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FOREWORD 	This report will be of particular interest to those individuals interested in develop- 
ing weighing systems to determine the static weight of any vehicle by measurement 

	

By Staff 	of the dynamic forces developed by the vehicle in motion. The various dynamic 
waveforms associated with the highway vehicles were reviewed, and several com- 

	

Highway Research Board 	putational procedures were employed to ascertain axle weights from the expected 
sampled force data which would be provided by a number of platform transducers 
or scales. This report describes the digital or digital-analog computer systems 
required to make the recommended computations. 

Modern techniques for highway pavement design and performance evaluation 
are dependent on data regarding vehicle axle loads and their frequency and time 
distribution. Much better estimates than are now available are required. Conven-
tional weighing equipment interrupts traffic flow, requires excessive manpower, and 
may result in statistical bias in samples. Equipment is needed that automatically 
determines axle weight without a change in vehicle speed, or other traffic inter-
ference, or driver awareness, and that instantaneously records the weight and time 
of passing of all vehicles, especially axle loads in excess of 3,000 pounds. 

Techniques are available to measure and record the distribution of axle loads 
by electronic methods. However, improved systems are desirable for automatic 
data processing and the presentation of summary statistics. The primary objective 
of this research was to design a vehicle-in-motion axle-weighing system so that 
every axle of significant weight which crosses the location of the device will be 

weighed within an accuracy of ± 5 percent of its true static weight. 
The primary emphasis of this study was on the errors associated with weigh-

ing highway vehicles in motion. A review of vehicle dynamics indicated the type 
of waveforms associated with highway vehicles. It was assumed that sampled force 
data would be provided by several platforms. Consequently, the research involved 
the investigation of computational methods for estimating the static weight from 
these recorded dynamic forces. 

Methods for estimating the static axle weight from sample dynamic force data 
included averaging, dynamic models, interlacing polynominals, and regression 
analysis. A preliminary system for the detection and the analysis for weighing 
vehicles in motion is shown diagrammatically. Estimated costs are provided for 

developing recommended systems. 
The Franklin Institute's research presented in this report complements the 

studies performed by others who are developing hardware for weighing vehicles in 
motion. The analytical procedures and the computer programs should assist others 
in developing a prototype system to actually determine the static weight from 
dynamic measurements. 
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ANALYTICAL STUDY OF 
WEIGHING METHODS FOR 

HIGHWAY VEHICLES IN MOTION 

SUMMARY 	This report describes an analytical study program for the investigation of error 
associated with the weighing of highway vehicles while in motion, using multi-plat-
form electronic scales placed in the highway. The error associated with a weighing 
system stems from two sources: (1) the electronic equipment for the measurement 
of force on a highway, and the processing of data; and (2) the computational pro-
cedures that are employed to ascertain axle weight from the sampled force data 
provided by the platforms. Accordingly, the purposes of this study were to: 

Investigate a number of mathematical methods by which the weight of any 
given axle could be computed to within 5% of the actual weight. 

Describe (including cost and accuracy) physical equipment by which certain 
of these methods may be implemented. 

A review of vehicle dynamics indicated the type of waveforms that are asso-
ciated with highway vehicles. This may be summarized as follows. The wave-
form of force at any axle is composed of a static part proportional to axle weight, 
and a dynamic part consisting of a number of damped harmonic components reflect-
ing the various oscillatory modes of the vehicle and dynamic excitation. Further 
investigation disclosed the feasibility of using an axle force model consisting of a 
static component plus non-damped periodic oscillatory components in the analytical 
studies, in the absence of adequate experimental data. The deletion of damping of 
the oscillatory components was warranted by the use of force records not longer 
than one or two basic wavelengths. The review of vehicle dynamics also indicated 
that a good estimate of weight could be obtained by discerning the static component 
of axle force over a short interval in the absence of significant excitation (a relatively 
smooth highway surface where weighing). 

The investigation of computational methods for determining weight from the 
sampled force data provided by the platforms included the following: 

Direct averaging methods, whereby the force over platforms was simply 
averaged to yield an estimate of axle weight. The study showed that for an equip-
ment cost of $40,000 to $45,000, axle weight can be computed to within 5% most 
of the time where vehicles are oscillating 20 to 25% about the static weight. This 
includes speeds to 60 mph, although the cost and error is somewhat proportional to 
vehicle speed. 

Dynamic methods, whereby an analogous mechanical oscillator is employed 
to fit a sine curve through the oscillating component of force in the average. This 
seemed warranted by the character of axle force where experimental data confirmed 
the dominance in amplitude of the low-frequency components. The methods were 
not fully exploited when other methods promised better accuracy. 

integral Model III, whereby a regression model approximating the second 
integral of axle force was used to compute weight. The method showed promise; 



but the investigation was halted when the accuracy was not as good as other methods, 

while the amount of computation was fairly high. 

4. Method V WEIGH, an averaging process whereby interpolation is employed 

to yield a continuous force data record. The interpolated record is then averaged to 

yield a weight estimate that is better than the average over the platforms. This 
weight estimate is then used as a key value to determine a basic wavelength of the 
data record. Finally, the average of the interpolated data record over the computed 
one-wavelength yields, in most cases, the best estimate of weight. Computer pro-
grams for the use of this method at a data center are included in this report. High-

way equipment for recording weight data costs approximately $55,000. Data center 

costs are about $100 per 800 to 900 axle weights computed. With oscillation of 
20 to 24% about the static weight, the accuracy of computed weight can be within 

3%, with only an occasional larger error. 

This study showed that simple averaging over the platforms is an economical 
method that can be employed, using readily available standard equipment at a 

highway site, with maximum error generally less than 5 to 6%, depending on 

vehicle oscillation. More accurate weight computation is much more expensive and 
can presently be done most economically at a data center with sampled force data 

recorded at a highway site. 

CHAPTER ONE 

INTRODUCTION 

It has long been possible to construct highways of great 
endurance; but these are so costly that, even with today's 
budget estimates, only a fraction of the present mileage 
could be constructed if only the most superior materials 
and practices were used. 

Thus, if construction of the ultimate technically possible 
in highways is accepted as being impractical, it is necessary 
to construct highways of lesser endurance at lower cost; 
this is done by anticipating a certain loading and the pre-
vailing élimatic and environmental conditions. 

To anticipate loading requires a knowledge of the types, 
weights, and frequency of vehicles that will use a highway. 
However, the needed knowledge is not the load imposed by 
any single vehicle; rather, it is the load spectrum or density 
imposed by all vehicles that use the highway. 

For burden vehicles, it is not always possible to estimate 
the total load, let alone the load per point of application to 
the highway surface (load per axle or per wheel); there-
fore, the practice has been to make periodic weighings- of 
the heavier vehicles. This has been done not only for the 
enforcement of load limits, but, by recording the weights 
of all vehicles that pass over the scales, an indication of the 
highway load spectrum could be obtained. it has been 
necessary in most cases to divert the vehicle from the active  

highway to a weighing station, where a mechanical scale 
generally is employed. Even for fixed installations, the 
relatively slow response of mechanical weighing systems 
has required the vehicle to stop or to move slowly across 
the scale platform. Where fixed-scale installations are not 
feasible, portable mechanical scales have been used widely 
to weigh one or more wheel assemblies at a time. Although 
accurate weight can be determined by the mechanical scale 
(including those using fluid pressure), whether fixed or 
portable, the procedure is time-consuming and costly. When 
the line of vehicles waiting to be weighed extends onto the 
active traffic lanes, vehicles that are under the load limit, 
as well as all traffic on the highway, are delayed. 

During more recent years the development of electronic 
scales has been watched closely by highway engineers. 
Electronic scales now compete with mechanical scales in 
fixed weighing installations, but the highway engineer has 
looked beyond this application to foresee highways incor-
porating built-in, accurate, automatic weighing devices. 
For research, it now seems possible to gain knowledge of 
the loading spectra (frequency of loading vs magnitude) 
for a given segment of a highway. 

The electronic scale, simply described, is a platform or 
treadle containing, or supported by, various force trans- 



ducers that provide an electrical signal proportional to the 
force on the platform. Various designs have been highly 
developed and serve well in fixed-scale installations. A 
number of such scales have also been placed in active 
highways and in lead-in strips to existing weighing stations; 
the "weight" from the electronic scale (weighing the mov-
ing vehicle) can then be compared with the "static weight" 
measured by the fixed-scale installation. These two 
"weights" seldom are in agreement when a simple one-
platform electronic scale is used for weighing the moving 
vehicle. 

The major defect of present in-highway scales is this 
"error" recorded for vehicles in motion that is caused by 
dynamic oscillation of vehicles as they cross the scales. 
This was the concern of this study, the purpose of which 
was to investigate as many aspects- of the weighing problem 
as practicable, and to indicate the feasibility and economics 
of a number of methods to weigh each successive axle 
within an accuracy of 5%. 

This study was not intentionally biased toward any par-
ticular purpose in weighing. Instead, an effort was made to 
cover methods and systems that could be used for making 
unbiased statistical studies of axle weights for highway-
planning purposes, for enforcing stated load limits, or even 
for checking axle or vehicle weight in a particular industry. 

THE PROBLEM 

The vehicle can be described as a damped oscillatory sys-
tem with a number of natural frequencies, the lower of 
which are the oscillations of the vehicle body and payload 
upon the vehicle suspension system (including springs and 
tires). This includes basically two modes—bouncing up 
and down, and pitching fore and aft—although it includes 
a small amount of flexing of the vehicle structure. For 
motor trucks, the frequencies range from about 2 to 8 
cycles per second (cps) for the body and payload and from 
6 to 15 cps for axle assemblies. Thus, the vehicle is oscil-
lating in various modes as it moves forward, causing the 
force on the highway surface to vary. Experimental mea-
surements (1, 11) have shown that this variation is as great 
as 30 to 40% of the weight at any axle. For this reason a 
simple scale cannot be used to weigh the vehicle. If the 
scale were long enough to weigh the whole vehicle while it 
described at least one complete cycle of the lowest natural 
frequency, the scale would be so long that a number of 
vehicles could be on it at one time. However, if the scale 
were made very short to weigh one axle at a time, its 
length would have to be on the order of 3 ft to prevent 
tandem and triple axles from being on the scale at the 
same time. The short scale will measure the force while 
the axle is over the scale, but, as already stated, this "force" 
can differ from the "weight" by as much as 30 to 40%. 

Consider sinusoidal motion of a simple spring and mass 
system: 

X=X0 sint 	 (1) 

Maximum acceleration is 

d2X 
a =max 	2 	 (2)  

The force is 

F=W(l+±°) 	 (3) 

in which 

W = weight; 
= circular frequency; 

Xo = oscillation amplitude; and 
g = acceleration due to gravity. 

If a frequency of 2 cps is considered, 

= 2r/ = 27r(2) = 12.56 rad/sec; and 
g = 386 in./sec2  

then 

F=W(l+0.408X0 ) 	 (4) 

Similarly, for higher frequencies, 	- 

4cps, 	FW(l+l.63X0) 	1 
- lOcps, 	F=W(1+10.2Xo) 	J 	- 

Thus, if an oscillation amplitude of X0  = 0.1 in. is con-
sidered, the error in weight is 4.08% at 2 cps, 16.3% at 4 
cps, and 102% at 10 cps. The assumption of X = 0.1 in. is 
purely illustrative, but in this trivial case the relation be-
tween the magnitude of the error, 02X0, and the amplitude, 
X0, is linear; therefore, the error associated with an ampli-
tude that is n times as great is also n times the error for 

= 0.1 in. at a particular frequency. The actual ampli-
tude of a loaded truck may be many times 0.1 in.; there-
fore, appreciable error is possible if only a part of the 
waveform is sampled by the weighing device. 

Literature on the weighing of moving vehicles indicates 
that dynamic vehicle oscillation has been recognized. 
Smooth lead-in strips have been prepared on the highway 
preceding the weighing platform to reduce the amount of 
excitation transmitted to the vehicle immediately before it 
crosses the weighing platform. This is a good practice, but 
it cannot be depended on to increase the accuracy by the 
amount desired. Because the tolerance on a smooth section 
of highway is, at best, about 1/  in. over only 16 ft, it is pos-
sible that a vehicle may be excited to a sufficient amplitude 
to preclude accurate weighing by these small random varia-
tions in the height of the smooth lead-in strip. The extent 
of the vehicle response depends on the amplitude and 
spacing of the highway surface variations plus the natural 
frequency, damping, and speed of the vehicle. 

Even if a perfectly smooth lead-in strip could be ob-
tained, it would take a number of cycles for the amplitude 
to decay to a level that would not seriously affect the ac-
curacy of recorded weight. For example, assume that a 
vehicle is oscillating with an amplitude of X0  in. at the 
start of a perfectly smooth lead-in strip. Assume further 
that the vehicle structure, tires, and suspension system has 
equivalent viscous damping of approximately 0.1 that of 
critical. The damping ratio in simple vibration theory is 
then C = 0.1. Textbook references on logarithmic decre-
ment show that the amplitude of free oscillation, k cycles 
after some particular time, is 

Xk = Xo e 	 (6) 



in which 

X0  = amplitude at the reference point; 
k = number of cycles; and 
8 = logarithmic decrement defined as 

8V1 	
(7) 

_ 2   

The ratio of the amplitudes is 

X5 /X0  = e-' 	 (8) 

Where damping of C = 0.1, as assumed for this illustra-
tion, the ratio of the amplitudes for successive cycles is as 
shown in Figure 1. Assume that without the perfectly 
smooth lead-in strip the error would be on the order of 20 
to 50%. It would be desirable to reduce this to 5%, or 
even lower, if possible. Assume a reduction of error to 
0.1 that associated with no lead-in strip so that the 20 to 
50% error would reduce to 2 and 5%, respectively. There-
fore, the amplitude of oscillation would have to be reduced 
to 0.1 that of the original. Figure 1 shows that for a damp-
ing ratio of C = 0.1 nearly four cycles are required to ac-
complish this reduction. For vehicles with twice as much 
damping this can be accomplished in one-half the number 
of cycles (see Fig. 1). Four cycles may not seem to be 
many, but when the low frequencies of loaded vehicles and 
the speed at which they move on the open highway are 
considered, the length of the required perfectly smooth 
strip becomes more impressive. 

Consider a vehicle operating at 60 mph; it will cover 
88 ft each second. If the frequency of oscillation is 2 cps, 
this wavelength of 44 ft would require the perfectly smooth 
lead-in strip to be on the order of 150 to 160 ft to effect a 
one-decade reduction (see Fig. 1). By comparison with the 
usual dimensions associated with highway engineering this 
is not large, but, when it is considered that this is the 
length that shall not contain a disturbance in the surface 
profile greater than 0.1 in., the problem becomes more 
significant. 

It appears, therefore, that the smooth lead-in strip is a 
step in the right direction, but for speeds encountered on 
modern highways it is not sufficient to ensure accuracy. 

Because it appears to be impractical to dissipate all oscil-
lations before the vehicle crosses the platform, the next 
approach to the improvement of accuracy is to consider the 
data that can be recorded as the vehicle crosses the weigh-
ing platform. Again, consider a vehicle operating at 60 
mph. If this vehicle has an oscillation frequency of 2 cps, 
a platform of 44 ft in the direction of travel would be re-
quired to gather data from one complete cycle. This is not 
possible for highway traffic because the record would show 
the effect of other axles of either the same vehicle or differ-
ent vehicles. Because axle spacings are relatively close on 
tandem-axle vehicles, the length of the platform should be 
less if the recorded weight is to be the load per axle, which 
is the load limited by most state highway departments. 

Previous electronic scale platforms have varied from 3 
to 7 ft in the direction of travel. For vehicles operating at 
60 mph, Table 1 gives the time that a wheel is on the plat-
form and the fraction of a cycle measured. 

The data that can be gained from one 3-ft or 7-ft plat-
form for vehicles operating at 60 mph, or even 30 mph, are 
too meager to reconstruct the actual waveform of the fre-
quencies anticipated, especially when the frequencies are 
not known. Some means must therefore be provided to 
obtain more knowledge of the waveform, particularly of 
the longer wavelength components that have the larger 
amplitude. 

= 0.1 	 TABLE 1 
0.2 	 WHEEL TIME ON PLATFORM AND FRACTION OF 

CYCLE MEASURED 

PLAT- 
FORM 	WHEEL TIME 	NO. OF CYCLES AT A FREQUENCY OF 
LENGTH ON PLATFORM 

(PT) 	(SEC) 
	

2CPS 	5cs 	15cs 
S 	 3 	0.03408 	0.068 	0.170 	0.51 

NUMBER OF CYCLES 	 7 	0.07952 	0.159 	0.398 	1.19 

Figure]. Decay of free damped vibration. 	 For vehicles operating at 60 mph. 



CHAPTER TWO 

FINDINGS AND APPRAISAL 

The first step in the solution of the vehicle axle weighing 
problem is to consider the placing of additional force-sens-
ing platforms in the highway, with the platforms spaced to 
supply force data over a greater portion of the axle force 
waveform. 

The second and largest step is determining what to do 
with the force data that have been obtained, so as to extract 
the elusive axle weight. To begin this second step, the dy-
namics of vehicles were reviewed to establish the basic 
characteristics of axle force waveforms (see Appendix A). 
The vehicle dynamics appear to be generally such that the 
random excitations--mostly from variations in the height 
of a road surface—cause the vehicle to oscillate in various 
modes, the lowest of which tend to produce the greatest 
fluctuations in axle force about a long-term static compo-
nent. This static component is proportional to weight—the 
constant of proportionality approaching unity as the angle 
of inclination of non-curved surfaces approaches zero. 

As such, the basic requirement in weighing an oscillating 
vehicle is an adequate set of data from which the constant 
component of force can be determined within the accuracy 
desired. This implies that either (1) data be taken over a 
very long term or (2) certain conditions can be maintained 
during weighing that allow the real static component to be 
closely estimated from considerably less data. These con-
ditions are approximated by a smooth level roadway, with 
little acceleration or deceleration. 

One method of finding the static component is to average 
the data, but, as shown in this report, this is not generally 
very accurate, because a large number of basic cycles 
should be sampled continuously if low error is desired. This 
is discussed in Appendix C, under "Theoretical Accuracy 
of Averaging." 

Instead of taking a long integral average over a number 
of cycles, a little knowledge of the probable waveform pro-
duced by an axle can allow N force-sensitive platforms of 
from 1 to 3 ft (length in the direction of travel) to be 
spaced over some optimum distance. This method has 
distinct possibilities of providing adequate accuracy and 
providing it economically, as shown by the discussion of 
actual physical systems (Appendix H). Instead of simple 
averaging, the set of force data can be analyzed to deter-
mine the basic oscillatory characteristics of the vehicle in 
order to compute the constant component of force. This, in 
a very real sense, is what was attempted in the dynamic 
methods (Appendix D). 

The technique investigated was that of passing a sinus-
oidal curve through the sampled data of unknown ampli-
tude and periodicity with the application of an equivalent 
one degree-of-freedom mechanical oscillator. The idea fol-
lowed from the dynamics of a complex vehicle which indi-
cated that the various modes usually combine to form what  

appears to be a distorted and "noisy" sine curve. This was 
verified by tire pressure curves from The AASHO Road 
Test (1), reproduced here as Figure A-6, and later by an 
analog strip chart tracing of axle force made by placing 
strain gauges on the axle of a vehicle. The axle force curves 
are not sinusoidal, but a damped sine wave passed through 
a basic cycle of the curves fits fairly well. (Consider the 
non-linear tire pressure characteristics, Fig. A-6.) 

Limited experimental axle force data supplied by the 
Research Laboratory of the Michigan State Highway De-
partment and the University of Kentucky also indicated 
that a large amount of the data generally can be fit by a 
damped sine wave. This does not mean that the data fit on 
a sine wave, but that a damped sine wave superimposed on 
the data will represent it sufficiently so that the mean of 
the sine wave is approximately the mean of the data. This 
is all that is necessary. However, the solutions employed 
for the dynamic methods did not bring about the desired 
results. When other methods appeared at the time to yield 
better results, the investigation was halted without fully 
exploiting the possibilities. 

Following this, various operations were made upon the 
expression of axle force until it was found that a sample 
regression equation could be stated to satisfy closely the 
first terms of the second integral of force over some con-
venient period. This is Integral Model III (Appendix E), 
It showed good possibilities for two-component waveforms 
approximating the two basic frequencies of a simple vehi-
cle. However, the large error that can be triggered by what 
appears to be an almost inevitable frequency spread in 
real signals caused the investigation of this model to be 
halted also. Physical systems to compute weight by this 
method would require development of a specific analog 
system, or would require that the force data be processed 
later at a computer center. No cost estimates of an analog 
system were attempted. 

Because it had been evident that many vehicles oscillate 
with the basic or lowest frequency components producing 
the greater part of axle force variation, it was recognized 
that a fair approximation of the real static component 
could be made by first detecting one basic cycle or wave-
length in the data and averaging the axle force signal over 
that period. Although the force signal might be such that 
the approximation of a basic wavelength could be poor 
when the actual repeat of the waveform required many 
wavelengths of the lower frequencies, it appeared that such 
a method would certainly be more accurate than the aver-
age over the platforms only. This was essentially implicit 
in the dynamic models, although it is not exactly the same. 

When more analytical methods failed to predict a rea-
sonable period from the rather meager data obtained from 
a limited number of platforms, a method was developed to 



attack it directly. This is method VWEIGH (Appendix 
G), which consists of interpolating between platforms by 
means of a series of polynomial curves fitted through the 
data of each successive group of three platforms. The 
whole interpolated data record was averaged to yield a key 
value which in itself was better than the average over the 
platform only. The interpolated data record was tested to 
see where it crossed the key value. It was then averaged 
between the first and third crossings. This worked quite 
well. Although the method was not fully developed, it ap-
pears to yield excellent accuracy. However, this method is 
expensive. It cannot be accomplished at a weighing site in 
real time in its present form unless a large computer is 
available there. The method appears feasible economically 
only if data are recorded at a site and taken to a computer 
center for weight computation. If this is satisfactory, the 
method can yield good accuracy for almost any given axle. 

Platforms and the recording system would cost about 
$55,000. 

However, if the purpose for weighing is such that an 
average error per axle between 3 and 5% (with an occa-
sional error beyond that) is tolerable, then the simple aver-
aging methods can be used to advantage in real time on the 
site with approximately $40,000 to $50,000 worth of equip-
ment. This includes the platforms and all electronics, but 
not any housing of the equipment. 

The third step in the solution of axle-weighing problems 
is the choice of the equipment to sample force data and 
compute the weight. With the wide choice of very stable 
electronic equipment available as standard commercial 
components and modules, this is not particularly difficult. 
Some representative systems are suggested and priced (ap-
proximately) to indicate what can be accomplished and for 
how much. This is discussed in Appendix H. 

CHAPTER THREE 

RECOMMENDATIONS 

The recommendations concerning this study are related to 
two distinct aspects: (1) weighing of vehicles just to deter-
mine a weight, and (2) weighing of vehicles as associated 
with further highway research. 

The first aspect, where little information other than the 
vehicle weight is required, is important because this is de-
sired in many situations that are related to highways and 
highway industries. One situation is the constant monitoring 
of axle weights for enforcing load limits and collecting sta-
tistical data; another is the possibility of assessing toll 
charges for bridges and highways, computed on-the-spot 
from computed weight categories. Still other applications 
are within the trucking industry. For those applications 
that do not require exact weight, a multi-platform digital or 
digital-analog simple averaging system as herein presented 
is recommended. These system installations can be engi-
neered directly from the results of this study and assembled 
from commercially available components. 

The second aspect—that of weighing associated with 
further highway research—needs further attention. There 
is much concerning the dynamic characteristics of high- 

ways, or, more rightly, the highway-vehicle system, that re-
quires more investigation. Such studies are being given 
much consideration. In this regard, the application of 
"weighing systems," or, in this context, "data collection 
and conversion systems," can be of great assistance in ex-
perimental investigations of highway-vehicle dynamics. 
This project was initiated to provide a means of collecting 
unbiased weight data for further highway studies. How-
ever, there appears to be a greater need for research into 
the highway-vehicle relationships. To implement such stud-
ies, the use of platforms such as those developed by Lee 
(11) is recommended, because they are relatively thin 
(slightly more than 1 in. thick) and would not seriously 
affect the pavement-vehicle dynamics where emplaced. 
Data recording systems, such as those discussed in this 
report, could then be used to record force and other dy-
namic measurements for later computer processing. 

Further investigation of all the methods herein presented 
is also recommended. This was intended as an initial study 
to show the feasibility of certain approaches; it could not 
be absolutely conclusive. 
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APPENDIX A 

TECHNICAL DISCUSSION OF AXLE FORCE 

A highway vehicle can be described as a damped mechani-
cal oscillatory system that has a number of natural frequen-
cies. Consider a simple truck, as shown in Figure A-I, and 
consider only the plane shown. By lumping the truck body 
and payload together and thereby neglecting frequencies 
characteristic to the frame, body, cab, engine, and payload, 
there is still a four degree-of-freedom system: (1) transla-
tion of M1, (2) rotation off (mass M1), (3) translation of 
M2, and (4) translation of M3. Assume for the present 
that the mass of the axle assemblies, M2  and M3, are small 
compared with M1. Thus, the vehicle is reduced to a two 
degree-of-freedom system. Although the suspensions of 
vehicles generally do not constitute linear systems, they are 
sufficiently linear to be deemed as such for purposes of this 
study. Assuming that they are linear oscillatory systems, 
the motion of the truck in Figure A-i, neglecting axle 
masses, is described by the following equations: 

M1 + (ki +kr) Z+ (lt kt lr kr) 0k,A,(t) 

+kr Ar(t) —M1g 

d20 
172 + (IC1  lt 2 kr lr2 ) 0+ (li kt lr kr ) 

Ii 11A1(t) - kr lr Ar(t) 	 (A1)  

in which 

z = linear bouncing displacement; 
0= angular pitching displacement; 

k f  = combined spring rate of front suspension; 
IC,. = combined spring rate of rear suspension; 

M1  = mass of truck and payload; 
I = mass moment of inertia about c.g.; 

A1(t), A,.(t) = variation in road surface elevation as a 
function of time, at front and rear, re-
spectively; and 

g = acceleration due to gravity. 

This description of vehicle dynamics is illustrative only; 
damping is neglected altogether in the equations so as not 
to complicate the example. 

Note that two equations involving the two distinct quan- 
d2z 	d20 

titles, M1 -i-i-  and I -a---, are required to describe the mo- 

tion of the vehicle in the plane shown. This gives rise to two 
characteristic modes of oscillation and to two natural fre-
quencies. The vehicle may be excited to a sufficient ampli-
tude at either or both of these frequencies by repeated road 
irregularities so as to produce a significant force variation 
between the tires and the road. If the road surface irregu-
larities are small, the variation in the wheel force due to 
running over any one disturbance may also be small. But, 
if the spacing of these disturbances and the velocity of the 



F=kz+k110 	 (A-3) 

Substituting for z and 0 from Eq. A-2 yields 

F = (A1k + B1  l,k) cos (Coat + ai) 

+ (A2k  + B2  11k) cos (w2t + a2) (A-4) 

REAR SPRINGS-. ...L. 	 J_ --------SPRINI2 SUSPENSION 

REAR AXLE 	M 	 M 	FRONT WHEEL AND 
ASSEMBLY 	2 	 3 	AXLE ASSEMBLY 

REAR TIRES 	
TIRE /1SURFACE 

Figure A-I. Dynamic schematic of a two-axle vehicle. 

vehicle are such as to effect a series of small bumps at a 
frequency close to a natural frequency of the vehicle, the 
energy of oscillation may be increased to a large value after 
many cycles or until the energy dissipated in friction per 
cycle equals the energy added from each disturbance. 

