.B.2. Shear 

The shear deformation shall be taken as the maximum possible 
deformation caused by creep, shrinkage, post-tensioning, and 
thermal effects computed between the installation temperature 
and the least favorable extreme temperature, unless a positive 
slip apparatus is installed. 

IN 
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The bearing shall be designed so that 

h,, > 2 A, 

The shear stress induced by shear deformation may be approx-
imated by 

Rotations about the longitudinal axis of the bearing are not 
recommended, but if they exist, reduced stress levels for these 
rotations shall be computed by a rational method. 

1 4.4.B.5. Stability 

The bearings shall be proportioned with a geometry that 

	

= G - 	 prevents stability failure. The average compressive stress due to 

	

h,, 	 total dead and live load on rectangular bearings shall be less 
than 

1 4.4.B.3. Rotation 

The rotational deformation shall be taken as the maximum 
possible rotation between the top and bottom of the bearing 
caused by initial lack of parallelism and girder end rotation. 
Rotation about the transverse axis of the bearing shall be limited 
to: 

2A. 
0TL.., ~ 

Rotation about the longitudinal axis of the bearing is not rec-
ommended. The moment induced by the rotation, M, about the 
transverse axis of the bearing may be calculated by 

E, IO 
M h 

where 

WI) 
I 

= ----, 
for rectangular bearings 

12 

If rotation exists about the longitudinal axis, the moment shall 
be computed by a rational method or be established by test. 

14.4.13.4. Combined Compression and Rotation 

In bearings subjected to both compression and rotation about 
the transverse axis of the bearing, the average compressive stress 
due to total dead and live load on the bearing, without increase 
for impact, shall be limited to 

1.66 GS 
TL 

1 + 
1-TL,x 

4 A, 

and the total compressive stress due to live load alone shall be 
limited to 

o- 	0.66 GS 

GL

G") 
L S2 

+ 
l.l5h,\I 	T 

Rectangular elastomeric bearings that are restrained to prevent 
all relative movement between the top and bottom of the bearing 
shall have average compressive stress due to total dead and live 
loads less than 

GL 2L' S2 
V l 0.6 h,, 
	+ (1 + ) T 

The stability of circular bearings may be evaluated by using the 
equations for a square bearing where 

L = 0.8 D 

If L is greater than W for a rectangular bearing, stability shall 
be checked by the above formulas with L and W interchanged. 

14.4.B.6. Reinforcement 

The thickness of the reinforcement, h,, shall satisfy 

1.5 (h,1 + h,2) cr TL h, > 	 for total load 

1.5 (h,1 + h,.2) °C,LL h, > 	 for live load 
F,, 

where F,, is the allowable stress range based on fatigue loading, 
but ignoring holes. If holes exist the minimum thickness shall 
be increased by a factor 

2 x gross width 
net wiatn 

14.4.13.7. Special Testing and Acceptance 
Requirements 

All elastomeric bearings that are designed by Section 14.4.B 
shall satisfy the acceptance and testing requirements of Section 
25.7.8 of Division II. 

where 0TL is the rotation about the, transverse axis of the 
bearing due to total dead and live loads. For bearings fixed 
against translation, the constants 1.66 GS and 0.66 GS in the 
foregoing equations for stress limits may be taken as 2.0 GS and 
1.0 GS, respectively. 

14.5. Anchorage 

If the maximum shear force due to bearing deformation, H, 
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exceeds one-fifth of the compressive force P due to dead load 
alone, the bearing shall be secured against horizontal movement. 
The bearing shall not be permitted to sustain uplift forces. 

14.6. Stiffeners for Steel Beams and Girders 

The flanges of steel members seated on elastomeric bearings 
must be flexurally stiff enough not to risk damage to the bearing. 
Any necessary stiffening may be accomplished by means of a 
sole plate or vertical stiffeners. The stiffening requirements of 
this section do not replace any others in this specification, but 
should be read in conjunction with them. 

Single-webbed beams and girders symmetric about their minor 
(vertical) axis and placed symmetrically on the bearing need no 
additional stiffening if 

PL < I 
2t 	J3.4o. 

where 

b1  = total flange width, 
t1  = thickness of flange or combined flange and sole plate, 

and 
Fyg  = yield stress of the girder steel. 

14.7. Installation 

Misalignment in bridge girders due to fabrication tolerance, 
camber, or other source shall be considered in the bearing design. 

COMMENTARY—SECTION 14 

14.1. Tapered layers are expressly prohibited because they cause 
larger shear strains and bearings made with them fail pre-
maturely due to delamination or rupture of the reinforce-
ment. 

