GUIDE TO COMPOUNDS
OF INTEREST IN CEMENT
AND CONCRETE RESEARCH

Special Report 127 • Highway Research Board • National Research Council
National Academy of Sciences • National Academy of Engineering
1972
HIGHWAY RESEARCH BOARD

OFFICERS
Alan M. Voorhees, Chairman
William L. Garrison, First Vice Chairman
Jay W. Brown, Second Vice Chairman
W. N. Carey, Jr., Executive Director

EXECUTIVE COMMITTEE
A. E. Johnson, Executive Director, American Association of State Highway Officials (ex officio)
F. C. Turner, Federal Highway Administrator, U.S. Department of Transportation (ex officio)
Carlos C. Villarrreal, Urban Mass Transportation Administrator, U.S. Department of Transportation
(ex officio)
Ernst Weber, Chairman, Division of Engineering, National Research Council (ex officio)
D. Grant Mickle, President, Highway Users Federation for Safety and Mobility (ex officio, Past Chairman 1970)
Charles E. Shumate, Executive Director, Colorado Department of Highways (ex officio, Past Chairman 1971)
Hendrik W. Bode, Gordon McKay Professor of Systems Engineering, Harvard University
Jay W. Brown, Director of Road Operations, Florida Department of Transportation
W. J. Burmeister, Executive Director, Wisconsin Asphalt Pavement Association
Howard A. Coleman, Consultant, Missouri Portland Cement Company
Douglas B. Fugate, Commissioner, Virginia Department of Highways
William L. Garrison, Edward R. Weidlein Professor of Environmental Engineering, University of Pittsburgh
Roger H. Gilman, Director of Planning and Development, Port of New York Authority
George E. Holbrook, E. J. du Pont de Nemours and Company
George Krambles, Superintendent of Research and Planning, Chicago Transit Authority
A. Scheffer Lang, Department of Civil Engineering, Massachusetts Institute of Technology
John A. Legarra, Deputy State Highway Engineer, California Division of Highways
William A. McConnell, Director, Product Test Operations Office, Product Development Group, Ford Motor Company
John J. McKetta, Department of Chemical Engineering, University of Texas
John T. Middleton, Deputy Assistant Administrator, Office of Air Programs, Environmental Protection Agency
Elliott W. Montroll, Albert Einstein Professor of Physics, University of Rochester
R. L. Peyton, Assistant State Highway Director, State Highway Commission of Kansas
Milton Pikarsky, Commissioner of Public Works, Chicago
David H. Stevens, Chairman, Maine State Highway Commission
Alan M. Voorhees, President, Alan M. Voorhees and Associates, Inc.
Robert N. Young, Executive Director, Regional Planning Council, Baltimore
NOTICE

The study reported herein was undertaken under the aegis of the National Academy of Sciences-National Research Council with the approval of the Governing Board of the NRC. Such approval indicated that the Governing Board considered that the problem is of national significance, that solution of the problem required scientific or technical competence, and that the resources of NRC were particularly suitable to the conduct of the project. The institutional responsibilities of the NRC were then discharged in the following manner: The members of the study committee were selected for their individual scholarly competence and judgment, with due consideration for the balance and breadth of disciplines. Responsibility for all aspects of this report rests with the committee, except that opinions and conclusions attributed in the report to individuals are not necessarily those of the committee, the Highway Research Board, or the National Research Council.

Although the reports of Highway Research Board committees are not submitted for approval to the Academy membership or to the Council of the Academy, each report is reviewed by a second group of appropriately qualified individuals according to procedures established and monitored by the Academy's Report Review Committee. Such reviews are intended to determine, inter alia, whether the major questions and relevant points of view have been addressed and whether the reported findings, conclusions, and recommendations arose from the available data and information. Distribution of the report is approved, by the President of the Academy, only after satisfactory completion of this review process.

Library of Congress Catalog Card No. 72-81203
Price: $2.00
Available from
Highway Research Board
National Academy of Sciences
2101 Constitution Avenue, N.W.
Washington, D.C. 20418
CONTENTS

FOREWORD ... vi

INTRODUCTION .. 1

COMPOUNDS AND PHASES .. 3

I. Oxides and Hydrated Oxides 3
 A. Calcium Oxide .. 3
 B. Magnesium Oxide .. 3
 C. α-Quartz .. 3
 D. Calcium Hydroxide ... 3
 E. Magnesium Hydroxide 4

II. Carbonates ... 4
 A. Calcite ... 4
 B. Aragonite .. 4
 C. Vaterite ... 5
 D. Dolomite ... 5
 E. Magnesite .. 5

III. Sulfates and Hydrated Sulfates 5
 A. Anhydrite ... 5
 B. Soluble Anhydrite .. 6
 C. Bassanite .. 6
 D. Gypsum ... 6
 E. Thenardite ... 6
 F. Metathenardite .. 7
 G. α-Sodium Sulfate ... 7
 H. Sodium Sulfate, Form III 7
 I. Arcanite ... 7
 J. α-Potassium Sulfate 8
 K. Aphthitolite ... 8
 L. Sodium Sulfate-10-Hydrate 8
 M. Potassium Calcium Sulfate 8
 N. Syngenite .. 8
 O. Hydroxyl Ellesstadite 9

IV. Tricalcium Silicates ... 9
 A. Tricalcium Silicate ... 9
 B. Alite .. 9

V. Dicalcium Silicates .. 10
 A. α-Dicalcium Silicate 10
 B. α'-Dicalcium Silicate 10
 C. β-Dicalcium Silicate 10
 D. γ-Dicalcium Silicate 11
 E. Belite .. 11
 F. Dicalcium (potassium) Silicate 11

VI. Tricalcium Disilicates and Compounds of Similar Composition 11
 A. Tricalcium Disilicate (mon.) 11
 B. Tricalcium Disilicate (o.-rh.) 12
 C. 8-Calcium-5-Silicate 12
VII. Calcium Monosilicates ... 12
 A. Pseudowollastonite ... 12
 B. Wollastonite .. 13

VIII. Calcium Silicates Bearing Additional Anionic Groups 13
 A. Spurrite ... 13
 B. Tilleyite ... 13
 C. 5-Calcium Disilicate Monosulfate 13

IX. Calcium Aluminates and Related Compounds 14
 A. Tricalcium Aluminate ... 14
 B. Tricalcium (sodium) Aluminate .. 14
 C. 12-Calcium-7-Aluminate ... 14
 D. 5-Calcium-3-Aluminate ... 15
 E. Calcium Monoaluminate ... 15
 F. Calcium Dialuminate .. 15
 G. Calcium-6-Aluminate .. 15
 H. Calcium Aluminate Fluoride ... 15
 I. Calcium Aluminate Chloride .. 16
 J. Tetracalcium Trialuminate Sulfate 16

X. Calcium Ferrites and Aluminoferrites .. 16
 A. Calcium Aluminoferrite Solid Solution Series 16
 B. Dicalcium Ferrite ... 17

XI. Calcium Aluminate Ferrite Silicates ... 17
 A. Garnet-Hydrogarnet Solid Solution Series 17

XII. Poorly Crystallized Calcium Silicate Hydrates 18
 A. Calcium Silicate Hydrate Gel ... 18
 B. Substituted Calcium Silicate Hydrate Gel 18
 C. Calcium Silicate Hydrate I .. 19
 D. Calcium Silicate Hydrate II .. 19

XIII. Well-Crystallized Calcium Silicate Hydrates: Tobermorites 19
 A. Tobermorite (11 Å) ... 19
 B. Tobermorite (14 Å) ... 20
 C. Tobermorite (9.3 Å) ... 20
 D. Tobermorite (9.7 Å) ... 20
 E. Tobermorite (12 Å) ... 21
 F. Tobermorite (10 Å) ... 21

XIV. Well-Crystallized Calcium Silicate Hydrates: Other Than Tobermorite ... 21
 A. 6-Calcium Disilicate Trihydrate ... 21
 B. 5-Calcium Disilicate Monohydrate 21
 C. Dicalcium Silicate Monohydrate (mon.) 22
 D. Dicalcium Silicate Monohydrate (o.-rh.) 22
 E. 4-Calcium Disilicate Monohydrate 22
 F. 6-Calcium Trisilicate Hydrate .. 23
 G. Tricalcium Disilicate Trihydrate .. 23
 H. 4-Calcium Trisilicate Monohydrate 23
 I. 5-Calcium-5-Silicate Monohydrate 23
 J. Tricalcium Trisilicate Monohydrate 24
 K. Suolunite .. 24
 L. Gyrolite .. 24
 M. Calcium Disilicate Trihydrate .. 24
 N. Tricalcium-6-Silicate-8-Hydrate 25
 O. Calcium Disilicate Dihydrate .. 25
 P. Truscottite .. 25
 Q. Reyerite ... 25
 R. Scautite ... 26
 S. Jennite .. 26
 T. Thaumasite ... 26
XV. Hydrated Calcium Aluminates and Related Compounds
 A. Tricalcium Aluminate-6-Hydrate
 B. Tetracalcium Trialuminate Trihydrate
 C. Tetracalcium Aluminate-19-Hydrate
 D. Tetracalcium Aluminate-13-Hydrate
 E. Tetracalcium Aluminate-7-Hydrate
 F. Tetracalcium Aluminate Hemicarbonate-12-Hydrate
 G. Tetracalcium Aluminate Hemicarbonate-7-Hydrate
 H. Tetracalcium Aluminate Carbonate-11-Hydrate
 I. Dicalcium Aluminate-8-Hydrate
 J. Monocalcium Aluminate-10-Hydrate

XVI. Hydrated Calcium Aluminates Bearing Additional Anionic Groups
 A. Tetracalcium Aluminate Monosulfate-12-Hydrate
 B. Tetracalcium Aluminate Monosulfate-14-Hydrate
 C. Ettringite
 D. 6-Calcium Aluminate Tricarbonate-30-Hydrate
 E. Tetracalcium Aluminate Dichloride-10-Hydrate
 F. 6-Calcium Aluminate-6-Chloride-30-Hydrate
 G. Tetracalcium Aluminate Sulfate Sodium-16-Hydrate

XVII. Hydrated Calcium Aluminate Silicates
 A. Dicalcium Aluminate Monosilicate-8-Hydrate
 B. Dicalcium Aluminate Monosilicate Monohydrate

XVIII. Hydrated Calcium Ferrites and Related Compounds
 A. Tricalcium Ferrite-6-Hydrate
 B. Tetracalcium Ferrite-13-Hydrate
 C. 6-Calcium Ferrite Trisulfate-32-Hydrate
 D. Tetracalcium Ferrite Monosulfate-14-Hydrate
 E. Tetracalcium Ferrite Monosulfate-12-Hydrate

REFERENCES ... 35
INDEX .. 42
SPONSORSHIP OF THIS SPECIAL REPORT 53
In 1965 the Highway Research Board Committee on Basic Research Pertaining to Portland Cement and Concrete established a Subcommittee on Nomenclature. The mission of the subcommittee was the preparation of a set of rules, consistent with accepted practice in inorganic chemistry and mineralogy, to govern the preferred designation of the compounds of interest in the cement-chemistry field and to be used as a guide to the many compounds discussed in that field. It was felt that such a guide would help to remove the prevailing disorder and confusion relating to the nomenclature of those compounds. This report is the result of the subcommittee's work.

The subcommittee hopes that this compilation will be used by authors and researchers who work in the field of cement chemistry or in related fields and particularly hopes that it will be useful to students and others just entering those fields. The names selected or coined in this report have no official status, and individuals and organizations may prefer to use other designations. Nevertheless, the consistent use of the nomenclature provided should result in a considerable decrease in the confusion that now exists.

The subcommittee wishes to acknowledge the advice and assistance of several colleagues who provided helpful assistance and encouragement in the preparation of this report. These include W. L. Dolch, who was chairman of the Committee on Basic Research Pertaining to Cement and Concrete for most of the period during which the subcommittee worked; Katharine Mather, who is the present chairman; G. L. Kalousek; N. R. Greening; and Bryant Mather. Also acknowledged are the efforts of W. R. Gunderman of the Highway Research Board staff in furthering the publication of this report.
This report contains a brief discussion of the names and pertinent characteristics of approximately 100 compounds and phases of interest in the chemistry of portland and related cements. It is obvious that such a list cannot be complete because of the multiplicity of phases, hydration states, and solid solution possibilities. In selecting phases, we have tried to include almost all of the compounds of interest without letting the compendium become overwhelmingly large.

The compounds are classified into 18 groups for ease of reference. The groups are generally arranged in increasing order of compositional complexity; e.g., unhydrated phases are listed at the beginning and complex hydrated phases are listed near the end. The groups are by no means uniform in terms of number of individual compounds contained in each; one group contains only one entry, whereas the largest group contains 20 individual compounds. The organization of the groups is apparent from the assigned group headings. Within groups, individual phases are listed in a logical order, and an attempt was made to keep related phases close together. The largest group, the well-crystallized calcium silicate hydrates other than tobermorites, is ordered in terms of decreasing calcium-to-silica ratio, with phases containing additional elements being placed at the end.

A number of compounds that are considered to be of special significance because of their occurrence in portland cement and portland cement concrete have been designated by an asterisk. A special effort has been made to provide structural information and other details for most of these compounds.

For each compound listed, the following information (in the following format) is provided when possible.

1. Preferred name—mineral, compositional, or special.
2. Synonym equally acceptable to the committee.
3. Compositional designation—conventional cement shorthand notation used by cement specialists.
4. Other names commonly used.
5. Chemical formula that may reflect the structure, if known.
6. Crystal system and unit cell parameters.
7. Refractive indexes.
8. X-ray powder diffraction file number assigned to the compound or phase by the Joint Committee on Powder Diffraction Standards, 1601 Park Lane, Swarthmore, Pennsylvania 19081. This file, formerly published by ASTM, provides a means whereby a full X-ray diffraction pattern and supplementary information can be obtained.
9. X-ray powder pattern information—consisting of the six strongest X-ray peaks and an indication of their relative intensities in parts per ten, listed in the order of decreasing intensity. The information is given in the following format: 2.11, 4.33, and so on, with 2.11 representing the d-spacing of the peak and the subscript representing the relative intensity. The data are usually provided from the powder diffraction file; if the compound is not listed or if the listing in the file is thought inadequate or incorrect, a pattern is provided from the literature.
10. Remarks—particularly those bearing on the nomenclature, stability, occurrence in concrete, and, in some cases, the structure of the compound in question.
11. References—citations of a major compendium or of very significant individual papers describing the compound. No attempt has been made to be exhaustive or even representative in listing the literature; the intent is to provide a set of easily obtainable and authoritative sources for further information.
All X-ray diffraction data and crystal unit cell sizes are given in angstrom units. (1 Å is equal to 10^{-10} m.)

Many different nomenclature schemes and improvised compound designations exist side by side in the modern literature. Some compounds are designated by mineral names even though the precise identity of the synthetic compound and the natural mineral has not, in many cases, been established. Other compounds have no names at all and are referred to by standardized abbreviations of their compositions expressed in oxide form, e.g., \(\text{C}_4\text{AH}_13 \). (The standard abbreviations in common use are \(\text{SiO}_2 \), \(\text{Al}_2\text{O}_3 \), \(\text{CaO} \), \(\text{H}_2\text{O} \), \(\text{C} = \text{CO}_2 \), \(\text{S} = \text{SO}_3 \), \(\text{N} = \text{Na}_2\text{O} \), \(\text{K} = \text{K}_2\text{O} \), \(\text{M} = \text{MgO} \), and so forth.) Some poorly crystallized phases, e.g., several of the calcium silicate hydrates, have been called by mineral names (e.g., tobermorite and tobermorite gel) that more properly apply to well-crystallized compounds that may or may not be the same kind of material. Some compounds have been designated very informally, e.g., Roy's phase X and Assarsson's phase Z; and some informal names have come to be widely used by cement specialists, e.g., alite and belite. The use of prefixes such as \(\alpha- \) and \(\beta- \) has not been consistent.

