This paper has as its-major goal

the initial formulation of a re-

search program on analytical

structures for travel demand
forecasting and the discussion of the mo-
tivations for this formulation.

By travel demand forecasting is meant
the process of predicting the travel that
will occur when a given transportation
system is provided within a given activity
system. (By activity system is meant all
aspects of the world that are not parts of
the transportation system, but that do
have effects on that system.) This defini-
tion of travel demand assumes that we are
looking at trip-making decisions only and,
therefore, can ignore long-range changes
in the activity system caused by travelers'
changing their places of residence and
work, except as those changes may be
externally specified. The long-range
changes in the activity system are left
for the activity shift and land use mod-
elers, although it is recognized that the
transportation system is an important de-
terminant of those long-range changes.

By analytical structure is meant 2
things: (a) primarily, the form of the
travel demand forecasting function,
whether it be a closed mathematical ex-
pression or an algorithm; and (b) to a
lesser extent, the independent variables
used in the forecasting process. More
details and motivation for this definition
are given later.

This paper is structured into 3 some-
what unequal sections. Section 1 includes
extended definitions of demand models
and analytical structures and a listing of
some alternative structures that have
been applied to the travel demand fore-
casting problem. Section 2 discusses the
factors that must be considered in decid-
ing on appropriate analytical structures
for travel demand forecasting, and iden-
tifies a number of areas of necessary re-
search, Section 3 brings all of these to-
gether as a concise initial formulation of
a program of research in the area of
analytical structures.

DEFINITIONS AND ALTERNATIVES
Analytic Definition

Because we are concerned with fore-
casting travel demand, it is useful to
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develop an analytic definition with a basis in consumer demand theory as it has been
developed in the field of microeconomics (7). Beginning with the preferences of in-
dividual consumers, Henderson and Quandt postulate utility functions that state the
level of utility associated with the purchase of quantities Q, of a number of goods.

U(Qu Qz, ey Qa) ) (1)

Also, the consumer's budgetary limit is expressed as

n .
Y PQ =Y ' (2)
i=1

where P, is the price of the ith good, and Y is the total budget, or income, of the con-
sumer. When U is maximized subject to the budgetary constraint, the following rela-
tions are obtained among the variables:

Qg = Dx(P1,. Pz, ceey Pn, Y) (3)

for all i, where Q is the optimal quantity of good i purchased by a consumer with in-,
come Y. The functions Dy(-) are demand functions in the classical economic sense.
They relate the quantity of a good consumed to the prices of all goods and to the income
level of the consumer. .

In theory all goods that contribute to the consumer's utility must be included in each
demand function. Practically, however, it is impossible to find significant relations
between the prices of many goods and the demand for others. We, therefore, group
the subset of all prices that significantly affect the quantity of good i into a vector P.
These prices include (a) the price of good i itself and (b) the prlces of goods that are
substitutes for good i.

Using the vector P, we can rewrite the demand function as follows:

Qi = Dy(P, Y) . (4)

This equation represents the demand function for an individual. The summation of
these functions to obtain total demand can be accomplished, at least theoretically, by
assuming that individuals can be grouped into subsets of the total population with simi-
lar utility functions and income levels. Each subset can be described by socioeconomic
variables, S, which include Y. This leads to the following functional form for total
demand functions:

Qx = D:(P, S) V R . (5)

To adapt this general formulation to transportation demand, we must recognize that
transportation is a good that is a complement to.the demand for many. other goods. Con-
sumers travel to the corner to purchase bread; they travel downtown to purchase meals
at restaurants; they travel to Florida to purchase sun in the winter; they travel to their
working places to trade their labors for incomes. Transportation is therefore termed
an intermediate good. Although it is a complement to many other goods, the quantity
of transportation consumed does not contribute positively to the utility function, U. The
demand for transportation is a derived demand: It is due to the demand for other goods
rather than to its own contribution to the consumer's utility.

One approach to transportation demand forecasting, therefore, would be to model
the demand for the final goods and services that result in transport_anon consumption.
To date, however, this has proved to be too difficult. Instead, trips are typically .
classified according to trip purpose (class of final good), and the demand for transpor-
tation for each purpose is modeled separately. Also, an additional class of independent
variables, measuring the attraction or intensity of the final activities, A, is added to
the demand functions. Therefore, when the subscripti in Eq. 5 refers toa transportation

179



good, Vi, (trips for purpose n from origin k to destination 1 by mode m), the general
demand function becomes

V:lm = Dlxcllm (P7 S, A) (6)

Another characteristic of transportation isthat the traveler 'pays' in a number of
ways when he consumes transportation. There are a number of "prices’ that include
not only money paid but also time consumed, discomfort experienced, and risks en-
dured. These and other prices can be classified together as level-of-service variables,
L. The level-of-service variables have an added dimension not present in the prices,
P. For each price, P,, there exists a vector of level-of-service variables, L, = (P,,
ti, ¢1, Sy, ...) where P, = price, t, = travel time, ¢, = comfort index, and s, = safety
index.

Our final general analytical expression of a travel demand function is obtained by
substituting L for P:

V;lm = Dl!tllm (L, S’ A) (7)

Equation 7 serves as the starting point for considerations of the analytical structure
of travel demand forecasting techniques. It'is useful to summarize the major ways in
which this function differs from Eq. 5, the general demand formulation.

1. Because there are many costs associated with travel, monetary prices, P, are
replaced by level-of-service variables, L.

2. Because transportation is a derived demand, travel must be predicted by trip
purpose and must be a function of the activities, A, available at the destination. ’

The overall goal of this paper is to formulate a program of research that will lead
to answers to the following questions:

" 1. What forms of the function D§,, are appropriate for various kinds of travel de-
mand forecasting ?
2. What varlables belong in each of the sets of mdependent variables shown in
Eq. 7?7

Some Alternative Structures

Before discussing the factors that must be considered in answering the above ques-
tions, we should classify and list some of the major types of analytical structures for
travel demand forecasting that have been developed to date. The purpose is not to in-
clude all existing forecasting procedures, but rather to illustrate each class of struc-
tures with a typical example. The general classes of procedures are sequential ag-
gregate, direct aggregate, sequential disaggregate, and direct disaggregate, These °
classes are described in the sections that follow.

Sequential Aggregate

The urban transportation planning process (UTP) is a prime example of a set of ”
sequential travel forecasting procedures. Because this process has been used so ex-
tensively for so many of the travel forecasts made for the past 15 years, it will be
described very briefly here, with emphasis-o6n the structural aspects.

Trip generation is the first sequential-step, involving the prediction of total trips
from an origin or to a destination by trip purpose (6). The independent variables are
most commonly in the socioeconomic and activity classes used in Eq 7. The func-
tional form is usually linear. Symbolically,
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T! = 21: bS, + kI,
, (8)
T? = % C:A“+kg

where
Ti = trips of purpose n generated in origin i, .
T} = trips of purpose n attracted to destmatlon j, and
bi, ci, kn = empirical parameters.

Typical socioeconomic variables used are average annual income, average number
of automobiles owned, number of workers per household, and percentage of households
having an income greater than a specified value. Typical activity-system variables
used are zonal population, acres of land in various land use categories, and zonal
employment. '

The second sequential step is trip distribution, the prediction of trips from origin
to destination. The independent variables are the trip ends resulting from the previous
step plus level-of-service variables. Symbolically,

'TI;J = fn(Tf’ TTJ”. Li.)) ’ ' (9
where _
T}, =.trips of purpose n from origin i to destination j,
i, T§ = results of the trip generation step, and
L; = level-of-service variables between i and j.