14.2. A refined definition of the shape factor is not warranted 
because quality control on elastomer thickness has a more 
dominant influence on bearing behavior. The coefficient /3 
= 1.8 does not apply to design Method B (i.e., 14.4.B.) 
because this method is strictly for reinforced bearings with 
steel reinforcement. The /3 values greater than 1.0 account 
approximately for the slip that may occur at friction sur-
faces. 

14.3. The same material properties are used for both design 
methods, but Method B permits taller bearings and greater 
allowable stresses. The low temperature requirements are 
based on an analytical study of the low temperature stiff-
ening of the bearing. Analysis suggests that bearing forces 
due to low temperature crystallization of 3 to 4 times the 
design force can be developed if the bearing is made from 
a low temperature grade of elastomer that is not consistent 
with the expected temperatures. Instantaneous low tem-
perature stiffening may cause bearing forces that are several 
orders of magnitude larger than the design force, and so 
Grade 5 elastomer is required for Zone III. The analyses 
were based on the best available experimental information, 

but they are necessarily approximate. More experimental 
research is needed in this area. 

14.4.A. This method is nearly identical to the existing AASHTO 
(1985) provisions and requires no special comment. Only 
the organization has been changed to be consistent with 
the new Method B provisions. The reader is therefore re-
ferred to NCHRP Report 248 for these provisions. 

14.4.B.1. The 1600-psi stress limit is intended to control delam-
ination of the elastomer from the reinforcement. There is 
tremendous scatter in delamination test results, but the 
1600-psi stress limit appears to provide satisfactory results 
if it is combined with a limit on the shear strain. The limits 
of 1.66 GS on total dead and live load and 0.66 GS on live 
load only are intended to control fatigue cracking and de-
lamination. They are based on the observation that fatigue 
cracking in experiments remained acceptably low if the 
maximum shear strain due to total dead and live load was 
kept below 3.0 and the maximum strain range for cyclic 
loading was kept below 1.5. The level of damage considered 
acceptable had to be selected arbitrarily, therefore the limits 
are not clear-cut. 

Two limits are given, one for total load and one for live 
load, and the more restrictive one will control. 

Increases in the load to simulate the effects of impact 
are not required.. This is because the impact stresses are 
likely to be only a small proportion of the total load, and 
also because the stress limits are based on fatigue damage, 
the limits of which are not clear cut. Furthermore, the 
AASHTO impact fraction does not represent the effective 
load increase on a bearing. 

14.4.11.2. Experiments show that corners of a bearing roll over 
if the shear strain due to shear deformation exceeds 50 
percent. Roll-over may cause damage to the reinforcement 
and the elastomer and should be avoided. This shear de-
formation limit also helps prevent excessive fatigue cracking 
of the elastomer. The cyclic fatigue tests from which the 
provisions are derived were based on a 20,000 cycle life 
expectancy, so the results will be unconservative if the shear 
deformation is caused by high cycle loading due to braking 
forces or vibration. The maximum shear strain due to these 
high cycle loadings should be restricted to less than 0.10 
unless better information is available. 

14.4.B.3. The rotational stiffness equation is an approximate 
relationship which appears to provide reasonable correla-
tion with experimental results. The limitation on maximum 
rotation is based on the prevention of lift-off. Lift-off bends 
the plates and may introduce tensile stress in the elastomer 
and should be avoided. Ordinarily bearings should be ori-
ented so that rotation occurs about their long axes, because 
rotation about the short axis causes relatively larger strains 
in the elastomer. 

14.4.B.4. The limitations on compressive stress due to live loads 
alone and to total dead and live loads are based on the 
shear strain limits for fatigue noted earlier. The equations 
are simplified by the observation that the maximum shear 
strain due to rotation is relatively insensitive to the aspect 
ratio of the bearing if the bearing is rotated about its longer 
axis. If rotation occurs about the short axis, the equations 
given in 14.4.11.4 may not be conservative, and the strains 
must be computed by a rational analysis. 
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14.4.11.5. The stability checks in this section are based on a 
conservative application of the buckling theory derived by 
Gent and a safety factor of 1.7. Experiments have suggested 
that this theory is fairly realistic for tall bearings or those 
with low shape factors. The equation is quite conservative 
for most practical bridge bearings. This provision will per-
mit taller bearings and reduced shear forces compared to 
those permitted under previous specifications. 

14.4.B.6. Special testing and acceptance requirements are 
needed for bearings designed by Section 14.4.B. Method B 
permits taller bearings and greater allowable stresses. 
Therefore, Method B will require that each bearing be proof 
loaded to 150 percent of its service load and be examined 
for misplaced reinforcement or poor layer thickness control 
and for partial delamination. Shear tests are needed on 
randomly selected bearings to assure that the elastomer has 
material properties that are compatible with the design 
assumptions. 
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