Unfortunately, the subcommittee could not formulate one system of nomenclature that was acceptable even to the majority of its members. However, a series of principles was agreed on and serves as a basis for the preferred designations used in this report. These principles can be stated as follows:

1. So that further confusion is avoided, most long-accepted mineral names are retained, especially where a proposed chemical name would be long and unwieldy.
2. Where mineral names are not established or widely known, or where it is desired to emphasize the composition, compositional names are used.
3. Compositional names are formulated to express clearly the compound's composition and, insofar as is practicable, to meet the criteria of the International Union of Pure and Applied Chemistry's 1957 Report of the Commission on Nomenclature in Inorganic Chemistry (American version with comments). In particular, the conventions adopted include the following:
 a. The composition is to be indicated with appropriate prefixes, e.g., tricalcium disilicate, except that "mono" is used only where the existence of several compounds with similar compositions might cause confusion. Thus, tricalcium aluminate is used rather than tricalcium monoauminate.
 b. For numbers larger than four, prefixes are not used. Instead, the composition is indicated by using the Arabic numeral with (or surrounded by) hyphens, e.g., \(12\text{-calcium-7-aluminate} \).
 c. Where two compounds have the same composition but belong to different crystal systems, the differentiation is indicated by use of a standard abbreviation for the crystal system in parentheses, e.g., tricalcium disilicate (mon.) for rankinite and tricalcium disilicate (o.-rh.) for kilchoanite. The standard list of abbreviations taken from the IUPAC report mentioned previously is as follows: cub. = cubic; tetr. = tetragonal; o.-rh. = orthorhombic; hex. = hexagonal; trig. = trigonal; mon. = monoclinic; and tric. = triclinic.
4. Phases with a characteristic substitutional impurity have the name of the substituent element or group included in parentheses in the appropriate place, e.g., dicalcium (potassium) silicate.
5. In addition to the use of mineral names and of chemically descriptive names, a number of special terms that have been used extensively in the literature have been retained to avoid causing further confusion. For example, alite is retained as a name specifically referring to the substituted form of tricalcium silicate occurring in portland cement and belite for the corresponding dicalcium silicate. The designations for the poorly crystallized calcium silicate hydrates used currently in the literature are retained as calcium silicate hydrate gel, calcium silicate hydrate I, and calcium silicate hydrate II. These may be abbreviated as C-S-H gel, C-S-H I, and C-S-H II, but these abbreviations should not be used as formal names, especially in titles or indexes.
COMPOUNDS AND PHASES

I. OXIDES AND HYDRATED OXIDES

I-A 1. calcium oxide*
2.
3. Ca
4. lime, quicklime
5. CaO
6. cubic: a₀ = 4.81
7. n = 1.837
8. 4-0777
9. 2.41, 1.704, 2.783, 1.451, 1.081, 1.091
10. Constituent of most fresh portland cement clinkers. Large quantities (e.g., greater than 2 percent) possibly indicate poor control in manufacture.
11. 1, pp. 33-34; 2

I-B 1. magnesium oxide*
2.
3. M
4. periclase
5. MgO
6. cubic: a₀ = 4.21
7. n = 1.732
8. 4-0829
9. 2.11, 1.495, 0.942, 0.862, 1.221, 2.43
10. Identifiable in some portland cement clinkers, and is possible cause of disruptive expansions of some portland cement concrete.
11. 3, p. 58; 4, p. 403

I-C 1. α-quartz
2.
3. S
4. silicon dioxide, silica
5. SiO₂
6. hexagonal (trig.): a₀ = 4.91, c₀ = 5.41
7. nₜ₁ = 1.545, nₜ₂ = 1.553
8. 5-0494
9. 3.34₁₀, 4.26₂, 1.82₂, 1.54₂, 2.46₂, 2.28₁
10. Stable below 573 C at which temperature it inverts to β-quartz. Jasper, chert, and chalcedony are related forms with variant X-ray diffraction patterns due to inclusions and impurities. Cristobalite and tridymite are high-temperature forms of silicon dioxide with distinct crystal structures.
11. 3, p. 246; 4, pp. 340-355

I-D 1. calcium hydroxide*
2.
3. CH
4. portlandite, hydrated lime
5. Ca(OH)$_2$
6. hexagonal (trig.): $a_o = 3.59$, $c_o = 4.91$
7. $n_{\omega} = 1.573$, $n_{\epsilon} = 1.545$
8. 4-0733
9. 2.63, 4.90, 1.93, 1.80, 3.11, 1.69
10. A major constituent of hydrated portland cement that is generated by reaction of alite and belite with water. The structure consists of layers containing rows of linked Ca(OH)$_6$ octahedra. There is no significant hydrogen bonding. Calcium hydroxide dehydrates to calcium oxide at about 400°C; in D.T.A. this gives rise to a strong endothermic peak at about 550°C.
11. 1, pp. 174-175, 280; 2; 5, pp. 173-174; 6, p. 352

I-E 1. magnesium hydroxide
2.
3. MH
4. brucite
5. Mg(OH)$_2$
6. hexagonal (trig.): $a_o = 3.15$, $c_o = 4.77$
7. $n_{\omega} = 1.57$, $n_{\epsilon} = 1.59$
8. 7-239
9. 2.37, 4.77, 1.79, 1.57, 1.49, 1.37
10.
11. 4, pp. 434-435

II. CARBONATES

II-A 1. calcite
2.
3. CaCO$_3$
4. calcium carbonate (hex.)
5. CaCO$_3$
6. hexagonal (trig.): $a_o = 4.99$, $c_o = 17.06$ (hex.)
7. $n_{\omega} = 1.66$, $n_{\epsilon} = 1.49$
8. 5-0586
9. 3.04, 2.29, 2.10, 1.91, 2.50
10. Chief constituent of limestone, the basic raw material in cement manufacture. Mg ions may substitute for Ca ions to about 9 mole percent, also Mn, Fe, and the like. Decomposes to calcium oxide at about 900°C, with strong endothermic peak on D.T.A. It may form as a result of reaction of atmospheric CO$_2$ with hydroxide and other components in concrete, resulting in "carbonation shrinkage."
11. 1, pp. 473-477; 4, pp. 476-483; 5, pp. 28-29

II-B 1. aragonite
2.
3. CaCO$_3$
4. calcium carbonate (o.-rh.)
5. CaCO$_3$
6. orthorhombic: $a_o = 4.96$, $b_o = 7.97$, $c_o = 5.74$
7. $n_{\omega} = 1.53$, $n_{\beta} = 1.68$, $n_{\gamma} = 1.69$
8. 5-0453
9. 3.40, 1.98, 3.27, 2.70, 2.37, 2.48
10. Specific gravity higher than calcite (2.94 versus 2.71). It may transform to calcite over long time periods.
11. 4, pp. 497-501
II-C 1. vaterite
2.
3. CaCO₃
4. μ-calcium carbonate
5. CaCO₃
6. hexagonal (trig.): a₀ = 7.14, c₀ = 8.52
7. n₁ = 1.55, n₂ = 1.65
8. 13-192
9. 3.58̈, 3.30̈, 2.73̈, 2.06̈, 1.83̈, 4.26̈
10. Metastable and has a low specific gravity (2.54). It is often formed along with calcite as carbonation products of calcium silicate and aluminate hydrates.
11. 3, p. 114; 4, p. 474; 7

II-D 1. dolomite
2.
3. CaMg(CO₃)₂
4. calcium magnesium carbonate
5. CaMg(CO₃)₂
6. hexagonal (trig.): a₀ = 4.81, c₀ = 16.02
7. n₁ = 1.68, n₂ = 1.50
8. 11-78
9. 2.89̈, 2.19̈, 1.78̈, 1.80̈, 2.02̈, 1.39̈
10. Usually contains small amounts of Fe replacing Mg. Structure is best considered as combining one layer of CaCO₃ from calcite and one layer of MgCO₃ from magnesite; it has a double high-temperature endotherm on D.T.A.
11. 3, p. 114; 4, pp. 489-493

II-E 1. magnesite
2.
3. MgCO₃
4. magnesium carbonate
5. MgCO₃
6. hexagonal (trig.): a₀ = 4.63, c₀ = 15.01
7. n₁ = 1.51, n₂ = 1.70
8. 8-479
9. 2.74̈, 2.10̈, 1.70̈, 2.50̈, 1.94̈, 1.35̈
10. Refractive indexes increase with Fe, Mn substitution.
11. 4, p. 484

III. SULFATES AND HYDRATED SULFATES

III-A 1. anhydrite
2.
3. CaSO₄
4. calcium sulfate
5. CaSO₄
6. orthorhombic: a₀ = 6.24, b₀ = 6.99, c₀ = 7.00
7. n₁ = 1.57, n₂ = 1.58, n₃ = 1.61
8. 6-226
9. 3.49̈, 2.85̈, 2.33̈, 2.21̈, 1.87̈, 1.65̈
10. Harder than gypsum (Mohs' hardness 3 versus 2) and more dense (2.93 versus 2.32). It is sometimes used in lieu of or as a blend with gypsum in cement to avoid false set.
11. 4, pp. 470, 472; 5, p. 323; 8
III-B 1. soluble anhydrite
2.
3. CaS
4. calcium sulfate
5. CaSO₄
6. hexagonal (?)
7. n_ω = 1.51, n_ε = 1.55
8. 2-0134
9. 6.05, 3.01, 2.80, 3.48, 1.85, 1.69
10. Formed by low-temperature (< 400°C) dehydration of gypsum. It reacts rapidly with water to produce solutions highly supersaturated with respect to gypsum, whereas anhydrite reacts slowly and produces only slightly supersaturated solutions.
11. 8; 9

III-C 1. bassanite
2.
3. CaSO₄·0.5H₂O
4. calcium sulfate hemihydrate, hemihydrate
5. 2CaSO₄·H₂O
6. monoclinic: a₀ = 6.85, b₀ = 11.88, c₀ = 12.60, β = 90 deg
7. n_ω = 1.55, n_ε = 1.57
8. 14-453
9. 3.00, 6.01, 2.80, 3.46, 1.84, 2.14
10. Also called plaster of paris. It is a partial dehydration product of gypsum and is often produced in cement by heating during intergrinding of gypsum with clinker; presence may result in "false set." Two forms, γ (stable) and β (metastable), may be end members of a continuous series of decreasing lattice order (γ - β), and increasing extent and time of supersaturation in solution.
11. 5, pp. 322-323; 8; 9; 10; 11; 136

III-D 1. gypsum
2.
3. CaSO₄·2H₂O
4. calcium sulfate dihydrate
5. 2CaSO₄·2H₂O
6. monoclinic: a₀ = 5.68, b₀ = 15.18, c₀ = 6.51, β = 118 deg 23 min
7. n_α = 1.52, n_β = 1.52, n_γ = 1.53
8. 6-0046
9. 7.56, 3.06, 4.27, 2.68, 2.87, 3.79
10. Interground with portland cement clinker to retard set. Various unit cells are described in ref 4. The structure involves pairs of layers normal to the b-axis containing alternate Ca ions and SO₄ tetrahedra. Water molecules are located between successive pairs of layers and are H-bonded to oxygens of the SO₄ groups.
11. 4, pp. 466-469; 5, pp. 316-318, 329-333; 8; 9; 10; 11; 136

III-E 1. thenardite
2.
3. Na₂SO₄
4. sodium sulfate
5. Na₂SO₄
6. orthorhombic: a₀ = 5.86, b₀ = 12.30, c₀ = 9.82
7. n_α = 1.47, n_β = 1.48, n_γ = 1.48
8. 5-0631
9. $2.78_{10}, 4.66_7, 3.18_5, 2.65_5, 3.08_5, 1.86_3$
10.
11. 3, p. 169; 14

III-F 1. metathenardite
2.
3. $\bar{N}\bar{S}$
4. sodium sulfate form I
5. Na_2SO_4
6. hexagonal (?)
7.
8. 1-0990
9. $2.82_{10}, 2.66_{10}, 3.87_6, 3.56_4, 1.93_4, 4.60_2$
10. High-temperature form stabilized by fusing with Na_2CO_3.
11. 14

III-G 1. α-sodium sulfate
2.
3. $\bar{N}\bar{S}$
4.
5. Na_2SO_4
6. hexagonal: $a_0 = 5.38$, $c_0 = 7.26$
7. $\bar{n} = 1.48$
8. 3-0280
9. $3.92_{10}, 2.86_9, 2.70_9, 1.96_7, 3.62_6, 1.50_4$
10. One of five forms of sodium sulfate known.
11. 12; 13; 14

III-H 1. sodium sulfate, form III
2.
3. $\bar{N}\bar{S}$
4.
5. Na_2SO_4
6. orthorhombic: $a_0 = 5.59$, $b_0 = 8.93$, $c_0 = 6.95$
7.
8. 8-31
9. $2.80_{10}, 3.91_9, 3.76_9, 2.63_9, 3.48_8, 2.37_8$
10. Metastable at room temperature.
11. 14; 15

III-I 1. arcanite
2.
3. $K\bar{S}$
4. potassium sulfate (o.-rh.)
5. K_2SO_4
6. orthorhombic: $a_0 = 5.77$, $b_0 = 10.07$, $c_0 = 7.48$
7. $n_\alpha = 1.49$, $n_\beta = 1.49$, $n_\gamma = 1.50$
8. 5-0613
9. $2.90_{10}, 3.00_8, 2.89_9, 4.18_3, 2.42_3, 2.09_3$
10. $K\bar{S}$ has been detected in commercial clinker, and if sufficient SO_3 is available it is said to be the preferred form of alkali sulfate.
11. 3, p. 169; 16
III-J 1. α-potassium sulfate
2.
3. K\(\bar{S}\)
4. potassium sulfate (hex.)
5. K\(_2\)SO\(_4\)
6. hexagonal: \(a_0 = 5.71, c_0 = 7.85\)
7.
8. 3-0565
9. 3.09	ext{H}, 2.86\text{H}, 2.10\text{H}, 1.98\text{H}, 1.69\text{H}, 4.19\text{H}
10.
11. 17

III-K 1. aphthitolite
2.
3. (N,K)\(\bar{S}\)
4. sodium, potassium sulfate
5. (Na,K)\(_2\)SO\(_4\)
6. hexagonal: \(a_0 = 5.68, c_0 = 7.33\)
7. \(n_\omega = 1.49, n_\epsilon = 1.50\)
8. 1-0978, 6-429, 20-926, 20-928
9. 2.84\text{H}, 2.94\text{H}, 2.04\text{H}, 4.10\text{H}, 3.67\text{H}, 2.44\text{H}
10. A continuous series exists between 3:1 and 1:3 K\(_2\)SO\(_4\)·Na\(_2\)SO\(_4\). It is found in flue dusts and kiln deposits and possibly in clinkers where sulfate is low.
11. 16; 18

III-L 1. sodium sulfate-10-hydrate
2.
3. N\(\bar{S}\)H\(_{10}\)
4. sodium sulfate decahydrate, Glauber's salt
5. Na\(_2\)SO\(_4\)·10H\(_2\)O
6. monoclinic: \(a_0 = 12.84, b_0 = 10.37, c_0 = 11.52, \beta = 107\) deg 77 min
7. \(n_\alpha = 1.394, n_\beta = 1.396, n_\gamma = 1.398\)
8. 11-647
9. 5.49\text{H}, 3.21\text{H}, 3.26\text{H}, 3.11\text{H}, 4.77\text{H}, 3.83\text{H}
10.
11.