The 2 most common functional forms are the gravity model and the opportunity
model. A typical version of the gravity model is as follows:

T3 = Ti Lt - (10)
¥ ot
k
where : .
ty; = travel time from i to j, and"

B, = empirical parameter.
A typical version of the opportunlty model is as follows

oomet (1 etT) (11)
where » '
Vi = T Ti = "subtended volume,"
k = all destinations for which t,k < t, 3 a.nd

L,

These models are ''share' models; they divide the total trips from i, T{, among all
destinations by using a fraction that, when summed over all destinations, equals 1.
Travel time by a single mode, usually highway, is typically the only level-of-service
variable used although, in some applications, a generalized cost has been used that is
a linear combination of travel time, distance, and out-of-pocket costs. The level-of-
service variable enters the opportunity model in an indirect way only. It affects the
ranking of destinations from each origin, which-in turn affects the subtended volumes
that enter the model directly. .

empirical parameter.
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In some applications of both the gravity and the opportunity models, adjustments of
T are made after initial application of Eq. 10 or 11 in an attempt to force the total trips

to each destination (T?, = 2 T},) to equal the original Tj. This constraint, though
: i

logical, is not guaranteed by the functional form of either distribution model. Follow-
ing adjustments of the original T}, the equations are applied again. Reration through
application of the equations and adjustment of the original T§ continue until a desired
level of correspondence between each T} and T, is reached.

The third sequential step is modal split, the prediction of trips by mode from origin
to destination. The independent variables are the trip interchanges resulting from the
previous step plus modal level-of-service variables. Symbolically,

T:Jk = fnk (T?J’ LUM Sl’ AJ) (12)
where h
ti = trips of purpose n from origin i to destination j by mode Kk,
iy = results of the trip distribution step,
L,,, = level-of-service variables for all modes m between i and j,
'S; = socioeconomic variables of travelers in i, and
A, = activity-system variables in j.

Many approaches have been used to develop functional forms, f., for modal-split
models. The most commonly used prior to the past 3 or 4 years were regression or
table look-up models based on the relative levels of service offered by each mode (9).
Typically, origin zones have been classified by income level and automobile ownership,
and for each subgroup linear equations or tables are developed that relate fraction of
trips by automobile and transit to time and cost ratios or differences. Symbolically,

T ) t Ci
Py, = =2 =1 <_‘§L da 4
H T, “A\tye ? Ciye (13)
or
Ty .
P?Jk = -%'"‘5. = gé'k (txn - tisay Cage - cija)
Ty
where
1k = fraction of travel for purpose n between i and j by mode k,
tya, tyye = travel times by automobile and transit,
Cya, C1y¢ = costs by automobile and transit, and

m = income and automobile ow_nershlp group.

Various time and cost variables have been used, and often more than one of each
has been used. Time has been divided into in-vehicle time, waiting time, and access
time, for example. Cost has been divided into out-of-pocket cost, tolls, parking fees,
fares and total operating costs.

More recently, the followmg functional form has been used for f,, (17, 20):

1

h (L}
e k\=ijm

P?Jt = (14)

and -

hk (Luu) = Ck z ak (tut - tha) + Z by (Cin - 0114‘.)

Again, times and costs have been divided into various varlables The constant Ck,
as well as the parameters a; and by, allows the relative characteristics of modes not
measured by times and costs (such as comfort, convenience, and modal "image") to be

182



represented in the model. The function h, can be interpreted as a difference in con-
sumer utility between travel by transit and travel by automobile.

Direct Aggregate

In contrast to the sequential application of a number of models in the UTP process,
direct aggregate procedures involve the prediction of travel demand by origin, destina-
tion, and mode with a single equation whose general form is given in Eq. 7. The orig-
inal application of these procedures has been to the prediction of intercity trips between
large zones, typically entire urban areas. More recently, application to urban areas
has taken place. Functional forms that have been used for direct aggregate equations
may be placed in the following major groups.

Independent Mode-Specific Equations
T?Jk = fll(l(Lime Sl, SJAiy AJ) ) (15)
In the present models of this type, 3 forms of the function f; are most common.

1. The product form (21) was applied to intercity travel for business and personal
purposes.

The = b PP R v v (re) (16)
where
P,, P, = populations,
1, Yy = average incomes,
ci;» = travel costs by mode m, and
ti;. = travel times by mode m.

2. The linear-log form (5) was applied to automobile work trips in a metropolitan
area. The socioeconomic and activity-system variables are labor force at origin, em-
ployment at destination, median income at origin, and number of automobiles per
person at origin. The level-of-service variables for both automobile and transit are
in-vehicle travel time, out-of-vehicle travel time, line-haul cost, and out-of-pocket
cost.

e = M;(sonJo)( z Byt Ligyo1 + z biaiInLy o
m,1 m,1

+ z ca S + z dﬁllnsl)
1 1

(17

where
Mg = constant term,
1 = variable number,
Sie, Ajo, S; = socioeconomic and activity-system variables, and
Ly = level-of-service variables.

3. The product-exponential form (5) was applied to automobile shopping and transit
work trips in a metropolitan area. The activity-system variables in the model for auto-
mobile shopping trips are number of households at origin, number of persons per
household at origin, median income at origin, number of automobiles per person at
origin, and density of retail trade employment at destination. The level-of-service
variables for the automobile shopping-trip model include all listed for the linear-log
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form, with the exception of out-of-vehicle travel time for the transit mode. For the
transit work-trip model, the activity-system variables were the same as those used in
the linear-log form. The level-of-service variables included no automobile model var-
iables. The transit variables used were the same as those for the linear-log form.

Rt BReiLiim cpp diyS, :
Tie = ME T Lime ™ ™. 7 g*e*" (18)
.o omyl 1 3 .
where the variables are as defined for Eq. 17.
Independent Mode- Abstract Equations
THk = { (LUM Yi, YJ’ Alr A) . (19)

This general representation only differs from Eq. 13 in that the function f* is inde-
pendent of mode, k. The prime example of this model is the following form developed
by Quandt and Baumol (18). Because it was developed for intercity travel for all pur-
poses, no purpose superscript is used.

Top = a PPy i, 61 (S () (fie )
13k o+ § ] 1 13bleibldtsn c“b tijb fi,jb (20)

where {; is the frequency of service; and the new variables, ¢y, tip, and f;,, are the
cost, time, and frequency for the "best'" mode with respect to each parameter: the
cheapest cost, the fastest time, and the most frequent service.

A distinct advantage of a mode-abstract direct demand equation is its ability to
predict the demand for new modes without changing the functional form of the model or
its parameters.

Modal Share Models

£k (Lljk)

Z £2,(Lyy0)

As the general form of this model indicates, these models include 2 separable func-
tions: one to predict total trips from i to j(f}) and a second to predict the share of
these trips that will use mode k(f],). Therefore, this model can be classed as a
direct aggregate model or as a partially sequential model.

The prime example of this model is McLynn's composite analytic model developed
for intercity travel for all purposes (_) In that model, the function f,, and f, are as
follows: .