Once the vehicle has been put into oscillation by a large 
disturbance (or by a series of small ones) the tire force on 
even a smooth road surface will vary so long as the oscilla-
tions last. This can be for a number of cycles. The re-
sultant waveforms will be made up of two-component 
waveforms, as shown in Figure A-2. These are not neces-
sarily those to be expected from a vehicle, but serve to 
illustrate a variety of two-component waveforms in this 
class. 

In addition to the foregoing, another phenomenon can 
be seen from the equations of motion. Note that (1, k1  - 

ir kr ) is the coefficient of 0 in the bouncing motion equa-
tion and also the coefficient of z in the pitching motion 
equation. These are the terms that indicate coupling of 
bouncing and pitching motions. If this coefficient were 

zero, that is, if 	= If-, the bouncing and pitching motions 

would take place independently of each other. However, 
the possibility of these modes of oscillation being un-
coupled is remote, although the coupling may be small. In 
any event, there are two characteristic frequencies that may 
become excited. 

The general problem of the coupled modes of free bounc-
ing and pitching of a two-axle vehicle is discussed by 
Timoshenko (6, p.  199-204). The equations for displace-
ment in bouncing and pitching are given by Timoshenko 
(6, Eq. x, p.  203). These are: 

z = A1  cos (t + a1) + A, cos (Co,t + a2) 
(A-2) 

0 = B1  cos (wit + a2 ) + B2  cos (Colt + a,) 

in which 

w and 02 = the natural circular frequencies of 
the two modes of oscillation; 

a1  and a, = phase angles; and 
A1, A2, B1, and B, = constants governing the amplitude. 

The periodic component of the force between tires and 
road on the front axle is then 

Because the coefficients of the cosine terms are all con-
stants, the periodic component of force may be written as 

F 	A S  cos (Co't + a2) + A4  cos (Co2t + a) (A-5) 

to show that the periodic component of force on the front 
suspension system can be written as a linear combination of 
the principal modes of oscillation. 

if the modes of oscillation are coupled and if the two 
natural frequencies are relatively close in frequency, an 
interesting phenomenon occurs. By following Timoshenko's 
analysis it can be seen that the expressions for the bouncing 
and pitching displacement can be put into the form shown 
by Timoshenko (6, Eq. z, p.  204). These are 

(
z= Acos(Co1'2)tcos Coj - 

2 
(A-6) 

0= 	sin 
A 	

(011 

+ '2)2) (sin 
(a1 - (02) — 

	

i 	2 	 2 

in which A is an initial displacement and i is the radius of 
gyration. Here (Cot - °2) isgmall compared with Co OF 

Hence, it is seen that the functions, cos 	t and 

sin_
2l 

describe periodic oscillations, at the average 

frequency of Co and W2  and whose amplitudes are con-

trolled by the slowly varying functions, cos (&)1  (02)and 

sin( °1 	respectively. Both z and 0 will describe 

waveforms, as shown in Figure A-3. This is known as 
"beating." 

For beating due to the coupling of modes it is interesting 
to note that the bouncing and pitching modes are 90 degrees 
out of phase: the energy of free oscillation passes back and 
forth between predominantly bouncing and predominantly 
pitching modes. In other words, the vehicle is seen to 
oscillate first in bouncing, then pitching, and so on. 

The periodic component of force on the front or rear 
suspension as derived in Eqs. A-3 to A-5 is now made up 
of two beating oscillations, as shown by Eqs. A-2 and A-6. 

With z motion and 0 motion described by two beat en-
velopes that are identical except for amplitude and phase, 
the linear combination of the two will still be a beat en-
velope of the form: 

F = A cos (Co1Co2)(t+to)cos(W1 2 Co2 )(t+ to ) (A7) 

Because the periodic component of force on an axle is a 
linear combination of bouncing and pitching modes, the 
two need not be dynamically coupled to produce a beating 
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Figure A-2. Two-component waveforms. 

periodic force between the axle and the road. Consider the 
force between axle and road as taken from Eq. A-3: 

F = k z + k 40 

Let modes be uncoupled so that 

z = A cos (col t + ai) 	 (A-8) 

and 

O=Bcos (w 2t+a2) 	 (A-9) 

Thus, F is still a linear combination of the two modes, 
as shown by 

F = kA cos (u1t + a)  + k 11B cos (cü2 + a2) (A-b) 

This will show a similar beating phenomenon if co1  and w 2  
are close in frequency. 

The AASHO Road Test (1, Table 60) gives data regard-
ing the bounce and pitch natural frequencies of vehicles 
used in the Road Test. These data for free (not blocked) 
vehicle suspensions are given in Table A-i. 

Vehicles 91 and 513, for example, have natural frequen-
cies in bouncing and pitching that will give good evidence 
of beating. Although it is not known which two-axle ve-
hicle was used to produce the oscillographic record, the 
trace shown in The AASHO Road Test (1, Fig. 84) of 
front-tire pressure in the blocked suspension condition is a 
good example of beating. This is reproduced as Figure 
A-4. Note that other effects are present, possibly arising 
partially from the nonlinear compression of air in the tire. 

One additional condition will give rise to beat-frequencies 
in the force between tire and the road. Consider a vehicle 
that has a relatively small amount of damping or energy 
loss in the suspension system so that an oscillation at a 
natural frequency will be sustained through a number of 
cycles before decaying to a very small amplitude. If such a 
vehicle undergoes some periodic excitation at a frequency 
slightly different from a natural frequency, the excitation 
frequency and the natural frequency will beat and cause the 
same type of periodic force between tire and road, as dis-
cussed previously. 

V  VVVYV 

TIME - 

Figure A-3. Beating frequencies. 

The foregoing discussion of vehicle dynamics indicates 
what is to be anticipated in the waveform of force between 
the tire and the road where samples of force must be taken 
for estimating the weight of vehicles. On a smooth high-
way a one- or two-component sinusoidal signal superim-
posed upon the static weight of the wheel could be antici-
pated. For a general class of functions that may be used 
in the analysis and evaluation of methods to estimate ve-
hicle axle weight the following has been shown to be appro-
priate: 

F= W [1 + A sin (u0t + a) + B sin ((ost + a)j (A-il) 

TABLE A-i 

NATURAL FREQUENCIES OF VEHICLES, FROM 
AASHO ROAD TEST 

VEHICLE FREQUENCY (ct's) 

VEHICLE BOUNCE PITCH 

(a) Two-Axle Vehicles 

91 2.3 2.6 	- 
94 2.7 3.5 
A 2.0 2.4 

(b) Three-Axle Vehicles 

B 2.0 2.4 
C 1.8 2.4 
513 1.7 2.0 
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Figure A-4. Evidence of beating (from AASHO Road Test). 

in which 

W = static axle weight; 
= natural circular frequency in the bouncing 

mode; 
= natural circular frequency in the pitching 

mode; 
a and a = phase angles; and 
A and B = amplitudes of the bouncing and pitching 

modes, respectively, as fractions of the static 
axle weights. 

Thus far, this discussion of the waveform that must be 
analyzed to estimate vehicle axle weight has considered 
only the waveform anticipated for a dynamic system, pre-
viously excited, but currently in free oscillation, or one in 
which the excitation is uniform and of small amplitude. 
This, however, is not always the case. Even though a road 
may be "smooth," certain irregularities are present. It is 
unlikely that surface variations are uniform in amplitude 
and regular in spacing to yield periodic excitation, even if 
it could be assumed that the vehicle maintains a constant 
velocity, or a fairly constant velocity in which the speed 
varies slowly enough to allow the system to be always in a 
quasi-steadystate oscillation. Rather, the surfaces of high-
ways suggest a much more random variation in surface 
irregularities and a consequent random excitation to the 
vehicle. 

The vehicle has been described as a mechanical oscilla-
tory system that has two major modes of oscillation plus 

Figure A-5. Narrow-band random oscillation.  

that of the axle and wheel assemblies. If a mode of oscilla-
tion is lightly damped and is subjected to a random excita-
tion, the mechanical oscillator acts as a narrow bandpass 
filter admitting energy only in the neighborhood of the 
natural frequency. The waveform of the random excitation 
can be considered to be made up of many Fourier com-
ponents covering a wide frequency range, many of which 
may be in the neighborhood of the natural frequency of the 
oscillator (vehicle). The phenomenon of beats was pre-
sented previously to show that the addition of two harmonic 
waves that are close in frequency yields a wave oscillating 
at the mean of the two frequencies, but with an amplitude 
envelope that varies at a rate equal to one-half the differ-
ence of the two frequencies. Thus, the addition of a large 
number of harmonic components, having frequencies in 
the neighborhood of the vehicle natural frequency and hav-
ing randomly distributed phase angles, will produce a wave 
oscillating at the natural frequency of the vehicle with an 
amplitude envelope that varies randomly with time. How-
ever, the rapidity of the random amplitude fluctuation must 
be on the order of the bandwidth of the mechanical oscilla-
tor. This is known as a "narrow-band random oscillation," 
as distinguished from random oscillation covering a wide 
bandwidth. An example of narrow-band random oscillation 
is shown in Figure A-5. 

Measurements of tire pressure made in conjunction with 
the AASHO Road Tests (1, Fig. 83, 84, 85) are repro-
duced in Figure A-6. 

Note that the curves of tire pressure in Figure A-6 bear a 
closer resemblance to the narrow-band random oscillation 
of Figure A-5 than to a limited combination of harmonic 
components. This suggests that even for the smooth-pave-
ment tests shown in Figure A-6 (upper part of the figure) 
a random excitation still is present at a significant magni- 
tude. However, the variation of pavement surface height 
for either the rough or the smooth pavement is not given 
quantitatively in The AASHO Road Test (1), so an abso- 
lute knowledge of the actual surface is not known. If 
random oscillations need to be considered to any real ex- 
tent, the accurate assessment of "weight" of a moving 
vehicle will be even more difficult. This emphasizes the use 
of more carefully prepared smooth highway surfaces in the 
neighborhood of the force-sensing equipment of "in-high-
way" weighing stations. 

Thus far in this discussion of the waveform to be sam-
pled to estimate the weight, consideration has been given 
only to those aspects that deal with the oscillatory response 
and characteristics of the vehicle itself. Two other aspects 
will influence the waveform to be sampled: (1) electrical 
noise, and (2) vibration of the force-sensing equipment. 

Electrical noise is usually manifested at frequencies that 
are integral multiples of 60 cps, and is usually due to the 
passing of power line frequency through the power supplies 
and ground ioops, or by inductive pickup from nearby 

power transmission lines. Although electrical noise is a 
factor to be considered in the final waveform, the magni-
tude depends heavily upon the choice and arrangement, of 
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instrumentation equipment, and consequently is not in-
herent in the basic theoretical problem of ascertaining the 
weight of a moving vehicle. Therefore, electrical noise is 
not considered further in this report. 

If the magnitudes of electrical noise as a function of the 
choice of instrumentation equipment are ignored, it might 
be argued that the same would apply to the consideration 
of vibration in the force-sensing equipment (platforms) to 
be placed in the highway. However, there is a fundamental 
difference. Electronic instrumentation has reached a high 
state of development, so a wide range of equipment is 
applicable. However, there are few highly developed designs 
for highway vehicle force-sensing equipment. 

The prevailing method has been the mounting of a struc-
tural steel platform, supported by strain gauge load cells, 
over an excavated pit spanning one lane of a highway, or 
the equivalent thereof, so that the surface of the platform 
is flush, or nearly so, with the highway surface. This design 
has been used to take advantage of the excellent sensitivity 
and linear characteristics of strain gauge load cells, but the 
platforms have usually exhibited very light damping, which 
is characteristic of low hysteresis in welded steel structures. 
The amplitude of platform vibration can be large compared 
with the average force between road and tire (see Fig. 
A-7). The fact that the higher frequency oscillation is that 
of the platform is evidenced by vibration when the wheels 
both enter and leave the platform. 

Other types of force-sensing platforms which will not 
show this vibrational characteristic to such a marked extent 
are under development (11). Still, there may not be a  

large choice if it is desired that the weighing system func-
tion with presently emplaced force-sensing devices. 

The oscillation of the platform requires that an additional 
harmonic component be added to those representing the 
dynamic vehicle and imposes additional requirements to 
any mathematical method for ascertaining the weight from 
sampled force data. 

In concluding this discussion of the waveform which the 
weighing system must be able to average, the dynamics of a 
vehicle show that the waveform may contain harmonic 
components consistent with the normal modes of the vehi-
cle, plus those of the force-sensing platform. In addition, 
the response of the vehicle and, hence, the resulting wave-
form, may be made to behave in a random manner if the 
local disturbances in the highway surface profile are suffi-
ciently large. But, because this can be alleviated by efforts 
to make a fairly smooth area in the region of force mea-
surements, the randomness can be small, locally, and the 
waveform can be represented satisfactorily by a constant 
term plus a series of harmonic components, as follows: 

F=W[l 	a sin (u,t+4,)] 	(A-12) 
j~l 

in which 

W = axle weight; 
a2 = amplitude of jth harmonic component; 
Wj = circular frequency of the jth harmonic component; 

and 
Oj = phase angle of the jth harmonic components. 

This is a generalization of Eq. A-il. 

Figure A-7. Vehicle force causing platform vibration. 
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Appendix A indicates the type of waveform with which the 
weighing system must be compatible, and how it may be 
synthesized mathematically or experimentally in the labora-
tory to evaluate analytical or experimental physical models 
of weighing systems. Basically, the waveform of force ap-
plied to the load by an axle could be represented as shown 
in Eq. A- 12. This represents a periodic variation superim-
posed on a steady force. 

If the waveform is to be analyzed to determine the value 
of the steady component, W, then any portion of at least 
one periodic wavelength may be inspected. In doing this, 
the operation is clearly that of taking a sample; it is all that 
is needed, because each period is the same. Although it is 
shown that there is also a certain amount of randomness to 
the oscillation of a vehicle, so that a distinct period is not 
present, it is obvious from practical considerations that the 
portion of the waveform to be analyzed must be limited. 
Indeed, the aim of this work is to determine how little of 
the waveform is required. The whole operation is based 
upon the sample taken and is therefore subject to the limi-
tations of the sampled data process, which is defined as any 
method whereby discrete values of data are obtained for 
characterizing a continuous process. By contrast, a continu-
ous or analog system has variables that are known at all 
instants of time. 

Let F(t) be a function of interest that may be described 
by means of an analytical expression or exist as an analog 
signal. If the function is sampled at equal intervals of time 
(say, T), the functions can be described by a sequence of 
numbers F(0), F(T), F(2T) ........F(nT). Obviously, 
some information is lost in the process, and whether the 
resulting description satisfactorily represents the original 
function depends on the nature of the function. If the 
function is reasonably smooth and well-behaved with re-
spect to the time interval of samples, it can be interpolated 
between samples with good accuracy. If the function is 
not smooth and well-behaved with respect to the sampling 
interval, the possibility of large variations occurring be-
tween the samples could not be predicted. Thus, at least  

qualitatively, it may be seen that the sampling frequency 
must bear some relationship to the nature of the function 
being sampled lest the required information be, lost in the 
process. If the sampling frequency is well chosen, little 
useful information will be lost. However, too many samples 
may prove a burden in information processing by providing 
information that could have been obtained by simple inter-
polation methods. The selection of the proper sampling 
frequency is important in any sampled data system. 

Some insight into these limitations imposed by the sam-
pling operation in sampled data systems can be seen by 
considering the sampling theorem attributed to Shannon 
(5, p.  16). In essence, the theorem states that for signals 
having a finite bandwidth, including frequency compo-
nents up to but not beyond a frequency of / cps, a complete 
description of that signal can be obtained from samples of 
the signal spaced by time periods of 11(2/) sec. In other 
words, samples must be taken at a rate at least twice the 
highest frequency component if the signal is to be com-
pletely reconstructed from the series of samples. 

This reconstruction is accomplished by various interpo-
lative and extrapolative procedures that have been de-
veloped. Such methods are highly advanced and are set 
forth in texts on statistical communication theory (3) and 
sampled-data control systems (5). Unfortunately, the bulk 
of this work deals with a continuous signal that is sampled 
for a sufficient time to yield, generally, a large number of 
samples over many periods of the signal. In the weighing 
of a vehicle, the problem faced is the limited number of 
samples that are spaced, at best, just over one period of the 
lowest frequency. Thus, from sampled data theory it is 
possible to gain the limitations of the theory, but benefit 
little from the major current development. However, one 
aspect of the sampling problem for weighing vehicles is a 
definite asset. That is, when the axle is over a force-sensing 
platform and the sample is being taken, it is possible to gain 
many samples, or even continuous data, for a certain inter-
val of time. In terms of distance in the direction of travel 
this is the active length of each force-sensing platform. 
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APPENDIX C 

DIRECT AVERAGING 

One method of estimating the weight of an axle is to simply 
average the values of data taken from samples of the force 
between tires and road. Although the shape of the wave-
form of any one axle may not be known, it would be rea-
sonable to assume that it would be made up of a number 
of harmonic components, as previously discussed. It may 
be assumed further that the relatively low frequency 
caused by the oscillation of the combined vehicle body and 
load in bouncing and pitching would most likely produce 
the largest variation in road force, so that the resulting 
waveform might appear as a distorted sine wave. With 
frequencies of oscillation and vehicle velocities to be ex-
pected, the bounds on wavelength of vehicles could be 
estimated so that force-sensing devices could be positioned 
in the road. In Figure C-i, F1, F .......... FN are samples 
of the force taken at positions x1, x2. ........ XN, respec-
tively, on the standing wave produced by the tire force. 
These can be averaged by summing N values of the sam-
ples and dividing by the number of samples: 

! 
Estimated axle weight = 1 

	N 

--L F 	(C-i) 

This would be a good estimate so long as the samples 
greater than and less than the average were equal in quan-
tity and symmetrical in value about the average. Other-
wise, there is error between the estimated weight and the 
static axle weight. 

In addition, it is possible to be as much in error with N 

samples as for one sample (see Fig. C-2). 

THEORETICAL ACCURACY OF AVERAGING 

The adequacy of averaging methods in predicting vehicle 
weight with a specified accuracy is investigated in the 
following. 

Let an axle with a weight, W, and frequency of oscilla-
tion, f, proceed along the highway with a velocity, V. All 
three quantities are unknown. In the usual averaging  

method, the procedure would be to measure the force 
exerted on the road by the axle N times, add the values, 
and divide by N. Because interest here is in determining 
the minimum . error, the best possible straight averaging 
method is considered. 

To this end, measure the axle weight continuously, inte-
grate it timewise, and divide, the result by the interval of 
integration. This would be the best simple average possible 
for the selected interval of sampling. To determine the 
error, let a continuous sample of the axle weight, with the 
vehicle moving uniformly, be represented by 

F=W[1+asin(2'7T/t+(A)] 	(C-2) 

in which W is the static axle weight, a is the fractional am-
plitude of oscillation, 4) is an unknown phase angle, and F 

is the transducer reading. 
Consider a treadle of length, L, over which samples are 

taken. If time, t, equals zero when the axle first contacts 
the treadle, then 

t=x/V 	 (C-3) 

in which x is the distance traveled on the treadle. The av-
erage over the treadle is• 

LIT' 

Favg = W (V/L)f 	[i +aSin(2ft+4))]dt 

or 

Favg = W{1 - (aV/21rLf) [cos (2r/L/V+0) —cosc6l} 
(C-4) 

Inasmuch as the product of frequency and time—shown 
as (f .  t) or fL/ V in the preceding equations—serves to de- 
note the number of cycles or wavelengths, it is desirable 
to replace this by a parameter: 

=ft=fL/V 	 (C-5) 

STATIC WEIGHT 	 SAMPLES 

\STATIC WEIGHT 	
F 	 Fa 	 F'  

Ha 	 H5 	 DISTANCE OF TRAVEL, 
DISTANCE OF TRAVEL, X 

Figure C-i. Sampling of axle force on road. 	 Figure C-2. Sampling rate coinciding with vehicle frequency. 



In terms of the number of cycles, the force between tire 
and road is 

F=W[1+asin(2ir+4,)] 	(C-6) 

The integral average after cycles is 

F= i/U 0 
 Fd= i/Uf 0 

f
T [I +asin(21T+cb)]}d 

and 

- 	_[cos(2 o +)_cos]}(C7) F 	
a 

- 	2ir 

If F is the estimated weight, the error with respect to the 
actual static weight, W, is 

E=W]' 	 (C-8) 
w 

or 

E=--[cos(2ir0+4,) — cos4,] 	(C-9) 
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In any such application, the phase angle, 4,, would be a 
function of the highway and the particular vehicle, and 
beyond the control of the operator who sets up the elec-
tronic sensing equipment. Therefore, it is meaningful here 
to show the maximum error, with respect to phase angle. 

By setting 

aE/aç&=0 	 (C-b) 

the relationship between a and 	is obtained that yields 
the values of 4, associated with maximum error; 

- 	sin2i 0  
tan 4,  I - cos 2r 

and 

- 	1 _cos2Co) 	
(C-il) 

arctan(sin2ii-0 

Now, error that is maximized with respect to phase angle, 
4,, is 

a 	 - 
Emax  = i-

IT U 
[cos (21r U + 4') - cos 4,] (C-12) 

A plot of Emax/a versus is shown in Figure C-3. Thus, 
if a = 0.1 (i.e., if the oscillating component of force is 
10% of the static axle weight), the error in the estimated 
weight as a fraction of W would be 0.1 times the value of 
Ela from Figure C-3. For example, by averaging over 1.4 
cycles, maximum error, Em0x, would be 0.0216, or 2.16%. 
If the oscillating component of axle force is 20% of the 
static weight, the error would be 4.32%. 

It must be pointed out that although the error has been 
maximized with respect to phase angle, this is theoretically 
the best that can be accomplished by simple averaging. All 
other simple averaging methods, such as those in which dis-
crete samples are averaged over the same period or over 

C AVERAGING PERIOD IN NUMBER OF CYCLES OR WAVELENGTHS 

Figure C-3. Variation of integral averaging error with aver-
aging period. 

the same number of cycles, inherently involve greater error. 
Figure C-3 illustrates one additional major point: if any 

great reduction in error is to be realized over that of an 
arbitrary single sample (single measurement of force), the 
averaging period must be very close to at least one full 
cycle or over some period comprising many cycles. Also, 
it may be seen that any significant reduction in error be-
yond that of, say, a 2-cycle averaging period, would require 
a period of several times longer. This is apparent from the 
expression for error, Eq. C-12, in which the periodic factor 
in brackets is multiplied by 1/U,  the inverse of the aver-
aging period. 

For weighing vehicles in motion, simple integral aver-
aging does not appear to be most promising for minimum 
error. The lower frequencies of vehicles are the hardest to 
cope with because They may be as low as 2 cps, or occa-
sionally less, thus requiring a minimum averaging time of 
0.5 sec. At 30 mph, the minimum averaging distance of 
one wavelength is 22 ft; at 60 mph it is 44 ft. Even if cost 
is no object, many present concepts of force-sensing plat-
forms are not compatible with this objective. On the posi-
tive side, it can be seen that integral averaging can be useful 
to average out the high frequency variations in force caused 
by sensing-platform vibration. Consequently, integral aver-
aging may be useful when employed with other weight-
estimating schemes. 
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AVERAGING METHODS FOR WEIGHING VEHICLES 

In addition to the method shown previously for integral 
averaging, simple averaging may be employed using data 
taken at certain intervals of time or of distance. This is 
shown in Figure C-4, and is much more amenable to the 
use of present working concepts of force-sensing platforms 
or treadles for weighing vehicles in motion. Here, a series 
of platforms or treadles are placed in a highway lane to 
measure, sequentially, the force of one axle. The treadles 
may be of arbitrary length in the direction of vehicle 
travel, but once the length exceeds the distance between any 
two axles there is a possibility that the force measured is 
not all from one axle. It should be remembered, though, 
that the longer treadle will sample a greater percentage of 
a given wavelength. This may or may not be relevant, 
depending upon the relation of treadle length to wavelength. 
If the ratio is quite small, the additional data might not be 
much more significant than just one point. 

The following analyses evaluate the representative error 
associated with two methods of averaging with this type of 
sampling. 

Simple Averaging Using Digital Data Systems 

Digital time-rate data sampling systems have two desirable 
features for the sampling of force between the vehicle and 
the highway: (1) accuracy is high, and (2) sampling at a 
chosen rate of time allows more data to be taken from each 
treadle when the vehicle velocity is low and the corre-
sponding wavelength shorter, whereas less data will be 
taken from each treadle for the same vehicle at a higher 
speed. The latter feature is desirable because, in general, 
when the wavelength is longer the change in force over one 
treadle is smaller and fewer samples will yield a sufficient 
knowledge of the force at that part of the waveform. 

Let the estimated axle load be the average of all samples 
taken from n treadles. 

If YI  is the ith sample at the ith treadle, the estimated 
weight is 

w=-- 1 	 (C-13) 

in which n is the number of treadles; and m is the number 

of samples per treadle. 
Vehicle oscillations are essentially harmonic in character 

and can be described as a sum of sine and cosine functions. 
To test the accuracy of the axle weight as estimated by 
Eq. C-i 3, an analytic function can be chosen that describes 
the waveform of a vehicle axle load oscillation. For a first 
test it is assumed that the vehicle axle load can be approxi-
mated by 

/(x) =W[1 + a 	27t/X)cos (27x/y+0)] (C-14) 

(this represents the damped oscillation of a simple spring-
mass system) 

in which 

W = axle weight; 
a = ratio of oscillating component to axle weight;  

= damping factor; 
x = distance from the origin at a coordinate system; 
A = wavelength; and 
= phase angle with respect to the origin. 

Using the model of the vehicle force oscillation (Eq. 
C-14), the sample, y,  of the force, f(x), that occurs at 
xij  can be calculated; that is, at the distance to the ith read-
ing on the ith scale. ; is defined as the first reading on 
the ith scale. 

To make the problem easier it is assumed that the vehicle 
has constant velocity over the length of highway in which 
the scales are placed. This removes the integration of 
velocity over the time interval between samples and makes 
it possible to choose, instead, m equal increments in the 
distance over the scale. 

If the scale is of width b, and m samples are to be taken, 
the increment of distance between samples is b/rn and the 
distance to any sample, y, from the coordinate origin is 

xij  = x,0  + b(j/m) 	 (C45) 

and 

y 5 =f(xq) 	 (C16) 

If 

Xjo = 1(il n) 0 	 (C-17) 

in which 

Xio = distance to leading edge of the ith scale; 
1= distance to leading edge of last or nth scale; 
= scale number; and 
= an exponent; 

then Eq. C-17 represents the distances to any of a set of n 
scales, with scale spacing depending upon the choice of the 
exponent, $. When 6 = 1, the scales are equally spaced. 

Now, Eq. C-15 becomes 

	

Xij = / (i/n)$ + b (I/rn) 	(C-18) 

and 

= f[l (i/n)$ + b (jim)] 	(C-19) 

or 

W[i + a e (t 27rx,/7%) COS 27rx/x + 

(C-20) 

and the estimated axle load is 

w = w{i 	a ,ç, n 	[e 	2irw/X) 

cos (2x 5 /X + )I} 	 (C-21) 

in which 

Xij  = [1 (i/n)$ + b (jim)] 

Let error, E, be defined as 

E=i1' 	 (C-22) 
w 

1;.  
= Ld i=' 	• [e ( 2irv5/X) cos (21Tx1 /A + 4)] 

(C-23) 
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[e_(t27j/X) cos (21Tx 5lX + 4,)] 

(C-24) 

in which 

x,.= 1 (i/n)$ + b (f/rn) 

E/a is a dimensionless parameter that represents the 
error in the method and is independent of the amplitude 
of oscillation. 