III-M 1. potassium calcium sulfate
2.
3. K\(\bar{C}\)\(\bar{S}\)
4.
5. K\(_2\)Ca\(_3\)(SO\(_4\))\(_3\)
6.
7.
8. 17-741
9. 3.31\text{H}, 3.38\text{H}, 3.27\text{H}, 2.78\text{H}, 2.75\text{H}, 2.79\text{H}
10. Double salt that appears to be formed preferentially in clinkers and flue deposits.
11. 16; 18

III-N 1. syngenite
2.
3. K\(\bar{C}\)\(\bar{S}\)\(_2\)H
4. potassium calcium sulfate hydrate
5. K\(_2\)Ca(SO\(_4\))\(_2\)·H\(_2\)O
6. monoclinic: \(a_0 = 9.78, b_0 = 7.16, c_0 = 6.25, \beta = 103.97 \) deg
7. \(n_{\alpha} = 1.50, n_{\gamma} = 1.52 \)
8. 11-117
9. 2.86, 3.16, 9.52, 5.71, 4.63, 2.74
10. Said to form in cement during storage by reaction of potassium sulfate with gypsum. It has been found in secondary deposits in deteriorating portland cement concrete.
11. 16; 19; 107

III-O 1. hydroxyll ellestadite
2.
3. \(\text{C}_{10}\text{S}_3\text{S}_3\text{H} \)
4.
5. \(\text{Ca}_{10}(\text{SiO}_4)_3(\text{SO}_4)_3(\text{OH})_2 \)
6. hexagonal: \(a_0 = 9.48, c_0 = 6.93 \)
7. \(\bar{n} = 1.63 \)
8. 3.708
9. 2.83, 2.74, 2.80, 3.47, 2.65, 2.28 (see ref. 111)
10. Occurs in steam-cured and hydrothermally treated portland cement pastes where the sulfate content of the cement is high and also in pastes exposed to seawater at high temperatures.
11. 109; 110; 111; 112

IV. TRICALCIUM SILICATES

IV-A 1. tricalcium silicate
2.
3. \(\text{C}_3\text{S} \)
4.
5. \(\text{Ca}_3\text{SiO}_5 \)
6. triclinic, monoclinic, and hexagonal (trig.) forms
 triclinic III: \(a_0 = 14.08, b_0 = 14.15, c_0 = 25.10, \alpha = 90.30 \) deg, \(\beta = 89.77 \) deg,
 \(\gamma = 119.53 \) deg
7. \(n_{\alpha} = 1.713, n_{\gamma} = 1.717 \)
8. 16-406, 16-407, 17-445
9. triclinic III: 2.79, 2.61, 2.77, 3.02, 2.75, 3.06
10. Distinguished from alite by lack of significant isomorphous substitution. Six polymorphic varieties are known: (a) trig., stable above 1,050 C; (b) mon. I, stable between 990 and 1,050 C; (c) mon. II, stable between 980 and 990 C; (d) tric. I, stable between 920 and 980 C; (e) tric. II, stable between 600 and 920 C; and (f) tric. III (above), stable below 600 C. This nomenclature differs from that of Guinier and Regourd. The variations represent only small differences in symmetry and in layer stacking.
11. 5, pp. 147-151; 20; 21

IV-B 1. alite*
2.
3. \(\text{C}_3\text{S} \) (subst.)
4. substituted tricalcium silicate
5. \(\text{Ca}_3\text{SiO}_5 \) (subst.)
6. triclinic, monoclinic, and hexagonal (trig.) forms
 mon.: \(a_0 = 12.25, b_0 = 7.05, c_0 = 24.9, \beta = 90.04 \) deg
7. \(n_{\alpha} = 1.71, n_{\gamma} = 1.72 \)
8. 11-593, 13-272
9. mon.: 2.78₁₀, 2.6₁₈, 2.₇₄₆, 3.₀₄₃, 2.₁₈₄, 1.₇₆₄
10. Major constituent of portland cement. True solid solutions with substituents are limited to a few percent of elements such as Fe, Al, Mg, Cr, and Zn. X-ray pattern is somewhat variable with substitution. Structure consists of independent SiO₄ tetrahedra linked by Ca ions; these ions are octahedrally coordinated to additional oxygens not linked to silicon. There are holes adjacent to each calcium ion.
11. 5, pp. 90-92, 147-151; 20

V. DICALCIUM SILICATES

V-A. α-dicalcium silicate
2.
3. α-C₆S
4.
5. Ca₂SiO₄
6. hexagonal (trig.): a₀ = 5.53, c₀ = 7.31 (at 1,500 C)
7. nₐ₀ = 1.66, n₁ = 1.67
8. 20-236
9. 2.₇₁₁₀, 2.₈₁₈, 1.₉₅₅, 2.₂₂₃, 1.₅₈₃, 3.₉₀
10. In pure form, stable only above 1,425 C. It may be stabilized at room temperature by comparatively large substitutions of various oxides.
11. 6, p. 359; 20; 22; 23

V-B. α'-dicalcium silicate
2.
3. α'-C₆S
4. bredigite
5. Ca₂SiO₄
6. orthorhombic: a₀ = 6.₈₈, b₀ = 5.₆₀, c₀ = 9.₅₄ (α'₀ form, 1,3₀₀ C)
7. n₂ = 1.₇₁, n₁ = 1.₇₁, n₃ = 1.₇₄
8. 20-237
9. 2.₇₅₁₀, 2.₆₉₅, 2.₁₉₅, 4.₆₅₃, 3.₈₁₃, 3.₃₇₃
10. Two distinct forms are known, a high-temperature form, α'_₀, (stable from 1,42₀ to 1,₁₆₅ C) and a lower-temperature form, α'_₁, (stable from 1,₁₆₅ to 6₅₀ C in the pure state). Both may be stabilized at room temperature by the presence of various oxides in solid solution.
11. 20; 22; 23; 2₄

V-C. β-dicalcium silicate
2.
3. β-C₆S
4. larnite
5. Ca₂SiO₄
6. monoclinic: a₀ = 5.₅₁, b₀ = 6.₇₅, c₀ = 9.₃₂, β = 9₄ deg 3₈ min
7. n₀ = 1.₇₁, n₁ = 1.₇₁, n₃ = 1.₇₃
8. 9-3₅₁
9. 2.₈₀₁₀, 2.₇₄₉, 2.₇₈₉, 2.₆₁₇, 2.₁₉₇, 2.₇₃₄
10. Pure compound stable only below 6₅₀ C but transforms to γ-dicalcium silicate incompletely and sluggishly between 5₂₅ and 3₀₀ C. The transformation involves a considerable increase in volume, which causes disintegration (dusting) of the crystals.
11. 4, p.5₈; 5, p. 1₄₄; 2₀; 2₃
V-D 1. \(\gamma\)-dicalcium silicate
2.
3. \(\gamma\)-C\(_2\)S
4.
5. Ca\(_2\)SiO\(_4\)
6. orthorhombic: \(a_0 = 5.08, b_0 = 6.76, c_0 = 11.23\)
7. \(n_\alpha = 1.64, n_\beta = 1.65, n_\gamma = 1.65\)
8. 9-369
9. 2.73\(_{10}\), 1.91\(_8\), 3.01\(_7\), 1.80\(_7\), 4.32\(_6\), 3.82\(_6\)
10. Stable at room temperature. Inadequately stabilized calcium silicate may spontaneously transform to this phase on cooling. This phase has little or no hydraulic cementing ability.
11. 5, pp. 145-147; 20; 25

V-E 1. belite*
2. substituted dicalcium silicate
3. C\(_2\)S (subst.)
4.
5. Ca\(_2\)SiO\(_4\) (subst.)
6. usually monoclinic: \(a_0 = 5.50, b_0 = 6.75, c_0 = 9.30\) to 9.34, \(\beta = 94.2\) to 94.6 deg
7. \(n_\alpha = 1.72, n_\beta = 1.73, n_\gamma = 1.74\)
8.
9. 2.74\(_{10}\), 2.79\(_8\), 2.21\(_4\), 2.25\(_3\), 3.07\(_1\), 2.42\(_1\) (ref. 115)
10. Major constituent of portland cement. X-ray diffraction patterns vary with substitution and clinkerising conditions but are generally similar to that of \(\beta\)-dicalcium silicate with some peaks broadened and others slightly displaced. Sometimes \(\alpha\)- or \(\alpha'\)-dicalcium silicate is also present in clinker. Ca can be substituted by Mg, K, Na, Ba, Cr, and Mn; silica tetrahedra by phosphate or sulfate tetrahedra. Belite occurs in portland cement clinkers as rounded striated grains with layered structures. The basic structure is composed of strings of isolated silica tetrahedra and alternating Ca ions, with the remaining Ca ions in holes between the tetrahedra. In portland cement, belite hydrates slowly but has significant hydraulic cementing ability.
11. 5, pp. 107-108; 20; 23; 114; 115

V-F 1. dicalcium (potassium) silicate
2.
3. K\(_2\)Ca\(_2\)Si\(_2\)O\(_8\)
4.
5. K\(_2\)Ca\(_2\)Si\(_2\)O\(_8\)
6. orthorhombic: \(a_0 = 5.18, b_0 = 9.52, c_0 = 6.77\)
7.
8.
9. 2.75\(_{10}\), 1.96\(_8\), 2.19\(_4\), 2.03\(_4\), 2.29\(_2\), 2.24\(_2\)
10. Apparently a solid solution whose optical properties resemble those of \(\beta\)-dicalcium silicate but whose structure is similar to \(\alpha'\)-dicalcium silicate; probably not a distinct compound. Potassium does not seem to enter into this phase in cement clinker if sulfate is present because alkalis react with any sulfate present.
11. 5, pp. 92, 98; 16

VI. TRICALCIUM DISILICATES AND COMPOUNDS OF SIMILAR COMPOSITION

VI-A 1. tricalcium disilicate (mon.)
2. rankinite
3. C₃S₂
4. Ca₆Si₂O₇
5. monoclinic: a₀ = 10.55, b₀ = 8.88, c₀ = 7.85, β = 120.10 deg
6. nα = 1.64, nβ = 1.64, nγ = 1.65
7. 9-327, 11-317
8. 3.14₁₀, 2.69₁₀, 3.77₈, 2.56₆, 1.80₈, 4.43₆
9. Natural mineral that also occurs in slags; has been called α-tricalcium disilicate.

VI-B 1. tricalcium disilicate (o.-rh.)
2. kilchoanite
3. C₃S₂
4. Ca₆(SiO₄)(Si₃O₁₀)
5. orthorhombic: a₀ = 11.42, b₀ = 5.09, c₀ = 21.95
6. nα = 1.65, nγ = 1.65
7. 14-77
8. 2.68₉, 3.07₉, 3.56₈, 2.36₈, 1.96₈
9. Natural mineral that may be prepared hydrothermally at 700 C or in a slightly hydrous form down to 180 C. Its structure is closely related to γ-dicalcium silicate. It converts to tricalcium disilicate (mon.) on heating to about 1,100 C. It was originally called Roy's phase Z.
10. 5, pp. 209-210; 26; 27; 28; 29; 113

VI-C 1. 8-calcium-5-silicate
2. C₈S₅
3. Ca₆(SiO₄)₂(Si₃O₁₀)
4. orthorhombic: a₀ = 11.45, b₀ = 5.09, c₀ = 28.70
5. 3.05₁₀, 2.84₈, 2.69₈, 3.60₆, 1.95₆, 1.90₆
6. Prepared hydrothermally at 180 to 600 C. In a Ca-rich, disordered form, it is the main constituent of so-called γ-dicalcium silicate hydrate or C₂SH(C), which also contains 5-calcium disilicate monohydrate (XIV-B).
7. 113; 133

VII. CALCIUM MONOSILICATES

VII-A 1. pseudowollastonite
2. calcium monosilicate (tric.-I)
3. α-CS
4. CaSiO₃ or Ca₃Si₂O₆
5. triclinic (usually): a₀ = 6.82, b₀ = 6.82, c₀ = 19.65, α = 90 deg 24 min, β = 90 deg 24 min, γ = 119 deg 18 min
6. nα = 1.61, nβ = 1.61, nγ = 1.65
7. 10-486
8. 3.20₁₀, 2.79₈, 1.96₈, 2.46₆, 1.49₆, 5.73₄
9. High-temperature stable form of calcium monosilicate. Several different stacking modifications are known.
10. 5, pp. 138-139; 30
VII-B 1. wollastonite
2. calcium monosilicate
3. β-CS
4.
5. β-CaSiO$_3$
6. triclinic or monoclinic:
 Mon: $a_0 = 15.33$, $b_0 = 7.28$, $c_0 = 7.07$, $\beta = 95$ deg 24 min
7. $n_\alpha = 1.62$, $n_\beta = 1.63$, $n_\gamma = 1.63$
8. tric.: 10-487; mon.: 10-489
9. 2.97$_{10}$, 3.83$_{8}$, 3.52$_{8}$, 3.31$_{8}$, 2.47$_{6}$, 2.18$_{6}$ (both forms)
10. Naturally occurring mineral. The monoclinic form was previously called para-wollastonite. Differences between the two forms are very slight. These are low-temperature stable calcium monosilicates, inverting to pseudowollastonite above 1,125 $^\circ$C.
11. 4, pp. 140-143; 5, pp. 139-142; 31

VIII. CALCIUM SILICATES BEARING ADDITIONAL ANIONIC GROUPS

VIII-A 1. spurrite
2.
3. Ca$_5$S$_3$C
4. 5-calcium disilicate monocarbonate
5. Ca$_5$(SiO$_4$)$_2$CO$_3$
6. monoclinic: $a_0 = 10.49$, $b_0 = 6.71$, $c_0 = 14.15$, $\beta = 101$ deg 19 min
7. $n_\alpha = 1.64$, $n_\beta = 1.67$, $n_\gamma = 1.68$
8. 13-496
9. 2.70$_{10}$, 2.64$_7$, 3.02$_7$, 2.66$_5$, 2.17$_4$, 3.81$_3$
10. Natural mineral that can be hydrothermally synthesized over a wide range of temperature.
11. 4, p. 59; 5

VIII-B 1. tilleyite
2.
3. Ca$_5$S$_3$C$_2$
4. 5-calcium disilicate dicarbonate
5. Ca$_5$(Si$_2$O$_7$)(CO$_3$)$_2$
6. monoclinic: $a_0 = 15.03$, $b_0 = 10.27$, $c_0 = 7.63$, $\beta = 105$ deg 50 min
7. $n_\alpha = 1.61$, $n_\beta = 1.63$, $n_\gamma = 1.65$
8. 13-416
9. 3.01$_{10}$, 3.10$_6$, 1.90$_5$, 2.98$_4$, 2.80$_4$, 2.10$_4$
10. Natural mineral that can be hydrothermally synthesized over a wide range of temperatures.
11. 4, p. 77; 5, pp. 226-227

VIII-C 1. 5-calcium disilicate monosulfate
2.
3. Ca$_5$S$_2$S
4. calcium silicosulfate
5. Ca$_5$(SiO$_4$)$_2$SO$_4$
6. orthorhombic: $a = 15.41$, $b = 10.18$, $c = 6.84$
7. $\overline{n} = 1.635$ with some grains below; very low birefringence
8. 18-307
9. 2.82$_{10}$, 2.84$_{10}$, 3.19$_8$, 2.56$_9$, 4.57$_8$, 2.61$_8$
10. An intermediate product in the cement-sulfuric acid process; found in kiln rings in portland cement kilns; found in some type K expansive cements. The structure is believed to resemble that of silicocarnotite, a silica-substituted apatite.

11. 137, 138; 139

IX. CALCIUM ALUMINATES AND RELATED COMPOUNDS

IX-A 1. tricalcium aluminate*
2.
3. Ca3A
4.
5. Ca3Al2O6
6. cubic: a₀ = 15.26
7. n = 1.70
8. 8-5
9. 2.70₁₀, 1.91₁₄, 1.56₅, 4.08₂, 2.79₁, 2.20₁
10. Major constituent of portland cement, hydrating more rapidly than other components but developing less strength than the calcium silicates. Its hydration is retarded somewhat by calcium sulfate. It appears as equant grains in the dark interstitial phase in reflected light. A number of possible structures have been proposed but not proved. The aluminum is tetrahedrally coordinated.

11. 5, pp. 55-56; 20; 32

IX-B 1. tricalcium (sodium) aluminate
2.
3. NaCa₃A₃
4. sodium calcium aluminate
5. NaCa₄Al₃O₉
6. orthorhombic
7. nₐ = 1.70, nₙ = 1.71
8. 2-0929
9. 2.67₁₀, 1.55₁₀, 2.19₈, 1.91₁₄, 1.88₇, 1.3₄₈ (but see ref. 34)
10. Found as prismatic crystals constituting a minor constituent in the interstitial phase of some clinkers. The potassium analogue, KC₆A₃, is not definitely established. A second sodium-bearing orthorhombic structure exists at lower sodium contents, and a high-temperature tetragonal phase has recently been shown to be formed in clinkers and may be stabilized at room temperature.

11. 5, pp. 97-99; 16; 20; 33; 34; 140; 141; 142

IX-C 1. 12-calcium-7-aluminate
2.
3. C₁₂A₇
4. mayenite
5. Ca₁₂Al₁₄O₃₃
6. cubic: a₀ = 11.98
7. n = 1.61
8. 9-413
9. 2.68₁₀, 4.8₉₉, 2.4₅₅, 3.0₀₃, 2.₁₉₄, 1.₉₅₃
10. Usually found in small proportions in calcium aluminate cements. This compound hydrates rapidly but contributes little to strength. It was originally thought to have the composition C₅A₃. It is relatively stable compared to the metastable 5-calcium-3-aluminate. It is known to absorb atmospheric water at high temperatures to approach the composition C₁₂A₇H, with 4 OH ions in the structure apparently replacing 2 oxygen ions.