T“k = f3 (A A YiYJL“m (21)

£l = AgColkti2Ef,K (22)
b b
f, = bP,'P}? Y, Y} (2 fl,,,) o ‘ (23)
. m .

The 2 functions are typically estimated sequentially: Firsf the f,, functions are
estimated, and then their 'sum is obtamed as a variable to be used in the estimation
of f,. )
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Sequential Disaggregate

Both of the analytical structures discussed above have been developed and applied to
aggregated travel data: data for entire zones whose sizes range from fractions of
square miles for urban applications to entire metropolitan areas for intercity appli-
cations. Modeling at either of these levels of aggregation smoothes out most of the
variations of the individuals who actually make the travel decisions being modeled.

For this reason, much of the recent demand modeling effort has addressed the problem
of predicting the travel decisions of individual travelers. Initially, these studies were
concerned only with the mode-choice decision. The models developed were individual
traveler applications of the utility model form shown in Eq. 14 (9, 10, 22, 23). When
applied to individuals, the dependent variable can only take on the values 0 or 1, re-
quiring a different set of estimation procedures to be used. In the initial models of
this type, only 2 modes were included, leading to a binary-choice situation. More
recently, multiple-choice models have been developed (19).

Building on the earlier work in modeling the individual mode-choice decision, re-
searchers have developed equations to model not only mode choice but also destination
choice and the choice of whether to make a trip. ’

Charles River Associates (3) developed a sequence of individual choice models based
on the assumption that travelers first choose whether to travel, then where to travel,
then what time to travel, and finally what mode to use. Because of this assumed se-
quence of choices and the use of inclusive prices, the models must be calibrated in the
reverse order of the assumed order of choice. They are presented in that order here.

1. The modal-choice submodel is based on a binary choice between automobile and
transit.

Pl . .
—- = exp|a”+ be (Lygar = Liyye) + zc1su (24)
1- Pija ‘
1 1
where
P{,. = fraction of trips by purpose n (work o_f shopping) by household i to
destination j made by automobile rather than transit,
Lyja1, Liyey = automobile and transit level-of-service variables, and
S:, = socioeconomic variables.

The socioeconomic variables are automobiles per worker in the household, indicator
for race, and indicator for occupation. The level-of-service variables are waiting
time (assumed to be 0 for automobile trips), in-vehicle travel time, and operating,
parking, and fare costs.

2. The time-of-day-choice submodel is based on a binary choice between traveling
in both directions during off-peak hours for shopping or traveling in at least one dlrec-
tion during a peak hour. The shopping purpose is the only one modeled.

. P R R N . . - N .
41—_—“1,? = exp |a + b(IP,,, - IP,,,).+ Zcmsm (29
m .
where
Py, = fraction of shopping trips made by household i to destination j com-
pletely during off-peak periods,
S, = socioeconomic variables,
IP,y,, IP,,, = inclusive prices for off-peak and peak shopping trips,
IP!Jo = 21: b;Lijklo,

b = parameters from Eq. 24, and
Lo level-of-service variables for the mode used during‘off—pe_atk travel.
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IP,,, is similarly defined for peak-hour shopping trips. The socioeconomic variables
~ used are indicator for sex of the head of household, number of workers per number of -
residents in the household, and number of preschool children in the household.

3. The destination-choice submodel is based on a multiple-option choice of travel-
ing to each of a number of destinations for shopping. The shopping purpose is the only
one modeled.

% = expla;(IP - IP,) + 2x(A, - A) + a5(IP, - S, - IP, - §,)) (26)
in
where
Py, Py, = fraction of shopping trips to destinations j and m by household i,
activity-system variables for destinations j and m,

socioeconomic variable for origin i,
IP,, IP, = inclusive prices for shopping trips to j and m,

>
&
o non

—
~
|

= % bliL! Jals

i = parameters from Eq. 24, and
Ly = level-of-service variables for automobile trips to destination j.

IP, is similarly defined for trips to m. The activity system variables are the fraction
of total retail employment occurring in each destination. The socioeconomic variable,
used with the inclusive price in the interaction term, is the number of preschool chil-
dren in household i. No level-of-service variables for transit trips were used.

4. The trip-frequency-choice submodel is based on a binary choice between making
0 or 1 shopping trip per day. The shopping purpose is the only one modeled.

Py = exp(a,IP; + a.IE; + a,;Y,) 27
1-Pp
where

P, = probability that household i will make a shopping trip,
Y, = family income of household i, :
IP, = inclusive price to household i = 2 1P, Py, and

i v
IE, = average shopping opportunity = Z APy,

]
1P, Py, A,, and Py; are obtained from Eq. 26.

Direct Disaggregate

The set of equations presented above is the disaggregated analog of the UTP sequen-
tial process. A disaggregated analog of the direct aggregate models also has been pos-
tulated and calibrated (g). The functional form of this model is as follows:

% = exp[%&(An - A+ z bl(Mlil - Mlt'l) + 2 ClYi(M;fl - le'l)
1) x 1 1

+ 2 di (L iy - Liyen) + 2% (L, - Lfa'k'x)]
1

1 t (28)

where

Py, P,y - = fraction of total trips from household i going to destinations j and j
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by modes k and k’ (either j and j’ or k and k’ may be the same, but
not both),

Ay, Ay, = activity-system variables,
Mg,, ME-y = modal variables,
L, Liye1 = level-of-service variables, and
Y, = household income variable.

As estimated by Ben-Akiva, the following variables were used:

1. Activity-system variables, Aj—number of jobs in wholesale and retail establish-
ments in the zone of destination j and indicator for CBD destinations;

2. Modal variable in separate term, M —indicator for automobile usage;

3. Modal variable in interaction term with income, ME, —indicator for automobile
usage;

4. Level-of-service variables in separate terms, Li, —out-of-vehicle travel time
and in-vehicle travel time; and

5. Level-of-service variable in interaction term, L? ,u—out~of-pocket cost.

This model was calibrated for automobile and transit trips for the shopping purpose
only and does not deal with trip-making or time-of-day choices. It, therefore, repre-
sents a model that can be used to divide total shopping trips from a household among
the available modes and destinations.

This concludes a brief survey of the major classes of analytical structures that have
been applied to travel demand forecasting or proposed for application. In later sec-
tions, I will refer to these structures to illustrate the issues involved in the choice of
an appropriate analytical structure for a given travel forecasting problem.

FACTORS AFFECTING ANALYTICAL STRUCTURE

Two questions were posed as the overall goal of a program of research to be de-
veloped by this workshop:

1. What forms of the function D},, are appropriate for various kinds of travel de-
mand forecasting?
2. What variables belong in each of the sets of independent variables shown in Eq. 7°?

The factors discussed below must be considered in answering these questions.

Travel Demand Theories

Theoretical constructs that can be applied to travel demand are available in 2 gen-
eral fields: economics and psychology. We have drawn on classical demand theory to
develop a starting point for our definition of the analytical structure of travel demand
forecasting. This discussion includes not only the basics of classical theory but also
the adjustments and extensions that make possible its application to travel demand.

Other theoretical developments can be analyzed in the same way. This is done in
this section for the alternative approach to consumer theory developed by the economist
Lancaster and for the behavioral theory of choice developed in psychology. (The re-
source paper for Workshop 5 should be referred to for a more complete discussion of
the theories underlying travel demand forecasting.)