A phase angle, 4,, is included in the analytical model of 
the vehicle force. Because a vehicle can approach the set 
of scales with any phase angle between 0 and 21r, the maxi-
mum value of E/a with respect to 4, must be looked at in 
the evaluation of this system. The particular 4, that makes 
E/a a maximum is a function of A and must be computed 
for each value of A throughout the range of wavelengths. 
This is done as follows: 

Set 

d(E/a) -o 
d4, 

d (E/a) - I- 
	rn  [e—(t 21rv3/X) 

dçb 	Ls i1  L j=1 

sin (27j-x,,/A + 4')] = 0 

i:1i: [e(t 2T.D/X) (sin 21Tx1lA cos 4' 
+ cos 21rx 5 /A sin 4,)] = 0 

_21 
'•I fl 

=.21,=j {e( 27r5/X)  [sin 2ij-x,/A 

+ tan 4' cos 2x15 /X]} = 0 

and 

( 2irx/X) sin 2irx 
=arc tan— 

["15"e— 	 1 

	

e 	27rw5/X) cos 21Tx j/A L n 'ç m 	
]— ] 

 

(D from Eq. C-25 is the value of 4. that makes E/a a 
maximum. Then 

n ! (Ela) 	 m [e—1 275/X) cos 27rx/A + 'ti] 

 
in which 

;,=l(iln)fl+ b (JIm) 

and 

	

in Im 
 e 	2Ta3/A) sin 2irx,/A 

=arctan — _____________________ 

	

L e 	2irA'/X) cos 21Tx/A 

Figures C-S through C-8 show the variation in error that 
would occur for various combinations of the variables, n, 
m, 1, b, $, and C. For this preliminary study the following 
parameters are fixed: equals 0, no damping; 1 equals 60 
ft, distance to last treadle from coordinate origin; and m 

CONTINUOUS SAMPLE 
TAKEN OVER LENGTH 
OF TREADLE 

I TREADLE 
WIDTH 

5, DISTANcE IN DIRECTION OF TRAVEL 

Figure C-4. Waveform and platform  locations. 

equals 5, number of samples per treadle. These are not 
optimum values, but are chosen as representative values 
that will indicate the magnitude of error to be expected by 
simple averaging of "n m" number of force samples. 

Note that in Figures C-5 through C-8 the "error" is 
shown as E/a. This is the ratio of error, E, to the ampli- 
tude factor, a, of the oscillating component of vehicle force 
(at the respective axle). To obtain error as a percentage 
of weight, the following operation must be performed: 
Error (in %) = (E/a) (a) (100). 

Figure C-5 shows the effect of treadle (or platform) 
width upon E/a. Note that an increase in scale width from 
1 ft to 2.5 ft produces a reduction in E/a at the very short 
wavelengths but has insignificant effect on longer wave-
lengths. This was anticipated, because as the rn number of 
samples at each treadle is taken over a greater portion of a 
wavelength, the error is reduced. However, the close spac-
ing of tandem axles precludes the use of active treadle 
widths much greater than 2.5 ft; therefore, little can be 
accomplished in reducing error by increasing treadle width. 
However, little overall accuracy would be lost if the treadle 
design were short in the direction of travel, particularly if 
the lower cost of the shorter design would allow the use of 
more treadles. 

This statement is supported by the comparison shown 
in Figure C-6. The large values of E/a that predominate 
for three treadles are greatly reduced by the use of seven 
treadles, except for wavelengths between 7 and lift. This 
is the region in which the wavelengths are just shorter than, 
equal to, or just longer than the uniform treadle spacing, 
so that it is possible to sample near the peak of each cycle. 

To remove the chance of sampling near the peak of each 
cycle, one family of non-uniformly-spaced treadles is al 
lowed for by specifying treadle spacing, as shown in Eq. 
C-18. Variation in non-uniform spacings is made by vary-
ing the value of fl. Preliminary results representative of 
this family of variations are shown in Figure C-7. Note 
that the peak error reduces as $ increases, but that the error 
increases for those wavelengths not associated with the 
original peak. For wavelengths 17 ft and greater, the 
increase in error with increase in 8 is caused by sampling 
too often that one part of the wave; that is, the scale spac-
ing increases in the direction of travel. 
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Figure C-5. Effect of scale treadle width, b, on E/a. 

From this limited study, $ = 1.5 would appear to pro-
vide the best attenuation of peak error without undue 
increase at other wavelengths. A further reduction in the 
error between 35- and 50-ft wavelengths can be made by 
adjusting the length, l, to some value other than 60 ft. 

Although it has been indicated that $ = 1.5 appears to 
provide good attenuation of the peak error associated with 
evenly spaced systems of treadles, this is only for the case 
of n = 7 treadles and l = 60 ft. Figure C-8 shows the 
error associated with $= 1.5, 1=60 ft and n less than 7. 
This again emphasizes the dependence of simple averaging 
systems on a larger number of treadles or sampling stations. 

A number of additional computer runs were made in 
which the dimension 1 in Eq. C-18 was made both shorter 
and longer than the 60 ft used for the study presented. The 
error was not significantly changed, except that the error 
for the shorter dimension was somewhat less. In the case 
of the longer wavelengths, this is because the distance over 
which measurements were made was more nearly one wave-
length. In addition to varying the dimension I in Eq. C-18, 
other families of non-uniform platform distribution were 
used. One of these is: 

X= l/2[1 —cos( -_1 1+  b (jIm) (C-27) 
I 	 n—li i 

It should be pointed out that when the treadles were 
spaced closer together, the error generally was reduced, 
because the digital sampled averaging system more nearly 
approximated the limiting case of integral averaging, as 
previously discussed. This is a desirable practice in real 
systems, but it must be realized that the active portions of 
real physical platforms can be spaced only so close together 
before their inactive portions interfere. 

In this analysis of error in a simulated simple averaging 
system with digital sampling it should be noted that the 
sampling rate was set at five samples per treadle. This was 
chosen because the mathematical model of axle force was 
a simple sinusoidal variation about the static or steady 
force. Additional samples per treadle would have made 
little difference, except at the shorter wavelengths of ap-
proximately 2 to 5 ft where more samples would have 
defined the variations in force more accurately. In a real 
system, the shorter wavelengths generally would be asso-
ciated with slower-moving vehicles so that with time-rate 
sampling (sampling at fixed intervals of time) the sampling 
system would automatically take more samples. The ex-
ample shown is illustrative only. It was more convenient 
to use a fixed number of samples per treadle than to 
simulate the real case. 

It should be emphasized that the necessary sampling 
rate of a digital sampling system will be dictated by the 
highest frequency component in the waveform. As pre-
viously mentioned, the vibration of certain weight-sensing 
platforms (or treadles) may be of large amplitude and at 
a much higher frequency than that produced by the ve-
hicle. Consequently, if platform vibration cannot be re-
duced by alteration or redesign, it may be the deciding 
factor in choosing the sampling rate. There is no trouble 
in achieving high sampling rates; present-day multiplexers 
are more than adequate. Rather, the problem is that of 
storing and processing the larger amount of data. The data 

processing must then be larger and more costly. 

Simple Averaging Using Analog Systems 

Instead of taking discrete samples at certain times with 
digital equipment (see preceding section), analog equip-
ment can be used to achieve essentially the same results. 
The task here is to average the continuous sample of force 
over each treadle and then to average the values from 
each treadle. This can be accomplished with simple analog 

integrations, as follows. 
Let /(t) be the force on treadle i; then the average value 

on treadle i is 

f l,+ T,  
w 
=, 	

/(t) dt 	 (C-28) 
Ti 

If average of n treadles is the estimated weight, this is 

W = W, 	 (C-29) 

No advantage in reduced error was obtained. 
	 To estimate the error in this mathematical method (ex- 
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Figure C-6. Effect of number of scale tread/es on E/a. 

cluding equipment errors) of assessing weight of a moving 	For constant velocity, V, 
vehicle, it can be assumed that the vehicle is at constant 
velocity. This permits changing the form of Eq. C-28 so 	 X = V(t - t0) 

that when substituted into Eq. C-29 the estimated weight 	and 
is analogous to that shown in Eq. c-i 3 of the discussion 
of digital systems. 	 dx = V dt 
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and if the axle crosses a treadle of width b in a time period, 	so that Eq. C-28 is equivalent to 
r, at velocity V, then 	 1 f w+b

w=- jdx

rb/V 	 (C-31) 
	 (C-32) 
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Figure C-8. Effect of number of tread/es on E/a where p = 1.5 and b = 1.0. 

The estimated weight is 	 of averaging. There is, however, both an advantage and a 
1 	[fx  + b 	

I 
disadvantage of the analog method over the digital method. 

W = 	in 	 dx 	(C-33) 	The advantage is that of simplified equipment. There is 
no need to obtain high-speed multiplexers, because the 

	

Eq. C-33 is now equivalent to the statement of estimated 	sampling is Continuous while the wheel is over the active 

	

weight in the discussion of digital systems (Eq. c-13) 	portion of the treadle. This allows the high frequency 

	

except that Eq. C-33 is based on an infinite number of 	Components, such as platform vibration, to be averaged in 

	

samples across each treadle instead of on a finite number, 	accordance with the integral technique previously dis- 
m. 	 cussed. 

	

For practical purposes, the investigation of error yields 	The disadvantage is the loss of accuracy that is inherent 

	

the same results as previously shown for the digital systems 	in analog data-processing systems. 
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APPENDIX D 

DYNAMIC MODELS 

Either of the two lower-frequency oscillations characteris-
tic of a simple vehicle (i.e., the bouncing and pitching 
frequencies) will produce a sinusoidal variation of the 
force between tires and pavement. Their combination will 
be in accordance with the examples of wave combinations 
shown in Figures A-2 and A-3. Assume that one low 
frequency (say, bouncing) is dominant. If, by chance, the 
bouncing and pitching modes produce beating frequencies, 
the average of the frequencies is the apparent frequency. 
For practical purposes this appears in graphic form as a 
near-sinusoidal signal of varying amplitude. Thus, for the 
two cases considered here, the force variation between 
tires and road will be a sinusoidal variation about a con-
stant level. Although in one case—that of beating frequen-
cies—the amplitude of the sinusoidal force varies also in 
a sinusoidal manner (see Eq. A-7), it is recognized that 
the random excitation from an uneven highway would 
produce a varying amplitude in a simple bouncing oscilla-
tion as well. Thus, for the cases considered here, the varia-
tion in force is a near-sinusoidal wave of varying amplitude 
that is similar to what may be expected from a simple 
mechanical oscillator, as shown in Figure D-1. 

Considering the simple oscillator, let M be the "effective" 

mass associated with a given axle; that is, 

M=WIg 	 (D-l) 

in which W is the static axle weight and g is the accelera-
tion due to gravity. It should be emphasized that M is not 
the actual mass of the vehicle or any part of it; M follows 
only from the definition shown in Eq. D-1. 

If force transducers were placed in the road, the force, 
F(t), sensed could be expressed as 

Returning to the simple oscillator, the effective mass, M, 
associated with the axle is supported by a spring of stiffness, 
k, and is damped by a dashpot with a damping coefficient, 
D. Assuming that the road is level and smooth in the 
region over which force measurements are to be made, the 
mass will not receive significant further excitation; hence, 
the equation of motion can be written as 

M+D+kz=—W 	(D-3) 

The solution of Eq. D-3 is 

z = - - 
w 
i- + e (D/2M)t  [A cos ((a,,, t) + B sin 	1)] 

(D-4) 

in which 

a ä =[k/M— (DI2M) 2P 

This shows that the displacement of the vehicle is a con-
stant due to the static weight on the elastic suspension plus 
a sinusoidal component of varying amplitude. In this 

equation the amplitude decreases if D is positive and in-

creases if D is negative, both of which can occur, because 
this is used to approximate beating signals. 

Eq. D-3 is in terms of displacement, z, normal to the 
road. The only measurements that can be made of an 
oscillating vehicle in a short time are those of force normal 
to the highway. Consequently, it is desirable to derive from 
Eq. D-3 an equation in terms of axle force based on the 
dynamics of this much-simplified model. 

The force on the road is the sum of spring and damping 

forces. Thus, 

I 

d2 Z 
— g] 
	

Transposing, 
	F(t)=D+kz 	 (D-5) 

in which z represents the vertical displacement of mass, M. 
Changing to the use of superscript, dots to represent differ-
entiation with respect to time, the expression becomes 

F(t) = M [(t) - g] 	 (D-2) 

Thus, at any time t, F(t,) can be measured by the 

transducer, but M and z(t1 ) remain two unknowns in the 
equation. If measurements of force are made at another 
time, an additional equation is obtained, but another un-
known is also introduced—namely, z(t2 ). To generalize, 

if F(t) were to be measured n times, n equations would 
be obtained relating to n + 1 unknowns. Consequently, 
Eq. D-2 is not sufficient to determine the unknowns. Addi-
tional information is needed, and this can be obtained from 
a further consideration of the dynamics of the simple sus-
pension system. 

z= 1/k F—D/k t 	 (D-6) 

Differentiating with respect to time 

= 1/k F - D/k 	 (D-7) 

Substituting Eq. D-5 yields 

F+W 
M 

Substituting for in Eq. D-7 yields 

=l/kF+D/kM(F+W) 	(D-8) 

Differentiating once more yields 

= 1/k + D/k M E 	(D-9) 

From Eq. D-5, z = 1 / k F - D/k 2, and on substituting for 
from Eq. D-8, yields 



z= 1/kF—D/k2 F—D2/k2 M(F+ W) (D-10) 
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Using Eqs. D-8, D-9 and D-10 to substitute for , , and z, 

respectively, in Eq. D-3 yields 

M/kF+D/kF=— W 

or 

AF+BF+F=—W 	(D-1 1) 

in which A = M/k and B = Dik. 

This equation has three constants—A, B, and W—in 

which W is the computed weight of prime interest. If the 
set of quantities F, ft. and P is measured at three different 
times, t1, t2, and t3, substitution of these quantities into Eq. 
D-1 1 yields three equations for the solution of the un-
knowns. What this does, essentially, is fit a damped sine 
wave to the measured quantities so that the average level, 
W, can be calculated. This is the simplest form of this 
mathematical model. Further discussion of detailed solu-
tions follows. 

FINITE.DIFFERENCE SOLUTION 

Of the quantities F, F, and P. only F is measured directly 
from the force-sensing platforms. ft and F must be ob-
tained by differentiation. In the following this is accom-
plished by a computational procedure. Let F, i = 1, 2, 3, 
4, 5, be five time-rate samples from one treadle taken at 
intervals of At. Then, 

	

F=F3 	 (D-12) 

 
2t 

 
4t2 

If there were three treadles, a system of three simultaneous 
equations in A, B, and W could be obtained. 

The finite-difference method was tested by generating 
transducer readings from 

F(t) = W {1 + (et) (a) sin [C,) (t + t1)]} 	(D-15) 

in which Wis the actual axle weight. 
Time-rate sampling from a platform was simulated by 

taking five values of F at intervals of 0.01 sec. Time-rate 
platform spacings of 0.1 to 1 sec were studied with ampli-
tudes ranging from 0.1 to 0.8 of the static axle weight. The 
factor x in Eq. D-15 controls damping or decay of the 
waveform; it was varied from 0 to 1.5. The axle weight 
was solved from Eqs. D-8, D-10, D-11, and D-12. The 
error was computed as 

w-w 

	

E= 
w 
- 	 (D-16) 

in which W is the computed axle weight. The error was 
normalized as (Ela), as done in the presentation of simple 
averaging. The maximum absOlute value of (Ela) was 

MASS, M 

SPRING WITH ç 	j DAMPER WITH 
CONSTANT, K 	LTJ CONSTANT, C 

Figure D-1. Equivalent simple oscillator. 

found to be 6 X 10-5. Thus, for an amplitude ratio of 0.1, 
the maximum percent error is 6 X 10. 

This type of theoretical accuracy is not surprising be-
cause the sine and cosine functions are defined by their 
power series as solutions of the differential equation, Eq. 
D-1 1, with the coefficient B set to zero. Because, in the 
limit, this example is exact, results of high accuracy can 
be expected. However, at this stage it must be emphasized 
that exact numerical differentiation generally is difficult to 
perform in practice. Random variations in the function 
being differentiated can give rise to significantly large errors 
unless caution is exercised to minimize these errors through 
various smoothing techniques. Moreover, the three plat-
forms must be arranged in such a manner that no two of 
them yield the same information. This means that the 
platform spacing should not be equal to any of the wave-
lengths in the range of interest. 

Because Eqs. D-1 3 and D-14 represent numerical differ-
entiation, the function F would necessarily have to be 
smooth. To minimize errors due to random fluctuations, 
Rutledge's approximations obtained by differentiation of 
least squares polynomials rather than interpolation poly-
nomials may be used. There are other means to smooth 
the function F; however, other solutions appeared more 
practical and less prone to error in actual practice. 

Least Squares Fit of the Model, A? + BF + F = W 

Consider the differential equation representing the wheel 
forces on the road surface: 

AP+BF+F=W 	 (D-17) 

The coefficients A, B, and W are not known. However, an 
approximate solution for F (identified as F) is known in 
some interval, t1 :!~ t !~ t2. Because F is an approximate 
solution when substituted into Eq. D-17, it will yield some 
error, E. Thus, 

e=AF+BF+F—W 	(D-18) 

A, B, and W will now be determined so as to make the 
square of the error a minimumin the interval (t1, t2). 
Thus, 

f ti 

t2 	

f

t2 	 . 	 .. 

(2 di = 	[A 2F2 + B2F2 + (F - W)2 + 2AB FF 
tl 

+2BF(F—W) +2AF(F—W)]dt 
(D-19) 



24 

in which subscript p has been omitted for convenience. 
For this integral to be a minimum it is necessary to have 

a f
i 

€dt=O 
aA  

af 
- €2dt=O 	 (D-20) 
aB  

a 	
r €2dt=O 

aM 

in which i indicates a definite integral in (t11 12). Express-

ing conditions in Eq. D-20 in matrix form: 

f t 	
dt 

fi 
iiP dt 

- fi F 
dt 

I 

A 	
- f 

'F dt 

f
i TP dt 

fi 
P2 dt 

- f 
fr dt B 	

- fi 
frF dt 

_fidt dt _f 
Ef 

dt W 
f 

Fdt 

 

Solving Eq. D-21 for W, 

W=WIi  

in which 

f i 
1~ dt f PPdt — f P dt 

f 
~P dt A Edt 

_f 
f Edt O 

fi 
Pdt 

_f 
Edt 

fi 
dt 

 

and 

f
P2 dt 

f 	
dt 

_f 	
F dt 

Aw= 
'f 

)?'dt 
f 

P2dt 
-f 

— f 
Pdt 

._f 
Edt 

f 
Fdt 

Instead of using the three equations with three un-
knowns, as was-done previously, the estimation of weight 
is here calculated - by minimizing the least squares error 
of as many points of measurement (platforms) as possible. 

Nothing was said regarding the method of measuring 
the quantities E and P. The transducer provides a signal 
proportional to F; thus, the signal must be differentiated 
twice. Although this could be accomplished with either 
digital or analog equipment, error is associated with each. 
With digital systems, error is associated with the sampling 
process wherein discrete samples are taken sequentially. 
This requires the use of finite difference or polynomial 
techniques to obtain E and P from the sampled data. If  

the sampling period and frequency are not well chosen 

with respect to signal frequency, much error can be intro-

duced. Analog systems, on the other hand, may take data 

from the signal continuously from each platform. Never-

theless, there is inherent error in processing a voltage that 

is proportional to force. Although the analog system is 

applicable here, it was not included in this particular 

analysis. The anticipated error is possibly on a par with 

that of the digital system shown in the following analyses. 

In making the analysis of error of a digital sampling 

system using finite-difference techniques it is better to 

return to the basic equation (Eq. D-18) than to use the 

symbolic representation shown by Eqs. D-21, D-23 and 

D-24. This is done to incorporate the required notation 

more clearly. 

Where F(t) are known at discrete time intervals, At, the 

error at t = i At can be expressed as 

= A[' 	
(M)2 

Fi,i]+ B[ 1 1]+ (F., - W) 

(D-25) 

denoting 

2F 	F 1 -2F+F+1 
qi — -;j- 	 (zt)2 

and 

AF 	F+1 - F 1 
r= — = 

2(M) 

Then, upon substituting, Eq. D-25 becomes 

	

= A (q) + B (r% ) + (F - W) 	(D-26) 

The summation of the squared error sampling interval is 

(D-27) 

in which N is the total number of samples from time 

t = 0 tot = N(M). 

Expanding Eq. D-27 yields 

ç2 =A2 [,qj 2 ]+B2 [r 2]+ W[N — 11 

+2AB[q1 r]-2BW[Zr11-2AW[q] 

+ 2A [ q,, Fj - 2W [ Fj + [X F42] 

+ 2B [ ri Fj 	 (D-28) 

The squared error over the internal t = 0 to I = N(M) 

is made a minimum by partially differentiating Eq. D-28 

with respect to A, B, and W and setting each differential 

equal to zero. 

= 0 

a2 
= 0 	 (D-29) 

e 2 = 0 
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from which 

F,=F(
W[ 	 2a WT 

. (. 
F(W) 	+ — s n ----- 

w 2 	 2 

sin() 
YAr 

sin(ivit+O_Y4) 

+— sin— sin iYAt y r'\l 
Sy 2 	--i-)] 

(D-34) 

in which i varies from 0, 1, 2, . . N, and N is the num-
ber of samples. 

The error is E = W - W in which W is the weight corn-
w 

puted by minimizing the least squares error and W is the 
actual weight. 

Figures D-2 and D-3 are representative of the error 
described. The curves show the error, maximized with 
respect to phase angle, of the least squares fitting of the 
equation A) + BF + F = W. Also shown for comparison 
purposes is the error associated with simple averaging. 
Figure D-2, for 20 mph, shows that there is some gain in 
accuracy over simple averaging at 4 and 6 cps; but Figure 
D-3 shows that the error associated with both simple aver-
aging and the least squares fitting of the equation AF + 
BF + F = W is the same, for practical purposes. Addi-
tional computer studies were made which indicate that if 
the noise frequency is very high or the noise amplitude 
very low, or zero, the accuracy of the least squares fit of 
AF + BF + F = W yields excellent results. This was also 
shown in the preceding finite-difference solution without 
least squares. The reason is obvious. The model to which 
the data are fitted is a differential equation for which the 
solutions describe a sine curve. However, the method 
appears to be more sensitive in fitting a damped sine wave 
to data than was anticipated; little deviation from a pure 
sine wave causes significant error in the computed weight. 
The deviation from a pure sine wave that produced the 
error in Figures D-2 and D-3 was a noise signal at 120 cps 
with amplitude 0.1 that of the major dynamic vehicle 
oscillation amplitude denoted as a. 

Eq. D-29 yields a set of three simultaneous linear alge-
braic equations, which may be expressed in matrix form as 

a11 	a12 	a33 ] Al. 
 Iai 1 

a21 	a22 	a23 H B 	a2 	(D-30) 
[a33 	a32 	a33] C J 	a3 J 

in which 

a11 =''q2 _ ()4[(6.l Fi — 8 	F,,~1 

+2 	F 1 )+ (F02 — F1 2 - FN 12 + FN 2) 

—4 (F0 F3 — FN 1 FN)] 	 (D-31) 

a92 =r2 =4(l)2[ 2( •l Fi2 —' F 1 

+ (F02 — F12 — FN 12 + FN)] 

a33=r= 
2(t) [—Fo—Fl+FN1+FN] 

a12= 	
1qri=2()3 

[(—F02 —F12 +FN12 +FN 2 ) 

+ 2 (F0 F3 - FN_l FN)] 

a13 = L=1 q= 
( 
at

) 2 
[F0 — F1 — FN1 + FN] 

a23= 	
2(M) [—Fo—Fl+FN1+FN] 

a1 = 	q F, _ (M)2[2 (' F F 1 — 2,Fi2) 

(F0 F1 - FN l FN)] 

1 
[ — FO F3 +FN .1 FN ] 2(M) 

a3 	F 
INTEGRATION SOLUTION I 

The foregoing is the digital method for the least squares 
approximation of the equation AF + BF + F = W, to the 
measured data. To test the error of this method, the ve-
hicle force was represented by 

F(t) =W[1 +asin (cot+9') 	
(D-32) 

+sin (vt+9) +a/$sin (7t)] 

in which a, $, and p represent amplitudes, and w, v, and 
' 

represent frequencies. 

Because the force samples, F(iM), at time intervals, At, 
are averaged over AT, the force sample may be written as 

I t(it) 

F(W) 
=

F(t) d t 	(D-33)  

To preclude the necessity of differentiating the signal to 
obtain F and F, as done in the preceding applications of 
the differential equation A P + BF + F = W, the equation 
was integrated twice, term for term, before fitting the data. 
This is shown in the following. Integrating once yields 

A (fr-fr0) +B(F—F0) +f0 Fd=Wt(D-35) 

Integrating again yields 

A (F—F0 —fr0t) +B[f d77 	

+f0 fo` 

F() ded,1= (D-36) 
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Figure D-2. Error for 20 mph. Least squares fit of dynamic 
model. 
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Figure D-3. Error for 60 mph. Least squares fit of dynamic 
model. 

Let 

L1' = F - F. - F01 

L2'=f

~'Fdi—F0t 

(D-37) 

L31= 

L4'= f f F() dd 

Substituting Eq. D-37 into Eq. D-36 yields 

L1'A+L2'B+L3'W+L41 =O (D-38) 

If L1, . . . L4 are the observed values, Eq. D-38 becomes 

L1 A+L2 B+L3 W+L4 =€ 

in which € is again the error due to imperfect data. The 
squared error is 

€ 2 =L12 A 2 +L22 B2 + (L32 W 2 +L42 +2L3 L4 W) 

+ 2L1 L2 A B+ 2L2 B (L3 W+L4) 
+2L1 A(L3 W+L4) 	 (D-39) 

Integrating this over the sampling interval, t = 0 to t = 

and taking partial derivatives with respect to A, B, and W 
to find the least squares solution, yields the three following 
equations: 

f
2 dt = 2Af L12 dt + 2Bf L1 L2 dt + 2 

f 
2 dt = 2A 	L, L2 dt + 2B f 

L22 dt + 2 
3B f0T 	 f." 

f-T  

dt = 2Af L1 L3 dt + 2Bf
. 

L2 L3 dt +2 
al—W f  

f
L3 L4 dI+2Wf 

0 

Rearranging, these are: 

T AfLi2 dt + B f
0T 

L1L2dt+ wf L1L3dt= 

- f-T 

 

	

fT 

	

f 

	

T fT

A 	L1L2dt+BL22 dt+ WIL2L3dt
Jo 	 Jo 

-J 
fT 

	

fT 

	

f 

T 

	

f 

T 

A 	1L3dt+BL2L3dt+WL32dt
Jo 	 o 	 o 

f 

T

-
3 L4 dI 	 (D-40) 

o 

Eq. D-40 is now three equations for the three unknowns, 

A, B, and W, of which W is the quantity of interest. Fur-

ther comments regarding this scheme are included in the 

latter part of the next section. 