11. 5, pp. 103, 157-158; 32; 130
IX-D 1. 5-calcium-3-aluminate
 2.
 3. Ca$_5$A$_3$
 4.
 5. Ca$_2$Al$_5$O$_{14}$
 6. orthorhombic: $a_o = 10.98$, $b_o = 11.25$, $c_o = 10.28$
 7. $n\alpha = 1.68$, $n\beta = 1.68$, $n\gamma = 1.69$
 8. 11-357
 9. 2.93, 2.89, 2.47, 1.59, 3.37, 2.34
 10. Synthetic metastable compound.
 11. 32; 35

IX-E 1. calcium monoa.luminate
 2.
 3. CA
 4.
 5. CaAl$_2$O$_4$
 6. monoclinic: $a_o = 8.70$, $b_o = 8.10$, $c_o = 15.21$, $\beta = 90.1$ deg
 7. $n\alpha = 1.64$, $n\beta = 1.66$, $n\gamma = 1.66$
 8. 1-0888
 9. 2.97, 2.52, 2.41, 1.92, 1.53, 4.69
 10. Major constituent of calcium aluminate cements. It is strongly hydraulic.
 11. 5, pp. 153-154; 6, pp. 12-13; 32; 36, pp. 34-47

IX-F 1. calcium dialuminate
 2.
 3. CA$_2$
 4.
 5. CaAl$_4$O$_7$
 6. monoclinic: $a_o = 12.90$, $b_o = 8.88$, $c_o = 5.45$, $\beta = 107.0$ deg
 7. $n\alpha = 1.62$, $n\beta = 1.62$, $n\gamma = 1.65$
 8. 7-82
 9. 3.52, 2.61, 4.44, 2.76, 3.08, 2.72
 10. Constituent of some commercial calcium aluminate cements. It reacts slowly at
 first, but the rate increases with growing concentration of hydration products.
 11. 5, p. 152; 32; 36, pp. 34-47

IX-G 1. calcium-6-aluminate
 2.
 3. CA$_6$
 4.
 5. CaAl$_{12}$O$_{19}$
 6. hexagonal: $a_o = 5.57$, $c_o = 22.01$
 7. $n\omega = 1.75$, $n\xi = 1.75$
 8. 7-85
 9. 1.39, 2.48, 2.11, 1.53, 2.01, 2.62
 10. Harder than other calcium aluminates and nonhydraulic. It may occur in high-
 temperature castable refractories.
 11. 5, pp. 151-152; 32

IX-H 1. calcium aluminate fluoride
 2.
 3. C$_{11}$A$_7$·CaF$_2$
 4.
5. $\text{Ca}_{11}\text{Al}_{14}\text{O}_{32} \cdot \text{CaF}_2$
6. cubic: $a_0 = 11.97$
7. $n = 1.60$
8.
9. May be prepared by heating anhydrous 12-calcium-7-aluminate or $\text{C}_{12}\text{A}_7\text{H}$ with CaF_2. Its structure is similar to that of 12-calcium-7-aluminate with the fluoride occupying holes in the structure.
10.
11. 32; 37; 38

IX-I 1. calcium aluminate chloride
2.
3. $\text{C}_{11}\text{A}_7 \cdot \text{CaCl}_2$
4.
5. $\text{Ca}_{11}\text{Al}_{14}\text{O}_{32} \cdot \text{CaCl}_2$
6. cubic: $a_0 = 12.00$
7. $n = 1.626$
8.
9. Structure presumably analogous to that of calcium aluminate fluoride.
10. 32; 37; 38

IX-J 1. tetracalcium tri aluminate sulfate
2.
3. $\text{Ca}_4\text{A}_3\text{S}$
4.
5. $\text{Ca}_4(\text{Al}_6\text{O}_{12})\text{SO}_4$
6. cubic: $a_0 = 18.39$
7. $n = 1.57$
8.
9. 3.7610, 2.653, 2.172, 3.251, 1.621, 2.461 (ref. 127)
10. Synthetic compound that is an essential constituent of type K expansive cement. It is prepared by firing mixtures of calcite, gypsum, and bauxite and is apparently the only stable compound in the ternary system. In expansive cement it hydrates to produce ettringite if the system is sufficiently rich in available sulfate, or tetracalcium aluminate monosulfate hydrate if it is not. A calcium aluminate monosulfate-18-hydrate has been reported to be a product of hydration under certain circumstances.
11. 125; 126; 127; 128; 129

X. CALCIUM FERRITES AND ALUMINOFERRITES

X-A 1. calcium aluminoferrite solid solution series
2.
3. $\text{C}_3(\text{F}_{1-p})\text{A}_p$ where $p = \text{A}/\text{A} + \text{F}$, $0 < p < 0.7$
4.
5. $\text{Ca}_4\text{Fe}_4\text{O}_{10}$ to $\text{Ca}_4\text{FeAl}_3\text{O}_{10}$
6. orthorhombic: lattice shifts are as follows (ref. 39):

<table>
<thead>
<tr>
<th>p</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>5.35</td>
<td>5.35</td>
<td>5.31</td>
</tr>
<tr>
<td>b_0</td>
<td>14.61</td>
<td>14.51</td>
<td>14.46</td>
</tr>
<tr>
<td>c_0</td>
<td>5.59</td>
<td>5.56</td>
<td>5.51</td>
</tr>
</tbody>
</table>
7. \(p = 0: \ n_\alpha = 2.20, \ n_\beta = 2.22, \ n_\gamma = 2.29 \)
\(p = 0.5: \ n_\alpha = 1.96, \ n_\beta = 2.01, \ n_\gamma = 2.04 \)
8. \(p = 0.5: \ 11-124; \ p = 0.7: \ 16-410 \)
9. \(p = 0.5: \ 2.63_0, \ 2.77_8, \ 1.92_8, \ 2.67_7, \ 2.04_6, \ 7.24_5 \)
\(p = 0.7: \ 2.62_0, \ 2.76_8, \ 1.91_8, \ 2.65_8, \ 2.04_7, \ 1.53_7 \)
10. Continuous solid solution series, with a small structural discontinuity at \(p = 0.3 \).
 In cements it is frequently called the ferrite phase. The composition at \(p = 0.5 \)
 (C₄AF) has been considered a separate compound (brownmillerite) in the past. It
 appears as light interstitial material in reflected light, and it is a minor constitu-
 ent in portland cement clinker. In clinker it ranges in composition probably from
 \(p \approx 0.33 \) to \(p \approx 0.67 \), with some substitution of other ions. It hydrates slowly but
 has some hydraulic qualities. The structure consists of layers of FeO₆ octahedra
 joined to layers of FeO₄ tetrahedra with Ca ions in holes between the layers; Al
 substitutes in tetrahedral layers (up to \(p = 0.33 \)) then in both tetrahedral and octa-
 hedral layers.
11. 5, pp. 77, 93, 113-116, 158-161; 20; 39

X-B 1. dicalcium ferrite
2.
3. \(\text{C}_2\text{F} \)
4.
5. \(\text{Ca}_2\text{Fe}_2\text{O}_5 \)
6. orthorhombic: \(a_o = 5.42, b_o = 14.76, c_o = 5.60 \)
7. \(n_\alpha = 2.20, \ n_\beta = 2.22, \ n_\gamma = 2.29 \)
8. \(11-675 \)
9. \(2.67_0, \ 2.78_7, \ 1.94_7, \ 2.71_6, \ 2.07_5, \ 7.36_4 \)
10. End member of calcium aluminoferrite solid solution series.
11. 5, pp. 77, 93, 113-116; 20; 39

XI. CALCIUM ALUMINATE FERRITE SILICATES

XI-A 1. garnet-hydrogarnet solid solution series
2.
3. \(\text{C}_3(\text{F}_1-\text{A}_{p}) (\text{S}_{1-\text{H}} \text{H}_{2})_3 \) where \(p = \text{A}/\text{A} + \text{F} \) and \(q = 2\text{H}/2\text{H} + \text{S} \)
4.
5. \(3\text{CaO} \cdot (\text{Fe}_2\text{O}_3)_{1-p} \cdot (\text{Al}_2\text{O}_3)_p \cdot [(\text{SiO}_2)_{1-q} \cdot (\text{H}_2\text{O})_{2q}]_3 \)
 where \(p \) varies from 0 to 1 and \(q \) varies from 0 to 1, except that some doubts exist
 for compositions of \(p = 1 \) and \(q > 0.84 \).
6. cubic: \(a_o \) varies with composition from about 11.85 to about 12.75
7. \(n \) varies from about 1.60 to about 1.90
8. \(\text{C}_3\text{AH}_6: \ 3-0125, \ 2-1124; \ \text{C}_3\text{FH}_6: \ 3-1126; \ \text{C}_3\text{AS}_3: \ 3-0826; \ \text{C}_3\text{FS}_3: \ 10-288; \ \text{C}_3\text{AS}_2\text{H}_4: 4-0723 \)
9. \(\text{C}_3\text{AS}_3: \ 2.65_0, \ 1.58_9, \ 2.96_8, \ 1.65_8, \ 1.92_7, \ 2.44_4 \)
 \(\text{C}_3\text{FS}_3: \ 2.70_6, \ 3.02_6, \ 1.61_6, \ 2.46_5, \ 1.96_3, \ 1.67_3 \)
10. A complete 4-way solid solution series seems to exist, although compositions
 approaching \(\text{C}_3\text{FH}_6 \) have been questioned. Previous nomenclature and some
 composition-dependent parameters for the end members are as follows:
 \(p = 1 \ q = 1 \) (\(\text{C}_3\text{AH}_6 \)); called \(\text{C}_3\text{AH}_6 \), \(a_o = 12.56, \ n = 1.60 \)
 \(p = 0 \ q = 1 \) (\(\text{C}_3\text{FH}_6 \)); called \(\text{C}_3\text{FH}_6 \), \(a_o = 12.74, \ n = 1.72 \)
 \(p = 1 \ q = 0 \) (\(\text{C}_3\text{AS}_3 \)); called grossular, \(a_o = 11.85, \ n = 1.74 \)
 \(p = 0 \ q = 0 \) (\(\text{C}_3\text{FS}_3 \)); called andradite, \(a_o = 12.06, \ n = 1.89 \)

The intermediate member having the composition corresponding to \(p = 1, \ q = 0.67 \)
(\(\text{C}_3\text{AS}_2\text{H}_4 \)) is called hibschite. Members of composition intermediate between gross-
ular and hibschite are called hydrogrossular. Garnet is a general name for cubic
calcium, magnesium, iron, or manganese aluminum silicates having structures similar to those of the present compounds, and hydrogarnet is often used for members of the series containing appreciable crystalline water. Members of the garnet-hydrogarnet solid solution series as defined here occur sporadically and to a limited extent in portland cement concrete. Occurrence is favored by low sulfate content and high temperatures. They appear to confer some sulfate resistance to the concrete. They occur more frequently in lime-pozzolan systems. C₃AH₆ is a major component of aluminous cement concrete after exposure to high temperatures and moist environmental conditions.

11. 4, pp. 21-31; 5, pp. 281-282, 344-386; 40; 41; 42; 43; 44; 45

XII. POORLY CRYSTALLIZED CALCIUM SILICATE HYDRATES

XII-A 1. calcium silicate hydrate gel
2.
3. C-S-H gel (abbreviation)
4.
5. Composition variable: Two groups thought to be distinguishable are x CaO · SiO · yH₂O with x between 0.83 and 1.33, and x between 1.5 and 2, although the calcium-to-silica ratio is probably not restricted to these ranges, especially the upper limit.
6. So badly organized as to be indefinite
7. About 1.50
8.
9. Up to three weak and diffuse X-ray peaks observed usually at about 3.04, 2.80, and 1.80 Å
10. Has been called C-S-H, tobermorite gel, or even tobermorite, although substantially different from the mineral of that name. The main X-ray peak (3.02 to 3.05 Å) is so broad that the peak usually cannot be resolved from a second peak near 2.80 Å with normal technique; this feature separates material of this somewhat indefinite category from the better crystallized calcium silicate hydrate I and calcium silicate hydrate II. Within this group, material of the lower Ca:Si ratio range converts readily to tobermorite on hydrothermal treatment and that of the higher Ca:Si ratio range converts to dicalcium silicate monohydrate (o.-rh.). The structure has long been thought to resemble tobermorite in disordered form, but possible resemblances between a lime-rich form of it and jennite have been mentioned. It undoubtedly consists of silica tetrahedra (either individual or linked in short chain segments) coupled to a disordered or at best locally ordered calcium-oxygen layer, with additional interlayer material. In substituted form it is the major constituent of the cementitious matrix of portland cement concrete. Kalousek has reported the preparation of phases that he designates as C₅₋₆SH and C₅S₄H₅ in high-pressure steam-cured preparations. These resemble C-S-H gel in most particulars and are within the compositional range designated for C-S-H gel; however, their exact relationships to phases designated as C-S-H I by other workers is not yet clear.

11. 5, pp. 198-203, 288-298, 378-379; 46; 47; 48; 49; 50; 63; 111

XII-B 1. substituted calcium silicate hydrate gel
2.
3. substituted C-S-H gel (abbreviation)
4.
5. Composition variable: Resembles C-S-H gel with additional anions and cations incorporated into the crystal structure
6.
7.
8. Up to three weak and diffuse peaks observed at 3.04, 2.80, and 1.80 Å.

9. Major constituent of the cementitious binder of portland cement concrete, responsible for much of the strength and hydraulic quality of this material. It almost always contains some sulfate substitution and usually contains incorporated alumina, iron, or other ions. It has been referred to as tobermorite gel and Kalousek's phase X and is the main component of so-called cement gel.

10. Better crystallized than C-S-H gel. Its X-ray diffraction pattern typically shows up to 14 reflections, most of which approximate the hk0 reflections of tobermorite, usually with a basal peak at 10 to 12 Å. It has been called tobermorite and CSH(B) in some early papers. It is probably a degenerate form of tobermorite with partly condensed silicate chains and can be distinguished from C-S-H gel by the comparative narrowness of the strongest peak at 3.04 Å, which can be readily resolved from the adjacent peak at about 2.80 Å. It does not occur in ordinary portland cement concrete but may occur sporadically in laboratory autoclaved preparations.

XII-C 1. calcium silicate hydrate I
2. C$_6$A$_{6-1.5}$SH$_{1.5}$; C-S-H I (abbreviation)
3. plombierite
4. (CaO)$_{0.8-1.5}$SiO$_2$(H$_2$O)$_x$
5. orthorhombic (?): a$_0$ = 5.6, b$_0$ = 3.6, c$_0$ variable
6. About 1.50
7. 10-416
8. 3.07, 5.48, 2.07, 1.67
9. Better crystallized than C-S-H gel. Its X-ray diffraction pattern typically shows up to 14 reflections, most of which approximate the hk0 reflections of tobermorite, usually with a basal peak at 10 to 12 Å. It has been called tobermorite and CSH(B) in some early papers. It is probably a degenerate form of tobermorite with partly condensed silicate chains and can be distinguished from C-S-H gel by the comparative narrowness of the strongest peak at 3.04 Å, which can be readily resolved from the adjacent peak at about 2.80 Å. It does not occur in ordinary portland cement concrete but may occur sporadically in laboratory autoclaved preparations.

XII-D 1. calcium silicate hydrate II
2. C$_{1.5-2.0}$SH$_x$; C-S-H II (abbreviation)
3. variable
4. (CaO)$_{1.5-2.0}$SiO$_2$(H$_2$O)$_x$
5. X-ray pattern relates to fiber bundles: 3.07, 9.8, 2.80, 1.83, 2.00, 1.56 (ref. 6)
6. Name used to denote material of comparable or somewhat lower crystallinity than C-S-H I but with a composition in the range given, and may cover any of several perhaps different structural types. All forms are distinguished from calcium silicate hydrate gel by narrowness of strong X-ray peak at 3.07 Å, which can readily be resolved from the peak at about 2.8 Å with normal techniques, and from calcium silicate hydrate I by differences in the X-ray pattern, which generally include a basal peak at 10.4 to 10.7 Å for calcium silicate hydrate II. The morphology usually (but not always) is characterized by bundles of fibers. This material forms from C$_3$S or β-C$_2$S hydrating in excess water at room temperature.

XIII. WELL-CRYSTALLIZED CALCIUM SILICATE HYDRATES: TOBERMORITES

XIII-A 1. tobermorite (11 Å)
2. C$_6$S$_6$H$_5$
20

4. Ca₅Si₆O₂₂H₁₀
5. orthorhombic (geometrically; true cell is triclinic); a₀ = 11.2, b₀ = 7.3, c₀ = 22.6
6. n₁ = 1.57, n₂ = 1.57, n₃ = 1.58
7. 19-1364
8. 3.08, 11.3, 2.98, 2.82, 1.84, 5.48
9. Has been misidentified with calcium silicate hydrate I. It occurs as a natural

10. mineral and in autoclaved cement-silica or lime-silica building materials but does

not form in cement systems hydrated at ordinary temperatures. This material is

distinguished from calcium silicate hydrate I by being fully crystalline (35 X-
ray peaks by normal methods) and from other varieties of tobermorite by position

of the basal peak. The structure can accommodate some Al with a resulting small

increase in the (001) X-ray spacing.