As stated by Lancaster (8), the following assumptions, each of wh1ch differs from
the classical theory, are the essence of his approach:

1. The good, per se, does not give utility to the consumer; it possesses characteristics, and
these characteristics give rise to utility.

2. In general, a good will possess more than one characteristic, and many characteristics
will be shared by more than one good.

3. Goods in combination may possess characteristics different than those pertaining to
the goods separately.
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When the nature of transportation as a derived demand with many ''prices’ is con-
sidered, the relevance of Lancaster's approach to travel demand becomes evident.
Transportation is a good with a number of characteristics that give rise to disutility,
but is nevertheless consumed in combination with other goods because it makes pos-
sible the consumption of those goods. The other goods have 0 utility until they can be
reached; then they provide utility that exceeds the disutility of transportation.

Without going any deeper into Lancaster's approach than the 3 assumptions quoted
above, I shall provide a theoretical basis for expanding the single-valued price of
classical economics to a vector of characteristics—the level-of-service variables—and
for including measures of the activity system. This can be shown by developing the
analog of Eqs. 1, 2, and 3, which arise from Lancaster's approach.

Utility functions now state the level of utility associated with the purchase of the
quantities Z; of a number of characteristics.

U(Zy, 2oy ...y Zs) (29)

These characteristics are obtained by engaging in a number of activities, j, each at
level W,. The relation between the vector of characteristic quantities, Z, and the vec-
tor of activity levels, W, is

Z = BW (30)

where B is a matrix of elements by,, each of which is the amount of characteristic i
provided per unit of activity j.

The amount of each good, k, consumed is Q,, which depends on the consumption of
goods in each activity, as represented by the following relation between the vector of
goods consumed, Q, and W:

Q = AW (31)

where A is a matrix of elements a,,;, each of which is the amount of good k consumed
per unit of activity j.
As in the classical theory, a budget constraint exists. In matrix notation,

PQ<Y (32)

If U could be maximized subject to the constraints shown in Egs. 30, 31, and 32, the
following relations would be expected:

Q: = Dc(P’ Y, W, Ay B) (33)

Although Lancaster provides no general solution in terms of forms of the demand
function Dy (+), he does discuss a number of implications of his approach. As an ex-
ample, Eq. 33 provides a theoretical base for including measures of each of the fol-
lowing in demand functions in general and in travel demand functions in particular:

prices of goods,

income level of the consumer,

activity levels of the consumer,

consumption of goods per unit of activity, and
provision of characteristics per unit of activity.

WSy
nw o u

A second implication occurs when a new good, such as a new mode of transporta-
tion, is considered. In the classical theory, this situation requires the reformulation
of the utility function, U, in an additional dimension before estimates can be made of
the effects of this new good on the former equilibrium state. Before the new good is
available, there is no way to estimate the changes to the utility function. Because in
Lancaster's approach the utility function is dimensioned by characteristics rather than
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goods, it remains unchanged when new goods are added. To revise the demand func-
tions, therefore, if no new activities are expected, requires only adding to the dimen-
sions of Q, A, and P. Because Q and P are variables, only a new row of coefficients
of A must be determined, based on the amount of the new good that is consumed in each
of the activities. This is a much more straightforward task than formulating a new
utility function based on consumers' responses to a situation that does not yet exist.

In many cases, a new good may result in new activities. This can also be repre-
sented by expanding the dimensions of A, B, and W. New columns must be added to A
and B to represent the consumption of goods and production of characteristics of these
new activities. This also can be done much easier than adding a dimension to the
utility function.

In summary then, Lancaster's approach provides a number of bases for travel de-
mand forecasting that are not provided by the classical theory. This added power has
been recognized by a number of travel demand model developers. Others have gone
beyond classical theory in ways that can only be supported by Lancaster's approach.
His approach, therefore, can probably be profitably explored further by demand model
developers.

One attempt to explore this approach has sought to formulate a general equilibrium
model that adapts Eqs. 29, 30, 31, 32, and 33 to transportation (3). This is done by
concentrating on the following classes of goods: transportation, consumer goods with
fixed locations in the short run (work, home), and consumer goods available at many
alternate locations (groceries, entertainment).

Although no tractable solution has been obtained with this formulation, 3 types of
further work may be warranted.

1. Continue searching for a utility function form that results in a closed-form solu-
tion in terms of demand functions, Dy(-), for the transportation variables;

2. Continue exploring the existing formulation, as far as it has been developed, for
its implications on suitable analytic structures; and

3. Search for realistic revisions of the formulation that will result in useful demand
functions.

Both in the classical theory of the consumer and in Lancaster's formulation, only
monetary prices are considered. Lancaster deals with multiple characteristics, but
only price has a budget limit. In transportation demand work, it is often useful to con-
sider time as a price also and to recognize that each traveler has a limited budget of
time available for transportation or, in general, for the consumption of all goods. It is
desirable, therefore, to expand Eqs. 2 and 32 to include a time budget that must be
greater than or equal to the time used in consuming each good or in carrying out each
activity. This added constraint can be expected to be more important for transporta-
tion demand analyses, where alternatives can have significant time variations, than for
general demand modeling.

In the area of psychology, a theory of rational choice behavior has been developed
(11). Its basic assumptions are that a decision-maker can rank possible alternatives
in order of preference and will always choose from the available alternatives the option
that he considers most desirable. These assumptions lead to the specification of utility
functions that measure the desirability of an alternative, i, to a decision-maker with
characteristics S;.

u(z, 8,) (34)
where
Z, = vector of attributes of alternative i, and
S; = vector of characteristics of decision-maker j.

The decision-maker maximizes his utility by choosing the alternative with the highest
value of the function; or, in the case of random variables, the decision-maker chooses
the alternative for which his utility is maximized with some probability, P;.

189



To make probabilistic choice models tractable, an axiom on choice behavior de-
veloped by Luce is often used. Termed the independence-of-irrelevant-alternatives
axiom, it requires that the relative odds of 2 alternatives being chosen be independent
of the presence or absence of third alternatives. Symbolically, if i and k are 2 alter-
natives, both of which are chosen part of the time, and if there exists another set of
alternatives n, n, ..., then

Pi/Pk = f(21, Zk, SJ) (35)

and this function is not affected by the presence or absence of any of the alternatives
n, Nz ....

This is a critical axiom to accept because it has important benefits and costs. One
benefit is that, in the modal-choice case, for example, it allows demand to be predicted
for new modes before they are built, if all of the Z variables are based solely on ge-
neric attributes of the modes, such as travel time and cost. On the other hand, an im-
portant cost is that, when such a new mode is introduced, the reduction in usage of all
existing modes will be a constant percentage. These characteristics do not exist when
some of the Z variables are mode-specific (for example, a dummy variable that is 1
for the transit mode and 0 otherwise). This, however, is equivalent to replacing Z,; and
7, in Eq. 35 with Z, and Z,, which implies rejection of the independence-of-irrelevant-
alternatives axiom.

The theory of rational choice behavior provides a powerful tool for the development
of disaggregated demand models. It is not, however, a perfect tool. Additional de-
velopment of the theory of rational choice behavior, with the goal of providing a more
realistic model for travel demand forecasting, appears to be a worthwhile effort.

Data for Travel Demand Forecasting

The effects of data availability on the analytical structure of travel demand forecast-
ing procedures can be described in terms of the data limitations that now exist, the
present needs for new data types and new survey procedures, and the problems caused
by the use of the available data when present estimation procedures are applied.