INTEGRATION SOLUTION II 

Instead of integrating the basic differential equation twice, 

which was done so that the signal F(l) could be used with-

out differentiation, it is here integrated once. Following a 
procedure similar to the steps between Eqs. D-36 and D-40 
of Integration Solution I yields a set of three equations that 

are the same as Eq. D-40, except that 
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L2 = (F—F0) 

L3 = (— t) 	 (D-41) 

L4=f Fd71  

Note that the signal must now be differentiated once to 
obtain L1. A signal from any real weighing system will 
contain a "noise" component in addition to the meaningful 
and necessary information. The differentiation of such a 
signal only enhances the noise. However, in these methods 
the quantities F(t) and F(t) are averaged over an interval, 
T, that may be continuous or—in the case of presently 
installed weighing platforms—may be discontinuous. Thus, 
even if the noise component is highly random it will not 
seriously affect accuracy so long as the signals F(t) and 
F(t) from each platform are integrated over a sufficient 
time. This "sufficient time" depends upon the probability 
density of the random noise component and the time an 
axle is over a platform. If the time over the platform is 
very large compared with the periods of the dominant 
frequency components of the random signal, the induced 
error from noise should be small. Note that taking ad-
vantage of this fact to reduce error imposes a limit on 
vehicle speed while weighing. 

The evaluation of the integration methods was made by 
determining, for a pure sinusoidal force variation, the 
number of cycles or fraction of a cycle of continuous 
sampling and integration that is required to reduce the error 
to some acceptable value consistent with 5% overall error. 

In this case, F(t) = W [1 + a sin (o)l + 4))], in which 
a=O.l; co =2r (5 cps); and =0.7 radian. 

The error evaluated for Integration Solution II for these 
values is shown in Figure D-4. Note that almost one-half a 
cycle is required to reduce the error in the mathematical 
method to 1% for a pure sinusoidal oscillation with the 
amplitude, a, of the oscillating force equal to 0.1 of the 
axle weight. To compare this with integral averaging, refer 
to Figure C-3. Note that all certainty of less than 1.0% 
error is not obtained until 2.6 cycles are integrated. This 
is also for a = 0.1. In this respect the integration method 
has a definite advantage over integral averaging, but at 
considerably more expense. However, all this is based upon 
a pure sinusoidal oscillation. The method will not converge 
to a small error nearly so quickly if there is noise present. 
A full assessment of noise averaging capability was not 
made, nor was a study made of this method when subjected 
to two- or three-component waveforms. 

Figure D-4 represents the one-integration method that is 
more sensitive and converges to low error for a sinusoidal 
disturbance more quickly than with double integration 
(Integration Solution I). 

Polynomial Smoothing of Force Data with Integration 

Solution II 
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Figure D-4. Error of integration solution 11. 

This reduced, but did not remove, the vulnerability to 
noise and other irregularities, especially when the equation 
was integrated only once. Consequently, when the noise 
component was large, further smoothing was necessary 
before applying the integration solution or any other solu-
tion so far discussed. Polynomial smoothing by least 
squares fit of platform data was contemplated. 

To test the added smoothing approach the decision was 
made to use a typically noisy signal representing two com-
ponents of vehicle oscillation, plus a much higher frequency 
equal to that observed as platform oscillation of a heavy 
steel structure platform. The axle force was represented 
as follows: 

F=W[1 +asin (oit+q') +$sin (vt+O) +y sin pt] 
(D-42) 

This was sampled by force-sensitive platforms of length b, 
placed at a distance, X0, from the origin. Constant vehicle 
velocity, v, was assumed so that time to any platform, t0  
(from the origin), was 

t0 X0/v 	 (D-43) 

Time on the platform was 

(D-44) 

For any platform, the force was 

Fn=W1 +a sin  [oi(t0 +r)+9']+$ sin [v(t0+r+9) 
+y sin [p (t+r)]} 	 (D-45) 

This was then measured and recorded for time periods r0, 

according to the definition of Eq. D-44. 
A third-order polynomial 

1L 
0 	0.02 	0.04 	0.06 	0.08 	0.11 

The integration solutions just discussed consist of integrat-
ing the equation A + Bfr  + F = W to fit it to the mea-
sured data in the average without computing derivatives. 

F0' = a0  + a17-  + a2r2  + a3r3 	(D-46) 

was then fit to the data by the method of least squares error 
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in an effort to remove the high-frequency component shown 
by y and p of Eqs. D-42 and D-45. Thus, 

	

F0'= a0 	+ a1r + a2r 2  + a3r 3 	(D-47) 
En'= a1  + 2 a2T + 3 ar 2  
F0' = 2 a2  + 6 a3r 

The basic equation of this discussion is AF' + BF + F' = 
W. Integrating once and rearranging, 

	

ri f ... 1 	[_'Al—F'drl+BI F'dr—W 
 J 	nJo 	 J 

1 fr, 
F' -- 	dr 	 (D-48) 

TO J 0 

(TYPICAL) 

I 

HIGHWAY 

#1 

The outcome was that the polynomial smoothing of data 
over each platform was excellent (see Fig. D-5) but the 
dynamic model (AF' + BF' + CF' = W) appeared to con-

verge on the medium-frequency component rather than the 
lowest vehicle frequency. The accuracy of computed 
weight was not good. 

Because this had already required the use of polynomials 
for smoothing, no further study was made of the simple 
dynamic method. Polynomials were thought to be more 
useful for smoothing over the whole record as well as just 

the platforms. 

HIGHWAY 

#31 	 IPLATFORM #4 

DISTANCE 
Figure D-5. Three-component waveform with polynomial smoothing over platforms. 

APPENDIX E 

INTEGRAL MODEL III 

Often the need arises for predicting the value of dependent 	tional form which may be hypothesized from past theo- 

variable Y for any given values of one or more variables, 	retical or experimental knowledge without necessarily 
X. The variables Xi  may be related in an explicit func- 	specifying the numerical values of the constants entering 
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into the equation. Regression analysis provides a systematic 
approach for estimating the unspecified constants from a 
set of observations of the variables entering the equation. 
It also allows computation of confidence limits for the 
range of estimates provided by the analysis. 

The general assumption underlying regression analysis is 
that the dependent variable is representable by a linear 
function of other variables. The general method used in 
estimating a regression relation from sample data is based 
on least squares; the sample regression relation is that which 
yields a minimum for the sum of squares of the deviations 
of the observed values from the predicted values of the 
regression relation. 

Even though regression analysis is hypothesized on a 
linear relation among the variables, it is not restricted to 
the analysis of linear problems alone. Many nonlinear 
classes of problems can be dealt with by appropriate trans-
formation of the variables into those that are related 
linearly. 

In using multiple regression analysis for predicting axle 
weight the two important tasks are: (1) selection of the 
dependent variable and (2) selection of the most suitable 
sample regression equation. Starting with the expression 
for the force exerted by an axle on the road surface as 

F=W(1 +YK 1ai5in(cuit+*i)) 

this expression was operated on in various manners to find 
a suitable sample regression model. The following worked 
fairly well. 

Integrating the force expression once yields 

	

f-T 	
ai 

	

Fdt = W{T —" [cos (wT + çb,) - cosJ
Wi 	

} 

(E-1) 

Integrating again yields 

fT 	

1 

—{1/2 
T2 	K a 

	

J J 	

Fdtd'q = W 	- . — [sin(wj + cb) 
0 	0 

— sin01] + 	
K aT 

cosi} 	(E-2) 

Recognizing that 

a. 
- F0 ) 	-[sin(T + çb) — sinçbj(E.3) 

this is added and subtracted from Eq. E-2 to yield 

f 
T

f Fdtdq= W1/2T2+T ,i -±cosc6i ___ 
 0 

	

1 	1 
(F—F0) +L1 aj---- 

	

(01 	Ui2  

[sin(UT + cbi) - sini} 	(E-4) 

Dividing by 2/ T2  puts the expression in a better working 
form: 

	

2f Tf,,2çKai 	2 
 Fdtd =w{ 1 +—,. —coscb, 

--(S-) 
(Oj 

	

K 	1\ 
(F—F0) +L1 a(\2) 

[sin(oT + çl j) - sincbJ} 	(E-5) 

The dependent variable was chosen as 

2 

	

Fdtd 	 (E-6) 
tTfn  

T2 J 0   
The predicted value of Y was then expressed by a sample 
regression equation of the form 

Y'= A + B1X1  + B2X2  + B3X3  +. . . B.X. (E-7) 

in which, clearly, 

x1 = 

(E-8) 
X2 =--(F0 —F)  

and in which other variables may be assigned to approxi-
mate the terms 

2 K  (1 i \\ 
i=1 	\0)j2 

 o2J [sin(oT + c) — sin] 

Trial variables were considered in the form 

=2/ T2  

X4  = 2/P 	
(E-9) 

and so on, to certain variations of these. 
The computed weight, as seen from Eqs. E-5 and E-7, is 

given by 

W=A 	 (E-10) 

This was convenient when, in the subsequent test runs of 
the method, 13" (the assumed weight) was normalized to 
the value 1.0 to allow the computed weight, W, to be com-
pared directly with 1.0. 

The error in the method is evident from the last sum of 
terms in Eq. E-5 in which error decreases in an inverse 
square manner as the total sampling time increases. It is 
evident also from these terms that the error is of the order 

s." ai(___i)[sin(oT + ) - sinqj (E-11) 

Thus, increasing spread between the lowest and highest 
frequencies in the sampled waveform leads to increasing 
errors. Consequently, it is essential that the amplitude of 
the highest frequency waveform (which is generally the 
platform's natural frequency) be minimized by proper 
design. 

In testing the assumed model by the foregoing regression 
analysis, the following statistical parameters were com-
puted: 

1. The total sum of the squares of the deviations of all 
data from the average of the data: 
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Total SS = (Y —Y) 2 	(E-12) 

When divided by the number of observations, the total SS 
gives the mean square deviation. 

The sum of the squares of the deviations of the actual 
values from the predicted values: 

Error SS= (Y'— Y) 2 	(E-13) 

This quantity is a measure of the scatter of the actual values 
from those predicted by the regression equation. 

The regression sum of squares, which is the difference 
of the total sum of squares and the error sum of squares: 

Reg SS = Total SS - Error SS 	(E-14) 

This quantity is a measure of the part of total spread ac-
counted for by the model. 

The degrees of freedom of the system, which is the 
difference between the number of observed data points and 
the number of parameters in the regression equation: 

DF = Number of observations - Number of parameters 
(E- 15) 

The more the degrees of freedom, the more accurate the 
estimate of the parameters is likely to be. 

The error variance, which is the ratio of the error sum 
of squares to the number of degrees of freedom: 

Error Var = Error SS/DF 	(E-16) 

If the deviation between the actual and predicted values is 
taken at any point and squared, the most likely value of 
the resulting quantity is given by the error variance. 

The standard deviation, defined as the square part of 

the error variance: 

Std Dev = Error Var 	(E-17) 

It is the root mean square error of the observed values 
from the predicted values. If the distribution of the ob-
served values over the predicted values is normal, 67% of 
the distribution will fall within ± 1 standard deviation and 

95% within ± 3 standard deviations. 
Multiple Rho, which is the fraction of the total spread 

of the system accounted for by the model: 

Mult Rho = Reg SS - Total SS 	(E-18) 

T, which is given by the value of the parameter di-
vided by its standard deviation. This quantity is of interest 
in the i-test. 

In testing the method, the double integral of the depend-
ent variable was computed for 160 milliseconds continu-
ously and the analysis was carried out. Results for selected 
runs and the frequencies and amplitudes representing the 
axle are shown in Figure E-1. 

Section I of Figure E-1 shows the results for an input of 
a pure sine wave superimposed on a constant value of 1. 
The prediction of this value, W, is given by the parameter 

A as 1.00000064 ± 2 X 2.64 x 10-5. This is remarkably 
accurate inasmuch as the sampling was conducted over less 
than a waveform. Regarding the suitability of the model,  

it was found from the i-test that variables X3  and X4  are 

really unnecessary as long as only one component is in-
volved, because the absolute values of T in the computer 

output for parameter X3  and X4  are found to be less than 
1.96. However, in the multi-component tests the impor-
tance of these parameters will be noticed. 

Section II of Figure E-1 shows the results for a two-
component waveform with frequencies of 5 cps and 80 cps. 

The prediction is found to be in error by about 3%. From 
the i-test it is found that whereas no significance can be 

attached to B2  parameter, B3  and B4  assume considerable 

importance in the analysis. 
Section III of Figure E-1 shows the results for a two-

component waveform with frequencies of 5 and 10 cps. 
The prediction is found to be in error by only 2%. It can 
be noticed from the i-test that all the parameters have 
assumed significance. 

Section IV of Figure E-1 shows the results for a three-
component waveform with frequencies of 5, 10, and 80 

cps. Error in the prediction is found to be only 0.1%. 
Except for B2, all the other parameters are again found to 
be significant. The reduction in error is due to the nearly 
double amplitude of the low-frequency components com-
pared with that of the high-frequency component. 

However, after many computer runs simulating many 
conditions of vehicle speed, the number of harmonic com- 
ponents comprising the vehicle axle force, and the relative 
frequency and phase angles of these components, it is con-
cluded that the simple regression model 

- ' Y'=A+B1(1IT)+B2 
/ F F0

2 J 	
(E-19) 

works as well as those with added terms of B3  (11P), 
B4  (1IT 3), . . . B1  (1/TK 1). 

In cases where the ratio of frequencies is less than two, 
the error appears to be relatively small for two-component 
signals approaching equal amplitudes of the harmonic com-
ponents. However, for signals having two harmonic com-
ponents with frequency ratios greater than 2 or 3 there are 
combinations of phase angles that produce significant error 
—even greater error than that of a simple average of force 
over the platforms. Figure E-2 shows the results of a study 
made upon signals with two harmonic components. The 
lower frequency was held constant. The amplitude of the 
lower frequency was also held constant at 0.1 of the static 
force component (weight). The integration period was 0.8 
of the lower frequency. This is a relatively long period 
when the amount of highway that must be instrumented is 

considered. 
These results are representative of the limited investiga-

tion that was performed for this report. Although analyses 
following this regression scheme may have merit, it appears 
that the complexity of analysis and the susceptibility to 
large error under more than occasional conditions do not 
make them more attractive than some of the less-complex 

averaging techniques. 
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APPENDIX F 

INTERPOLATION OF AXLE FORCE BETWEEN PLATFORMS 

Although interpolation of the axle force between spaced 
platforms has not been explicitly considered previously in 
this report, it has been inherent in all methods other than 
the simple averaging over platforms. In the so-called "dy-
namic methods," interpolation is implied in that one of a 
family of continuous functions was fitted to the data. 
Direct application of interpolation by fitting polynomial 
curves is considered here. 

Interpolation as needed for representing axle-force data 
between spaced platforms requires the use of well-chosen 
functions, because the cost of placing force-sensing plat-
forms in the highway surface dictates that the force-
sensitive areas generally are widely spaced relative to their 
dimension in the direction of travel. Thus, the chosen 
functions must satisfy approximately, or in the average, the 
local group of data obtained from each force-sensitive area 
and predict a good estimate of axle force between plat-
forms. The basic method employed to accomplish this was 
least squares fitting with truncation of the polynomial to 
enhance the fitting of the longer wavelength components. 

Specific polynomial systems investigated and reported 
here include the Fourier series, general trigonometric poly-
nomials, general algebraic polynomials, and simple alge-
braic polynomials fitted over successive groups of force-
sensing platforms. These were studied with the use of 
digital computers and FORTRAN programming. The pro-
grams are included in Appendix I. 

TRIGONOMETRIC POLYNOMIALS 

Eq. A-12, the function used to represent axle force, sug-
gests the use of trigonometric polynomials in reconstructing 
the function from platform-sampled data. Because this 
was a limited study, only one function representing one 
phase relationship of a vehicle with free suspension and 
with tire hop at 12 cps was used for the computer study. 
The function providing representative axle force data was: 

F = 	1.0 x 1,3, aj sin (2ir f it + çb t )] 	(F-i) 

in which 

W= 10,000lb; 
a1  a0  
a3  = 0.4; 
/1= 2.4cps; 
fz = 2.6 cps; 
f3= 

 

12.0cps; 
= 0; and 
- 03  = r/2. 

The trigonometric polynomial used to reconstruct a con-
tinuous estimate of axle force from the sampled data was 
of the fOrm 

/k\1  F = A. +1[Ak  cos(! 7rt) + Bk  sin 	t (F-2) 

and was fitted to the sampled data by the least squares 
method. 

The computer program used to study this application 
is shown in Appendix I as Digital Computer Program 
TRIGFT. 

Using platform spacing in accordance with Figure F-i, 
Figures F-2 through F-4 compare the fitted truncated 
polynomial to the curve representing axle force from 
which the sampled data were taken. It must be remem-
bered that the sampled data were taken only in the rela-
tively small shaded areas representing the location (in 
time) of the force-sensitive platforms. The fit is much 
better at the left-hand side of each curve. This is to be 
expected because the spacing of platforms in this model 
places them closer together, as shown at the left-hand side. 
To have spaced them evenly would have been to invite the 
same source of error previously discussed under simple 
averaging methods—that of sampling at the peaks of suc-
cessive cycles if a wide range of velocities is anticipated. 

Much more could have been done in the study of tri-
gonometric polynomial fitting. The wide swings in the 
fitted curve possibly could have been reduced by a direct 
solution approach instead of the least squares approach, 
but other considerations dictated that that the investigation 
procede to what appeared to be a more successful method 
at that time. 

ALGEBRAIC POLYNOMIALS 

Following the investigation of trigonometric polynomials, 
the same study method with the same platform spacing and 
axle model was used to fit a general algebraic polynomial 
of the form 

(F-3) 

For practical purposes the results are the same as that 
shown for trigonometric polynomials. The least squares 
procedure produced a fair fit where the platforms were 
closer together, and wide swings where the platforms 
were spaced farther apart. Again, the investigation was 
brief. Much more can be done with such polynomial 
approximation. 

This study was terminated because it was recognized 
that a large number of terms was needed to reconstruct 
the continuous axle force curve even approximately. 
When relatively small force-sensitive areas are placed in 
an internal of 1.0 to 1.5 times the longest wavelength an-
ticipated, the significant value in fitting a curve is the 
average platform force. The curvature of the force func- 



33 

PLATFORM SPACING (TIME IN SECONDS. DISTANCE OR WIDTH IN FEET) 

PLATFORM NO. TIME TO PLATFORM TIME ON PLATFORM DISTANCE TO PLATFORM PLATFORM 	w(L)TH 

1 0.01131 0.01420 0.9948 1.2500 

2 0.06337 0.01420 5.5765 1.2500 

3 0.14061 0.01420 12.3736 2.2500 

4 0.23580 0.O420 20.7808 1.200 

5 0.34596 0.01420 30.4442 1.2500 

6 0.46923 0.01420 41.2923 1.2500 

7 0.60434 0.01420 53.1818. 1.2500 

PLATFORM SPACING (TIME IN SECONDS, DISTANCE OR WIDTH IN FEET) 

PLATFORM NO. TIME 	10 	PLAIFURM TIME ON PLATFORM DISTANCE TO PLATFORM PLATFORM, WIDTH 

1 0.00420 0.02841 0.3698 2.5000 

2 0.08627 0.02841 4.9515 2.5000 

3 0.13351 0.02841 11.7486 2.5000 

4 0.22870 0.02841 20.1258 2.5000 

5 0.33885 0.02841 29.8192 2.5000 

6 0.46213 0.02841 40.6673 2.0000 

7 0.59724 0.02841 52.5568 2.5000 

Figure F-i. Platform spacing for trigonometric polynomial interpolation: platform widths, 1.25 ft and 2.50 ft. 

tion over the platform yields relatively little leverage on 
fitting an expression. Consequently, attention was directed 
to a method whereby the change in value of force over the 
platform could play a greater part. 

MULTIPLE POLYNOMIAL FITTING 
OVER SUCCESSIVE PLATFORM GROUPS 

Recognition of the problems associated with fitting curves 
to functions with many points of inflection (by means of 
sampled data, no less) led to fitting a more simple poly-
nomial, trigonometric or algebraic, over each successive 
group of three platforms. Thus, where a system is com-
prised of N platforms, the interpolation is provided by 
(N- 2) polynomial approximations. This proved to be at-
tractive in that the platform became larger relative to the 
reduced interval covered by each simple polynomial. 

Successive overlapping groups of three platforms are 
described as follows: 1st interpolation interval, platforms 
1, 2 and 3; 2nd interpolation interval, platforms 2, 3 and 
4; and so on to the last interval, (N - 2) nd interpolation 
interval: platforms, (N - 2), (N - 1) and N. 

The method used was to read in the axle force data 
from the simulated force-sensitive areas by means of a 
platform positioning function, plus an expression repre-
senting axle force for a vehicle with certain dynamic char-
acteristics. Algebraic polynomials of the same form as 
Eq. F-3, 

F = 	Akt" 

but with K ranging only from 2 through 5, were fitted by 
least squares in each interpolation interval. Thus, a rea-
sonable continuous estimate of axle force was achieved. 

Where the interpolation intervals overlapped, the average 
of the interpolation functions was taken at that point. 

This interpolation method, in particular, was developed 
to implement a more "brute force" than analytical method 
of determining axle weight from the sampled force data. 
That weighing method appears in Appendix G. For this 
reason, the computer program for interpolation by mul-
tiple polynomial fitting over successive platform groups is 
combined in computer program VWEIGH (see Appendix 
I) for that weighing method. 

Figure F-S is plotted from computer output shown in 
Appendix I. It indicates the relatively good curve following 
that is achieved by fitting polynomials to successive groups 
of platforms. Although the actual interpolation of axle 
force is not really good (bottom half of Fig. F-5), this is 
an example of a trial yielding an excellent weight estimate. 
The reasons for this are discussed later. 

The upper half of Figure F-S represents an example of 
non-"noisy" axle force generated from a vehicle with beat-
ing pitch and bounce frequencies of 2.1 and 2.4 cps of 
equal amplitude approximated by polynomials of second 
degree (parabolic curves). The bottom half of Figure F-S 
represents a vehicle with blocked suspension and with tire 
hop. Frequencies are 3.7, 4.0, and 12.0 cps. The interpola-
tion curves are algebraic polynomials of fifth degree. 

Additional markings on Figure F-S have to do with the 
method of computing weight whereby approximately one 
wavelength is determined so that averaging can be done 
over that period. This is discussed later. 

FOURIER SERIES 

The following investigation was given limited attention as a 
side application of trigonometric polynomial interpolation. 
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Although the Fourier series is not generally applicable 
to the reconstruction of a continuous function from un-
evenly spaced groups of sampled data, the series has one 
unique feature that is of great value for computation at a 
site along a highway; that is, only summation and limited 
division are required to evaluate the coefficients of the 
series' representation of axle force: 

F = ½ A0  + '1[Ak cos()+ Bk  sin()] 

(F-4) 

in which 

fkt\
lAk =2/Tf

T 
f(t) cos 	dt; and _f,  

(F-5) 

f 
T 	- /\

)Bk=2/Tf(t)sn( k0-t dt. 

With the coefficients evaluated by integrating over only 
the platforms of the weighing installation, the Fourier 
series, if taken to a larger number of terms, would repro-
duce the spiked force diagram shown as the solid curve, 

instead of the dotted interpolation, over each platform in 

Figure F-6. As such, it is not an interpolation and gives 

no useful information not already given by the platforms 
alone. However, by severely truncating the series to a 

small number of terms, a relatively smooth continuous 

function is generated. This is still not an approximation to 

the axle force between platforms, inasmuch as the Fourier 

series is generated from a least squares application of a 

linear trigonometric series followed by the imposition of 
orthogonality relationships. Thus, the relatively smooth 

curve produced by truncated Fourier series is at a level 
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much below the static component of force in quest. What 
is interesting and possibly useful is the fact that the Fourier 
series, truncated as described here, can be used to yield the 
basic wavelength or periodicity of the sampled force data. 
This is within limits, admittedly, but the dominant low fre-
quencies of loaded vehicles appear to be close enough to 
make this feasible. The computer program that was used 
appears as Program FOUFIT in Appendix I. It can be 
seen that the Fourier series was generated about the average 
platform force in order to yield more descriptive visual 
readout plotted by the high-speed printer of the computer. 
Typical results are shown in Figure F-7. Plaiform spacing 
is in accordance with Figure F-i. 

- FOURIER SERIES 

ACTUAL FORCE 

-'S  

TIME,t OR DISTANCE U 

Figure F-6. Fourier series representation of sample data. 

L. 	
AXLE FORCE SHADED 	4REA INDICATE4 PLATFORMS 

-'--  - 
TRUNCATED FOURIER SERIES 

AXLE_ I!J.L  
I9000LB  

I. :.. 
\ 	

/1 

/\---V- T  - 
	

------------------ - 	. .. 
/ 

-- - - - - - - - - 

 
TRUNCATED FOURIER SERIES FIT 

- TO SAMPLED DATA 
NUMBER OF TERMS,9 

PLATFORM WIDTH (feet), 2.50 

VEHICLE VELOCITY (mph), 60 

0 	 01 6.2 	0.3 0.4 	0.5 0.6 

TIME (sec) 

Figure F-7. Truncated Fourier series fit to sampled data: number of terms, 9; platform widths, 
1.25 ft and 2.50 ft. 
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APPENDIX G 

METHOD VWEIGH 

After investigating a number of methods for ascertaining 
weight from sampled force data, attention was returned to 
a method previously conceived but temporarily set aside 
while "more analytical" methods were investigated. 

Following the basic assumption that the force signal is 
made up of a static component plus dynamic components 
of an oscillatory nature, it can easily be seen that if one 
basic cycle of the oscillatory component could be deduced, 
averaging methods could be employed to remove the oscil-
latory component and leave only the static component pro-
portional to weight. This cannot be an exact procedure 
because the oscillatory component of a real axle force sig-
nal is too complex in harmonic content and the data eco-
nomically gathered are too sparse. However, for highway 
vehicles, the significant magnitude of dynamic content ap-
pears to be in the lower frequencies. Thus, an approximate 
procedure could be to deduce what appears to be a basic 
wavelength and average the signal over that period of time. 
This is the essence of what follows. 

DESCRIPTION 

Assume a series of non-uniformly-spaced platforms placed 
in a highway in such a way that the total length of the in-
stallation is greater than 1.5 times the longest wavelength 
(that described by the lowest anticipated frequency of a 
vehicle moving at the highest anticipated speed). Although 
a single wavelength is all that is necessary, an installation 
length of somewhat more than 1.5 wavelengths allows flexi-
bility in the following procedure. Employing an interpola-
tive method to reconstruct data between the discrete plat-
forms allows an approximate continuous force record over 
the total installation to be available for analysis. A first 
approximation to the weight of an axle can be obtained 
from the integral average over the interpolated record. In 
accordance with the preceding statement, a second and 
better approximation to the weight can be obtained by in-
tegrating just over that portion that constitutes essentially 
one wavelength. The following is a simple way of deducing 
the one wavelength. 

The integral average is used as a key or test value while 
the interpolated record is researched at successive incre-
ments in time to see where the interpolated record crosses 
the key value. When a crossing is encountered, an integra-
tion of the record is begun and continued until the third 
crossing of the test value is reached. At this point the inte-
gration is halted. This now approximates one basic cycle 
of a good many vehicles and permits a closer estimate of 
weight to be made from limited groups of sampled data. 

This method was given limited investigation and appears 
to be a fairly powerful approach; it yields the lowest over-
all error of any method considered in this study program. 