XI-B 1. tobermorite (14 Å)
2. C₅S₆H₉
3. Ca₅Si₆O₂₆H₁₈
4. orthorhombic; a₀ = 11.2, b₀ = 7.3, c₀ = 28.0
5. n₁ = 1.54
6. 6-0005
7. 14.0, 3.07, 5.53, 2.98, 2.82, 1.83
8. Occurs rarely as a natural mineral and may be synthesized hydrothermally. It

dehydrates to tobermorite (11 Å) on heating to 55 C in air.

XI-C 1. tobermorite (9.3 Å)
2. C₅S₆H
3. riversideite
4. Ca₅Si₆O₂₆H₂
5. orthorhombic; a₀ = 11.2, b₀ = 7.3, c₀ = 18
6. n₁ = 1.60, n₂ = 1.60, n₃ = 1.61
7. 10-374
8. 2.99, 9.4, 2.76, 1.84, 4.80, 3.58 (ref. 55)
9. Can be prepared by heating tobermorite (11 Å) 250 to 450 C. Its basic structure is

thought to be similar to tobermorite (11 Å) except that the interlayer water has been

removed. A natural mineral, riversideite, is similar but has a higher basal

spacing.

XI-D 1. tobermorite (9.7 Å)
2. C₅S₆
3. Ca₅Si₆O₁₇
4. orthorhombic; a₀ = 11.2, b₀ = 7.3, c₀ = 19.4
5. 9. May be produced by heating tobermorite (14 Å) from Crestmore, California, to 730 C.

On slow heating the tobermorite (11 Å) phase forms first, followed by tobermorite

(9.3 Å), and then, at 450 to 650 C, by the present phase, which is fully dehydrated.
In addition to water content and basal spacing differences between tobermorite (9.3 Å) and tobermorite (9.7 Å), structural differences within the layers are indicated by differences in the infrared absorption spectrum.

11. 46; 56; 57

XIII-E 1. tobermorite (12 Å)
 2.
 3.
 4.
 5. Chemical formula not definitely established
 6. Presumably orthorhombic—similar to tobermorite (11 Å)
 7.
 8.
 9.
 10. Component of mixed crystal intergrowths found at Crestmore, California. Basal spacing is 12.5 Å; it may possibly be the same as tacharinite, a rare mineral with a 12.6 Å spacing, a composition about C_{0.8}S_{1.2}, and a powder pattern showing some similarity to calcium silicate hydrate I.

11. 5, p. 191; 46; 58

XIII-F 1. tobermorite (10 Å)
 2.
 3.
 4.
 5. Chemical formula not definitely established
 6. orthorhombic: a₀ = 7.3, b₀ = 11.2, c₀ = 20.5
 7.
 8.
 9.
 10. Found, usually as an intergrowth, at Crestmore, California. It partially dehydrates to tobermorite (9.3 Å) on heating and is thought to be richer in calcium and deficient in silicon compared to tobermorite (11 Å).

11. 5, p. 191; 46

XIV. WELL-CRYSTALLIZED CALCIUM SILICATE HYDRATES: OTHER THAN TOBERMORITE

XIV-A 1. 6-calcium disilicate trihydrate
 2.
 3. C₆S₂H₃
 4. tricalcium silicate hydrate
 5. Ca₆(Si₂O₇)(OH)₆ (?)
 6. hexagonal: a₀ = 10.00, c₀ = 7.48
 7. n₁₀ = 1.59, n₁₁ = 1.60
 8. 12-109 (also 3-0669, 11-502)
 9. 8.6₁₀, 3.28₁₀, 3.03₁₀, 2.89₁₀, 2.08₁₀, 1.87₁₀
 10. Not known to occur as a natural mineral. This compound may be prepared synthetically from C₃S or other calcium silicate materials at 180 to 350 C under saturated steam pressure.

11. 5, pp. 213-214; 46; 63

XIV-B 1. 5-calcium disilicate monohydrate
 2.
 3. C₅S₂H
calciochondrodite

5. $\text{Ca}_5(\text{SiO}_4)\text{O}_2(\text{OH})_2$

6. monoclinic: $a_0 = 11.4$, $b_0 = 5.05$, $c_0 = 8.94$, $\beta = 109.3$ deg

7. $\bar{n} = 1.63$

8. 11-300

9. 3.0210, 1.9010, 5.428, 3.318, 2.928, 2.898

This compound has been called Roy’s phase X. It has not been reported as a natural mineral but is formed hydrothermally at 400 to 800°C at pressures above 300 kg/cm2 or at lower temperatures under saturated steam pressure. Material called γ-dicalcium silicate hydrate in the literature is a mixture of 5-calcium disilicate monohydrate and another compound.

5, pp. 208-209; 46; 27; 117

XIV-C

1. dicalcium silicate monohydrate (mon.)

2.

3. C_2SH

4. hillebrandite, β-C_2SH

5. $\text{Ca}_2(\text{HSiO}_4)(\text{OH})_2$ (?)

6. monoclinic: $a_0 = 16.6$, $b_0 = 7.26$, $c_0 = 11.85$, $\beta \approx 90$ deg

7. $n_\alpha = 1.60$, $n_\gamma = 1.61$

8. 9-51, 11-594

9. 2.9210, 4.768, 3.338, 3.028, 2.828, 2.768

10. Occurs naturally and can be prepared hydrothermally at saturated steam pressure or above. The crystal habit is fibrous. It can be distinguished from 4-calcium trisilicate monohydrate (foshagite) by infrared spectrum and X-ray powder pattern.

5, pp. 180-181; 46; 118

XIV-D

1. dicalcium silicate monohydrate (o.-rh.)

2.

3. C_2SH

4. α-C_2S hydrate, dicalcium silicate hydrate I; dicalcium silicate hydrate (A)

5. $\text{Ca}_2(\text{HSiO}_4)(\text{OH})$

6. orthorhombic: $a_0 = 9.34$, $b_0 = 9.22$, $c_0 = 10.61$

7. $n_\alpha = 1.61$, $n_\beta = 1.62$, $n_\gamma = 1.63$

8. 9-325

9. 3.2710, 4.229, 2.418, 3.908, 3.548, 2.878

10. Synthetic hydrothermal product that is also formed by autoclaving β-C_2S and C_2S pastes. It is a constituent found in sand-lime bricks (conferring relatively low strength), autoclaved slag cement concretes, and similar technical products with relatively high lime-to-silica ratios.

5, pp. 212-213; 46; 63

XIV-E

1. 4-calcium disilicate monohydrate

2. rustumite

3. $\text{C}_4\text{S}_2\text{H}$

4.

5. $\text{Ca}_4\text{Si}_2\text{O}_7(\text{OH})_2$

6. monoclinic: $a_0 = 7.62$, $b_0 = 18.55$, $c_0 = 15.51$, $\beta = 104$ deg 20 min

7. $n_\alpha = 1.64$, $n_\gamma = 1.65$

8. 18-305

9. 3.0310, 2.899, 3.198, 2.527, 1.917, 1.757

10. Formed as a natural mineral, and not yet synthesized. This compound appears to be related to tilleyite, a carbonate-bearing mineral, and to cuspidine, a fluoride-bearing mineral.

46; 27
XIV-F 1. 6-calcium trisilicate hydrate
dellaite
Ca$_6$Si$_3$O$_{13}$H$_2$
triclinic: $a_0 = 6.84$, $b_0 = 6.94$, $c_0 = 12.89$, $\alpha = 90$ deg 45 min, $\beta = 97$ deg 22 min, $\gamma = 98$ deg 16 min
$n_\alpha = 1.65$, $n_\beta = 1.66$, $n_\gamma = 1.66$

2. 2.82; 3.06; 2.89; 2.86; 2.29; 2.98 (ref. 135)

A natural mineral; synthesized hydrothermally at pressures over the temperature range 350 to 810 C, on decomposition of dicalcium silicate monohydrate (mon.) (hillebrandite).

9; 59; 121; 134

XIV-G 1. tricalcium disilicate trihydrate
afwillite
Ca$_3$(SiO$_3$OH)$_2$·2H$_2$O
monoclinic: $a_0 = 16.27$, $b_0 = 5.63$, $c_0 = 13.23$, $\beta = 134$ deg 48 min
$n_\alpha = 1.62$, $n_\beta = 1.62$, $n_\gamma = 1.63$

9; 4-54

V 3.19, 6.46; 5.74; 4.73; 3.92, 1.74; 6.80; 4.95; 3.37; 2.30

A well-crystallized natural mineral of relatively constant composition and large crystal size; synthesized hydrothermally at low temperatures (100 to 160 C) or by prolonged ball-milling of C$_3$S in water.

5, pp. 211-212; 60

XIV-H 1. 4-calcium trisilicate monohydrate
foshagite
Ca$_4$(Si$_3$O$_9$)(OH)$_2$
monoclinic: $a_0 = 10.32$, $b_0 = 7.36$, $c_0 = 14.07$, $\beta = 106$ deg
$n_\alpha = 1.59$, $n_\beta = 1.59$, $n_\gamma = 1.60$

11-94

9; 2.92; 1.74; 6.80; 4.95; 3.37; 2.30

A natural mineral; also synthesized hydrothermally between 220 and 650 C. The composition was formerly thought to be nearer C$_5$S$_3$H$_3$. The mineral has been confused with dicalcium silicate monohydrate (mon.) (hillebrandite). The structure is related to that of calcium monosilicate (wollastonite).

5, pp. 179-180; 46; 61; 118

XIV-I 1. 5-calcium-5-silicate monohydrate
xonotlite
Ca$_6$Si$_5$O$_{17}$(OH)$_2$·0.2H$_2$O
monoclinic: $a_0 = 16.53$, $b_0 = 7.33$, $c_0 = 7.04$, $\beta = 90$ deg
$n_\alpha = 1.58$, $n_\beta = 1.58$, $n_\gamma = 1.60$

10-488

9; 3.07; 2.04; 1.95; 3.65; 3.23; 2.83
A natural mineral that is readily synthesized at 150 to 350 C under saturated steam pressure. It is a constituent of some sand-lime blocks and related products; satisfactory strength is attained with xonolite present.

5. pp. 177-179; 6, 116-120; 46; 62; 63

XIV-J
1. tricalcium trisilicate monohydrate
2. rosenhahnite
3. C₃S₃H
4. Ca₃Si₃O₁₀H₂
5. Ca₃S₃H
6. triclinic: a₀ = 6.95, b₀ = 9.47, c₀ = 6.81, α = 108 deg 39 min, β = 94 deg 49 min, γ = 95 deg 43 min
7. n₀ = 1.62, nβ = 1.64, nγ = 1.65
8. 19-250, 15-313
9. 3.20, 2.96, 3.04, 2.78, 3.36, 2.66
10. A natural mineral that has been synthesized at 400 C under high pressure (25 to 50 kilobars). Rosenhahnite converts to calcium monosilicate (wollastonite) on heating to 400 to 500 C.
11. 46; 64; 65

XIV-K
1. suolundite
2. calcium monosilicate monohydrate
3. CSH
4. Ca₅Si₆O₁₅(OH)₂·3H₂O
5. orthorhombic: a₀ = 11.15, b₀ = 19.67, c₀ = 6.08
6. n₀ = 1.61, nβ = 1.62, nγ = 1.62
7. 9-449
8. 22, 3.12, 11.0, 4.20, 1.82, 3.65
9. A new mineral reported from Inner Mongolia.
11. 46

XIV-L
1. gyrolite
2. dicalcium trisilicate hydrate
3. C₃S₃H
4. Ca₄(Si₆O₁₅)(OH)₂·3H₂O
5. hexagonal: a₀ = 9.72, c₀ = 132.8 (6-layer thicknesses)
6. n₀ = 1.55, nε = 1.54
7. 9-449
8. 22, 3.12, 11.0, 4.20, 1.82, 3.65
9. A naturally occurring mineral that may be synthesized at temperatures between 120 and about 200 C under saturated steam pressure. The formula has been disputed.
11. 5, pp. 204-205; 46; 66; 67; 68

XIV-M
1. calcium disilicate trihydrate
2. CS₂H₃ (approximately)
3. Exact composition not established
4. hexagonal: a₀ = 9.73, c₀ = 15.3
5. 7.
6. 8.
9. 15.3 Å X-ray peak is considered diagnostic

10. Has been called Assarsson's Z-phase. This is a relatively unstable phase that can be synthesized at temperatures of the autoclave of 140 to 200 C. It seems to be related to gyroite, truscottite, and reyerite.

11. 5, pp. 207-208; 46; 66; 67; 68

XIV-N 1. tricalcium-6-silicate-8-hydrate
2. nekoite
3. \(\text{Ca}_3\text{S}_6\text{H}_8 \)
4.
5. \(\text{Ca}_3\text{Si}_6\text{O}_{15} \cdot 8\text{H}_2\text{O} \)
6. triclinic: \(a_0 = 7.60, b_0 = 7.32, c_0 = 9.86, \alpha = 111 \text{ deg} 48 \text{ min}, \beta = 86 \text{ deg} 12 \text{ min}, \gamma = 103 \text{ deg} 54 \text{ min} \)
7. \(\overline{\mu} = 1.54 \)
8. 11-595
9. 9.25, 8.88, 5.91, 5.75, 5.70, 5.63, 5.50, 5.30, 4.90
10. Natural mineral that is not yet synthesized. Its crystal structure is unknown, and it may be more closely similar to calcium disilicate dihydrate (okenite) in composition than indicated.

11. 131

XIV-O 1. calcium disilicate dihydrate
2. okenite
3. \(\text{CaS}_2\text{H}_2 \)
4.
5. \(\text{CaSi}_2\text{O}_5 \cdot 2\text{H}_2\text{O} \)
6. triclinic: \(a_0 = 9.84, b_0 = 7.20, c_0 = 21.33, \alpha = 90 \text{ deg}, \beta = 103.9 \text{ deg}, \gamma = 111.5 \text{ deg} \)
7. \(\overline{\mu} = 1.53, \overline{\eta} = 1.54 \)
8. 9-469
9. 21.0, 8.88, 2.93, 3.58, 3.07, 3.05
10. Natural mineral that is similar to nekoite and, like it, not yet synthesized and of unknown crystal structure.

11. 5, pp. 176-177; 46

XIV-P 1. truscottite
2.
3. \(\text{C}_3\text{S}_4\text{H} \) varying to \(\text{C}_6\text{S}_{10}\text{H}_3 \)
4.
5. composition uncertain
6. hexagonal (trig.): \(a_0 = 9.72, c_0 = 18.71 \)
7. \(\overline{\mu} = 1.55 \)
8. 7-302, 17-761
9. 3.12, 1.92, 4.23, 2.82, 1.83, 9.40
10. Naturally occurring mineral that has been synthesized at temperatures from 200 to 300 C and varying pressures. The composition is uncertain. The mineral closely resembles reyerite, with which it has been confused, and to a lesser extent gyroite.