The major source of data for travel demand model development continues to be the
home interview survey, which has been conducted in every major city of the United
States. The data obtained from this survey are deficient for all kinds of demand model-
ing work for a number of reasons, including these two.

1. The data have been collected by sampling large metropolitan areas with relatively
low sampling rates—typically 2 to 10 percent. Any subdivision of the results into a
large number of cells (by origin, destination, mode, and purpose, for example) results
in a large number of observations of either 0 or 1 trip. These surveyed trips must be
factored to represent 0 or 10 to 50 trips, and the factored trips are much too "lumpy"
for advantageous use in model development.

2. The tedious process of interviewing, filling out forms, coding, and keypunching
can only be done for large surveys by relatively untrained people who must work fast.
The net result is that many of the data that result are inaccurate and often are not com-
plete because of the inability of the interviewee to remember all of the details requested.

Additional problems occur when these surveys are used for behavioral disaggregate
demand modeling.

1. Home interview surveys only produce data on the trips actually made. Informa-
tion on the use of alternate modes must be reconstructed from other sources, after the
fact, in order to use the data in the development of disaggregated models. Similarly,
information on potential trips for households that did not make trips of various kinds
may be required, but are not available from the data.

2. Accurate disaggregate modeling at the household level often requires ignoring the
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machine-readable data obtained from surveys in favor of returning to coding forms,
which include more precise location information (street address versus traffic zone,
for example). This greatly increases the costs of disaggregated modeling,

3. The definition of a trip in home interview surveys is an arbitrary one requiring
a single mode and purpose. This definition is then modified somewhat by forming new
"linked'" trips. Often, however, what is desired in behavioral modeling is a "tour"
composed of a number of trips that take a traveler from home to one or more destina-
tions and then back home. To obtain such tours often requires a return to coding-form
analysis.

Another important source of data for demand modeling work is the U.S. census,
which collects a wide range of income, activity-system, and some trip-making data.
Because these data must be aggregated to some geographical unit greater than the
household to meet confidentiality requirements, they are mainly useful in aggregate
rather than disaggregate model development. Expanded data on work trips are avail-
able from the 1970 census, and it is possible to consider the development of an aggre-
gate work-trip model based on census data and network data only. Drawbacks remain,
however: The degree of aggregation, especially of destinations, often is high, and the
data are collected only every 10 years.

The paragraphs above imply a number of needs for new kinds of travel data and for
new data collection methods. When disaggregated demand modeling is contemplated, a
number of the limitations of existing home interview data can be overcome by designing
surveys better suited to these models. Because it is not necessary to have data ob-
tained from entire metropolitan areas to develop these models, surveys can be designed
with high sampling rates in relatively small areas. Data recording can be modified to
preserve as much locational information as necessary and to represent tours rather
than arbitrarily defined trips. Information on alternative modes and destinations can
be requested explicitly. Better trained and higher paid interviewers can be used to
help improve the reliability of the data. These changes will remove a number of lim-
itations of present travel data, but will only make the obtaining of accurate data more
critical. Research aimed toward the improvement of survey data accuracy should be
undertaken. Also, methods of integrating survey data with engineering information,
such as travel times on highway and transit facilities, should be improved.

With regard to the use of travel data to develop travel demand models, a number of
problems can be identified. These problems depend not only on the use of the data but
also on the estimation procedures.

As pointed out, there are definite advantages in developing mode-independent demand
functions. Such functions require, however, that each alternative mode be described
by using the same variables. This raises the problem of developing a set of variables
that are meaningful for all modes. The major problem arises when one attempts to
describe automobile transportation in terms of variables such as frequency and cost;
the variables are relatively straightforward for common-carrier modes. Should auto-
mobile cost be out-of-pocket cost only or out-of-pocket cost plus operating cost or both
of these plus depreciation, insurance, and other fixed costs? These problems often
make the use of mode-independent models impractical.

A second data-estimation problem is multicollinearity among 2 or more variables.
As an example, for any mode, both travel time and fare will be strongly related to dis-
tance and, therefore, to each other. How can a model be developed that includes both
time and cost variables when the estimation procedure cannot accurately determine
their parameters because of multicollinearity? Often, this question can only be an-
swered by conducting special experiments or studies to determine the relative effects
of 2 or more collinear variables.

A third data-estimation problem is the choice of accurate proxy variables to take
the place of ones that theoretically belong in a demand formulation but that are not
available. As examples, retail employment may be used as a proxy for shopping op-
portunities or occupation indicator as a proxy for income. The model developer must
analyze the suitability of each proposed proxy variable before accepting it as a potential
variable.
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In summary, the analyst who must develop demand forecasting procedures by using
available data must choose his analytical structure carefully to ensure that he will not
be defeated by a lack of the proper data. Also, the analyst who is asked to specify his
data needs before a survey strategy is developed should be able to recommend survey
procedures and questions that will provide a maximum of data useful for demand model-
ing.

Demand Estimation Methods

The estimation methods discussed in this section are the distribution model calibra-
tion procedures, linear regression, nonlinear regression, and simultaneous equation
estimation.

Distribution Model Calibration Procedures

For both the gravity model and the opportunity model (Egs. 10 and 11), specialized
calibration procedures have been developed. In the case of the gravity model, t* is
replaced by a generalized distance function f(t), and the values of this function for each
value of t are determined such that the actual distribution of trip lengths is matched.

In the case of the opportunity model, the parameter L is determined such that the actual
average trip length is matched. In both cases, the actual observations, Ty, are not
used in the calibration, but instead more aggregate characteristics are matched. Each
of these procedures is limited to the particular analytical structure of the correspond-
ing trip distribution model. :

Linear Regression
This general parameter-estimation procedure requires that the functional form of

the model, or a transform of it, be linear in the parameters. This limits the use of
linear regression to functional forms of the following types:

Y = a,+ E Xy (36a)
1
Y = a, + 2 alnx, (36b)
1
Y = a, + Z (asx, + bylnxy) . (36¢)
1
InY = a, + 2 aX (364)
i
InY = a, + 2 a;1lnx; (36e)
i
InY = a, + & (@lnx, + bix;) (361)
i
where
Y = either trips, T, or a probability variable P/(1 - P) or P,/P,, where P, is the
probability of making a specified trip;
a, = coefficients to be estimated; and
x, = independent variables.
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The untransformed versions of Eqs. 36d, e, and f are

Y = expéa + T a,xi) (37a)
i
Y = e°mx (37D)
1
Y = e T e’ (37¢)
1

Each of the models presented in Eqs. 8, 14, 16, 17, 18, 20, and 22 through 28 can be
expressed in one of the forms shown in Eq. 36. However, because of limitations on the
independent variables in disaggregated models, linear regression was not used to esti-
mate the equations.

Linear regression is based on the minimization of the sum of the squares of a linear
error term. When the dependent variable is transformed, as in Eq. 36, the untrans-
formed error term is no longer linear. In Eq. 37, if U is the transformed error term,
then the untransformed error term is €Y, and in each case it has a multiplicative effect
on Y. Often this effect is not desirable and, therefore, linear regression is not appli-
cable to the calibration of models such as those of the form of Eq. 36.