Vehicle Representation 

The dynamic characteristics of a specific, but representa-
tive, test vehicle were used in this study. This was Vehicle 
91 of the AASHO Road Test (1, p.  122). Both the blocked 
and free suspension conditions were considered in subse-
quent computer simulations of the method. In addition to 
the bounce and pitch frequencies of the vehicle, a fre-
quency of 12 cps was chosen to represent the tire-hop 
frequency or axle oscillation frequency. One level of ve-
hicle excitation was used to facilitate direct comparison of 
error readout, as follows: bounce amplitude, 10% of static 
weight; pitch amplitude, 10% of static weight; and tire-hop 
amplitude, 4% of static weight. These amplitudes of oscil-
lation combine at one phase relationship to make the simu-
lated oscillatory component of force 24% of the static 
weight. This is a significant vehicle oscillation; that, or 
more, would be likely over a prepared weighing installation. 
Damping was not included in the representation of axle 
force because on the order of a few wavelengths, at most, 
are over the scale installation. Thus, the representation of 
axle force for this model is Eq. A-12, but with 

W = 10,000 lb (chosen arbitrarily); 
a1  = 0.1; 
a3 O.l 
a3 	0.04 

oi=2ir(2.1) 1 
0)3  = 217(2.4) - free suspension; and 
o= 21r (12.0) 

= 23r (4.0) 1 
0)3  = 231 (3.7) . blocked suspension. 
a), = 27r (12.0) J 

Platform Spacing 

For ease in conducting this investigation, the platform 
spacing model (Eq. c-i 8), that was used in the direct 
averaging study, was modified to be: 

X(  = ½ {L [(i/N) + (i— 1/N)] - B} (G-1) 

in which 

= platform number; 
N = total number of platforms used; 
Xj  = distance to the leading edge of platform i; 
L = installation length; 
B. = length of platform i in the direction of travel; and 

= a skewing factor for non-uniform spacing of 
platforms. 

This platform spacing model divides the total installation 
length into N spaces, into each of which a platform of 
width b is centered. This was desired in certain of the 
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studies (not represented here) and, as seen from the ex-
pression, is accomplished with L (i/N) 0  and L (i - 1/N) 
defining, respectively, the distances from the origin to the 
right- and left-hand boundaries of space i. 

8 is the skewing factor. $ = 1.0 spaces the N platforms 
uniformly throughout the installation length, L. Values of 

greater than 1.0 cause the lower-numbered platforms to 
be closer together; that is, platforms 1 and 2 are closest 
together while platforms N - I and N are farthest apart. 
The advantage in such skewing is discussed in Appendix C, 
but there is a further advantage. If the direction of travel is 
such that platform 1 is encountered first (as implied in all 
these studies), then a positive $ somewhat greater than 
1.0 places the platforms first encountered closer together 
so that data from slower-moving vehicles could be taken 
from only the first K platforms. This is desirable because 
the shorter wavelengths that are generally associated with 
slower wavelengths can be detected better by closer plat-
forms. Even though it is usually desirable to get all the 
information that can be obtained, that recorded for shorter 
wavelengths from the remaining wider-spaced platforms 
toward the end of the installation might allow too much of 
a shorter wavelength to fall between platforms. This could 
hinder rather than help in detecting a basic cycle. Although 
such conjectures are of great interest and are practical, the 
investigation was beyond the scope of this study. This 
would be part of an actual installation engineering study 
instead. 

Platform installation lengths of 60 ft were used in all the 
computer runs. This was very close to the 1.5-wavelength 
criterion previously discussed. 

Interpolating and Searching for One Wavelength 

The interpolation used for the study of this weighing proce-
dure was that of multiple polynomial fitting over successive 
platform groups, as described previously. What is needed 
from this interpolated data record is the continuous repre-
sentation of force as well as knowledge of the beginning 
and ending of one basic cycle. This was accomplished in 
the computer program by using the integral average from 
the interpolated record as a key value and researching the 
interpolated record with the use of LOGIC IF statements 
to test for the first and third crossings of the key value. 
This can be seen from Program VWEIGH (Appendix I). 
Because the program showed promise of better weighing 
accuracy, care was taken to document it with a more liberal 
use, of comment cards for identification of subsequent 
operations. 

COMPARATIVE ACCURACY 

Two partial sets of computer output (Figs. G-1 and G-2) 
show the information that was generated in the study of 
method VWEIGH. Plots from this particular output are 
shown in Figure F-S. Integration was begun at points A 
and ended at points B. As shown in the computer outputs, 
axle weight was computed three ways: (1) by averaging 
force over the platforms only, (2) by using the interpola-
tion and averaging the force over the whole installation 

length, and (3) by averaging over what is detected to be 
approximately one wavelength. Figures G-1 and G-2 yield 
relative values of computed weight that are representative 
of a majority of the computer runs; that is, the integral 
average was in general better than the average over the 
platforms, while the method under discussion here gave the 
best estimate. Table G-1 compares three computed axle 
weights for 44 separate combinations of velocity, degree of 
the interpolation equation, and the number of platforms. In 
certain cases in Table G-1 the third method failed to com-
pute an axle weight. This was caused by such conditions as 
(1) polynomial interpolation expression of insufficient de-
gree, (2) ill-spaced platforms for the waveform subjected 
and the number of platforms used, and (3) the installation 
length was insufficient to permit three crossings of the key 
force level. 

Figure G-3 shows the effect of the polynomial degree on 
the computed weight (the method of averaging over one 
apparent wavelength is implied, if not stated, in this dis-
cussion of method VWEIGH). The outer bounds, indicated 
by the dashed lines, show that the spread of computed 
weight for seven platforms spaced over 60 ft is inversely 
proportional to the degree of the interpolation. The ap-
parent convergence to a value less than the 10,000-lb actual 
weight is produced by the limited values of phase angles 
used in the study. Because a number of parameters may be 
varied, it would be meaningful in any further investigations 
either to maximize the error due to the phase relationships 
(as was done in the simple averaging studies) or to use 
random number generators to spread the phase relation-
ships randomly as might be anticipated for a weighing 
installation without significant bumps. 

When the computed weight from six platforms was 
plotted in a manner similar to Figure G-3, the increased 
accuracy for all speeds from more complex polynomial in-
terpolation expressions was not present. The limitations on 
this effort prevented investigation of the cause. The subject 
was dropped because the initial spacing of six platforms 
was not given consideration; the study of seven platforms 
was just changed to six. For this reason no comparisons 
are shown. 

Regarding the seven-platform data of Table G-1, the 
effects of polynomial degree and the speed of Vehicle 91 
are shown in Figure G-4. The fifth degree interpolation 
polynomial weighings is singled out from the computed 
weights of all polynomials shown. These are limited data, 
but are representative of the accuracy that can be obtained 
from axle-force readings that are varying at a maximum of 
24% about the static component of force. The axle force 
sampled could have varied by ± 2,400 lb about the 10,000-
lb static component (a possible variation between 7,600 
and 12,400lb). 

The major limitation of this method is that it requires a 
fairly sophisticated digital computer to perform all the 
operations. A discussion of computers follows. 

USE OF THE DIGITAL COMPUTER 

Digital computers can be used in several ways. Small com-
puters could be set up at a number of weighing stations and 
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INTERPCLATICN FSUATITN 

POLYNOPIALS IN T OF CEGREE 2 

PROBLEM 1, RE) IdE 91, FREE SUSPENSION, 	WITH NO TIRE HOP 

NUMRFP SF PLATFORMS IS 7, 	INSTALlATION LENGTI4,L, IS 60.0 FEET, 	BETA IS 1.5 

VEHICLE VElOCITY IS 00.0 PILES PER HOUR 

PLATFORM SPACING (TIME IN SECONDS, DISTANCE OR 810TH IN FEET) 

PLATFORM 	VT. TIME 	TO PLATFORM TIME ON PLATFORM DISTANCE 	TO PLATFORM PLATFORM WIDTH 

0.00420 0.02841 0.3698 2.5000 

2 0.05627 0.02841 4.9515 2.5000 

0.13351 0.02841 11.1486 2.5000 

4 0.22870 0.02841 20.1258 2.5000 

5 0.33885 0.02841 29.8192 2.5000 

6 0.46213 0.02841 40.6613 2.5000 

7 0.59124 0.02841 52.5568 2.5000 

SAPPLING TIP)- IS C.003000 SECONDS 

FOHCE COMPONENT COCA 

FREGIJENCY 	(CES) AMPLITUDE PHASE 	18*01 
2.10 0.100 0.400 

2.40 0.ICO 0.600 

-0.00 -0.000 -0.000 

COEFFICIENTS OF INTEO°CLATIUN 0000TIONS 

INTEPPOLAT (SIN 
INIEPYOL 01 02 AS A4 AN Ab 

I C.IIOSOE 	CT C.25228E 	05 -0.IT69RE 	06 
2 C.12C350 	05 -0.4E273E 	04 -0.7IR9IE 	OS 
3 C.11N306 	115 -0.39488E 	ON 0.l2l29E 	06 
4 C.PCIUVI 	CU -0.12136)- 	05 A.9079IE 	05 
5 C.52300E 	CS 0.37742E 	05 -0.10869E 06 

OALF 601041 COMOUTEC EROS FORCE COlA 

4AEI1000 OF FORCE OVER ALL PLATFCRPS 

COFPCTEC hEIGHT IS 10503.2 LBS. 

OCTUAL hEIGHT IS IOCOO.O LBS. 

PEAS ARCS)- OF INTERPOLATED DATA RECORD 

COMIPUTEC HEIOHT'IS 10359.9 LBS. 

PEAS SOLO)- CE INTERPOLATION EQUATION BETWEEN FIRST AND THIRD CROSSING OF THE 00)-ROLL MEAN 

CTFPUII-C 6(10)-IT IS 9938.7LRS. 

TIME INTERVAL RETWEEN FIRST AND THIRD CROSSING IS 0.444 SEC. 

Figure G-1. Program V WEIGH: computer output of problem 1. 

the vehicles checked on a real-time basis. If desired, over-
weight vehicles could be apprehended immediately on an 
overweight indication-a signal light or printed weight. If 
there is a computer which is both fast and inexpensive, this 
method of finding the truck weights would be suitable. The 
computed weights could be stored on tape for "historical" 
purposes and the tape could be processed off-line. 

Another approach would be to record the converted 
digital data at the weighing stations and process it off-
location at a data center or on an agency-owned computer. 
In this case, the internal speed of the computer would not  

be a factor, but the cost of processing the data would be 
important. 

The idea of using one large computer on a time-shared 
basis among the remote weighing stations would not be 
feasible for this problem because the rates of transfer of 
data are too slow. A fast transfer rate for a 200 series data 
set is only about 300 characters a second. (The face read-
ings would be about 8,000 or more characters from the 
seven platforms.) Very fast transfer rates could be achieved 
if special cables were laid from remote channels to the main 
computer, but the cost of installing special cables would be 
prohibitive. 
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INIFRPCLATICN FOUATIT(N 

POLYNOMIALS IN T OF DECREE 5 

PROBLEM 16, VEt-IdE 91, PLCCKFA SUSPENSION, WITH TIRE HOP AT I2CPS 

NUMPEB CF PLATFORMS IS 7, 	INSTALLATION LENCTH,L, IS 60.0 FEET, 	BETA IS 1.5 

VEHICLE VELOCITY IS 60.0 FILES PER HOUR 

PLATFORM SPVCIN( (TIFF IN SECONDS, UISTANCE OR WIDTH IN FEET) 

P10(60MM 	NC. TIME 	TO PLATFORM TIME ON PLATFORM DISTANCE 	TO PLATFORM PLATFORM WIDTH 

0.00420 0.02841 0.3698 2.5000 

2 0.05627 0.02841 4.9510 2.5000 

3 0.13351 0.02841 11.7486 2.5000 

4 0.22870 0.02841 20.1258 2.5000 

5 0.33885 0,02841 29.8192 2.5000 

6 0.46213 0.02841 40.6673 2.5000 

7 0.59724 0.02841 52.5568 2.5000 

Slf'I'IING TINT IS C.003000 SECONDS 

FCRCF CCMFI1FFNT TATA 

EffEItFNCY 	(COO) AMPLITUDE PHASE 	(RAE) 
4.00 3.100 0.400 

3.7C 0.100 0.600 

12.00 0.040 -0.000 

CCIEFF!C(ESTS OF ISTEAPTLATICN F004TICN5 

INTERPOLATION 

Al A? A3 64 AS AS 7
NTE~VAI 

C.II2SSE 05 0.10016E PS -0.42924F 07 0.71529E 08 -0.537836 03 0.140536 10 
2 0.115116 05 C.A7S2VE 04 -0.137490 07 0.145350 08 -0.086906 08 0.979220 38 
3 C.8535F CA -0.320200 35 -0.921406 06 0.24364E 08 -0.147036 09 0.265940 05 
4 0.904746 TA 0.703566 05 -0.379696 05 -0.693646 Dl 3.363646 08 -0.593326 06 

L C.(IUOAE OS -C.277206 05 -0.871566 06 0.11746F 08 -0.43581t- 08 0.494630 09 

ABLF SEIGHT 00000TFO FROM FORCE 0000 

AVEPAC OF FORCE 0566 ALL PLATFORMS 

650PUOEC AFIGHT (S 10297.8 LBS. 

ACTIJOL SE(GHT IS !OCOO.O LAS. 

MFAN SALlE CF ISTERPCLATCI) DATA VECORE 

COMPUTFO AlIGHT IS 10182.8 LBS. 

-A. MOAN 6ALUE CF INTERPOLATION EQUBTION BETWEEN FIRST AND THIRD CROSSING OF THE OVERALL MEAN 

COMPUTEr AFlOAT IS 9945.9L85. 

TIME IEOF6VAL METWEEN FIRST AND THIRD CROSSING IS 0.261 SEC. 

Figure G-2. Program V WEIGH: computer output of problem 16. 

Computer Limitations 

Floating-Point Hardware 

Computer speeds and cost are the most critical factors for 
the real-time, on-location approach to weighing the trucks. 
Most small, inexpensive computers are relatively slow. They 
are not built to handle non-integer (floating-point) arith-
metic which is required in the curve-fitting part of the pro- 

gram. In larger computers the floating-point arithmetic 
capability is often built into the hardware so that computa-
tion time can be a minimum. When it is not built in, float-
ing-point arithmetic is done using a specially called routine. 

This is timely, but for this application the cost of built-in 
hardware may be too expensive. Computer purchase prices 

range from $10,000 to $7,000,000, and the least expensive 
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machine with floating hardware costs a minimum of $92,-

000 (SEL 840A) ; floating point is not common in com-

puters of much less than $250,000. It is therefore necessary 

to examine computer speeds of the less-expensive com-

puters to estimate the program time for machines without 

floating-point hardware. 

Memory Cycle Time 

The speeds of the computers can be estimated by storage 
cycle time, the fixed-point add time, and the times for float-
ing-point arithmetic operations. A number of computers of 
less than $50,000 have fast cycle times that are under 
3 psec (see Table G-2). However, even with fast cycle 

TABLE 0-I 

COMPARISON OF COMPUTED WEIGHTS FROM PROGRAM VWELGH 

COMPUTED WEIGHT (LB) 

DEGREE OF 
INTERPO- 1. AvERAGE 2. MEAN VALUE 3. MEAN VALUE 

PROBLEM VEL. LATION OVER OVER INTERPOLATED BETWEEN 1ST & 
NO. (MPH) SUSPENSION POLYNOMIAL 	PLATFORMS RECORD 3RD CROSSING 

(a) Seven Platforms 

1 60 Free, no hop 2 10503.2 10359.9 9938.7 
2 60 Free, no hop 3 10503.2 10376.3 9955.2 
3 60 Free, no hop 4 10503.2 10339.0 9908.6 
4 60 Free, no hop 5 10503.2 10351.6 9921.3 
5 60 Free 2 10478.2 10287.4 - 
6 60 Free 3 10478.2 10303.8 - 
7 60 Free 4 10478.2 10316.8 9944.8 
8 60 Free 5 10478.2 10337.2 9957.5 
9 45 Free 2 10249.8 10028.8 9719.0 

10 45 Free 3 10249.8 9965.9 9747.0 
11 45 Free 4 10249.8 9956.7 9762.3 
12 45 Free 5 10249.8 9875.9 9863.7 
13 60 Blocked 2 10297.8 9965.8 9826.2 
14 60 Blocked 3 10297.8 10058.2 9873.0 
15 60 Blocked 4 10297.8 10119.0 9850.2 
16 60 Blocked 5 10297.8 10182.8 9941.9 
17 45 Blocked 2 10337.7 10040.6 10035.1 
18 45 Blocked 3 10337.7 9985.7 9955.7 
19 45 Blocked 4 10337.7 10047.1 9993.9 
20 45 Blocked S 10337.7 9860.6 10018.9 
21 30 Free 3 10207.1 10206.3 9822.8 
22 30 Free 4 10207.1 10132.0 9868.5 
23 30 Free 5 10207.1 9958.8 9934.8 
24 30 Blocked 3 9678.2 9387.2 10169.8 
25 30 Blocked 4 9678.2 9414.2 10055.8 
26 30 Blocked 5 9678.2 9355.6 9938.5 

(b) Six Platforms 

27 30 Free 3 10285.1 10296.5 9906.9 
28 30 Free 4 10285.1 10243.3 9966.7 
29 30 Free 5 10285.1 10158.6 10137.1 
30 30 Blocked 3 9995.2 10098.0 9212.5 
31 30 Blocked 4 9995.2 10091.2 9466.4 
32 30 Blocked 5 9995.2 9485.9 10241.3 
33 45 Free 3 10297.6 10124.3 9874.1 
34 45 Free 4 10297.6 10120.8 9869.0 
35 45 Free 5 10297.6 10239.7 10010.4 
36 45 Blocked 3 10516.3 10396.0 - 
37 45 Blocked 4 10516.3 10369.4 9695.4 
38 45 Blocked 5 10516.3 10294.8 9694.9 
39 60 Free 3 10694.9 10531.0 - 
40 60 Free 4 10694.9 10485.2 - 
41 60 Free 5 10694.9 10451.7 - 
42 60 Blocked 3 10519.9 10138.4 9983.2 
43 60 Blocked 4 10519.9 10233.4 10048.8 
44 60 Blocked 5 10519.9 10233.0 10166.3 

With tire hop unless otherwise indicated 
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times the floating-point arithmetic routines sometimes take 
50 times longer than floating-point arithmetic using built-in 
hardware. It is difficult to estimate exactly how long the 
program will take on the computers without floating point 
inasmuch as the routines for this kind of arithmetic differ 
greatly from machine to machine; however, for a 10-axle 
truck, the speed might be 3 to 10 mm. instead of 5 to 20 
sec. 

Accuracy 

The class of inexpensive, fast machines without floating-
point hardware has a word length of 16 bits (PDP 8 and 
PDP 9 computers are exceptions). Sixteen bits will allow 
an accuracy to four or five significant decimal digits. For 
this problem, that will give an accuracy of about 1%. A 
longer word length (24 bits) on a fast machine is not avail-
able for less than $92,000 (SEL 840A). Twenty-four bits 
gives an accuracy of 0.01% for the truck weight. Fast 
computers with word lengths greater than 24 bits are in the 
$400,000 (EAI 8400, 32 bits) and higher price range. 

If more accuracy than 16 bits is necessary it is possible 
to use double precision arithmetic on some of the com-
puters of less than $50,000. Double precision gives double 
the accuracy, but it would more than double the program 
running time, so the time would be in the range of 6.6 to 
20 mm. for a 10-axle truck. Sixteen-bit accuracy may be 
enough for this problem inasmuch as there would be some 
uncertainty in the force readings after conversion to deci-
mal data. 

In put! Output 

The input/output transfer rate is not a critical factor for 
any of the computers. The analog-to-digital conversion 
may be accomplished at rates faster than the program is 
run, and the writing of the results on tape or printing on-
line is much faster than is necessary (see Table G-2). All 
the computers in Table G-2 have the capability at least of 
reading or writing tape while the computations are in opera-
tion, so an insignificant amount of time is lost for input/ 
output operations. 

PLATFORMS, EACH 2.511 WIDTH - 
O 	FREE SUSPENSION WITH TIRE HOP 

BLOCKED SUSPENSION WITH TIRE HOP 

NUMBER INDICATES 	POLYNOMIAL DEGREE 

ACTUALAXLE WEIGHT 

13 

10,000 LB 5 	 0 4 

________ 

COMPUTED WEIGHT DISTRIBUTIONS 
VERSUS 	VELOCITY 

I PLATFORMS, EACH 25FF WIDTH 

O FREE SUSPENSION WITH TIRE HOP 

BLOCKED SUSPENSION WITH TIRE HOP 

ACTUAL AXLE WEIGHT 

10,000 LB 

COMPUTED WEIGHT DISTRIBUTION 

VERSUS VELOCITY FOR ONLY 5TH 
DEGREE POLYNOMIAL WEIGHINGS 

Figure G-4. Computed weight distributions vs velocity. 

Memory Size 

The program is small and, as it now stands, uses about 
1,000 words of core storage. The force readings, stored in 
a buffer area, may take about 2,500 words. Depending on 
the amount of core required by the system, a 4K or 8K 
memory capacity would be required. With skilled program-
ming, a 4K memory probably would be sufficient, because 
elaborate system monitors would not be necessary for the 
special problem being considered. 

Computer Specifications 

Table G-2 gives specifications of available computers that 
are most suited to the truck-weighing problem. The com-
puters are arranged according to cost, beginning with the 
least expensive. The more expensive computers are those 
which have floating-point hardware, and are included for 
comparison purposes. 

The costs (Col. 1) for the first eight computers are for a 
minimum useful configuration. That includes 4K, teletype, 
and paper tape read and punch. For a magnetic tape deck, 
add $10,000 to $25,000. Additional 4K of memory costs 
about $8,000. The speeds given are the memory cycle time 
(Col. 2); the add time (Col. 3), which is the time required 
to acquire from memory and execute one fixed-point add 
instruction; and the time for floating-point arithmetic in-
structions (Cols. 4, 5, 6), either using the built-in hardware 
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TABLE G-2 

SPECIFICATIONS OF COMPUTERS MOST SUITED TO VEHICLE WEIGHING PROBLEM 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
TIME (MicRosEc) CORE TAPE TIME (sac) 

WORD AVAILABLE 1,000 
STORAGE FIXED FLOAT- FLOATING FLOATING SIZE (1,000 CHAR/SEC 1 10 

COMPUTER COST CYCLE ADD ING MULTIPLY DIVIDE (Brrs)woRns) MINIMUM AXLE AXLES 
ADD 

(a) Without Floating-Point Hardware 

DDP 516 A 0.96 1.9 100 225 642 16 4-32 1.5b 20 200 
DDP 116 A 1.7 3.4 190b 425 1070 16 4-32 25 60 600 
EAI 640 B 1.65 35b 382 609 703 16 4-32 6 60 600 
PDP 8 A 1.5 3.0 250 500 600 12 4-32 15 40 400 
IBM 1800 B 2.0 6.0 - - - 16 4-32 15 60 600 
PDP 9 B 1.0 2.0 686 914 914 18 8-32 15 30 300 
CDC 1700 C 1.1 2.2 - - - 16 4-32 7 30 300 
ASI 6130 C 0.9 1.8 - - - 16 4-32 22.5 20 200 

(b) With Floating-Point Hardware 

SEL 840A D 1.75 3.5 - - - 24 4-32 9 1.5 15 
ASI 6050 D 1.9 3.8 7.6 13.3 12 24 4-32 22.5 1.5 15 
SDS 9300 E 1.75 1.75 - - - 24 4-32 1.5 1.5 15 
PDP 6 F 1.75 4.4 9.3 20 20 36 16-262 15 1.5 15 
CDC 3500 F 0.8 1.3 - - - 24 7-120 7 0.5 5 
SDS Sigma 7 F 1.2 2.0 3.9 5.0 12.3 32 4-13 1 15 1.0 10 
CDC 6800 G 0.25 0.1 0.1 0.25 0.73 60 32-131 30 0.05 0.5 
CDC 6600 G 1.0 0.3 0.4 1.0 2.9 60 32-131 30 0.1 1 

Computer system cost: A. Less than $25,000. B. $25,000 to 40,000. C. $40,000 to $50,000. D. $90,000 to $120,000. E. $190,000 to $210,000. F. 
$475,000 to $625,000. G. $3,000,000 to $5,000,000. 

Estimate. 
Estimate from monthly rental price. 

or a software routine. The first seven computers listed have 
no floating-point hardware. Col. 9 gives the minimum tape 
transfer rate in thousands of characters per second. 

The time it takes the program to compute the weight of 
one axle (Col. 10) was estimated for a truck traveling at 
44 ft/sec over the seven platforms in a time interval of 
1.5 sec. Force readings on the platforms of 2.5-ft width 
were taken at intervals of 0.002 sec. A FORTRAN pro-
gram was approximated in machine language for the IBM 
7044. The estimated time for this was 2 sec, half of which 
was accounted for by the floating-point arithmetic instruc-
tions. For other computers, time estimates were made 
from a comparison of the computer times for arithmetic 
instructions and memory cycle times. Col. 11 is the time 
estimate for 10 axles. The program computes one axle at a 
time; therefore, each additional axle requires the full pro-
gram time again. The estimated times for the computers 
without floating-point hardware were made assuming the 
floating-point routine slowed down the program by a factor 
of 40 times. 

Special Characteristics of Computers Listed 

The first eight computers in Table G-2 are about the same 
size and in the same price range. Some are a little faster 
than others and some have special features which may be 
suitable to the truck-weighing problem. 

The EAI 640 advertises an interval timer which gener- 

ates timing pulses in intervals of 1, 10, or 1,000 millisec. 
Four interval timers may be used with the system. 

The PDP 8 and PDP 9 computers have associated ana-
log-to-digital converters which may be added to the system 
inexpensively, inasmuch as the computers are pre-wired for 
this optional equipment. A converter-type 138 E will con-
vert 6 to 12 bits to an accuracy of ± 0.8% to ± 0.025% 
in 9 to 35 1tsec. In addition, the PDP 9 has a slightly larger 
word length than the other computers in this class (18 bits) 
and a real-time clock and timing control which governs the 
timing of interval processor operations and the synchroni-
zation of core memory and input/output devices to these 
operations. 

The ASI 6130 allows simultaneous communication and 
control of multiple central processors, multiple I/O chan-
nels and multiple memory modules. Several central proc-
essors would reduce computation time considerably. Of 
course, the price goes beyond the range of the small com-
puters when any of these additional computer units are 
used. 

Data Center Computing Costs 

The costs of running the program off-location at several 
local data centers are compared in Table G-3. 

The number of axles able to be processed in an hour is 
reduced from the estimate given in Table G-2 to allow time 
for tape mounting and loading the program into the com- 
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puter. The number of axles that can be processed for $100 
is given for comparison purposes. 

The time to compute the program is prohibitively long on 
machines without the floating-point hardware. A real-time 
application could only be done on a sampling basis at a 
rate of one truck every 200 sec. For trucks traveling at 
44 ft a second, a sample could not take trucks closer to-
gether than about a mile and a half. 

The slow machines in the $25,000 to $45,000 price 
range give an accuracy of 1 %. 

Fast computation time begins in machines that cost more 
than $92,000. In the price range of $92,000 to $400,000, 
it is possible to get a computation time of about 15 sec for 
10 axles within an accuracy of 0.01%. For greater accu-
racy and faster computation times it is necessary to go 
beyond $400,000. An extremely fast computer is needed to 
sample every truck. A CDC 6600 (in the $3,000,000 price 
range) could calculate weights of trucks every second. CDC 
will soon have a faster computer, the CDC 6800 ($5,000,-
000), on which trucks could be weighed every 0.5 sec, or 
faster. 