11. 5, pp. 205-207; 46

XIV-Q 1. reyerite
2.
3. \(\text{KCa}_{28}\text{S}_{48}\text{H}_{15} \)
4.
5. \(\text{KCa}_{14}\text{Si}_{24}\text{O}_{60}(\text{OH})_5 \cdot 5\text{H}_2\text{O} \)
6. hexagonal (trig.): \(a_0 = 9.74 \), \(c_0 = 19.04 \)
7. \(n_\omega = 1.56 \), \(n_\varepsilon = 1.56 \)
8. 17-760
9. \(3.17_{10}, 2.85_{8}, 2.66_{8}, 1.85_{8}, 4.23_{8}, 3.52_{5} \)
10. Naturally occurring mineral closely resembling truscottite and to a lesser degree gyrolite. Reyerite has a somewhat different infrared absorption spectrum than truscottite, and the potassium is probably essential to the structure, which is unknown.
11. 5, pp. 205-207; 46

XIV-R 1. scawtite
2.
3. \(C_7 S_6 H_3 \)
4.
5. \(Ca_7Si_6O_{21}H_2CO_3 \)
6. monoclinic: \(a_0 = 10.22 \), \(b_0 = 15.42 \), \(c_0 = 6.70 \), \(\beta = 100 \text{ deg} \ 29 \text{ min} \)
7. \(n_\alpha = 1.60 \), \(n_\beta = 1.61 \), \(n_\gamma = 1.62 \)
8. 10-400, 12-777
9. \(3.04_{4}, 1.90_{6}, 3.02_{5}, 2.50_{5}, 2.24_{5}, 4.56_{5} \)
10. Has been called CSH(A)-Bogue. It is a naturally occurring mineral that has been synthesized at 150°C under saturated steam pressure. The carbonate is probably essential to the structure; if carbon dioxide is rigorously excluded it does not form.
11. 5, p. 226; 46

XIV-S 1. jennite
2.
3. \(NC_8S_5H_11 (?) \)
4.
5. \(Na_2Ca_8Si_5O_{30}H_{22} (?) \)
6. triclinic: \(a_0 = 10.56 \), \(b_0 = 7.25 \), \(c_0 = 10.81 \), \(\alpha = 99 \text{ deg} \ 42 \text{ min} \), \(\beta = 97 \text{ deg} \ 40 \text{ min} \), \(\gamma = 110 \text{ deg} \ 04 \text{ min} \)
7. \(n_\alpha = 1.55 \), \(n_\beta = 1.56 \), \(n_\gamma = 1.57 \)
8. 18-1206
9. \(10.5_{10}, 2.92_{6}, 3.04_{6}, 2.83_{6}, 2.66_{6}, 6.46_{6} \)
10. Naturally occurring mineral found at Crestmore, California, and in Israel. It may resemble substituted calcium silicate hydrate gel occurring in cement paste. Work subsequent to the original investigation does not confirm the presence of Na. Heating at about 80°C removes 4 molecules of water and causes the basal spacing to shrink from 10.6 to 8.7 Å; the partly dehydrated phase is called meta-jennite. A tentative structure has been suggested that is different from that of tobermorite in the Ca-O sheets, which in jennite contain hydroxyl ions and water molecules.
11. 46; 70

XIV-T 1. thaumasite
2.
3. \(C_3SCH_{27} \)
4.
5. \([Ca_3 \cdot Si(OH)_6 \cdot 24H_2O] (CO_3)(SO_4) \)
6. hexagonal: \(a_0 = 10.99 \), \(c_0 = 10.31 \)
7. \(n_\varepsilon = 1.47 \), \(n_\omega = 1.51 \)
8. 13-156
9. \(9.66_{10}, 3.79_{5}, 4.58_{5}, 5.54_{5}, 2.60_{4}, 2.15_{4} \)
10. Structure closely resembles that of ettringite with Si(OH)_6^{2-} for Al(OH)_6^{3+} and (CO_3)_2 + (SO_4)^2 for (SO_4)_3 + (H_2O)_{1.5}. It has been reported in normally cured con-
crete and is known as a natural mineral, but it does not seem to have been synthesized under controlled laboratory conditions.

11. 120; 121; 124

XV. HYDRATED CALCIUM ALUMINATES AND RELATED COMPOUNDS

XV-A 1. tricalcium aluminate-6-hydrate*

2.
3. Ca$_3$AH$_6$
4.
5. Ca$_3$Al$_2$(OH)$_{12}$
6. cubic: $a_o = 12.56$
7. n = 1.60
8. 3-0125
9. 5.16, 2.048, 4.476, 3.376, 3.156
10. End member of garnet-hydrogarnet solid solution series C$_3$(F$_1$-pA$_2$)(S$_1$-qH$_2$)$_3$ where $p = 1$ and $q = 1$. This compound is the stable calcium aluminate hydrate at room temperature, the hexagonal phases tending to convert to it at slightly elevated temperatures. It occurs sporadically and to a limited extent in portland cement concrete, is more commonly found in lime-pozzolan systems, and is a major constituent of hydrated aluminous cements that have been exposed to high temperature and moist weathering conditions.

11. 5, pp. 233-286; 40; 44; 45; 71

XV-B 1. tetracalcium trialuminate trihydrate

2.
3. C$_4$A$_3$H$_3$
4.
5. Ca$_3$[Al$_2$O$_2$(OH)$_2$]OH
6. orthorhombic: $a_o = 12.78$, $b_o = 12.42$, $c_o = 8.90$
7. $\bar{n} = 1.63$
8. 14-464
9. 3.60, 3.27, 2.80, 3.03, 2.84, 2.07
10. Synthesized at 350°C at saturated steam pressure or at temperatures above 260°C at 0.7 kilobars. It is also formed as a dehydration product of tricalcium aluminate-6-hydrate. On further dehydration tetracalcium trialuminate is formed.

11. 5, pp. 239-240; 72; 122; 135

XV-C 1. tetracalcium aluminate-19-hydrate

2.
3. C$_4$AH$_{19}$
4.
5. [Ca$_2$Al(OH)$_6$][OH·6H$_2$O]
6. hexagonal (trig.):
 - α_1: $a_o = 5.77$, $c_o = 64.08$
 - α_2: $a_o = 5.77$, $c_o = 21.37$
7. $n_\omega = 1.50$, $n_\epsilon = 1.49$
8. α_1: 14-631; α_2: 14-628
9. α_1: 10.8p, 2.79q, 2.49r, 2.88s, 2.53t, 3.94u
 - α_2: 2.88p, 2.79q, 10.8r, 4.10a, 2.67s, 2.50t
10. Two closely similar forms, α_1 and α_2, are described in the literature, and a β-C$_4$AH$_{19}$ with a basal spacing at 10.42 Å has been reported to exist at temperatures below 15°C. This compound is the prototype AFm (aluminate-ferrite-monosubstituent) phase, implying hexagonal sheet morphology. It decomposes to lower hydration
states at relative humidity of 85 percent or less at room temperature. It is occasionally found in portland cement concrete, especially if the ratio of sulfate to tricalcium aluminate is low.

11. 5, pp. 240-242, 343; 44; 73; 74; 75

XV-D 1. tetracalcium aluminate-13-hydrate*

2.
3. Ca$_4$AH$_{13}$

4.
5. [Ca$_3$Al(OH)$_6$][OH · 3H$_2$O] or [Ca$_2$Al(OH)$_6$][OH · 2½H$_2$O]
6. hexagonal (trig.): a$_0$ = 5.73, c$_0$ = 47.16
7. n$_{ω}$ = 1.53, n$_{ε}$ = 1.52
8. 16-339
9. 7.910, 3.998, 2.876, 2.466, 1.665, 2.704
10. Lower hydration state corresponding to tetracalcium aluminate-19-hydrate. The X-ray basal spacing is 7.9 Å. There is an unsettled dispute as to whether the composition of this phase is really Ca$_4$AH$_{13}$ or Ca$_4$AH$_{12}$. Confusion also exists as to the possible occurrence of a Ca$_4$AH$_{13}$ phase with a basal spacing of 8.2 Å in addition to the carbonate-bearing solid solution series C$_3$A$_{0.25}$H$_{12}$-C$_3$A$_{0.5}$H$_{12}$, which shows the 8.2 Å spacing. A natural mineral, hydrocalumite, is similar in layer thickness and approximate composition to tetracalcium aluminate-13-hydrate but contains a little CO$_3$; it is, however, a 2-layer rather than a 6-layer polytype. Lower hydration states of tetracalcium aluminate occur, with 11 and 7 water molecules per formula unit. Solid solution with corresponding iron-bearing phases is known to occur. The basic structure consists of layers of Ca$_2$Al(OH)$_6$ units, with interlayer composition consisting of OH + H$_2$O. The compound may be formed in hydrated portland cements high in alumina and low in sulfate.

11. 5, pp. 240-243; 44; 74; 75; 76

XV-E 1. tetracalcium aluminate-7-hydrate

2.
3. Ca$_4$AH$_7$

4.
5. [Ca$_3$Al(OH)$_6$][OH]
6. hexagonal: a$_0$ = 5.74, c$_0$ = 5.4 (structural element but not necessarily the unit cell)
7. 8.
8.
9.
10. Reported basal spacings have been given as either 7.2 to 7.4 Å or 5.4 Å, apparently depending on the conditions of dehydration. There is also a tetracalcium aluminate-11-hydrate with a basal spacing of 7.4 Å.

11. 44; 74; 77; 80

XV-F 1. tetracalcium aluminate hemicarbonate-12-hydrate

2.
3. Ca$_4$AlC$_{0.5}$H$_{12}$

4.
5. [Ca$_3$Al(OH)$_6$][0.5H$_2$O · 0.25CO$_3$ · aq]
6. hexagonal: a$_0$ = 5.74, c$_0$ = 8.2 (structural element but not necessarily the unit cell)
7. n$_{ω}$ = 1.54, n$_{ε}$ = 1.52
8.
9. 8.210, 2.889, 2.459, 3.887, 2.726, 2.556 (ref. 6, p. 396)
10. Also informally called hemicarbonaluminate and quarter-carbonate. This compound has been frequently misidentified as α-Ca$_4$AH$_{13}$, the existence of which is still in dispute. This phase has an X-ray basal spacing of 8.2 Å. The present phase has
recently been shown to be a solid solution series between the compositions $\text{C}_4\text{A}_{0.25}\text{H}_{11-12}$ and $\text{C}_4\text{A}_{0}\text{H}_{11-12}$. It is an AFm phase with a structure very closely related to that of tetracalcium aluminate-13-hydrate. It forms readily when solutions saturated in alumina and lime precipitate solids in the presence of atmospheric carbon dioxide.

11. 6; 75; 76; 78

XV-G 1. tetracalcium aluminate hemicarbonate-7-hydrate
2. $\text{C}_4\text{A}_{0.5}\text{H}_7$
3. $[\text{Ca}_2\text{Al}((\text{OH})_3][0.5\text{OH} \cdot 0.25 \text{CO}_3 \cdot \frac{1}{2}\text{H}_2\text{O}]
4. hexagonal: $a_0 = 5.74$, $c_0 \approx 7.3$ (structural element but not necessarily the unit cell)
5. Dehydration product of the tetracalcium aluminate hemicarbonate-12-hydrate series, nominally corresponding to tetracalcium aluminate-7-hydrate. The actual compositions reported vary from 6 to 9 molecules of water per formula unit. The basal spacing is probably close to 7.3 \text{\AA}.
11. 44; 74; 77

XV-H 1. tetracalcium aluminate carbonate-11-hydrate
2. $\text{C}_4\text{A}_{0.5}\text{H}_1$
3. $[\text{Ca}_2\text{Al}((\text{OH})_3][0.5\text{CO}_3 \cdot 2.5\text{H}_2\text{O}]
4. hexagonal: $a_0 = 5.7$, $c_0 = 7.6$ (structural element but not necessarily the unit cell)
5. $n_\omega = 1.55$, $n_\epsilon = 1.53
6. 14-83
7. 7.57_{10}, 3.78_{2}, 2.86_{3}, 2.42_{3}, 2.52_{2}, 2.49_{2}
10. An apparently constant-composition phase with a gap separating it from the high carbonate end of the tetracalcium aluminate hemicarbonate-12-hydrate series. However, a complete solid solution series has been reported with Mg replacing Ca.
11. 6; 44; 75; 81

XV-I 1. dicalcium aluminate-8-hydrate
2. C_2AH_8
3. $[\text{Ca}_2\text{Al}((\text{OH})_3][\text{Al}((\text{OH})_4 + 3\text{H}_2\text{O}]
4. hexagonal: $a_0 = 5.7$, $c_0 = 10.7$ (structural element but not necessarily the unit cell)
5. $n_\omega = 1.52$, $n_\epsilon = 1.50
6. 11-205
7. 10.7_{10}, 5.36_{8}, 2.86_{7}, 2.54_{7}, 2.39_{6}, 1.67_{6}
10. An AFm phase (see XV-C, tetracalcium aluminate-19-hydrate) said to have a layer structure in common with various members of this group but to differ by the presence of hydroxyaluminate ions in interlayer positions. Two slightly different α-polytypes are known with X-ray basal spacings of ~ 10.7 \text{\AA}, and also a β-polytype with a 10.4 \text{\AA} spacing. A number of progressively more dehydrated forms can be prepared, and analogous iron compounds are known.
11. 44; 83; 84; 85
XV-J 1. monocalcium aluminate-10-hydrate
 3. CAH₁₀
 5. CaAl₂(OH)₆·6H₂O
 6. hexagonal: a₀ = 9.45, c₀ = 14.60 (?)
 7. φ = 1.47
 8. 12-408
 9. 7.16₁₀, 14.2₉, 5.37₁, 4.73₁, 3.70₁, 3.56₁
 10. Phase principally responsible for the hydraulic hardening and strength of aluminous cements. It is stable at low temperatures, but if relative humidity is high it may convert to tricalcium aluminate hexahydrate at moderately high ambient temperatures, with loss of strength. A number of dehydration states have been reported.
 11. 5, pp. 243-244; 6, pp. 17-22, 385; 44

XVI. HYDRATED CALCIUM ALUMINATES BEARING ADDITIONAL ANIONIC GROUPS

XVI-A 1. tetracalcium aluminate monosulfate-12-hydrate
 2.
 3. Ca₄SH₁₂
 4. monosulfoaluninate
 5. [Ca₂Al(OH)₆][0.5(SO₄)·3H₂O]
 6. hexagonal (trig.): a₀ = 5.76, c₀ = 26.79
 7. n₀ = 1.50, n₂ = 1.49
 8. 18-275
 9. 8.9₀₁₀, 4.4₉₉, 2.2₃₉, 3.₉₉₉, 2.₄₂₂, 2.₁₉₂
 10. Occurs as one of two major aluminum-bearing phases in ordinary hydrated portland cement concrete. This is an AFm phase with a layer structure similar to that of many others. A higher hydration stage (tetracalcium aluminate monosulfate-14-hydrate) can be prepared, and a number of lower hydration stages are known, containing variously 10, 8, 7, and possibly lower numbers of water molecules per formula unit. The 12-hydrate is stable down to 12 percent relative humidity at room temperature. An incomplete solid solution series is formed with tetracalcium aluminate-13-hydrate.
 11. 5, pp. 262, 341-343; 44; 75; 76; 87; 104; 107

XVI-B 1. tetracalcium aluminate monosulfate-14-hydrate
 2.
 3. Ca₄SH₁₄
 4.
 5. [Ca₂Al(OH)₆][0.5(SO₄)·4H₂O]
 6. hexagonal (trig.): a₀ = 5.76, c₀ = 28.5
 7.
 8.
 9.
 10. Higher hydration state of tetracalcium aluminate monosulfate-12-hydrate, stable only above 95 percent relative humidity at room temperature. The X-ray basal spacing is 9.5 Å. A still higher hydration form (16H₂O, with a basal spacing 10.3 Å) is formed in aqueous suspension at temperature less than 8 C.
 11. 75

XVI-C 1. ettringite*
 2.
3. \(\text{C}_6\text{A}\overline{S}_3\text{H}_{32} \)
4. 6-calcium aluminate trisulfate-32-hydrate
5. \(\{\text{Ca}_6[\text{Al(OH)}_6]_2 \cdot 24\text{H}_2\text{O}\}[(\text{SO}_4)_3 \cdot 1\frac{1}{2}\text{H}_2\text{O}] \)
6. hexagonal (trig.): \(a_0 = 11.23, c_0 = 24.48 \)
7. \(n_\omega = 1.46, n_\varepsilon = 1.46 \)
8. 9-414
9. 9.73_{10}, 5.61_{6}, 3.88_{5}, 2.56_{6}, 2.21_{5}, 2.77_{4}
10. Type AFt (aluminate-ferrite-trisubstituted) compound and is typically needle-shaped. It is stable at room temperature down to 4 percent relative humidity. This compound is probably the first alumina-bearing hydration product formed in ordinary portland cement concrete and may persist indefinitely or else convert to tetracalcium aluminate monosulfate-12-hydrate. It is common in secondary deposits in concrete and mortar. The water content of ettringite is somewhat variable. The compound is stable to vapor pressures down to 0.7 mm Hg at 20°C; it can be dried to a water content of 8H_2O per formula unit without complete structural change. A complete solid solution exists with the iron analogue. A chloride-bearing analogue and a carbonate-bearing analogue are known. The structure consists of columns of \([\text{Ca}_3\text{Al(OH)}_6 \cdot 12\text{H}_2\text{O}]^{+3} \) parallel to the c or needle axis with sulfate anions and water molecules in the channels between adjacent columns.

11. 5, pp. 260-262, 337-343; 43; 88; 100; 143

XVI-D
1. 6-calcium aluminate tricarbonate-30-hydrate
2.
3. \(\text{C}_6\text{A}\overline{C}_3\text{H}_{30} \)
4.
5. \(\{\text{Ca}_6[\text{Al(OH)}_6]_2 \cdot 24\text{H}_2\text{O}\}[(\text{CO}_3)_3] \)
6. hexagonal (trig.)
7.
8. 18-277
9. 9.41_{10}, 2.51_{7}, 3.80_{4}, 2.70_{4}, 2.16_{5}, 5.43_{3}
10. AFt phase that is analogous to ettringite and shows the same needle-shaped morphology and probably has analogous structure.