A number of modifications of simple linear regression, or ordinary least squares
procedures, have been developed. Some of these are

1. Generalized least squares, where observations or error terms or both are
weighted to take account of the variation in reliability among observations; and

2. Constrained regression, where some parameters are constrained to equal pre-
specified values (more flexible constraints are discussed below).

These modifications do not significantly affect the cost of using linear regression and
often prove to be useful in travel demand estimation.

Nonlinear Regression

A number of nonlinear regression procedures exist. They overcome the restriction
that the model to be calibrated, or a transform of it, be linear in the parameters. How-
ever, this requires that the solution method be an iterative programming or direct
search procedure, and these procedures are significantly more costly than ordinary
least squares. Some of the available features of these procedures are

1. Replacement of the additive (in the linear transform) error term of linear regres-
sion with-a general error term, depending on the model formulation;

2. Inclusion of constraints on the coefficients, including inequality constraints in-
volving either single coefficients or functions involving both coefficients and indepen-
dent variables (these constraints can represent theoretical considerations such as the
proper signs for the coefficients of price and socioeconomic variables); and

3. Incorporation of procedures to determine maximum likelihood coefficient esti-
mates such as those typically used in multiple logit models (Eq. 26).

Simultaneous Equation Estimation

These methods are essentially methods of determining the best parameters for sys-
tems of simultaneous equations usually based on 2-stage least squares procedures.
They allow model calibration in the situation where supply and demand functions are
shifting simultaneously, as they do over time and across zones. Because few time
series data sets or models exist in travel demand forecasting and because demand
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functions are usually assumed to be fixed in cross-sectional models, little use has
been made of simultaneous equation estimation methods.

The most common statistical estimation procedure, ordinary least squares, severely
limits the number of functional forms available for travel demand forecasting. Many
functional forms cannot be estimated by using this procedure, and, inaddition, the num-
ber of independent variables is usually limited because of multicollinearity. Only by
using more costly procedures, and by developing specialized procedures, can these
limitations be overcome.

Structural Characteristics

Three critical structural characteristics of demand forecasting procedures are sum-
mations, elasticities, and zonal aggregations. Early demand forecasting procedures
stressed the summations of demand by mode, by mode and destination, and by mode,
destination, and origin as quantities over which the analyst should have significant con-
trol. More recently, the influence of economics has been felt, and the elasticity of
trip- making with respect to activity system and level-of-service variables has become
more important to the analyst. The effects of aggregation on demand procedures have
always been important to the transportation analyst. In this section, each of these
terms is formally defined, and their theoretical ranges are stated. The nature of these
measures for a number of the analytical structures discussed above is then displayed.

1. The following summations of predicted trips by origin, destination, and mode
(Ty,c) are of concern to the transportation analyst:

Tys. = % Tisx = trips by zone pair (38a)
Ty.. = %I }l_:, Ty = trips by origin (38b)
T.. = )1: % T = trips by destination (38c¢)
T, = ? ‘][, Zkl T,y = total trips (38d)

In the UTP models, these summations are typically predicted in reverse to the order
shown above, and an important part of each sequential step is to ensure that the pre-
vious predictions, taken as "control totals," are preserved.

2. The formal definition of the elasticity of trip-making from i to j by mode k, with
respect to any independent variable, w, is

. = 3Tip W
e(Typ:w) W Tom (39)

Elasticity is a dimensionless number that represents the percentage of change in trip-
making from i to j by mode k (T, ) for each percentage of change in the independent vari-
able w. For a number of independent variables, a more specific name is given. These
are indicated below: ’

e(Tuthuk)
e(Tukitun)

direct time elasticity,

time cross elasticity (in this case, only one of
subscripts 1, m, n need be different from i, j, k), and
income elasticity.

e(T”k:Yg)
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Similarly, specific names can be given for the elasticities of other level-of-service
and activity-system variables.

Economic theory leads to the following statements of the ranges within which the
various elasticities can be expected to occur: (a) Direct level-of-service elasticities
are less than or equal to 0; (b) level-of-service cross elasticities are greater thanor
equal to 0; (c) income and similar activity-system elasticities are greater than or equal
to 0, unless T, represents an inferior good. Equation 39 can also be generalized to
apply to the summations shown in Eq. 38, resulting in the elasticity of trips by zone
pair, origin, destination, or total trips with respect to any independent variable.

3. A critical question to be answered for each alternative travel demand forecasting
procedure is the range of zone sizes for which the procedure is valid. Because of the
analytical structure and the magnitude of the coefficients of the socioeconomic and
activity-system variables in many models, they are limited to the range of zone sizes
for which they were calibrated. If the zone sizes are to be changed greatly, the model
will require recalibration.

To explore the conditions that will require recalibration, we must divide both socio-
economic and activity-system variables into 2 classes: (a) scaling variables, such as
zonal population and employment, which express the ''size" of the zones; and (b) rate
variables, such as automobiles per household and dollars of sales per square foot of
retail store area. In the remainder of this discussion, we can limit ourselves to the
scaling variables, for these are the critical ones in zonal aggregation considerations.

A useful index for any demand model is the sum of the exponents of all scaling
variables that are multiplied together. For example, we may have a multiplicative
model that predicts T}, by using the following scaling variables and coefficients:
(origin population)®® and (destination employment)®’. In this case, our index is 1.5,
which suggests that, for each 1 percent change in.zone size, trips will change by 1.5
percent. .

As this index begins to vary significantly from 1 for models that predict T}y, we
will expect changes in zone size to require recalibration. We will term this aggrega-
tion index the Al. ’ .

When these summations, elasticities, and aggregation indexes are obtained for the
models discussed previously in this paper, the following characteristics of the models
are discovered.

Urban Transportation Process

Trip Generation (Eq. 8)

Equation 40c is the major deficiency of the standard trip generation approach: Total
trip-making for a zone does not change as level-of-service variables change. The
equations, are, however, usually insensitive to zone size.

T:.. (obtained directly) . (40a)
T%,. (obtained directly) (40Db)
e(T:. B :len) =0 (400)
for all subscript values.
n ciSy
e(T,. . ZS“) = — (40d)
Ty...
Al = 1.0 (40e)
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Trip Distribution (Eq. 9)

Equation 41d shows that in the gravity model (Eq. 10) a change in level of service
from i to any destination affects the number of trips to all destinations. Usually, only
the Ly, for the automobile mode is used. The elasticity for other modes is O if this is
done. Equation 41e indicates that the level-of-service variables for all other origins
are irrelevant. Equation 41f shows that the activity system has no effect on trip dis-
tribution beyond its effect on T} and T3, as represented in the trip generation step.

Ti;. (obtained directly) (41a)
Ti.. (constrained to equal T}) (41b)
T.,. (sometimes constrained to approximate T%) (41¢)
Tn
e(T?J' :Ltn) = ﬂn (611: - _:n_;) (41d)
T%..
where 6y, = 1if j = m and 0 if j # m.
e(Th.:Lix) = O (41e)
when 1 #i.
e(T?.:A) = 0 (41f)
for all values of 1.
Al = 1.0 (41g)

In addition, Eqs. 41a, b, ¢, e, and f also hold for the opportunity model (Eq. 11). The
differential in Eq. 42a is 0 except when m = j and the ranking of destinations from i
changes because of the change in t;; (the differential is positive in this case) and when
m # j and the ranking of j changes, which will only occur when |t;y - t;,|<|dtia| (the dif-
ferential is negative in this case). These conditions imply that the elasticities of trips
to all but a few destinations are zero.

e(T'},.. :Lin) = ‘LiuLn d—V.i (423)
dtim
Al = 1.0 (42b)

Modal Split-Binary Choice (Eq. 14)

Equations 43b and c indicate the symmetrical nature of the binary-choice model.
Equations 43d and e point out that only the travel variables for the various modes con-
necting i and j have an effect on Tyy.