The program for which the computer time estimates 
have been made is a fairly sophisticated one for computing 
vehicle weights. It is also probably inefficient in that it was 
developed in FORTRAN II and later changed to FOR-
TRAN IV, with as little change as possible. At the time 
the program was developed for study of the method, the 
actual efficiency of the program was not of real importance. 

This feasibility of digital computation, whether the pro-
gram is efficient or not, dictates that if this method is em- 

TABLE G-3 

COMPARISON OF COMPUTER COSTS AT SEVERAL 
DATA CENTERS 

NO. OF AXLES PROCESSED 
DATA CENTER 	 COST PER 
ANDCOMPUTER 	 HR($) PERHR PER$100 

Commercial: 
IBM 360/40 	115 	900 	783 
PDP-6 	 231 	2,000 	865 

University: 
IBM 7040 	100 	800 	800 

ployed it must be employed to study sample axle-force data 
at a computer center instead of locally on-the-spot. An-
other insight gained is that the added percentage in accu-
racy is costly and would not usually be warranted over that 
of a simple averaging system. 

While the studies of computer application were being 
conducted for this complex averaging method, some atten-
tion was given to the simplest program possible—one that 
merely averages the force readings for each axle over each 
platform and stores the information on tape. For this sim-
ple averaging system the computer time can be reduced 
considerably. Floating-point arithmetic need not be used. 
Therefore, the program time for computing 10 axle weights 
would be less than 0.5 sec for any of the first eight com-
puters of Table G-2. 

APPENDIX H 

OUTLINE AND DISCUSSION OF PHYSICAL SYSTEMS 

Preceding sections deal with investigations of methods to 
determine axle weight from sampled data obtained from 
force-sensitive platforms placed in the highway surface. It 
is proper now to show how certain of these analytical 
methods may be physically instrumented to determine an 
estimate of weight either at the weighing site or later at a 
computer center. The specific weighing methods considered 
herein are averaging over a computed one-wavelength and 
simple averaging over the platforms. A system for com-
puting according to Integral Model III is included for 
reference only. 

HARDWARE 

Hardware designates the actual pieces of instrumentation 
that may be assembled to measure and record or compute. 
This includes such specific items as the force-sensitive plat- 

forms, the signal conditioning equipment used to obtain a 
signal from the platforms, and all further recording and 
computational equipment necessary. It also includes the 
equipment at a computer center, if data are collected and 
taken there for weight computation and classification. Be-
fore examining specific systems, the general characteristics 
of hardware common to all these systems are discussed. 

Platforms 

The platform is the force-sensitive device (a transducer) 
that, with the aid of signal conditioning equipment, pro-
duces an electrical signal proportional to the force applied 
to the platform. Most of the platforms used in highway 
vehicle weighing have been concrete slabs or steel struc-
tures mounted on strain gauge load cells. Later designs 
have incorporated the strain gauges into the platform struc-
ture to save space, reduce weight, and increase the dynamic 
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response. Still other types have operated on the principle 
of compressing an hydraulic fluid where the fluid pressure 
can be measured electrically by present highly developed 
pressure transducers or by a mechanical gauge, although 
the mechanical gauge does not have much application for 
weighing in motion. 

The basic requirements of platforms (in order of im-
portance) are: 

Dynamic response 
Accuracy. 
Good long-term stability. 
Weatherproof. 
Low cost. 

Dynamic response is imperative, but relative to the vehi-
cle speed at which one wishes to weigh. If the platform is 
not sufficiently responsive, no other characteristic at any 
cost can supplant this characteristic. Fast response dictates 
that a platform has, ideally, low mass and a high spring 
constant in deflection. These characteristics, in addition to 
yielding good response, provide two other attributes: (1) a 
high natural frequency so that the energy imparted to the 
platform by the wheel does not result in low-frequency 
high-amplitude oscillation or ringing of the platform itself, 
and (2) the platform is stiff enough so that any deflection 
does not constitute a bump as the vehicle crosses. 

Although older platform installations using concrete 
slabs or steel structures mounted on load cells utilized the 
accuracy and stability available in strain gauge load cells, 
the dynamic response was lowered by the large mass of the 
slab or structure. This produced large amplitude oscilla-
tion, as shown in Figure A-i. 

More recent developments of force-sensing platforms 
have led to designs in which strain gauges are distributed 
within concise platform packages that are both thin and 
stiff. Two such platforms are available. One has been de-
veloped by Dr. Clyde E. Lee(11) and the other by the 
Taller-Cooper Company of Brooklyn, New York. 

The platform featured in Lee(11) has been tested and 
shown to exhibit many desirable characteristics, including 
relative ease of emplacement in a highway. However, it was 
not being manufactured commercially at the time of this 
study, so estimates of price and accuracy were not final. 
Dr. Lee has estimated that a pair of these platforms—which 
would constitute one platform as described throughout this 
report—would cost on the order ,  of $3,000, emplaced in 
the highway. Up to seven such pairs have been featured in 
these studies. This places an upper limit of $21,000 on the 
cost of platforms (in the highway) for a seven-platform 
installation. 

The Taller-Cooper Company reported a price of $3,000 
perpair of units, as required to provide one platform across 
a 10-foot lane. No estimate of the natural frequency of 
this platform was given, but it can be assumed to be high 
compared with the concrete slab or heavy steel structure 
platforms. 

Precise statements of linearity, repeatability, or accuracy 
were not given for either, but it appears that both may be 
in the range of 0.5% or better, and certainly within 1.0% 
under extreme conditions. 

Platform Spacing 

The number and spacing of platforms are the parameters 
that have the greatest influence in minimizing the error of 
computed weight estimates. This depends, too, upon the 
method of computation, the speed and oscillatory charac-
teristics of vehicles anticipated, and the overall degree of 
accuracy desired. 

The philosophy that has evolved from this study is that 
as many spaced platforms as possible should be placed over 
one basic wavelength of the anticipated force signal. There 
is one exception. Integral Model III as presently written 
anticipates a continuous force signal that, without inter-
polation procedures, dictates a continuous force platform. 
Although this, too, may best be done with spaced platforms 
and simple interpolative techniques in a computer pro-
gram, the continuous platform could be made up of a num-
ber of separate platforms butted together, plus the use of 
platform signal-switching techniques that would allow one 
or two platforms to be read at one time. What is meant is 
that as a wheel entered upon platform 1, only that platform 
would be sensed. As the wheel approached the end of 
platform 1 the switching logic would switch the platform 
signals so that the combination of I and 2 would be read. 
Thus, a continuous signal could be obtained without wait-
ing for a wheel to roll completely onto a platform before 
reading could begin. The major drawback is the expense of 
literally paving the road with force-sensitive platforms, be-
cause this would necessarily cover a large distance if the 
vehicle were moving fast. However, if the vehicle were 
moving slowly, as it would be in approaching a toll booth, 
an entrance ramp, or vehicle parking area, the arrangement 
would be most practical. 

Spaced platforms should usually be non-uniformly 
spaced, with those contacted first spaced the closest, as dis-
cussed elsewhere in this report. 

Any platform configuration can be used with any of the 
following weighing system designs as dictated by the spe-
cific and unique parameters of that installation. 

Signal Conditioning Equipment 

Signal conditioning equipment designates a package of such 
separate items as highly stable power supplies; strain gauge 
bridges; calibration, balancing, and test circuits; tempera-
ture compensation circuits; intermediate amplifiers; as well 
as filter circuits such as band pass, band reject, low pass, 
and high pass. The signal conditioning equipment has two 
functions. First, it powers the force transducers which pro-
duce electrical signals proportional to force. Second, it 
conditions these signals to the user's needs by eliminating 
unwanted effects. 

High-grade signal conditioning has the following charac-
teristics: 

Stability: voltage mode-0.01% due to changes in 
line and load; current mode-0.01% due to changes 
in line only. 
Drift: 0.05% of output during 30 hr after ½-hr 
warmup. 
Temperature sensitivity: 0.005% per degree F. 
All silicon solid state. 
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Computational Equipment 

Computational equipment can range from simple analog 
devices to large and complex computers, analog or digital. 
Consequently, the cost and accuracy of such an installation 
depend on the amount of computation required. Only 
general comments can be made regarding accuracy and 
cost. 

First, an analog system must be switched to the proper 
platform if axles are to be properly separated, and so what 
might seem to be a simple analog integration scheme re-
quires complex logic and switching circuitry to keep track 
of the axles. Such switching circuitry can be built up using 
pulse switches on the platforms and digital transistor logic 
circuitry; or, if high speed is not a prerequisite, the system 
can be composed of latching reed relays or even stepping 
switches. The greatly lowered price, high speed, and reli-
ability of solid state logic components make them particu-
larly attractive. A specific system for analog integration 
that incorporates digital transistor logic for switching is 
described herein. Assuming that the logic components for 
switching are of sufficient speed, it can be stated that the 
error of a computational method would be the error of the 
analog devices alone. The error of these, in turn, depends 
on the quality procured; integrators range in price from $15 
to 50 times that, depending largely upon the long-term 
stability and temperature sensitivity that can be tolerated. 
For vehicle weighing there is one favorable factor—the 
vehicle is not over the platforms long enough to allow much 
drift of an integrator or multiplier. The major error of an 
analog system would be the summation of the series error 
of a complex system of computation. Simple integration 
over the platforms can be performed with a computation 
error of 0.2% with moderate- to low-priced equipment. 

In digital computational systems the analog signal from 
the transducers (platforms) and signal conditioning equip-
ment is multiplexed and directed to an analog-to-digital 
converter. There is error in the conversion process; a 12-
bit binary conversion yields a resolution of 1 part in 212,  or 
1 part in 4,096. This is considered satisfactory for analog-
to-digital conversion of force data inasmuch as the analog 
signal from the platforms and signal conditioning equip-
ment will be accurate only to within approximately 0.5% 

Digital computer processing of data is desired, because 
once the conversion is made from analog to digital each 
item is handled as an entity, with no further error in value 
representation. There is, however, a further source of error 
in digital computation. This is the accumulation of round-
off error that occurs from a long complex series of mathe-
matical operations or from small differences of large num-
bers. Computation with a large computer is relatively 
accurate because each value is represented by 32, 36, 48, or 
even 60 bits. Small low-cost computers offer generally 12-
or 16-bit accuracy. Inasmuch as previous discussion has 
indicated that small, low-cost computers are too slow for 
complex computation anyway, there should be little cause 
for concern. Simple averaging by small digital computers 
is not a complex process which will accumulate roundoff 
error. Consequently, digital computer computation may be  

regarded as highly accurate for averaging in real time at a 
weighing site. 

Digital computers range in price from $10,000 up for 
commercial general purpose units. The PDP 8/S, for ex-
ample, costs approximately that with a teletype input/out-
put console, and a 4,000-word memory. The unit is slow, 
but it has possibilities in simple averaging systems. 

SYSTEM FOR RECORDING DATA FOR LATER COMPUTATION 

The more comprehensive methods to determine weight re-
quire a large computer, which can best be provided at a 
computer center. The weighing site is merely a data col-
lection point where data may be taken and stored for later 
processing. 

A representative system is shown in Figure H-I. This 
consists of seven platforms and the associated signal con-
ditioning equipment to provide the analog signal. The 
analog signal is directed to a unity gain multiplex, to an 
analog-to-digital converter, and finally through formatting 
equipment to a digital magnetic tape recorder. At con-
venient intervals the tape may be taken to a computer 
center for processing. 

To present a most representative and compatible data 
collection and conversion system, the recording system 
shown in Figure H-i was recommended and priced by 
Radiation, Inc., of Melbourne, Florida. 

The muliplexer is an all solid-state device that may be 
programmed for sampling of 2 to 16 channels. Here the 
sampling is directed, say, to seven platforms. These seven 
selected channels are sampled sequentially at a rate set by 
the sample rate generator countdown logic. For purposes 
of this presentation, a sampling rate of 7,000 samples per 
second will allow samples to be taken every 0.001 sec from 
each platform. This may be easily increased or decreased, 
depending upon the vehicle speed and dynamic character-
istics. The sampling rate generator is based upon a crystal-
controlled oscillator for stability considerations. 

When a selected channel has been sampled by the multi-
plexer, the multiplexer output is held by the sample and 
hold circuitry within the analog-to-digital converter which 
has an aperture time of 0.1 psec to approximate an instan-
taneous sample. The sample is held for the coding interval 
of approximately 20 jsec. 

Data from the A-to-D converter appear as 12 bits. This 
is formatted into two 6-bit characters and entered into the 
memory that serves as a temporary storage buffer between 
the A-to-D converter and the tape recorder. This allows 
the data to be placed on tape in a gapped format, which 
becomes necessary when large amounts of data must be 
read from tape into the computer. The gapped format al-
lows this to be read into the computer in blocks or groups 
instead of all at once. 

Lateral parity is added to each 6-bit character by the 
Write Electronics, and data are written on tape as two 7-bit 
characters per sample in IBM compatible format. 

The system can be used as shown to place sequential data 
from each platform on tape, or additional logic circuitry 
can be added to sort axles and place the data on tape in 



48 

WHEELS 	 OLE 	 a AND b ARE PULSE SWITCHES ~015~ ACTIVATED NY WHEEL (OR OTHER 

TYPE POSITION SENSOR) 

TYPICAL PLATFORM 

;;-1 	J 
ANALOG SIGNAL 

CONDITIONING 

SOLIDSTATE 
SWITCH PLUS 

AMPLIFICATION ,—RECORDINO SYSTEM 

WHERE NECESSARY 

L ------------- -------- 
1 

MAGNETIC CORE 
MEMORY 

(AMPEX RF-I 	' 
512 WORDS 	B BITS) 

(AMPED MODEL TM-7) 

CHANNEL I. GNITT GAIN 
TAPE TRANSPORT 

(ES, ISV) MULTIPLEXER 
ANALOG-TO—
DIGITAL CONVERTER FORMATTING AND 

WRITE ELECTRONICS 

(RADIATION (RADIATION 	S 

55)6) 

MEMORY CONTROL (RADIATION 

~w CHANNEL IN (MODEL 5516) MODEL MODEL 5516I I 

SAMPLE RATE 

GENERATOR AND 

-J- SYSTEM CONTROL 

ANALO6 DATA 
FROM SENSORS 

I AND SIGNAL COMPOTER 
CONDITIONS COMPATIBLE 

TAPE 

L ----------- -- 
--------- 

Figure H-I. Digital data-recording system. 	 CON PA T ER 
PROCESSING 

blocks corresponding to axle groups. The method shown 
assumes that the sorting and identification of axles will be 
done at the computer center. 

The approximate cost of this data collection system is: 

7 platforms installed in a highway [7 plat- 
form pairs from Lee(11)] 	 $21,000 

14-channel high-grade signal conditioning 	4,200 
Data conversion and recording package per 

Radiation, Inc. 	 30,000 

Total cost 
	

$55,200 

This cost estimate includes all items except housing of the 
system at a remote site and the 110-volt utility power lines. 

The error associated with the system is as follows: 

Source 	 Error (%) 

Platforms (depends on present development 
of platforms) 
	

0.5 to 1.0 
Signal conditioning (worse case) 

	
0.1 

Error of recording equipment and computer 	0.1 
Error of analytical weight estimation proce- 

dure for vehicle (program VWEIGH) 
	

2.5 

Overall maximum error 	 3.2 to 3.7 

This estimate of error is the maximum error that can be 
expected in all but an occasional extreme case. This is 
based on a well-spaced system of platforms for weighing 
vehicles oscillating 20 to 25% or more about their static 
weight. The RMS error should be substantially less. 

SYSTEMS FOR COMPUTING WEIGHT ON-THE-SPOT 
IN REAL TIME 

As these studies show, the computation of axle weight by 
analytical methods other than simple averaging is complex, 
time-consuming, or expensive. Because of this, two sys-
tems are outlined in the following paragraphs to exploit 
the simple techniques of averaging over N platforms. One 
system employs electronic solid state digital circuitry to 
identify an axle and switch one channel of analog integra-
tion to follow the respective axle across all N platforms. 
The other system uses a small digital computer to effectively 
do the same thing, but with digital summation instead of 
analog integration. Logic diagrams and cost estimates are 
given for both. 

Hybrid Digital-Analog Averaging System 

Figure H-2 is a logic diagram of a system to average the 
force of each axle over a set of N platforms in accordance 
with the studies of simple averaging systems cited previ- 
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ously. No estimation of axle force is made between plat-
forms. The analog integrators for each channel are stepped 
from platform to platform by digital solid state logic as the 
respective axle being followed arrives at that platform. 
When all platforms have been traversed, the logic circuitry 
switches the output of each axle integrator in turn to an 
analog divide circuit where the sums of the integrals of 
force are divided by the sums of the integrals of time: 

r r 1 	 fttt2 	 f AtN 
Fdt + 	Fdt + 	+ 	Fdt

LJo o 	 o 
avg - 

[ f 	

MN 

dt+f dt++f dt] 

(H-i) 

In this system, force-sensitive platforms are installed flush 
with the surface of the highway. If the system uses plat-
forms that are not butted together to form a continuous 
surface;  it is necessary to determine when the tire is com-
pletely on the surface so that acceptance of the force signal 
may begin. This may be accompanied with a number of 
sensors, such as light beams or tape switches, mounted in 
the surface of the platform to yield a pulse when the tire 
is completely on the platform. A similar switch senses 
when the tire is about to roll off the platform. 

When the wheels of one axle enter on platform 1, a pulse 
from switch "a" sets a flipflop memory and indexes a ring 
counter to the next position. Each respective position of 
the counter is connected to one input of a logic gate 
(shown as an AND gate) of a respective computing chan-
nel. As many positions on the counter and respective com-
puting channels as are deemed necessary to handle all axles 
on the system at once can be provided. There is no limit. 
The output of the platform flipflop is connected to the logic 
(AND) gates interfacing all channels and that platform. 
Thus, with the counter indexed to #4 and with the flipflop 
set, only channel #4 receives the message to pass the 
analog signal from platform 1 to the integrator. When the 
wheel contacts switch "b" the flipflop changes state so that 
the logic gate of channel #4 is no longer satisfied, thus 
turning off the analog force signal. 

With all counters set initially to the same value, each 
axle indexes each platform counter by a count of one as it 
passes, so that the same axle indexes each platform counter 
to the same position to call the same respective integration 
channel. As switch "b" of the last platform is actuated, the 
pulse ends the data record to the integrator as on each pre-
ceding platform, but also signals that the axle has passed all 
platforms so that the data are ready for readout. This is 
accomplished by directing the pulse of switch "b" to an-
other counter, the output of which sets a flipflop memory 
in that respective channel with information that the axle 
channel is ready for division and will stand by until the 
divide and readout circuit can accept it. When the readout 
device signals it is ready for that particular channel through 
another counter and logic (AND) gate the integrator out-
puts are directed to the analog divide circuit where Favg  is 
computed. This, then, is ready for any analog readout. 
However, a printed copy may be desired in addition to a 
digital display or paper tape recording. Figure H-2 shows  

provision for this with a digital voltmeter and automatic 
printer. 

The logic and analog circuits are simple and can be 
readily fabricated from off-the-shelf standard components; 
The digital voltmeter and printer can be standard items of 
medium performance. 

The cost of fabrication (less the platforms and signal 
conditioning) for a first unit at The Franklin Institute Re-
search Laboratories has been estimated at $27,000. This is 
for the largest and most complex unit anticipated. The 
actual components, including all cabinetry, can be pur-
chased in lots of one for $9,000 or less. No estimate was 
obtained for subsequent manufacture. Thus, the total price 
of a system with six platform pairs is approximately as 
follows: 

First Subsequent 
Source 	 Cost 	Units 

Platforms installed [7 per 
Lee(11)] 	 $21,000 	$21,000 

Signal conditioning, 14 channels 	4,200 	4,200 
Hybrid digital-analog system 	27,000 	16,000a 

Total cost 	 $52,200 	$41,200a 

This is a rough approximation to the cost with very limited production 
of units. 

These are approximate costs of the working equipment 
only, and do not include the cost of housing the equipment 
along a highway or the cost of installation and initial check-
out. 

The worst case error of the installation is approximated 
as follows: 

Source 	 Error (%) 

Platforms 	 0.5 to 1.0 
Signal conditioning (extreme case) 	 0.05 to 0.1 
Analog computation equipment 	 1.0 to 1.5 

Total equipment error 	 1.55 to 2.62 

The error of a composite waveform is not shown in the 
previous studies of simple averaging, but those studies can 
be used to estimate the maximum error of a three-
component waveform [Vehicle 91 (11, p.  122)] by sum-
ming the error of each harmonic component. Representa-
tive values of error are given in Table H-i. This represents 
the maximum error that can occur if all phase angles are 
"worst case." The probability that this would occur is 
small. The use of an oscillating component of force 
totaling a maximum of 24% of the static component is 
considered conservative for reasonably well-chosen and 
maintained sites. 

For a seven-platform system the maximum analytical 
error is approximately 5 to 6%. Combining this with the 
equipment error yields a total maximum error of 6.6 to 
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RELATIVE WAVE-
AMPLI- LENGTH 
TUDE 	A (vr) 

0.1 	41.9 
0.1 	36.6 
0.04 	7.33 

	

0.1 	22.0 

	

0.1 	23.8 

	

0.04 	7.33 

	

0.1 	31.4 

	

0.1 	27.5 

	

0.04 	5.5 

NO. PLATFORMS 

5 	6 	7 

0.24 0.24 0.24 
0.10 0.12 0.16 
0.35 0.55 0.35 

0.09 0.05 0.06 
0.08 0.07 0.07 
0.35 0.55 0.35 

0.14 	0.13 	0.11 
0.25 0.22 0.20 
0.22 0.30 0.13 

NO. PLATFORMS 

5 	6 	7 

0.024 
	

0.024 
	

0.024 
0.010 0.012 0.016 
0.014 0.022 0.014 

0.048 0.058 0.054 
4.8 
	

5.8 
	

5.4 

0.009 0.005 0.006 
0.008 0.007 0.007 
0.014 0.022 0.014 

0.031 0.034 0.027 
3.1 
	

3.4 
	

2.7 

0.014 0.013 0.011 
0.025 
	

0.022 
	

0.020 
0.009 
	

0.012 
	

0.005 

0.048 0.047 0.036 
4.8 
	

4.7 
	

3.6 
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TABLE H-i 

ERROR OF SIMPLE AVERAGING FOR AN AXLE WITH THREE-COMPONENT WAVEFORM TOTALING 
24% OSCILLATION ABOUT STATIC WEIGHT 

E/a FROM FIG.C-8 	 ERROR PER COMPONENT 

FORCE 
VEL. COMPO- FREQ. 

SUSPENSION 	(MPH) NENT (Ci's) 

Free, with 	60 1 2.1 
tire hop 2 2.4 

3 12.0 

Total error as a fraction of static axle weight 
In percentage of axle weight 

Blocked, with 	60 1 4.0 
tire hop 2 3.7 

3 12.0 

Total error as a fraction of static axle weight 
In percentage of axle weight 

Free, with 	45 1 2.1 
tire hop 2 2.4 

3 12.0 

Total error as a fraction of static axle weight 
In percentage of axle weight 

Blocked, with 	45 	1 	4.0 	0.1 	16.5 0.47 	0.17 	0.08 	0.047 0.017 0.008 
tire hop 	 2 	3.7 	0.1 	17.8 0.45 	0.24 	0.18 	0.045 0.024 0.018 

- 	 3 	12.0 	0.04 	5.5 0.22 	0.30 	0.13 	0.008 0.012 0.005 

Total error as a fraction of static axle weight 0.100 0053 0031 
In percentage of axle weight 10.0 5.3 3.1 

8.8%. The RMS error of this system for any one axle 	is adequate for simple averaging of the force signals evi- 
would probably be about 4.5%, or less, if the oscillating 	denced by axles of highway vehicles. The equipment cost 
component is less than 24%. 	 of such an installation is: 

Simple Averaging at a Weighing Site with a Digital Computer 

Instead of building a special-purpose, digital-controlled, 
analog computer to weight on-the-spot by simple averaging, 
essentially the same logic and averaging method presented 
in the preceding section can be accomplished by a small, 
low-cost digital computer. Here the logic functions and 
summation are done in the computer, leaving only the 
platforms and the signal conditioning as separate com-
ponents. Figure H-3 is a symbolic diagram of this system. 

The system using a small commercial digital computer is 
most attractive because it has the least equipment error 
and is already assembled into a concise package. The latter 
is important if only one or a few units are desired. 

A survey of the digital computer market indicates that 
computers for simple averaging can be purchased for as 
low as $15,000, and in one case for as low as $10,000, 
including typewriter and paper tape input/output. Al-
though the speed of operation of this unit is slow compared 
with higher-priced units, it can handle the logic operations 
to identify axles and accumulate sums of force samples 
taken from each of seven platforms every 0.002 sec. This 

7 platforms [those of Lee (11), installed] 	$21,000 
14-channel high-grade signal conditioning 	4,200 
Multiplexer 2,500 
A-to-D converter (12-bit) 2,000 
Crystal clock 800 
Interfacing 500 
Digital computer with input/output 10,000 

Total cost $41,000 

Again, housing, power lines, installation and checkout are 
not included. 

The equipment error for such a system is: 

Source Error (%) 

Platforms 0.5 to 1.0 
Signal conditioning (extreme case) 0.05 to 0.1 
Multiplexer, A-to-D converter (12-bit) 

and computer 0.2 

Total equipment error 0.75 to 1.3 
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Figure H-3. Simple averaging with a small digital computer 

As stated, the usual high error anticipated for a seven-
platform simple averaging system is on the order of 5 to 
6%, assuming a vehicle with an oscillating component of 
20 to 24% of the static force component. This combines 
with the equipment error to yield an overall high error or 
5.8 to 7.4%. The average error would possibly be more 
like 3.5%, or less, for most weighing. 

System for Computing Weight by Integral Model III 

Figure H-4 shows an analog method for computing the 
weight in real time at a weighing site. Although in retro-
spect this method seems to have more merit than it did at 

the time the investigation of Integral Model III was termi-
nated, it has not been fully developed and is presented here 
to show another variation of what can be done. The method 
is more attractive now, partly because it is possible to 
physically adapt separate platforms rather than the con-
tinuous long force-sensitive area made by butting individual 
platforms, as shown in Figure H-4. 

As in the preceding physical systems, parallel channels 
are provided to handle each axle in the process of being 
weighed at any given time. Three such channels are 
shown, although more probably would be required for 
most general highway installations. 
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DIGITAL COMPUTER PROGRAM VWEIGH 
I SN 

In put Card Description 

CARD NO. INFORMATION 	 FORMAT 

1 	KSTØP,TITLE 	 (15, lx, 11A6) 
KSTØP; 	Any number greater than 1 appearing in 

the first 5 columns will stop the program: 
To be used at end of data in place of title. 

TITLE; 	Any title or heading that is desired but 
limited to 66 characters. 

2 	DELTA, NP, SL, BETA 	 (F10.0, 15, 21710.0) 
DELTA; Time increment between samples from 

any given platform. 
NP; Number of platforms (limited to 10). 
SL; Installation length. 
BETA; Skewing factor for non-uniform position- 

ing of platforms. 

3 	B(I),I=1,NP (10F7.3) 
B(I); Dimension (in feet) of active portion of 

each of the NP platforms. Up to 10 plat- 
forms. 