11. 5, pp. 274-275; 44; 81; 87; 104

XVI-E
1. tetracalcium aluminate dichloride-10-hydrate
2.
3. \(\text{C}_4\text{A}\overline{(\text{CaCl}_2)}\text{H}_{10} \)
4. Friedel's salt
5. \([\text{Ca}_3\text{Al(OH)}_6][\text{Cl} \cdot 2\text{H}_2\text{O}] \)
6. monoclinic or hexagonal (trig.):
 - \(\alpha \) (mon.): \(a_0 = 9.96, b_0 = 5.73, c_0 = 16.84, \beta = 110.5 \) deg
 - \(\beta \) (hex.): \(a_0 = 5.74, c_0 = 46.87 \)
7. \(n_\omega = 1.55, n_\varepsilon = 1.53 \)
8. 19-201, 19-202
9. \(\alpha: 7.89_{10}, 3.94_{8}, 3.85_{5}, 2.87_{5}, 2.16_{3}, 2.63_{2} \)
 - \(\beta: 7.81_{10}, 3.90_{5}, 2.87_{2}, 2.31_{3}, 2.20_{5}, 3.79_{3} \)
10. AFm phase related to tetracalcium aluminate-12-hydrate, with which limited solid solution may occur. A great many related quaternary salts may be prepared.

11. 5, p. 277; 44; 105; 106

XVI-F
1. 6-calcium aluminate-6-chloride-30-hydrate
2.
3. \(\text{C}_6\text{A} \cdot 3(\text{CaCl}_2) \cdot 30\text{H}_2\text{O} \)
4.
5. \(\{\text{Ca}_6[\text{Al(OH)}_6]_2 \cdot 24\text{H}_2\text{O}\}[(\text{Cl}_3) \)
6. hexagonal: \(a_0 = 11.74 \), \(c_0 = 20.71 \)
7.
8.
9. 10.15, 3.66, 2.57, 5.06, 4.69, 2.29 \(\text{ref. 44} \)
10. AF\text{t} compound analogous to ettringite. The needle-shaped morphology is similar, but the needles are much smaller.
11. 44; 90; 91; 105; 123; 143

XVI-G

1. tetracalcium aluminate sulfate sodium-16-hydrate
2.
3. \(\text{Ca}_4\text{Al}_6\text{S}_4\text{Na}_2\text{O}_{16} \cdot 16\text{H}_2\text{O} \)
4.
5. \(\text{Ca}_4\text{Al}_6\text{S}_4\text{Na}_2\text{O}_{16} \cdot 8\text{H}_2\text{O} \)
6. hexagonal: \(a_0 = 5.75 \), \(c_0 = 16 \)
7.
8.
9. 10.15, 5.01, 2.41, 3.56, 2.24, 2.88 \(\text{ref. 96} \)
10. New alkali-bearing compound that appears to be a modified AFm phase with some or all of the alkali exchangeable. Two lower dehydration states are reported: a 12-hydrate with a basal spacing of 9.3 \(\text{Å} \) and an 8-hydrate with a basal spacing of 8.1 \(\text{Å} \).
11. 44; 96

XVII. HYDRATED CALCIUM ALUMINATE SILICATES

XVII-A

1. dicalcium aluminate monosilicate-8-hydrate
2.
3. \(\text{Ca}_2\text{Al}_2\text{SiO}_8 \cdot \text{H}_2\text{O} \)
4. Stratling's compound
5. \(\left[\text{Ca}_2\text{Al(OH)}_6 \right] \left[\text{SiAlO}_6 \cdot 3\text{H}_2\text{O} \right] \)
6. hexagonal: \(a_0 = 5.75 \), \(c_0 = 12.6 \) (structural element but not necessarily unit cell)
7. \(n = 1.51 \)
8. 19-210
9. 12.54, 4.17, 2.87, 6.24, 2.62, 2.38
10. Has been called gehlenite hydrate, although another hydrate of different crystal structure is now known to occur. It is probably an AFm phase with silicate as the interlayer ion. Replacement of aluminum by iron in amounts up to 0.3 formula unit has been reported. It has been found to occur in reacted lime-pozzolan and cement-pozzolan mixtures.
11. 5, pp. 275-277; 92; 93; 94; 134

XVII-B

1. dicalcium aluminate monosilicate monohydrate
2.
3. \(\text{Ca}_2\text{Al}_2\text{SiO}_8 \cdot \text{H}_2\text{O} \)
4.
5. \(\text{Ca}_2\text{Al}_2\text{SiO}_8 \cdot \text{H}_2\text{O} \)
6. cubic: \(a_0 = 8.83 \)
7. \(n = 1.63 \)
8. 16-388
9. 2.79, 3.61, 2.08, 1.56, 2.55, 2.36
10. The ASTM file entry is misleadingly labeled "gehlenite hydrate." This cubic compound is formed from dicalcium aluminate monosilicate-8-hydrate at 350 \(\text{C} \) and has some similarity to tetracalcium trialuminate trihydrate.
11. 95
XVIII. HYDRATED CALCIUM FERRITES AND RELATED COMPOUNDS

XVIII-A 1. tricalcium ferrite-6-hydrate
2.
3. C₃FH₆
4.
5. Ca₃Fe₂(OH)₁₂
6. cubic: a₀ = 12.7
7.
8. 3-1121
9. 1.70₁₀, 4.54₈, 3.19₈, 2.85₈, 5.20₈, 2.60₈
10. This compound, if it exists, would be an end member of the garnet-hydrogarnet solid solution series with p = 0 and q = 1. Some workers doubt its existence, suggesting that a minimum of about 0.16 molecule of alumina must be present in the highest iron structure that can be prepared.
11. 40; 42; 44; 97; 98

XVIII-B 1. tetracalcium ferrite-13-hydrate
2.
3. C₄FH₁₃
4.
5. [Ca₂Fe(OH)₆][OH·3H₂O]
6. hexagonal: a₀ = 5.90, c₀ = 7.70 (structural element but not necessarily true unit cell)
7.
8.
9. 7.80, 3.91, 2.94, 2.77, 2.63, 2.52 (ref. 43, relative intensities not given)
10. AFm product analogous to and forming a complete solid solution series with tetracalcium aluminate-13-hydrate.
11. 5, pp. 278-280; 43; 44; 97

XVIII-C 1. 6-calcium ferrite trisulfate-32-hydrate
2.
3. C₆F₃S₃H₃₂
4. iron-ettringite
5. {Ca₆[Fe(OH)₆]₂·2H₂O}[SO₄]₃·1½H₂O
6. hexagonal (trig.): a₀ = 11.23, c₀ = 22.14
7. n₁ = 1.49, n₂ = 1.49
8. 19-223
9. 9.8₁₀, 3.95₈, 5.60₇, 2.80₇, 2.60₇
10. Iron analogue of ettringite, thus an AFt phase. Solid solution occurs between the two, but apparently only to a maximum F:A ratio of 3. This phase does not appear to be formed in hydrated cements.
11. 5, pp. 280-281; 44; 99; 100; 101

XVIII-D 1. tetracalcium ferrite monosulfate-14-hydrate
2.
3. C₄F₅SH₁₄
4.
5. [Ca₂Fe(OH)₆][0.5(SO₄)·4H₂O]
6. hexagonal: a₀ = 8.80, c₀ = 10.40
10. Iron analogue of tetracalcium aluminate monosulfate-14H$_2$O, and forms solid solutions with the aluminum-bearing compound. A 12-hydrate state with a basal spacing of 9.0 Å is known, along with further dehydration states.

XVIII-E

1. Tetracalcium ferrite monosulfate-12-hydrate

2. C$_4$F\bar{S}H$_{12}$

3. $[\text{Ca}_2\text{Fe(OH)}_6][0.5(\text{SO}_4) \cdot 3\text{H}_2\text{O}]$

4. hexagonal: $a = 8.80$, $c = 8.98$

5. A lower dehydration stage of tetracalcium ferrite monosulfate-14-hydrate, analogous to tetracalcium aluminate monosulfate-12-hydrate.

11. 44; 102; 103
REFERENCES

73. Aruja, E. Unit Cell and Space Group Determinations of Tetra- and Di-Calcium Aluminate Hydrates: The Unit Cell and Space Group of $4\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 19\text{H}_2\text{O}$ Polymorphs. Acta Cryst., Vol. 13, 1960, pp. 1018; Vol. 14, 1961, pp. 1213-1216.
87. Kuzel, H. J. Preparation and X-Ray Study of $3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot \text{CaSO}_4 \cdot 12\text{H}_2\text{O}$. N. Jb. für Mineralogie, Vol. 7, 1965, pp. 193-197. (In German.)
91. Schwiete, H. E., Ludwig, U., and Albeck, J. Investigations on $3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{CaCl}_2 \cdot 3\text{OH}_2\text{O}$. Naturwiss., Vol. 55, 1968, p. 179. (In German.)
103. Schwiete, H. E., Ludwig, U., and Jäger, P. Investigation on the Hydration of $\text{Ca}_3\text{A}, \text{Ca}_2\text{F}, \text{Ca}_4\text{AF},$ and $\text{Ca}_6\text{A}_2\text{F}$ With Calcium Sulfates. Institut für Gesteinskunde, Rheinisch-Westfälische Technische Hochschule, Aachen, 1967. (In German.)

INDEX

AFm phase
(see tetracalcium aluminate-19-hydrate, 27;
tetracalcium aluminate-13-hydrate, 28;
tetracalcium aluminate-7-hydrate, 28;
tetracalcium aluminate hemicarbonate-12-hydrate, 28;
tetracalcium aluminate hemicarbonate-7-hydrate, 29;
tetracalcium aluminate monosulfate-12-hydrate, 30;
tetracalcium aluminate monosulfate-14-hydrate, 30;
tetracalcium aluminate dichloride-10-hydrate, 31;
tetracalcium aluminate sulfate sodium-16-hydrate, 32)

AFt phase
(see ettringite, 30;
6-calcium aluminate tricarbonate-30-hydrate, 31;
6-calcium aluminate-6-chloride-30-hydrate, 31)

afwillite
(see tricalcium disilicate trihydrate, 23)
alite, 9
(see also tricalcium silicate, 9)
andradite
(see garnet-hydrogarnet solid solution series, 17)
anhydrite, 5
aphtitolite, 8
aragonite, 4
arcanite, 7
Assarsson's phase Z
(see calcium disilicate trihydrate, 24)
bassanite, 6
belite, 11
bredigite
(see α'-dicalcium silicate, 10)
brownmillerite
(see calcium aluminoferrite solid solution series, 16)
brucite
(see magnesium hydroxide, 4)
calciochondrodite
(see 5-calcium disilicate monohydrate, 21)
calcite, 4
calcium aluminate chloride, 16
calcium aluminate fluoride, 15
calcium aluminate-10-hydrate
(see monocalcium aluminate-10-hydrate, 30)
calcium-6-aluminate, 15
calcium aluminoferrite solid solution series, 16
calcium carbonate (hex.)
 (see calcite, 4)
calcium carbonate (o.-rh.)
 (see aragonite, 4)
calcium dialuminate, 15
calcium disilicate dihydrate, 25
calcium disilicate trihydrate, 24
calcium monosilicate monohydrate
 (see suolunite, 24)
calcium hydroxide, 3
calcium magnesium carbonate
 (see dolomite, 5)
calcium monoaluminate, 15
calcium monosilicate
 (see pseudowollastonite, 12; wollastonite, 13)
calcium monosilicate (tric. I)
 (see pseudowollastonite, 12)
calcium oxide, 3
calcium silicate hydrate gel, 18
calcium silicate hydrate I, 19
calcium silicate hydrate II, 19
calcium sulfate
 (see anhydrite, 5; soluble anhydrite, 6)
calcium sulfate dihydrate
 (see gypsum, 6)
calcium sulfate hemihydrate
 (see bassanite, 6)
4-calcium disilicate monohydrate, 22
4-calcium trisilicate monohydrate, 23
5-calcium-3-aluminate, 15
5-calcium disilicate dicarbonate
 (see tilleyite, 13)
5-calcium disilicate monocarbonate
 (see spurrite, 13)
5-calcium disilicate monohydrate, 21
5-calcium-5-silicate monohydrate, 23
5-calcium disilicate monosulfate, 13
6-calcium aluminate-6-chloride-30-hydrate, 31
6-calcium aluminate trisulfate-30-hydrate, 31
6-calcium aluminate trisulfate-32-hydrate
 (see ettringite, 30)
6-calcium disilicate trihydrate, 21
6-calcium ferrite trisulfate-32-hydrate, 33
6-calcium trisilicate hydrate, 23
8-calcium-5-silicate, 12
12-calcium-7-aluminate, 14
cement gel
 (see substituted calcium silicate hydrate gel, 18)
chalcedony
 (see quartz, 3)
chert
 (see quartz, 3)
cristobalite
 (see quartz, 3)
CA
 (see calcium monoaluminate, 15)
CAH₁₀
(see monocalcium aluminate-10-hydrate, 30)
CA₂
(see calcium dialuminate, 15)
CA₆
(see calcium-6-aluminate, 15)
CC
(see calcite, 4;
aragonite, 4;
vaterite, 5)
CH
(see calcium hydroxide, 3)
CSH
(see calcium silicate hydrate gel, 18;
calcium silicate hydrate I, 19;
calcium silicate hydrate II, 19;
suolunite, 24)
C-S-H
(see calcium silicate hydrate gel, 18)
C-S-H gel
(see calcium silicate hydrate gel, 18)
C-S-H II
(see calcium silicate hydrate II, 19)
CSH(A)-Bogue
(see scawtite, 26)
CSH(B)
(see calcium silicate hydrate I, 19)
CS
(see anhydrite, 5;
soluble anhydrite, 6)
CSH₀.₅
(see bassanite, 6)
CSH₂
(see gypsum, 6)
CS₂H₂
(see calcium disilicate dihydrate, 25)
CS₂H₃
(see calcium disilicate trihydrate, 24)
C₃AH₈
(see dicalcium aluminate-8-hydrate, 29)
C₃ASH
(see dicalcium aluminate monosilicate monohydrate, 32)
C₃ASH₈
(see dicalcium aluminate monosilicate-8-hydrate, 32)
C₃F
(see dicalcium ferrite, 17;
calcium aluminoferrite solid solution series, 16)
C₃S
(see α-dicalcium silicate, 10;
α'-dicalcium silicate, 10;
β-dicalcium silicate, 10;
γ-dicalcium silicate, 11;
belite, 11)
C₃S (subst.)
(see belite, 11)
C₃SH
(see dicalcium silicate monohydrate (mon.), 22;
dicalcium silicate monohydrate (o.rh.), 22)
\(\text{Ca}_2\text{Si}_3\text{H}_2 \)
(see gyrolite, 24)
\(\text{C}_3\text{A} \)
(see tricalcium aluminate, 14)
\(\text{C}_3\text{A}(\text{CaCl}_2)\text{H}_{10} \)
(see tetracalcium aluminate dichloride-10-hydrate, 31)
\(\text{C}_3\text{A}(3\text{CaCl}_2)\text{H}_{30} \)
(see 6-calcium aluminate-6-chloride-30-hydrate, 31)
\(\text{C}_3\text{AH}_6 \)
(see tricalcium aluminate-6-hydrate, 27; garnet-hydrogarnet solid solution series, 17)
\(\text{C}_3\text{AS}_2\text{H}_4 \)
(see garnet-hydrogarnet solid solution series, 17)
\(\text{C}_3\text{AS}_3 \)
(see garnet-hydrogarnet solid solution series, 17)
\(\text{C}_3\text{FH}_6 \)
(see tricalcium ferrite-6-hydrate, 33)
\(\text{C}_3\text{FS}_3 \)
(see garnet-hydrogarnet solid solution series, 17)
\(\text{C}_5\text{S} \)
(see tricalcium silicate, 9)
\(\text{C}_5\text{S} \) (subst.)
(see alite, 9)
\(\text{C}_3\text{S}_2 \)
(see tricalcium disilicate (mon.), 11; tricalcium disilicate (o.-rh.), 12)
\(\text{C}_3\text{S}_3\text{H}_3 \)
(see tricalcium disilicate trihydrate, 23)
\(\text{C}_3\text{S}_3\text{H} \)
(see tricalcium trisilicate monohydrate, 24)
\(\text{C}_3\text{S}_3\text{H}_8 \)
(see tricalcium-6-silicate-8-hydrate, 25)
\(\text{C}_4\text{ACO}_{0.25}\text{H}_{12} \)
(see tetracalcium aluminate hemicarbonate-12-hydrate, 28)
\(\text{C}_4\text{ACO}_{0.5}\text{H}_7 \)
(see tetracalcium aluminate hemicarbonate-7-hydrate, 29)
\(\text{C}_4\text{ACO}_{0.5}\text{H}_{12} \)
(see tetracalcium aluminate hemicarbonate-12-hydrate, 28)
\(\text{C}_4\text{ACH}_{11} \)
(see tetracalcium aluminate carbonate-11-hydrate, 29)
\(\text{C}_4\text{AF} \)
(see calcium aluminoferrite solid solution series, 16)
\(\text{C}_4\text{AH}_7 \)
(see tetracalcium aluminate-7-hydrate, 28)
\(\text{C}_4\text{AH}_{11} \)
(see tetracalcium aluminate-7-hydrate, 28)
\(\text{C}_4\text{AH}_{12} \)
(see tetracalcium aluminate-13-hydrate, 28)
\(\text{C}_4\text{AH}_{13} \)
(see tetracalcium aluminate-13-hydrate, 28)
\(\text{C}_4\text{AH}_{19} \)
(see tetracalcium aluminate-19-hydrate, 27)
\(\text{C}_4\text{ASH}_{14} \)
(see tetracalcium aluminate monosulfate-14-hydrate, 30)
\(\text{C}_4\text{ASH}_{12} \)
(see tetracalcium aluminate monosulfate-12-hydrate, 30)
\(\text{C}_4\text{A}_3\text{H}_3 \)
(see tetracalcium trialuminate trihydrate, 27)
C₄A₃S
(see tetracalcium trialuminate sulfate, 16)