1;. (constrained to equal T%,) (43a)

e(Tix:Lyg) = -—aki"i.jsk; (43Db)
1+e

akLiJn
-hk
l+e

e(T?;kiLun) = (430)

196



e(Ti:Lyx) = 0 (434)
e(Tng:len) =0 (439)
e(Tiu:S,) = 0 ' (43f)

Al = 1.0 (43g)

Direct Aggregate Procedures

Product Form (Eq. 16)

In Eq. 44, travel time is used as a'typical level-of-service variable. All elasticities
and cross elasticities for Ty, are constants and are 0 for level-of-service and activity-
system variables not associated with zones i and j. The elasticities of the various sum-
mations all have a form similar to Eq. 44e; the simple elasticities are weighted by the appro-
priate trip share (T, /T;;. in the equation shown). Because the simple elasticities are
both positive and negative, it is possible that the elasticities of the summations with
respect to level-of-service variables will be positive, which is contrary to economic
theory. The use of constrained regression to prevent this is infeasible because of the
large number of constraint equations required (one for each i-j pair) and cannot ensure
that predictions will have the proper summation elasticity, because the shares will
change in the future. Zonal aggregation can cause a problem if the coefficients in Eq.
44g sum to a number significantly different from 1.

e(Tip:tign) = Cox (44a)
e(Tyx:timn) = 0 - (44Db)
e(Ty5:St) = aw, ax , (44c)
e(Tyg:A1) = O (444)
V > caxTig
e(Tyy. tyga) = = (44e)
T.,.
e(Tyy.itiy) = 0 ' (44f)
Al = al + a% (44g)

Linear-Log Form (Eq. 17)

All elasticities and cross elasticities for T}, are linear functions of the respective
independent variables, inversely proportional to Ti,,. Zero elasticities occur when-
ever the independent variable of concern is not associated with the i-j zone pair. The
elasticities of the "'scaling" activity-system variables (S;,, A;,) are both unity, resulting
in an aggregation index of 2. The elasticities of summations all take on a form similar
to Eq. 45d. Because af,, and by, can be expected to be negative and the remaining pa-
rameters can be expected to be positive, but small in magnitude when compared with the
direct parameters, these elasticities will normally have the proper sign. It is possible
to ensure that this will be the case by using constrained regression.
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e(Tiy:Lim) = E%é‘m (afa1 Lyjer + bia1) (45a)

1k

e(Tix:Ste) = 1 (45b)

e(Ti:S)) = MBtehie (ep, + a,) (45¢)
13k
e(T%.:Lyym) = = Mz (afe1 Lygm + bia) . (45d)
13-
Al = 2.0 (45e)

_ Product-Exponential Form (Eq. 18)

All elasticities and cross elasticities for T} are linear functions of the respective
independent variables, independent of the level of Ti;. Zero elasticities occur when-
ever the independent variable of concern is not associated with the i-j zone pair.

e(ﬂdk:Lij‘ll) = o + wn}LiJn; (46a)

e(Tix:81) = ¢ + oS, . ‘ (46Db)

e(Ty;.:Lyym) = 3 &,Ti& (8 + Bia1Lyja1) (46¢c)
k Tu

Al = 1.0 (46d)

Independent Abstract Mode Procedures (Eq. 20)

Equation 47 indicates significant discontinuities for the elasticities of ""best'" modes
and other modes. The 0 cross-elasticity of Eq. 47c when m # b is especially trouble-
some. Equation 47 indicates that the elasticities and cross elasticities of this model
are independent of the mode of trips, k, as would be expected in an abstract mode model.

e(Ti:B) = a (47a)
whenk #b
e(T:ti) = { 2 nk# (4b)
aswhenk=">b
Owhenm £b
e(Tip:tisn) ={ % -2, whenm=b (47¢c)
aswhenk=>0
2 —%‘i when 1 #b
13
e(Tiy.:tyy) = ) (474d)
ag - 39(1 -ﬂﬂ)when l=b
T“. ‘.
Al = a, + a, (47e)
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Modal Share Models (Egs. 21, 22, and 23)

Equation 48 indicates that the elasticities and cross elasticities with respect to
travel time by a given mode are directly related to the share of trips using that mode.
The parameter bs should be in the range of 0 to 1, with a value near 0 expected. If it is
0, the elasticity of total trips by zone pair (Eq. 48e) will be 0. If it is 1, the direct time
elasticity (Eq. 48b) will be simply a=, and the cross’ elasticities (Eq. 48¢c) will be 0, as
in the product form of Eq. 16.

e(Tix:Py) = by : (48a)
e Tx;.‘kit“k) = az,[%-& (bs - 1) + 1] (48b)
Tyy.
e(Tin:tise) = az::%h (bs - 1) (48c)
1.
Ty. = f2 ' (48d)
e(Tiyittyy) = aabs & (48e)
Ty,
Al = by + b2 (48f)

Disaggregate Separable Decision Models

Modal Choice (Eq. 24)

In a similar fashion to Equations 43a, b, ¢, d, and e, Eq. 49 indicates that the elas-
ticities of travel by a given mode with respect to the independent variables are directly
proportional to the value of the independent variables, the value of their coefficient, and
the fraction of traffic not using the given mode. The elasticities of travel with respect
to variables not associated with origin i or destination j are all 0. Also, as expressed
in the independence-of-irrelevant-alternatives axiom, the elasticity of travel by any
mode with respect to level-of-service variable of any second mode does not depend on
the characteristics of any mode except the second. Let

HEPLN Zlib';(L,,., - Lyyu) + ? ciSu (492)
Then Eq. 24 becomes

Pl _ exp(it,) (490)

1- Pl .
e(T2:Su) = ciSu(l - Pl | (49¢)
e(T4u:Lusa) = BiLusna (1 - Pl | (494)
e(Tis:Lyye) = -bilgya (1 - Ply,) (49e)
e(Tys:Lawa) = 0 (491)
2. (constrained to equal T},) ” (49g)
Al = 1.0 (49h)

199



Other Decisions (Egs. 25, 26, and 27)

The remaining decisions—time of day, destination, and trip frequency—all have
basically the same structure as the modal-choice structure of Eq. 24. Their elastici-
ties and summations, therefore, also have the same characteristics.

Direct Decision Model (Eq. 28)
Equation 28 also has the same structure as Eq. 24 and, therefore, its elasticities

have the same characteristics. However, because it is not a sequential model, the
elasticities of trip summations are expressed differently.

e(Tyy.:Lygrr) = diligga Tie  Tow (50)
Ti;. Tl' .

This equation indicates that the elasticity of trips by all modes from i to j with respect
to an independent variable is directly proportional to that variable, its coefficient, and
the difference between trips by the mode of that variable as a fractlon of total trlps be-
tween i and j and the same trips as a fraction of total trips from i.