4 	V,W,ND (2F10.0,15) 
 Vehicle velocity in mph. 
 Static component of axle force 	(static 

axle weight). 
ND; Degree of algebraic interpolation poly- 

nomials(F =Akt1 ) 

ØMI, 0142, 0M3, ALl, AL2, 	(9 F8.5) 
AL3, PHIl, PHI2, PHI3 

ØMI, ØM2, Frequencies (cps) of axle force wave- 
ØM3; 	form. 
ALl, AL2, Relative amplitude of 3 components of 
AL3; 	waveform as fractions of static compon- 

ent. 
PHIl, PHI2, Phase angles of the 3 components of 
PHI3; 	waveform. 

Note: Any number of weighings may be simulated in one computer 
run by placing the respective groups of 5 data cards into the data deck 	62 

in the order of solution desired. The run is stopped by placing a 
KSTØP card at the end of the deck in place of what would have been 
the next TITLE card. 

FORTRAN SOURCE LIST 
CURCE STATEMENT 

IBFTC VWFIGH 
C 
C INCORPORATING LEAST SQUARES POLYNOMIAL FIT OVER THREE PLATFORMS 
C 

COMMON AL l,AL2,AL3,OMI,0M2,0M3,PHII ,PHI2,PHI3,W 
CIMENSION TP(10),TR( 1O),TITLE(11),B(10) ,X(1O),FV(1O,40),JJ(1O),AX( 
1t,7),AXMI6,7),A(6,6) 

11 REAC(5,1 )KSTOP,TITLE 
IF (((STOP 1 13,13,12 

12 WRTTE(6,110) 
110 FURMAT(lHl/5X, 8HEND RUN. 

S TOP 
13 READ(5,2)DELTA,NP,SL,BETA 

READ (5,3) (8(1) , I = 1 ,NP) 
PEAD(5,4)V,W,ND 
P EAO C 5,5) OM1, DM2, OM3, AL 1, AL2, AL3, PHIL, PHI2, PHI3 
WRITE( 6, 90) 
WP!TE(6,91)NO 
= ND+1 

WR 118 ( 6, 93 (1 1 TIE, NP, SL, BE TA, V 
VS = V*88.0/60.0 
DO 5C I=l,NP 
C-I= FLOAT(I)/FLOAT(NP) 
C -Il = FLOAT(I-1)/FLOAT(NP) 
1(1) = 0.5*(SL*(G1**BETA + GI1**BETA) - 8(I)) 
IP(I) = X(I)/VS 
IR(I) = 8(1)/VS 

50 CONTINUE 
WR I TE(6, 94) 
DC 96 I=1,NP 
WRITE( 6,95 ) l,TP( I) ,TR(I) ,X( I) ,B(I) 

96 CONTINUE 
' WRITE(6,97)DELTA 

WRJTE(6,98 )OM1,AL1,PHII ,0M2,Al2,PHI2,OM3,A13,PHI3 
1 F)JPMAT(15,IX,11A6 
2 FCRMAT(F10.O, 15, 2F10.0) 
3 FORMAT(10F7.3) 
4 FORMAT(2F10.C,I5) 
5 FORMAT(9F8.5) 

90 FORMAT(1h1 /1/ 5X, 64HVEHICLE WEIGHING STUDY -- 82189-02 -- HI 
ICHWAY RESEARCH BOARD I//I 5X,22HINTERPOLATION EQUATION I) 

91 FCRMAT(IOX, 26HPOLYNOMIAIS IN T OF DEGREE ,I3 
93 FCRMAT(///I0X,11A6,// 15X,22HNUMBER OF PLATFORMS IS 13, 31H, 

iNSTALLATION LENCTH,L, IS F6.1, 18H FEET, 	BETA IS F5.L // 15X, 
219HVEHICLE VELOCITY IS F6.1,15H MILES PER HOUR I) 

94OFORMAT(15X,6IHPLATFORM SPACING (TIME IN SECONDS, DISTANCE OR WIDTH 
1 IN 1181)/f 22X, 96HPLATFORM NO. 	TIME TO PLATFORM 	TIME ON 
4PLATFORM 	DISTANCETO PLATFORM 	PLATFORM WIDTH I) 

95 FORMAT(25X, I3,13X,F9.5, 12X,19.5,13X,F9.4,12X,F9.4 I) 
97 FORMAT(//15X, I6HSAMPLING TIME IS F9.6, SN SECONDS /I/115X, 20HFO 

LRCE COMPONENT DATA II 21X, 51HFREQUbNCY (CPS) 	AMPLITUDE 
4 	PHASE (PAD) C 

98 FE1RMAT(23X,F7.2, 13X,F6.3, 15X,F6.3//23X,F7.2,13X,F6.3,1SX,F6.3//23X 
1, 17.2, 13X, 16. 3, l5X,F6.3) 

3 
5 
6 
7 

10 
11 
13 
20 
22 
23 
24 
25 
26 
27 
3C 
31 
32 
33 
34 
35 
36 
40 
41 
42 
43 
45 
46 
47 
50 
51 
52 
53 
54 

55 
56 

57 

6C 
61 



FORTRAN SOURCE LIST VWEIGH 
ISN SOURCE 	STATEMENT ISN 

C GENERATING FORCE 	CATA 142 

C. 143 

63 1 	= 	0.0 144 

64 TO = 0.0 145 

65 FSUM = 0.0 146 

66 CC 	15 	1=19NP 147 

67 J 	= 0 150 

70 F 	= 0.0 151 

71 1 	= 	TP(I) 152 

72 10 	J 	= 	l+1 153 

73 Fil 	= 	F 154 

74 F 	= 	FORCE(T) 155 

75 FV(I,J) 	= 	F 156 
76 JJ(1) 	= 	J 16C 

77 1 	= T + CELTA 162 

100 IFIJ-1)10,10914 
101 14 	FSUM 	= 	FSUM 	0.5*DELTA*(F11 	+ 	F) 
102 10 = TO 	DELTA 
103 IF(T-IP(T)-TR(1))10,10,15 164 

104 15 CONTINUE, 165 

106 AVI = 	FSUM ITO 166 

C 170 

C COMPUTATION OF WEIGHT FROM FORCE DATA 171 

C 173 

107 WRITE(69120) 174 

110 120 FORMAT(1)1I//// 	TX, 	36HAXLE WEIGHT COMPUTED FROM FORCE DATA III) 175 

111 WRITE(6,122)AV1 176 

112 122 FORMAT(15X, 	39H1. 	AVERAGE OF FORCE OVER ALL PLATFORMS II 25X,I8HC 177 

1CMPUTEC WEIGHT 	IS P8.1, 	5H LBS. 	I) 200 

113 1%RITE(6,119)W 202 
114 119 FORMAT(25X, 	16HACTUAL WEIGHT 	IS 	F8.1, 	5H LBS. III) 204 

C 205 

C LEAST SOUARES FIT OF 	POLYNOMIAL OVER EACH THREE ADJACENT PLATFORMS 206 

C 207 

115 El 	= NP-2 210 

116 P= Nfl 211 

117 CO 200 K=1,NI 213 

120 CO 	170 	11,N 215 

121 CC 	150 	J=1,N 
122 IF 	= 	I+J-1 
123 K1 	= K+l 
124 K2 = K+2 217 

125 IRK 	= 	OELTA*FLCAT(JJ(K)-1) 220 

126 IRKI 	= 	DELTA$FIOAT)JJ(K1)-1) 221 

127 TRK2 = 	DELTA*FLOAT(JJ(K2)-l) 222 
130 AX(1,J) 	= 	TRK$*IE 	+ 	(TP(K1)+TRKL 	- 	TP(K))**IE -(TP(K1)-TP(K)) 223 

1**IE 224 

131 AX(I,J) 	= 	AX(I,J)+(TP(K2)+TRK2 	-TP(K))*tIE 	- (TP(K2)-TP(K))**IE 225 

132 AX(I,J) 	=AX(I,J)/FLOAT(IE) 226 
133 150 CONTINUE 230 
135 X)I,M)=C.O 232 
136 CC 	160 	L=K,K2 
137 1 	= 	TP(L)-TP(K) 
140 J 	= 	1 
141 IF(I-1)152,152,153 

FORTRAN SOURCE LIST VWEIGH 
SOURCE STATLMFNT 

152 0 = FV(L,J) 
CO TO 154 

153C = FV(L,J)*(T**(I-1)) 
154 JJL = JJ(L) 

tO 161 J=2,JJL 
CO = 0 
1 = T+DELTA 
IF) I-I) 156, 156, 157 

156 C = FV(I,J) 
CO TO 158 

1570 = FV(L,J)*(T**(1-1)) 
158 AX(I,M) = AX(I,M)+(G+GO)*DELTA/2.0 
161 CONTINUE 
160 CONTINUE 
170 CONTINUE 

C 
.0 SOLUTION FOR COEFFICIENTS BY CROUTS METHOD 
C 

CO 175 I=1,N 
J=1 

175 AXM(I,J)=AX(I,J) 
CC 177 J=2,11 

177 AXP.i(1,J) = AX(1,J)/AXM(1,i) 
CO 179 I2,N 
CO 181 J2,I 
SUM = 0.0 
LI = J-1 
00 183 1=1,11 

183 SUM = SUM + AXM(l,L)*AXM(L,J) 
181 AXM(I,J) = AX(l,J)-SUM 

II = 1+1 
DO 185 JII,M 
5Ut =0.0 
LI = I-I 
CO 187 1=1,11 

187 SUM = SUM + AXM(I,L)*AM(1,J) 
185 AXM(I,J) = IAX(I,J)-SUM)/AXM(I,I) 
179 CONTINUE 

C 
C CONTINUING CROUT METHOD --- SOLVING FOR COEFFICIENTS 
C 

A(K,N) = AXM(N,M) 
ILL = N-i 
CO 189 1=1,111 
I = N-L 
SUM =0.0 
11 = 1+1 
CC 191 J=I1,N 

191 SUM 	SUM + AXM(I,J)*A)K,J) 
189 A(K,I) = AXM(I,M) - SUM 
200 CONTINUE 

C 
C THIS COMPLETES INTERPOLATION POLYNOMIALS 
C 	 POLYNOMIAL COEFFICIENTS ARE A(K,I) 
C 



FORTRAN SOURCE LIST VWEIGH FORTRAN SOURCE LIST VWEIGH 
ISN SOURCE 	STATEMENT ISN SOURCE STATEMENT 

C GOIKC 	NOW 	TO 	INTEGNATION OF 	INTERPOLATED RECORD 314 CC 	TO 	(409,413,426),1K 
C 315 268 FCOI=A(KC1,1) 

234 CO 	250 	K=1,NI 316 FCO2A(K,1) 
235 Ki 	= 	K+1 317 1Q=T-IP(KO1) 
236 1(2 	= 	K+2 320 DC 270 J=2,N 
237 11 	= 	TR(K) 321 270 FOCI 	= 	FC01 	+ 	A(KO1,J)*TQ**(J-1) 
240 12 	= 	TP(K1) 	- 	TP(K) 323 TQ 	= 	T - 	TP(K) 
241 13 	= 	TP(K1)+TR(KI) 	- 	TP(K) 324 00 272 J=2,N 
242 14 	= 	TP(K2) 	- 	TP(K) 325 272 FCO2 = 	FCO2 	+ 	A(K,J)*TQ**(J-1) 
243 TQ = TO + 	12-TI 327 FC = 	(FCC1+FCO2)/2.0 
244 IF(K-1)252,252,256 330 0010 	(409,413,426),1K 
245 252 CC 	254 	J=1,N 331 274 K=NP-2 
246 254 	FSUM = 	FSUM + 	A(K,J)*(T2**J-Tj**J)/FLOAT(J) 	+ A(K,J)*(T4**J-T3**-J 332 KOI=NP-3 

1)/FICAT(2*J) 333 1(1=NP-1 
250 C-C TO 250 334 IF(T-TP(Kl)-TR(K1))276,276,282 
251 256 	IF(K-NI)257,259,259 	- 335 276 FCO1=A(K01,1) 
252 257 CO 258 J=1,N 336 FCO2=A(K,1) 
253 258 	FSUM = 	FSUM 	+A(K,J)*(T2**J-T1S*J)/FLOAT(2*J) 	+A(K,J)*(T4*SJ-13**J) 337 1C=T-TP(KC1) 

1/FLCAT(2$J) 340 CO 278 J2,N 
255 CC) 	IC 	25C 341 278 EC01 	= 	FC01 	+ 	A(KO1,J)*TQ**(J-1) 
256 259 CD 253 J=1,N 343 TQ=T-TPIKI 
257 253 FSUM = FSUM + 	A(K,J)*(T2**J-Tj**J)/FLOAI(21J) 	+A(K,J)* 	(T4**J-T3*t 344 DO 280 J=2,N 

1J)/FLOAT(J) 345 280 FCO2 = 	FCO2 + A(K,J)*TQ**(J-1) 
261 TO= 19+14-13 347 FC = 	(FC0I+FCO2)/2.0 
262 250 CONTINUE 350 CO 	TO 	(409,413,426),1K 
264 AV2 = FSUM/TO 351 282 IF(T-TP(NP)-TR(NP))284,284,450 
265 1.RITE(6,291)AV2 352 284 FC=A(K,1) 
266 291 	FCRMAT(15X, 	411-12. 	MEAN VALUE OF 	INTERPOLATED DATA RECORD //25X, 	18 353 79=T-TP(K) 

li-COMPIJIEC 	WEIGHT 	IS 	F8.1, 	5H 	LBS. 	III) 354 DO 285 J=2,N 
C 355 285 FC=FC+A(K,J)*T9**(J-1) 
C THE FOLLOWING SEARCHES FOR THE TIME 	INCREMENTS IN WHICH FC CROSSES 357 CO 	TO 	(409,413,426),ll( 
C THE MEAN, 	FCM, 	THEN TAKES MEAN OF FC BETWEEN THE FIRST AND THIRD 360 409 FIT 	= 	FC - 	AV2 
C SUCCESSIVE CROSSING. 361 IF-(FO)41C,260,412 
C 362 413 KEY = -1 

267 )RITE(6,.301) 363 (K = 	2 
270 301 	FCRMAT(15X, 	931-13. 	MEAN VALUE OF 	INTERPOLATION EQUATION BETWEEN Fl 364 00 TO 260 

1RST AND THIRD CROSSING CF THE OVERALL MEAN I) 365 412 KEY = 
271 TQA = 0.0 366 1K 	= 	2 
272 FCINT = 0.0 367 GO TO 260 
273 1K 	= 	1 370 413 FD = FC - AV2 
274 T 	= 	TP(1)-OEITA 371 KEY1 	= KEY 
275 19 = 0.0 372 IF(FO)414,415,416 
276 K= 	1 373 414 KEY = -1 
277 K1=K+1 374 CO TO 420 
300 260 	T=T+DELTA. 375 415 GO TO 423 
301 IF(T-TP(NP-1))262,274,274 376 416 KEY = 	1 
302 262 	LF(T-TP(K1))264,263,263 377 420 IF(KEY+KEYI)260,423,260 
303 263 K=K+1 40C 423 KEY2 = 	1 
304 K1=K+l 401 Fl 	= 	FC 
305 K01=K-1 402 1K 	= 	3 
306 264 	1F(K-1)265,265,268 403 CC TO 260 
307 265 	FC=A(K,1) 404 426 FCINT 	= 	FCINT 	+ 	DELTA*(FC+F1)/2.0 
310 1Q=T-TP(1) 405 Fl 	= 	FC 
311 CO 	266 J=2,N 406 TCA = 	TQA 	+ CELTA 
312 266 	FC=FC+A(K,J)*TQ**(J-1) 407 ED = FC - AV2 



FORTRAN SOURCE LIST VWEIGH 
ISN 	SOURCE STATEMENT 

410 KFY1 	= KEY 
411 IF (FD)431,435,432 
412 431 KEY = -1 
413 C-C 10 433 
414 432 KEY = 	1 
415 433 	IF(KEY+KEYI)260,435,260 
416 435 KEY2 = KEY2+ 1 
417 IF(KEY2 - 	3)260,440,440 
420 440 FCI 	= FCINT/TQA 
421 %.RITE(6,442)FCT,TQA 
422 442 FORMAT(25X, 	IBHCOMPUTED WEIGHT 	IS F8.19 	5HL8S. 	//25X, 	49HTIME 	INTE 

IRVAL 	BETWEEN FIRST AND THIRD CROSSING 	IS F6.3, 	5H SEC./) 
423 0-0 TO 460 
424 450 hRETE(6,452) 
425 452 FCR1AT125X, 	82HWE!GHT NOT COMPUTED --- INTERPOLATION EQUATION DOES 

lt.CT CROSS 	ITS MEAN THREE TIMES I 96X, 	19HBETWEEN ZERO AND 1' 	I) 
426 460 	.RITE(6,462) 
427 462 FORMAT(1H1//// 	LOX, 	39HCOEFFECIENTS OF 	INTERPOLATION EQUATIONS III 

1 	3X, 	L3HINTERPOLATION I 	6X, 	I6HINTERVAL 	A1,15X92HA2, 	15X92HA 
23915X,2HA4, 	15X,2H459 	15X,2HA6 	I) 

430 CC 464 K1,NI 
431 464 	hRITE(6,466K, (A(K, I), I=1,N) 
437 466 	FORMAT(7X,I3,6E17.5 I) 

C 
C CCMPARISON OF MEASURED FORCE AND INTERPOLATED DATA FORTRAN SOURCE LIST 
C ISIS SCURCE 	STATEMENT 

440 hPITE(6,470) 
441 470 FORgAT(IHI II 	lOX,. 42HC0MPARISON OF FORCE AND INTERPOLATION DATA I C fl8FTC 	FRCE 

1/I) 1 FUNCTION 	FORCE(T) 
442 CO 480 K=1,NI 2 COMMON 	AL1,AL2,413,OML,0M2,0M3,PHI1,PHI2,PHI3,w 
443 hRTTE(6,482)K 3 IWCPI 	= 	2.0*3.1415926 
444 482 FORMAT(15X, 	22H!NTERPOLATION INTERVAL,13 II 24X, 	55HTIME 	(SIC) 4 R1=TWCPI*OM1*T+PHIj 

1 FORCE 	(LBS) 	INTERPOLATED FORCE 	(LBS)/) 5 R2=TW0PI*OM2*T+PHI2 
445 10 = 0.0 6 AR3=TWOPI*CM3*T+PHI3 
446 T 	= 	TP(K) 7 RG1=AWOC(AR1,TWOPI) 
4 47 484 F 	= FORCE(T) 10 RC2=AKOC(AR2,TWOPI) 
45.0 FC 	= 	A.(K,1) 11 RG3=AMOC(AR3,TWOPI) 
451 CO 486 	I=2,N 12 FN=1.0+ALI*SIN(ARG1)+AL2*SIN(ARG2)+AL3*SIN(ARG3) 
452 486 FC = 	FC + A(K,I)*TO**(I-L) 13 FORCE=FN*W 
454 iRITE(6,488)T,F,FC 14 RETURN 
455 488 	FORMAT(24X, 	F8.5, 	F15.1, 	F21.1) 15 INC 
456 K2 = K+2 
457 IF(T - 	TP(K2)-TR(K2))490,490,480 
46C 490 1=T+2.C*CELTA 
461 10 = TO + 2.0*DELTA 
462 CC TO 484 
463 480 CCNTINUE 
465 CO TO 	11 
466 END 



DIGITAL COMPUTER PROGRAM TRIGFT FORIRAN 	SOURCE 	LIST 

(Fining of Trigonometric Series to Sampled Axle-Force Data) 
[SN SL.URCE 	SrArEMET 

0 SIEFEC 	TRLGFT 
Input Card Description I OOI'ENSION 	TP(13),X(10),AA( 10),(10),ALPHA(15,lo(,AETA(15),FT(200) 

4,FF(200),E(101),G(l0l) 
CARDNO. 	INFORMATION FORMAT 2 CO1CN 

3 P1=3.1415926 
B,V,KK,NP (2F10.0,215) 4 T(JPI=2.0,P! 

B; 	Platform width in ft. 5 DELTA=0.001 

V; 	Vehicle velocity in mph. 6 SL=60.0 

KK;Number of harmonic components before trunca- 
7 
10 

LETA=1.5 
w=10000.0 

tion of series (limited to 7) 11 AL 1=0 • 1 
NP; Number of platforms (limited to 10). 

2 	Al, A2,A3, 14 0111=2
15 	

.4 

A4,AS,A6 (6X,6A1) 
These are symbols for creating the output charts and 17 PHI 1=0.0 

for plotting the curves. 20 PHI31.5707 

* Al = 
21 PHI2=1.5707 
22 1 	CONTINUE 

A2=0 23 REAO5,20)B,v,KK,NP 

A3=+ 26 23 	FORRAT(2F10.0,215) 
AA - 27 KTERM = 	2'KK+l 

30 IF(NP)196,196,197 
AS = (Blank) 31 197 	11KITE(6,22)KTElM,V 

A6=I 32 220FLJPMAT(1H1 	/10X,104HTRLGONOMETRIC 	SERIES REPRESENTATION OF VEHICLE 
1 	AXLE 	FORCE 	FXOM SAMPLED PLATFCRM DATA 	(LEAST 	SQUARES 	FTT),I/ 	20X, 
228HNUMBER OF 	TERMS 	IN 	SERIES 	IS,14,//20X, 	I9HVEHICLE 	VELOCITY 	IS 
4F5.1, 	4F 	MPH 	I/I) 

33 V=V88.0/60.0 
34 TT=SL/VS 
35 T=B/VS 

• 36 00 	50 	I=1,NP 
• 37 GI=FLOAT(I)/FLOAT(NP) 

40 GII=FL0AT(I-1)/FLOAT(NP) 
41 X(I)=0.5.(SL.(GI..BETA+G(1..BEJA)—) 
42 TP(I)=X(I)/VS 
43 50 CONTINUE 
45 WRITE(6,94) 
46 DO 	96 	I=1,NP 
47 WRITE(6,95) I,TP( I) ,TR,x( I ),5 
50 96 CONTINUE 
52 95 	FORMAT(25X,1.3,13X,F9.5,12X,F9.5,13x,F9.4,12x,F9.4 	/1 
53 FPA=0.O 
54 M1R=(NT(TR/OELTA) 
55 VTR1MTR+1 
56 KKK=2.KX+1 
57 KKI<1=KXK+1 
60 A'P=FLOAT(NP.MTR) 
61 ALPHA(1,1)=ANP 
62 00 	120 	I=1,KKK 
63 AETA(I)0.0 
64 flU 	120 	J=1,KKK1 
65 123 	ALPHA(I,J)=0.O 
70 flu 	135 	I=1,NP 

'-'I 
00 



FORTRAN SOURCE LIST TRIGFT 
ISH SOURCE STATEMENT FORTRAj 	SOURCE 	LIST 	TRIr,FT 

(SN SOURCE 	STATEMENT 
71 T=TP(I) 
72 00 	135 J=1,MTR 153 RITE(6,161)FPA 
73 FA=FCRCE(T) 154 1610Fi)RMAT(IOX,48H4VERAGE LEVEL 	ARCUT 	WhICH 	SERIES 	IS 	GEERAT€D 	IS,F. 
74 DO 	133 	L=1,KK 41, 	Sh 	LBS./) 
75 AR=FLOAT(L).PI.T/TT 155 WRITE(6,160) 
76 ARG=AMOD(AR,TWOPI) 156 160 FURAT(/// 	lOX, 	26HTRIGGNOMErRIC 	COEFFICIENTS 	I) 
77 CSL=COS(ARG) 157 WRITE(6,162)AO 
100 SNL=STN(ARG) 160 162 FOR1AT(10X,5HAU 	= 	,E14.7, 	II 	2CX,1HK,11X,5HA4(K),15X5HFR(K) 	I) 
101 ALPHA(2.L,1)=CSL + 	ALPHA(2.1,1) 161 00 	165 	K=1,KK 
102 ALPHA(2*L+1,1)=SNL+ALPHA(2.L,1,1) 162 165 WRITE(6,167)K,AA(K),B(K) 
103 DO 	131 	K=1,L 164 167 FOPMT(18X,I3,2E20.7, 	I) 
104 AR=FLOAT(K).P(.T/TT 165 I)ELi=OELTA'lO.O 
105 ARG=AMOD(AR,TWOPI) 166 'IM=INT(TT/OEL5) 
106 CSK=COS(ARO) 167 T=O.O 
107 SNK=SIN(ARG) 170 wRITE(6,180) 
110 ALPHA(2.L,2.K)CSKeC5L,ALPHA(2.L,2eK) 171 00 	170 M=1,MM 

111 ALPHA(2'L,2'k+1)=SNKeCSL+ALPHA(2,IL,2.K+1) 172 FT(M)=FORCE(T) 

112 ALPHA(2.L+1,2.X)=CSK*SNL+ALPHA( 2.L+1,2.K) 173 FF( l)=AO+FPA 

113 ALPHA(2*L+1,2.K+1)=SNK.SNL+ALPHA(2.L+1,2eK+1), 174 Dli 	175 	K=1,KK 

114 131 CONTINUE 175 AR=FLGAT(K)*PI*T/TT 

116 ALPHA(2'L,KKKI)=ALPHA(2*L,KKKI)+F-A.CSL 176 ARG=AMOD(AR,TWOPI) 

117 ALPHA(2*L+1,KKKI)=ALPHA(2.L+1,KKKI)+FA.SNL 177 FF(M)=FF(M)+AA(K)*COS(ARG)+BB(K)*SIN(4RG) 

120 133 CONTINUE 200 175 CONTINUE 

122 T=T+DELTA 202 WRITE(6,185)T.,FT(M),FF(M) 

123 135 CONTINUE 203 T=T+DEL5 

126 00 	129 	I1,KKK 204 170 CONTINUE 

127 00 	128 	J=11I 
206 WRITE(6,100) 

130 ALPHA(I,J)=ALPHA(I,J)/ANP 
207 100 FLIRMAT(1I-41) 

131 128 CONTINUE 
210 RE-40(5,t01)A1,42,43,A4,45,A6 
211 101 FORMAT(6X,641) 

133 ALPHA(I,KKK1)=ALPHA(j,KKK1)/ANP 212 -DO 	102 	1=1,101 
134 129 CONTINUE 213 102 E(I)=A5 

C 215 DO 	103 	1=1,101,10 
C THIS COMPLETES THE DIAGONAL ANC LOWER HALF OF THE MATRIX PLUS THE 216 103 E(I)=A6 
C TERMS ON THE RIGHT HAND SIDE OF THE EQUATIONS 220 00 	104 	1=1,101 
C - 221 104 0(1)=44 
C THE UPPER HALF OF THE SEM$4ETRIC MATRIX,ALPHAf 	(rI4(K), FOtOW5 223 00 	106 	1=1,101,10 
C 224 106 0(1)=43 

136 KKK01=KKK-1 226 IU WTE(6,107)(i,I=5,15) 
137 00 127 	1=1,KKKOI 233 107 F)JRMAT(48X 33HAXLE 	FORCE 	IN THCUSANUS OF 	POUNDS 	//5X 	11110) 
140 LL=1+1 234 KEY=E0 
141 DO 127 J=LL,KKK 235 1=0.0 
142 127 ALPHA(I,J)=ALPHA(J,1) 236 00115 	M=1,M 

C 237 Yl=FT(M) 
C THIS COMPLETES THE MATRIX FOR SOLUTION OF KK$ EQ4JAT(ONS 240 Y2=FF(M) 
C 241 YIE=(Y1-5000.0)/10000.0 

145 CALL CROUT(KKK,ALPHA,AETA) 242 YI2=(V2-5000.0)/100C0.O 
C 243 It=INT((YII+0.0049).10O.0) 
C SOLUTION IS AETA(KKK) 244 12=INT((YI2+0.0049)*100.0) 
C 245 IF(CEY-10)112,llO,112 
C COEFFICIENTS OF TRIGONOMETRIC TERMS FOLLOW 246 110 111=0(11) 
C 247 82=G(12) 