C₄FH₁₃
(see tetracalcium ferrite-13-hydrate, 33)

C₄FSH₁₂
(see tetracalcium ferrite monosulfate-12-hydrate, 34)

C₄FSH₁₄
(see tetracalcium ferrite monosulfate-14-hydrate, 33)

C₅S₂H
(see 4-calcium disilicate monohydrate, 22)

C₅S₂H
(see 4-calcium trisilicate monohydrate, 23)

C₅A₃
(see 5-calcium-3-aluminate, 15)

C₅S₂C
(see spurrite, 13)

C₅S₂C₂
(see tilleyite, 13)

C₅S₂H
(see 5-calcium disilicate monohydrate, 21)

C₅S₂S
(see 5-calcium disilicate monosulfate, 13)

C₅S₂H₅
(see calcium silicate hydrate gel, 18;
calcium silicate hydrate I, 19)

C₅S₃H
(see 5-calcium-5-silicate monohydrate, 23)

C₅S₆
(see tobermorite (9.7 Å), 20)

C₅S₆H
(see tobermorite (9.3 Å), 20)

C₅S₆H₃
(see tobermorite (11 Å), 19)

C₅S₆H₉
(see tobermorite (14 Å), 20)

C₅S₆H₅
(see calcium silicate hydrate gel, 18;
calcium silicate hydrate I, 19)

C₆A₃H₃O
(see 6-calcium aluminate tricarbonate-40-hydrate, 31)

C₆A₅H₃₂
(see ettringite, 30)

C₆FS₃H₃₂
(see 6-calcium ferrite trisulfate-32-hydrate, 33)

C₆S₂H₃
(see 6-calcium disilicate trihydrate, 21)

C₆S₂H
(see 6-calcium disilicate hydrate, 23)

C₇S₆C₃H₃
(see scawtite, 26)

C₁₁A₇·CaCl₂
(see calcium aluminate chloride, 16)

C₁₁A₇·CaF₂
(see calcium aluminate fluoride, 15)

C₁₂A₇
(see 12-calcium-7-aluminate, 14)
dellaite
 (see 6-calcium trisilicate hydrate, 23)
dicalcium aluninate-8-hydrate, 29
dicalcium aluninate monosilicate monohydrate, 32
dicalcium aluninate monosilicate-8-hydrate, 32
dicalcium ferrite, 17
dicalcium (potassium) silicate, 11
dicalcium silicate
 (see α-dicalcium silicate, 10; α'-dicalcium silicate, 10; β-dicalcium silicate, 10; γ-dicalcium silicate, 11; belite, 11)
dicalcium silicate hydrate (A)
 (see dicalcium silicate monohydrate (o.-rh.), 22)
dicalcium silicate hydrate I
 (see dicalcium silicate monohydrate (o.-rh.), 22)
dicalcium silicate monohydrate (mon.), 22
 (see dicalcium silicate monohydrate (mon.), 22)
dicalcium silicate monohydrate (o.-rh.), 22
 (see gyrolite, 24)
dolomite, 5

ellestadite
 (see hydroxyl ellestadite, 9)
ettringite, 30

foshagite
 (see 4-calcium trisilicate monohydrate, 23)
Friedel's salt
 (see tetracalcium aluninate dichloride-10-hydrate, 31)
garnet
 (see garnet-hydrogarnet solid solution series, 17)
garnet-hydrogarnet solid solution series, 17
gehlenite hydrate
 (see dicalcium aluninate monosilicate-8-hydrate, 32)
Glauber's salt
 (see sodium sulfate-10-hydrate, 8)
grossular
 (see garnet-hydrogarnet solid solution series, 17)
gypsum, 6
gyrolite, 24

hemicarbonaluminate
 (see tetracalcium aluninate hemicarbonate-12-hydrate, 28)
hemihydrate
 (see bassanite, 6)
hibschite
 (see garnet-hydrogarnet solid solution series, 17)
hillebrandite
 (see dicalcium silicate monohydrate (mon.), 22)
hydrated lime
 (see calcium hydroxide, 3)
hydrogarnet
 (see garnet-hydrogarnet solid solution series, 17)
hydrogrossular
 (see garnet-hydrogarnet solid solution series, 17)
hydroxyl ellestadite, 9

iron-ettringite
 (see 6-calcium ferrite trisulfate-32-hydrate, 33)

jasper
 (see quartz, 3)
jennite, 26

Kalousek's phase X
 (see substituted calcium silicate hydrate gel, 18)
kilchoanite
 (see tricalcium disilicate (o.-rh.), 12)
KC\(_{23}\)S\(_{12}\)
 (see dicalcium (potassium) silicate, 11)
KC\(_{26}\)S\(_{48}\)H\(_{15}\)
 (see reyerite, 25)

larnite
 (see \(\beta\)-dicalcium silicate; 10)
lime
 (see calcium oxide, 3)
magnesite, 5
magnesium carbonate
 (see magnesite, 5)
magnesium hydroxide, 4
magnesium oxide, 3
mayenite
 (see 12-calcium-7-aluminate, 14)
meta-jennite
 (see jennite, 26)
metathenardite, 7
monocalcium aluminate-10-hydrate, 30
monosulfoaluminate
 (see tetracalcium aluminate monosulfate-12-hydrate, 30)

nekoite
 (see tricalcium-6-silicate-8-hydrate, 25)
NC\(_{6}\)A\(_{3}\)
 (see tricalcium (sodium) aluminate, 14)
NC\(_{6}\)S\(_{5}\)H\(_{11}\)
 (see jennite, 26)

okenite
 (see calcium disilicate dihydrate, 25)
parawollastonite
 (see wollastone, 13)
periclase
 (see magnesium oxide, 3)
plaster of paris
 (see bassanite, 6)
plombierite
 (see calcium silicate hydrate I, 19)
portlandite
 (see calcium hydroxide, 3)
potassium calcium sulfate, 8
potassium calcium sulfate hydrate
 (see syngenite, 8)
potassium sulfate
 (see arcanite, 7;
 α-potassium sulfate, 8)
potassium sulfate (hex.)
 (see α-potassium sulfate, 8)
potassium sulfate (o.-rh.)
 (see arcanite, 7)
pseudowollastonite, 12

quarter-carbonate
 (see tetracalcium aluminate hemicarbonate-12-hydrate, 28)
quartz, 3
quicklime
 (see calcium oxide, 3)

rankinite
 (see tricalcium disilicate (mon.), 11)
reyerite, 25
riversideite
 (see tobermorite (9.3 Å), 20)
rosenhanite
 (see tricalcium trisilicate monohydrate, 24)
Roy's phase X
 (see 5-calcium disilicate monohydrate, 21)
Roy's phase Z
 (see tricalcium disilicate (o.-rh.), 12)
rustumite
 (see 4-calcium disilicate monohydrate, 22)

scawtite, 26
silica
 (see quartz, 3)
silicon dioxide
 (see quartz, 3)
spurrite, 13
sodium calcium aluminate
 (see tricalcium (sodium) aluminate, 14)
sodium, potassium sulfate
 (see aphpitotile, 8)
sodium sulfate
 (see thenardite, 6;
 also methathenardite, 7;
α-sodium sulfate, 7;
sodium sulfate, form III, 7)
sodium-sulfate, form I
(see metathenardite, 7)
sodium sulfate, form III, 7
sodium sulfate decahydrate
(see sodium sulfate-10-hydrate, 8)
sodium sulfate-10-hydrate, 8
Stratling's compound
(see dicalcium aluminate monosilicate-8-hydrate, 32)
substituted C-S-H gel
(see substituted calcium silicate hydrate gel, 18)
substituted calcium silicate hydrate gel, 18
(see also calcium silicate hydrate gel, 18)
soluble anhydrite, 6
substituted tricalcium silicate
(see alite, 9)
suolunite, 24
syngenite, 8

tetracalcium aluminate carbonate-11-hydrate, 29
tetracalcium aluminate dichloride-10-hydrate, 31
tetracalcium aluminate hemicarbonate-7-hydrate, 29
tetracalcium aluminate hemicarbonate-12-hydrate, 28
tetracalcium aluminate-7-hydrate, 28
tetracalcium aluminate-11-hydrate
(see tetracalcium aluminate-7-hydrate, 28)
tetracalcium aluminate-13-hydrate, 28
tetracalcium aluminate-19-hydrate, 27
tetracalcium aluminate monosulfate-12-hydrate, 30
tetracalcium aluminate monosulfate-14-hydrate, 30
tetracalcium aluminate sulfate sodium-16-hydrate, 32
tetracalcium ferrite-13-hydrate, 33
tetracalcium ferrite monosulfate-12-hydrate, 34
tetracalcium ferrite monosulfate-14-hydrate, 33
tetracalcium trialuminate sulfate, 16
tetracalcium trialuminate trihydrate, 27
thaumasite, 26
thenardite, 6
tilleyite, 13
tricalcium aluminate, 14
tricalcium aluminate-6-hydrate, 27
(see also garnet-hydrogarnet solid solution series, 17)
tricalcium disilicate (mon.), 11
tricalcium disilicate (o.-rh.), 12
tricalcium disilicate trihydrate, 23
tricalcium ferrite-6-hydrate, 33
(see also garnet-hydrogarnet solid solution series, 17)
tricalcium silicate, 9
(see also alite, 9)
tricalcium silicate hydrate
(see 6-calcium disilicate trihydrate, 21)
tricalcium-6-silicate-8-hydrate, 25
tricalcium (sodium) aluminate, 14
tricalcium trisilicate monohydrate, 24
tridymite
(see quartz, 3)
tobermorite
(see tobermorite (11 Å), 19;
tobermorite (14 Å), 20;
tobermorite (9.3 Å), 20;
tobermorite (9.7 Å), 20;
tobermorite (12 Å), 21;
tobermorite (10 Å), 21;
calcium silicate hydrate gel, 18;
calcium silicate hydrate I, 19)
tobermorite gel
(see calcium silicate hydrate gel, 18;
substituted calcium silicate hydrate gel, 18)
tobermorite (9.3 Å), 20
tobermorite (9.7 Å), 20
tobermorite (10 Å), 21
tobermorite (11 Å), 19
tobermorite (12 Å), 21
tobermorite (14 Å), 20
truscottite, 25

vaterite, 5

wollastonite, 13

xonotlite
(see 5-calcium-5-silicate monohydrate, 23)

α-calcium monosilicate
(see pseudowollastonite, 12)
α-dicalcium silicate, 10
α-potassium sulfate, 8
α-sodium sulfate, 7
α-tetracalcium aluminate-13-hydrate
(see tetracalcium aluminate-13-hydrate, 28;
tetracalcium aluminate hemicarbonate-12-hydrate, 28)
α-tricalcium silicate
(see tricalcium disilicate (mon.), 11)
α-CS
(see pseudowollastonite, 12)
α-C₅S
(see α-dicalcium silicate, 10)
α-C₅SH
(see dicalcium silicate monohydrate (o.-rh.), 22)
α-C₅S hydrate
(see dicalcium silicate monohydrate (o.-rh.), 22)
α₁-dicalcium aluminate-8-hydrate
(see dicalcium aluminate-8-hydrate, 29)
α₁-tetracalcium aluminate-19-hydrate
(see tetracalcium aluminate-19-hydrate, 27)
α₂-tetracalcium aluminate-19-hydrate
(see tetracalcium aluminate-19-hydrate, 27)
α'-dicalcium silicate, 10
α'-C₅S
(see α'-dicalcium silicate, 10)
\(\beta \)-calcium monosilicate

(see wollastonite, 13)

\(\beta \)-dicalcium aluminiate-8-hydrate

(see dicalcium aluminiate-8-hydrate, 29)

\(\beta \)-dicalcium silicate, 10

\(\beta \)-tetracalcium aluminiate-19-hydrate

(see tetracalcium aluminiate-19-hydrate, 27)

\(\beta \)-CS

(see wollastonite, 13)

\(\beta \)-C\(_2\)S

(see \(\beta \)-dicalcium silicate, 10)

\(\beta \)-C\(_2\)SH

(see dicalcium silicate monohydrate (mon.), 22)

\(\gamma \)-dicalcium silicate, 11

\(\gamma \)-dicalcium silicate hydrate

(see 5-calcium disilicate monohydrate, 21)

\(\gamma \)-C\(_2\)S

(see \(\gamma \)-dicalcium silicate, 11)

\(\mu \)-calcium carbonate

(see vaterite, 5)
SPONSORSHIP OF THIS SPECIAL REPORT

GROUP 2—DESIGN AND CONSTRUCTION OF TRANSPORTATION FACILITIES
John L. Beaton, California Division of Highways, chairman

Committee on Basic Research Pertaining to Portland Cement and Concrete
Katharine Mather, U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, chairman since 1970
W. W. Dolch, Purdue University, chairman before 1970

Subcommittee on Nomenclature
Sidney Diamond, Purdue University, chairman since 1966
G. L. Kalousek, U. S. Bureau of Reclamation, Denver, chairman before 1966

William G. Gunderman, Highway Research Board staff
THE National Academy of Sciences is a private, honorary organization of more than 800 scientists and engineers elected on the basis of outstanding contributions to knowledge. Established by a congressional act of incorporation signed by Abraham Lincoln on March 3, 1863, and supported by private and public funds, the Academy works to further science and its use for the general welfare by bringing together the most qualified individuals to deal with scientific and technological problems of broad significance.

Under the terms of its congressional charter, the Academy is also called upon to act as an official—but independent—adviser to the federal government in any matter of science and technology. This provision accounts for the close ties that have always existed between the Academy and the government, although the Academy is not a governmental agency and its activities are not limited to those on behalf of the government.

The National Academy of Engineering was established on December 5, 1964. On that date the Council of the National Academy of Sciences, under the authority of its act of incorporation, adopted articles of organization bringing the National Academy of Engineering into being, independent and autonomous in its organization and the election of its members, and closely coordinated with the National Academy of Sciences in its advisory activities. The two Academies join in the furtherance of science and engineering and share the responsibility of advising the federal government, upon request, on any subject of science or technology.

The National Research Council was organized as an agency of the National Academy of Sciences in 1916, at the request of President Wilson, to provide a broader participation by American scientists and engineers in the work of the Academy in service to science and the nation. Its members, who receive their appointments from the President of the National Academy of Sciences, are drawn from academic, industrial, and government organizations throughout the country. The National Research Council serves both Academies in the discharge of their responsibilities. Supported by private and public contributions, grants, and contracts and by voluntary contributions of time and effort by several thousand of the nation’s leading scientists and engineers, the Academies and their Research Council thus work to serve the national interest, to foster the sound development of science and engineering, and to promote their effective application for the benefit of society.

The Division of Engineering is one of the eight major divisions into which the National Research Council is organized for the conduct of its work. Its membership includes representatives of the nation’s leading technical societies as well as a number of members-at-large. Its Chairman is appointed by the Council of the Academy of Sciences upon nomination by the Council of the Academy of Engineering.

The Highway Research Board is an agency of the Division of Engineering. The Board was established November 11, 1920, under the auspices of the National Research Council as a cooperative organization of the highway technologists of America. The purpose of the Board is to advance knowledge of the nature and performance of transportation systems through the stimulation of research and dissemination of information derived therefrom. It is supported in this effort by the state highway departments, the U.S. Department of Transportation, and many other organizations interested in the development of transportation.