146 AO=AETA(1) 250 0(11)=41 
147 00 124 K=1,KK 251 D( 12)=A2 
150 A4(K)=AETA(2.K) 252 WRITE(6,111)T,C 
151 124 Bb(K)=AETA(2.K+1) 253 111 FUTMAT(6X,3HT 	=,F5.1,101A1) 



FORTRAN SOURCE 	LIST 	ERIGET 
I SN ;JuRcE 	514 rEMENT 

2'. G(11)=Ftl 
255 (;( 12)=82 
256 
257 00 	TO 	114 
260 112 .1l=E(Ii) 
261 82=t±(I2) 
262 t(Ii(=41 
263 1(12)=42 
264 WiITE(6,113)E 
265 113 FORMAT(14X,1O1A1) 
266 II 111=131 
267 E(I2)=132 
270 114 T=T+OEL5 
271 KEY=KEY+1 
272 115 CONTINUE 
274 CU TC 	1 
275 180 FUThAT(1H1//10X,20HCOMPARISCN CF FURCES //19X,1HT,13X,IHF,12X,2HFI- 

1,/) 
276 185 FORRAT(17X,F6.3,5x,F9.1,5x,F9.1, 
277 940F.ORMAT(15X,6IHPLATFORM SPACING 	(TIME IN 	SECONDS, 	DISTANCE 	GR 	WIDTH 

1 	IN 	FEET)// 	22X, 	96HPLATFORM NC. TIME 	TO PLATFORM 	TIME 	ON 
4PLATFORM 	DISTANCE 	TO PLATFORM PLATFORM WIDTH 	I) 

300 196 STOP 
301 END 

FUR fRAN SOUKCL LIST 

	

1S. 	(LECE STS1EMENI 

0 lILFIL CR01 

	

1 	SUFACUTINE CPOUT(N,AX,A) 

	

7 	CIt.IENS!17N 3X115,i6),A(15),AXM(15,J5) 

	

4 	 130 175 11,N 
J=T 

	

6 	175 AXM(I,J(=AX(I,J) 

	

10 	01) 177 JT2,M 

	

11 	177XM(i,J)=AX(1,J(/AXM(i,i) 

	

13 	DO 179 I=2,N 

	

14 	00 181 J=2,I 

	

15 	SUM 0.0 

	

16 	LI 	J—i 

	

17 	DU 183 I1,IL 

	

20 	183 SUM = SUM + AXM(I,L).AXM(L,J) 

	

22 	181 AXM(I,J) = AX(I,J)—SUM 

	

24 	II 	1+1 

	

25 	00 135 J=I4,M 

	

26 	SUM =0.0 

	

27 	IL = I—i 

	

30 	00 187 1=1,11 

	

31 	187 SUM = SUM + AXMII,L).AXMIL,J) 

	

33 	185 AXM(I,J) = (AX(I,J)—SUM)/AXM(I,I) 

	

35 	179 CUNTINUE 

C CONTINUING CROUT METHOC --- SOLVING FOR COEFFICIENTS 
C 

	

37 	0110 	= AXM(N,M) 

	

40 	LII = N—i 

	

41 	CO 189 L=1,LLL 

	

42 	I = N—I 

	

43 	SUM =0.0 

	

44 	Ii = 1+1 

	

45 	- CO 191 3=11,78 

	

46 	191 SUM = SUM + AXM(I,J).A(J( 

	

50 	189 All) 	= AXM(1,34) - SUM 

	

52 	RETURN 

	

53 	END 

FORTR&N SOURCE LIST 

	

ISN 	SOURCE STATEMENT 

0 E18FTC FRCE 

	

1 	FUNCTION FORCE(T) 

	

2 	COMMON ALI,8L2,AL3,OM1,0M2,CM3,PHI1,PHI2,PHI3,b. 

	

3 	TWOFI = 2.0.3.1415926 

	

4 	AR1=TWOPI.IJM1.T+PHII 

	

5 	AR?fWflpI.OM2.T+PHI2 

	

6 	 883=TW0pI.O713.T+PHI3 

	

7 	ARC1=AMOD(ARI,TWOPI) 

	

10 	A402=AMOD(482,TWOPI) 

	

11 	ARG3=AMOD(AR3,TWOPII 

	

12 	FN=1.O+t.I1SIN(ARG1 )+AL2.SIN(ARG2) +8I3.S178(3863) 

	

13 	FO7CE=FNW 

	

14 	 RETURN 

	

1, 	END 



1CRTRA SCUCE L!.sr 
(SN 	SCLRCE STATEFENI 

OIIPPYC FOUFIP LIST 

	

1 	(CIMENSIUN TP( tC),X( tC),AA(10) ,1113(iO) ,SN1 ( 1O),CS1( 10),SNO{1O(,CSO( 1 
AC ) ,F (10, ?C ), FT( 2CC), FF (200) ,E ( 1C1 ) .0)101) 

	

2 	COMMON AL 1,AL2,6L3,Cfri ,fM2,0M3,PH! 1 ,PHI2,PHI 3, 

	

3 	P1=3.1415926 

	

A 	Ti4CPI=2.C*PI 

	

5 	CELTA=C.CCI. 

	

F 	SL=FC.0 
7 

	

10 	i=1CCC0.0 

	

11 	ALI=C.1 

	

12 	Al2=C.1 

	

13 	AL3=C.C4 

	

14 	C'L=2.4*T6CPt 

	

15 	CM2=2.6*TwcpI 

	

16 	CM3=12.r*1L0P1 

	

17 	PI-I1=C.0 

	

20 	PMI3=1.5707 

	

21 	P1-12=1.5707 

	

22 	1 CCNTINUF 

	

23 	REAC( 5,20 )R,V,KK,NP 

	

26 	2C FORMAT(2F10.C,2I5) 

	

27 	KTERM = 2*KK+1 

	

3C 	IF(NP196,196,197 

	

31 	197 hR[TE(6,22)KIERM,V 

	

32 	22CF0RMAT(tFi1,/1CX, 79HFUURIER SERIES REPRESENTATION OF VEHICLE AXLE 
1FDRCF FROM SAMPLEC PLATFORM DATA ,/120X, 2I3HNUMEER CF TERMS IN SER 
AlES IS,I4,//20x,1$HVEHICLE VELOCITY IS,F5.1,4H MPH//I) 

	

33 	VS=V*66.C/6C.0 

	

34 	TT=SL/VS 
35 

	

36 	CCSC I=i,NP 

	

37 	CI=FLCAT(I)/FLDAT(NP) 

	

AC 	CII=FLOAT(I-1)IPLCAT(NP) 

	

41 	)(l)=C.5*(SL*(GI*BE1A+GI1**BEIA)_t( 

	

42 	TP(I)=X(I)/VS 

	

43 	5C CCNTINUF 

	

45 	6RITE(6,S4) 

	

46 	CC 96 l=I,NP 
47 

	

50 	96 CONTINUE 

	

52 	95 FCR?AT(25X,13, 13X,F9.5,12X,U9.5,13X,F9.4,12X,F9.4 	I) 

	

53 	TC=C.0 

	

54 	AC=C.0 

	

55 	CC 12C )(=1,KI( 
56 

	

57 	FPCl)=C.0 

	

60 	12C CINTINUF 

	

62 	FPA=C.0 

	

63 	TC=C.0 

	

64 	MTk=INT( T R / C (-116) 

	

65 	M1RI=MTR+1 

	

66 	El 1AC I=I,NP 

	

67 	1=IP(I) 

	

7C 	LI (AC M=J,M1RI 

DIGITAL COMPUTER PROGRAM FOUFIT 
(Fitting of Truncated Fourier Series to Sampled Data) 

In put Card Description 

CARD NO. INFORMATION 	 FORMAT 

B, V, KK, NP 	 (2 F 10.0, 2 I 5) 
B; 	Platform width in ft. 
V; 	Vehicle velocity in mph. 
KK; Number of harmonic components before trunca-

tion of series (limited to 7). 
NP; Number of platforms (limited to 10). 

Al, A2, A3, 
A4,A5,A6 	 (6X,6A1) 

These are symbols for creating the output charts and 
for plotting the curves. 
Al = * 
A2= 0 
A3 = + 
A4 = - 
AS = (Blank) 
A6 = I 



ISt\ SC.LRCF 	STATEF 	T 	
FCJTRAN 	SCtJCE 	LIST 	FOUFIT FCPTRAN 	SC(JRCE 	LIST 	FOUFIT 

(SN SOURCE 	STATEENT 

71 F(I,1-)=F-CRCF(T) 170 6RITE(6,1PC) 
12 I1-(-1)142,142,143 171 CC 	170 	?1,t'fr 
73 14? Fl=E(I,M) 172 FTft)=FORCF(I) 74 T=T+CELTA 173 FF(')=C.5*AC+FPA 
75 CC 	TO 	140 174 CC 	175 	K=1,KK 
76 143 EPA 	= 	EPA+C.5*(F1+F(I,M)l 175 ARFICAT(K)*PI*T/TT 
77 T=T+C-ELIA 176 $PG=AfrCC(AR,IWOPI) 

1CC 10T0+CELTA 177 FF()=FF(P)+AA(K)*COS(ARG)+8B(K)*SIN(ARG) 101 F1=E(1,fr) 200 175 CONTINUE 102 
105 

14C CONTINUE 202 bRITE(6,l85)1,FT(?d),FF(pd) 
FPA=FPA*CELTA/TQ 203 I=T+CEL5 

106 CC 	15C 	I=1,NP 204 17C CONTINUE 
107 T=TPW 206 RITE(6,1C0) 
110 Fl=F(I,1)—FPA 207 ICC FCREIAT(1N1) 
111 CC 	125 	K=1,KK 210 REAIJ(5,1C1)61,62,63,A4,A5,A6 
112 AP=FLCAT(K)tp1*-t/TT 

211 101 FCRfrT(6x,6A1) 
113 ARG=A?'OC(AR,IwCpI) 212 CC 	102 	I1,IC1 114 SN1(K)=SIN(ARG) 213 102 E(I)=A5 
115 125 CSI(N)=CCS(ARG) 215 CC 	1C3 	1=1,1C1,10 117 CC 	13C 	M=2,NIRI 216 103 E(I)=66 
126 1=T+CELTA 220 CC 	104 	I=1,1C1 121 F2=r-Ij,M)—FpA 221 104 c-(I1-=A4 
122 AC=A0+C.5*(F1+F2) 223 CO 	1CÔ 	I=1,1C1,10 
123 CC 	121 	K=l,KK 224 106 G(I)=A3 
124 AP=FLCAT(K)*pI*T/TT 226 KEY=1C 
125 ARG=AMG0(AR,T0p1) 227 1C.0 
126 SNO(I()=SIN(ARC) 230 CC 	115 	M=j,)dfr 127 CSC(K)=CCS(ARG) 231 1=FT(11 ) 130 A(K)=AA(K)+C.5*(F1*CSI(K)+F2*CSC(K)) 232 'Y2FF(P) 
131 127 8P(K)=88(K)+C.5*(F1*SN1(K)+F2$SNC(K)) 233 Vt1=(Y1-5CCC.C)/1cCcC.0 
133 
134 

CC 	128 	K=1,KK 234 12=(Y2-5C0C.0)/1CC0C.0 

135 
SN1(K)=SNO(K) 

235 11=INT((YI1+C.0049)*ICO.0) 

136 
CS1(K)=CSC(K) 236 12=INT((YI2+C.0049)*100.0) 

12P CONTINUE 237 IF(KEV-1C)112 9 110,112 
140 F1=F2 

240 IIC 81=6(11) 141 13C CONTINUE 
241 e2G(I2) 143 15C CONTINUE 
242 c-(I1)=A1 145 AC=2.C*OFLTA*AO/TT 
243 CI 121=62 146 CC 	155 	K=1,KK 
244 RLTE(6,111)T,G 147 86(K)=2.C*OELTA*AAKI/TT 

150 SB(N)=2.C*DELTA*BB(K),T7 
245 111 FORNAT(IX,31-IT 	=,F5.1910141) 

151 155 CONTINUE 
246 0(11)=81 

153 PITE(6,161)FPA 
247 0(121=82 

154 161CFORNAT(ICX,4EHAVERAGE LEVEL AECUT WHICH 	SENIES 	IS GENERATED 	15,F8. 
250 
251 

KEY=C 
GO 	IC 	114 

155 
41, 	51- 	LBS./) 
RITE(,16c) 

252 112 81=1(11) 

156 160 FORMAT(/// 	lCX, 	2CHF)JURIER 	COEFFICIENTS 	I) 
253 
254 

P2=E(12) 
E(I1)=A1 17 RiI1(6,162)4C 

255 1(12)=62 160 162 FORI'AT(10X,51-AC 	= 	,E14.7, 	II 	20X,1 4,K,I1X95HAA(K),15X,5HB(K) 	/1 256 RlTE(6,113)E 161 CC 	165 	K=1,KK 
257 113 FORfrAT(9X,ICIA1) 162 165 1P1TE(6,167)K,AA(K),R8(K) 
260 E(I1)=E1 164 167 FCRAT(18x,I3,2E2C.7, 	I) 21 1(12)=82 165 CEL5=CELTA*1C.0 

1 6 6 1- 	= IN I (I I / OF 15 I 
262 114 I=T+CEL5 

167 1=0.0 
263 K I V KEY + 1 
264 115 CONTINUE 



FCRTRAN SCURCE LIST FOUFIT 

	

ISN 	 SCLCE STAIEMFNJ 

	

2.66 	 CO Tfl 1 

	

27 	180 FflMAT(1E-1//jCx,2C,-CCfrpARIsQN (IF FCRCES //19X,1HT,13X 9 1HF,12X,2HFF 
1,/) 

	

270 	185 FflRfrAI(17x,F.3,5x,F.1,5x,F9.I, I 

	

271 	94CFCRNAT(15X,1HPLATFORM SPACING (TIME IN SECONDS, DISTANCE OR WIDTH 
1 IN FEF:T)// 22X, SAHPLATFORM NC. 	TIME TO PLATFORM 	TIME ON 
IPLATFORM 	CISTANCE TO PLATFORM 	PLATFORM WIDTH I) 

	

272 	ico STOP 

	

273 	ENC 

	

ISN 	5CURCE STATEMENT 	
ECRTRAN SOURCE LIST 

O $IBFTC FRCE 	LIST 

	

1 	FUNCTICN FURCE(T) 

	

2 	COMMON AL1,A[2,AL3,Ofri3OM2,0M3,pHI 1,PHI2,PH13,w 

	

3 	TWCPI = 2.C*3.1415926 

	

4 	AR1=CM1*1+PH11 

	

5 	AR2=OM2*T+PHI2 

	

6 	4R3=0M3*T+Pp-q3 

	

7 	RC1=AMCC(4R1,TwapI) 

	

10 	ARG2=AMCC(4R2,J1,opI) 
11 	ARC-3=AMCC(AR3,jIop() 
12 

	

13 	FCRC1=FN*W 
14 	RETURN 
15 	ENC 
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4-3(2)), 	81p., 	$1.80 

1 Evaluation of Methods of Replacement of Deterio- 
rated Concrete in Structures (Proj. 6-8), 	56. p., 
$2.80 

	

2 	An Introduction to Guidelines for Satellite Studies of 
Pavement Performance (Proj. 1-1), 	19 p.,  $1.80 

2A Guidelines for Satellite Studies of Pavement Per- 
formance, 85 p.+9 figs., 26 tables, 4 app., 	$3.00 

3 Improved Criteria for Traffic Signals at Individual 
Intersections—Interim Report (Proj. 3-5), 	36 p., 
$1.60 

4 Non-Chemical Methods of Snow and Ice Control on 
Highway Structures (Proj. 6-2), 	74 p., 	$3.20 

5 Effects of Different Methods of Stockpiling Aggre-
gates—Interim Report (Proj. 10-3), 48 p., $2.00 

6 Means of Locating and Communicating with Dis-
abled Vehicles—Interim Report (Proj. 3-4), 56 p. 
$3.20 

7 Comparison of Different Methods of Measuring 
Pavement Condition—Interim Report (Proj. 1-2), 
29 p., 	$1.80 

8 Synthetic Aggregates for Highway Construction 
(Proj. 4-4), 	13 p., 	$1.00 

9 Traffic Surveillance and Means of Communicating 
with Drivers—Interim Report (Proj. 3-2), 	28 p., 
$1.60 

	

10 	Theoretical Analysis of Structural Behavior of Road 
Test Flexible Pavements (Proj. 1-4), 31 p., $2.80 

11 Effect of Control Devices on Traffic Operations— 
Interim Report (Proj. 3-6), 	107 p., 	$5.80 

12 Identification of Aggregates Causing Poor Concrete 
Performance When Frozen—Interim Report (Proj. 
4-3(1)), 	41 p., 	$3.00 

	

13 	Running Cost of Motor Vehicles as Affected by High- 
way Design—Interim Report (Proj. 2-5), 	43 p., 
$2.80 

14 Density and Moisture Content Measurements by 
Nuclear Methods—Interim Report (Proj. 10-5), 
32 p., 	$3.00 

15 Identification of Concrete Aggregates Exhibiting 
Frost Susceptibility—Interim Report (Proj. 4-3(2)), 
66 p., 	$4.00 

	

16 	Protective Coatings to Prevent Deterioration of Con- 
crete by Deicing Chemicals (Proj. 6-3), 	21 p., 
$1.60 

	

17 	Development of Guidelines for Practical and Realis- 

	

tic Construction Specifications (Proj. 10-1), 	109 p., 
$6.00 
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18 	Community Consequences of Highway Improvement 
(Proj. 2-2), 	37 p., 	$2.80 

19 	Economical and Effective Deicing Agents for Use on 
Highway Structures (Proj. 6-1), 	19 p., 	$1.20 

20 Economic Study of Roadway Lighting (Proj. 5-4), 
77 p., 	$3.20 

21 Detecting Variations in Load-Carrying Capacity of 
Flexible Pavements (Proj. 1-5), 	30 p., 	$1.40 

22 Factors Influencing Flexible Pavement Performance 
(Proj. 1-3(2)), 	69 p., 	$2.60 

23 Methods for Reducing Corrosion of Reinforcing 
Steel (Proj. 6-4), 	22 p., 	$1.40 

24 Urban Travel Patterns for Airports, Shopping Cen- 
ters, and Industrial Plants (Proj. 7-1), 	116 p., 
$5.20 

25 Potential Uses of Sonic and Ultrasonic Devices in 
Highway Construction (Proj. 10-7), 48 p., $2.00 

26 	Development of Uniform Procedures for Establishing 
Construction Equipment Rental Rates (Proj. 13-1), 
33 p., 	$1.60 

27 Physical Factors Influencing Resistance of Concrete 
to Deicing Agents (Proj. 6-5), 	41 p., 	$2.00 

28 	Surveillance Methods and Ways and Means of Com- 
municating with Drivers (Proj. 3-2), 66 p., $2.60 

29 Digital-Computer-Controlled Traffic Signal System 
for a Small City (Proj. 3-2), 	82 p., 	$4.00 

30 Extension of AASHO Road Test Performance Con- 
cepts (Proj. 1-4(2)), 	33 p., 	$1.60 

31 A Review of Transportation Aspects of Land-Use 
Control (Proj. 8-5), 	41 p., 	$2.00 

32 Improved Criteria for Traffic Signals at Individual 
Intersections (Proj. 3-5), 	134 p., 	$5.00 

33 Values of Time Savings of Commercial Vehicles 
(Proj. 2-4), 	74p., 	$3.60 

34 Evaluation of Construction Control Procedures— 
Interim Report (Proj. 10-2), 	117 p., 	$5.00 

35 Prediction of Flexible Pavement Deflections from 
Laboratory Repeated-Load Tests (Proj. 1-3(3)), 
117 p., 	$5.00 

36 	Highway Guardrails—A Review of Current Practice 
(Proj. 15-1), 	33 p., 	$1.60 

37 Tentative Skid-Resistance Requirements for Main 
Rural Highways (Proj. 1-7), 	80 p., 	$3.60 

38 	Evaluation of Pavement Joint and Crack Sealing Ma- 
terials and Practices (Proj. 9-3), 	40 p., 	$2.00 

39 Factors Involved in the Design of Asphaltic Pave- 
ment Surfaces (Proj. 1-8), 	112 p., 	$5.00 

40 Means of Locating Disabled or Stopped Vehicles 
(Proj. 3-4(1)), 	40 p., 	$2.00 

41 Effect of Control Devices on Traffic Operations 
(Proj. 3-6), 	83 p., 	$3.60 
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No. Title 

42 Interstate Highway Maintenance Requirements and 
Unit Maintenance Expenditure Index (Proj. 14-1), 
144 p., 	$5.60 

43 Density and Moisture Content Measurements by 
Nuclear Methods (Proj. 10-5), 	38 p., 	$2.00 

44 Traffic Attraction of Rural Outdoor Recreational 
Areas (Proj. 7-2), 	28 p., 	$1.40 

45 Development of Improved Pavement Marking Ma- 
terials—Laboratory Phase (Proj. 5-5), 	24 p., 
$1.40 

46 Effects of Different Methods of Stockpiling and 
Handling Aggregates (Proj. 10-3), 	102 p., 
$4.60 

47 Accident Rates as Related to Design Elements of 
Rural Highways (Proj. 2-3), 	173 p., 	$6.40 

48 Factors and Trends in Trip Lengths (Proj. 7-4), 
70 p., 	$3.20 

49 National Survey of Transportation Attitudes and 
Behavior—Phase I Summary Report (Proj. 20-4), 
71 p., 	$3.20 

50 Factors Influencing Safety at Highway-Rail Grade 
Crossings (Proj. 3-8), 	113 p., 	$5.20 

51 	Sensing and Communication Between Vehicles (Proj. 
3-3), 	105 p., 	$5.00 

52 Measurement of Pavement Thickness by Rapid and 
Nondestructive Methods (Proj. 10-6), 	82 p., 
$3.80 

53 Multiple Use of Lands Within Highway Rights-of- 
Way (Proj. 7-6), 	68 p., 	$3.20 

54 Location, Selection, and Maintenance of Highway 
Guardrail and Median Barriers (Proj. 15-1(2)), 
63 p., 	$2.60 

55 Research Needs in Highway Transportation (Proj. 
20-2), 	66 p., 	$2.80 

56 	Scenic Easements—Legal, Administrative, and Valua- 
tion Problems and Procedures (Proj. 11-3), 174 p., 
$6.40 

57 Factors Influencing Modal Trip Assignment (Proj. 
8-2), 	78 p., 	$3.20 

58 Comparative Analysis of Traffic Assignment Tech-
niques with Actual Highway Use (Proj. 7-5), 85 p., 
$3.60 

59 Standard Measurements for Satellite Road Test Pro- 
gram (Proj. 1-6), 	78 p., 	$3.20 

60 	Effects of Illumination on Operating Characteristics 
of Freeways (Proj. 5-2) 	148 p., 	$6.00 

61 	Evaluation of Studded Tires—Performance Data and 
Pavement Wear Measurement (Proj. 1-9), 	66 p., 
$3.00 

62 Urban Travel Patterns for Hospitals, Universities, 
Office Buildings and Capitols (Proj. 7-1), 	144 p., 
$5.60 

63 Economics of Design Standards for Low-Volume 
Rural Roads (Proj. 2-6), 	93 p., 	$4.00  
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64 	Motorists' Needs and Services on Interstate Highways 
(Proj. 7-7), 	88 p., 	$3.60 

65 One-Cycle Slow-Freeze Test for Evaluating Aggre-
gate Performance in Frozen Concrete (Proj. 4-3(1)), 
21p., 	$1.40 

66 Identification of Frost-Susceptible Particles in Con- 
crete Aggregates (Proj. 4-3(2)), 	62 p., 	$2.80 

67 Relation of Asphalt Rheological Properties to Pave- 
ment Durability (Proj. 9-1), 	45 p., 	$2.20 

	

68 	Application of Vehicle Operating Characteristics to 
Geometric Design and Traffic Operations (Proj. 3- 
10), 	38 p., 	$2.00 

69 Evaluation of Construction Control Procedures—
Aggregate Gradation Variations and Effects (Proj. 
10-2A), 	58 p., 	$2.80 

70 Social and Economic Factors Affecting Intercity 
Travel (Proj. 8-1), 	68 p., 	$3.00 

71 Analytical Study of Weighing Methods for Highway 
Vehicles in Motion (Proj. 7-3), 	63 p., 	$2.80 

Synthesis of Highway Practice 

	

1 	Traffic Control for Freeway Maintenance (Proj. 20-5, 
Task 1), 	47 p., 	$2.20 



THE NATIONAL ACADEMY OF SCIENCES is a private, honorary organiza-
tion of more than 700 scientists and engineers elected on the basis of outstanding 
contributions to knowledge. Established by a Congressional Act of Incorporation 
signed by President Abraham Lincoln on March 3, 1863, and supported by private 
and public funds, the Academy works to further science and its use for the general 
welfare by bringing together the most qualified individuals to deal with scientific and 
technological problems of broad significance. 

Under the terms of its Congressional charter, the Academy is also called upon 
to act as an official—yet independent—adviser to the Federal Government in any 
matter of science and technology, This provision accounts for the close ties that 
have always existed between the Academy and the Government, although the Academy 
is not a governmental agency and its activities are not limited to those on behalf of 
the Government. 

THE NATIONAL ACADEMY OF ENGINEERING was established on December 
5, 1964. On that date the Council of the National Academy of Sciences, under the 
authority of its Act of Incorporation, adopted Articles of Organization bringing 
the National Academy of Engineering into being, independent and autonomous 
in its organization and the election of its members, and closely coordinated with 
the National Academy of Sciences in its advisory activities. The two Academies 
join in the furtherance of science and engineering and share the responsibility of 
advising the Federal Government, upon request, on any subject of science or 
technology. 

THE NATIONAL RESEARCH COUNCIL was organized as an agency of the 
National Academy of Sciences in 1916, at the request of President Wilson, to 
enable the broad community of U. S. scientists and engineers to associate their 
efforts with the limited membership of the Academy in service to science and the 
nation. Its members, who receive their appointments from the President of the 
National Academy of Sciences, are drawn from academic, industrial and government 
organizations throughout the country. The National Research Council serves both 
Academies in the discharge of their responsibilities. 

Supported by private and public contributions, grants, and contracts, and volun-
tary contributions of time and effort by several thousand of the nation's leading 
scientists and engineers, the Academies and their Research Council thus work to 
serve the national interest, to foster the sound development of science and engineering, 
and to promote their effective application for the benefit of society. 

THE DIVISION OF ENGINEERING is one of the eight major Divisions into 
which the National Research Council is organized for the conduct of its work. 
Its membership includes representatives of the nation's leading technical societies as 
well as a number of members-at-large. Its Chairman is appointed by the Council 
of the Academy of Sciences upon nomination by the Council of the Academy of 
Engineering. 

THE HIGHWAY RESEARCH BOARD, organized November 11, 1920, as an 
agency of the Division of Engineering, is a cooperative organization of the high-
way technologists of America operating under the auspices of the National Research 
Council and with the support of the several highway departments, the Bureau of 
Public Roads, and many other organizations interested in the development of highway 
transportation. The purposes of the Board are to encourage research and to provide 
a national clearinghouse and correlation service for research activities and information 
on highway administration and technology. 
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