This concludes a summary of the structural characteristics for the set of currently
used demand forecasting procedures described in an earlier section. It is obvious that
these procedures have a wide range of characteristics and that in some cases the ana-
Iytical structure itself does not ensure that all characteristics will agree with economic
and travel behavioral theory. When these procedures are used, the analyst must in-
vestigate carefully the resulting characteristics, to be sure that all aspects of his model
are realistic.

After determining the characteristics of a number of forecasting procedures, we can
list a number of desirable characteristics. Research can then be done to search for
analytical structures that satisfy those desires. This approach to the development of
improved analytical structures for travel forecasting has, to some extent, influenced
past developments in the field (14, 16, 18, 24). Some of the kinds of desirable charac-
teristics are as follows:

1. The mathematical form of critical elasticities and cross elasticities should be
as specified,

2. The effects of the aggregation of traffic zones on model predictions should be as
specified,

3. The variation in competition between pairs of modes should be reflected in the
model, and

4. The effects of adding new modes on summations of trips should be as specified.

Integration Into Analysis Systems

A number of desirable characteristics of transportation analysis systems place
critical constraints on demand forecasting procedures and create requirements for a
number of specialized kinds of procedures. Four examples of these characteristics
are discussed in this section.

Consistent Estimation of Network Equilibrium

Manheim (12) has discussed the need for transportation analysis systems that use
a consistent set of level-of-service variables, consistent both with the demand proce-
dure and with the supply procedure. He pomts out that this requirement is violated in
the UTP procedures when final values of level-of-service variables are not used during
the trip distribution and modal-split phases. As a result, demand is erroneously esti-
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mated, and the final level-of-service variables are incorrect.

To modify present transportation analysis systems so that they can be consistent,
less cumbersome demand procedures than those now used are desirable. Because of
their structures, direct demand models have been seen as logical candidates to meet
this requirement. In large measure, this accounts for their use in DODOTRANS, one
of the first transportation analysis systems that explicitly attempts to estimate network
equilibrium in a consistent manner (13). As discussed in the previous section, however,
present direct demand models have structural characteristics that are not satisfactory.
Therefore, improved models are needed—ones that have the ease of application of the
direct demand models and are as controllable as the present UTP procedures. Manheim
has proposed a family of analytical formulations to meet these objectives. These
models, the general share models, can be expressed either as a sequential set of models
or as a direct model.

Pivot-Point Procedures

Often, the analyst is faced with the following situation: The details of the existing
travel pattern in an analysis area are known (all interzonal trips and level-of-service
variables by mode), and the effects on the transportation system of relatively small
changes on this travel pattern are desired. Usually the analyst has a number of choices.
The first is to manually estimate the effects. The second is to perform a complete
analysis from trip distribution through traffic assignment. The remaining choices fall
somewhere in between, involving only partial use of the UTP, based on assumptions
that trip distribution or that modal split will not change. Regardless of the choice
made, very little of the existing information will be used and, therefore, the resuiting
estimates may differ from the existing situation more because of calibration errors
than of the proposed changes.

Pivot-point procedures have been designed to improve the analyst's forecasts when
he is faced with the situation just described. They allow changes in travel to be esti-
mated, based on changes in the transportation system. These procedures minimize
the calibration problem by using the existing data and by specifying the elasticities of
travel-making with respect to the available level-of-service data. The equation used
for estimating changes, based on the total differential of a function, is the following:

n AS, AA o AL
ATxlljk = Totge [21: e(’ﬂ;kisl) ﬁ + ? e(T:.ik:Al) Xj‘ + %1: e(TuxiLn) Lo:] (51)
where
ATy, = change in trips from i to j by mode k for purpose n,
0 = old or former value,
S, = socioeconomic variable,
A, = activity-system variable, and
L, = level-of-service variable.

Regardless of what the demand model structure is, the elasticities can be assumed to
be constant for small changes. Equation 51, therefore, becomes generally applicable
for predicting the effects of small changes. For larger changes, explicit functional
forms of the elasticities {arc elasticities) can be used.

The most significant impact of pivot-point procedures is on the design of analysis
systems. They also, however, have an effect on demand modeling. They imply that
much effort should be put into obtaining good estimates of elasticities, for these alone
are needed to use Eq. 51. Because elasticities can best be estimated when a change
is observed, this implies that many careful before-and-after studies of transportation
should be carried out.
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Dynamic Transportation Analysis

As stated in the introduction, we assumed that transportation demand can be divided
into short-run and long-run phenomena, and we will concentrate on modeling the short-
run situation. Actually, however, there is a continuous variation in effects over time
from short run to long run. To reflect this continuity in our models, we must con-
struct dynamic systems by using variables that have a range of lag times, as discussed
by Ben-Akiva (2). Sucha system would incorporate both land use models and travel pre-
diction models into a set of demand models that would provide predictions of both the
long- and the short-range effects of transportation.

Although such an approach is useful as a method to incorporate the time dimension
into travel forecasting, it will generate new problems in the areas of empirical estima-
tion, data collection, and convergence of the solution. Work should begin on a study of
these problems so that in the future dynamic transportation modeling can be started.

Aggregation of Disaggregate Procedures

To incorporate disaggregate travel demand forecasting procedures into analysis
systems, methods of interfacing these procedures with aggregate zonal data must be
developed. If the models are applied directly to zonal averages of socioeconomic,
activity-system, and level-of-service variables, the major advantage of disaggregated
procedures will be lost. Some way must, therefore, be found to incorporate the dis-
tributions of zonal variables into the application of the procedures.

One approach that has been suggested is the sampling from these distributions by
using Monte Carlo simulation techniques to obtain observations of the independent vari-
ables required to predict trips. For some models, it may be possible to analytically
obtain the expected value of trips, based on incorporating all of the relevant distribu-
tions of variables. This is an area in which research should begin, both to look for
alternate approaches and to test the various proposed methods to determine their use-
fulness and accuracy.

RECOMMENDED PROGRAM OF RESEARCH

In this part of the paper, all of the suggestions for further research included in the
previous part will be brought together as a unified program of research in the area of
the analytical structure of travel forecasting procedures. Each recommended area of
research will be given a priority rating and a recommended time frame for carrying out
the research.

Travel Demand Theories

1. Lancaster's approach to consumer utility and demand should be expanded to be
applied directly to travel demand. The implications of this approach to estimating the
demand for transportation as a part of activities that have utility to the consumer should
be explored with a view toward developing additional theoretical guidelines to the travel
demand model developer. The priority is medium, and the time frame is 3 to 8 years.

2. Work should be continued on the development of a general equilibrium model that
concentrates on transportation demand prediction. The work done to date (3) should be
continued in the following areas: (a) searching for a utility function form that results
in demand functions with a closed form, (b) exploring the existing formulation for its
implications on suitable analytic structures, and (c) searching for realistic revisions
of the formulation that will result in useful demand functions. The priority is medium,
and the time frame is 3 to 8 years.

3. Work should be begun on the incorporation of the total travel time constraint into
economic theories of the consumer because of the importance of travel time as a deter-
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minant of travel demand. The priority is medium, and the time frame is 1 to 5 years.

4. The theory of rational choice behavior, as developed in psychology, should be de-
veloped further, with a view to its application to travel behavior in particular. The
goal should be to develop a framework that can be used to construct more realistic
models for travel demand forecasting. The priority is high, and the time frame is 1 to
5 years.

5. Work should continue on the testing of alternative assumed sequences of traveler
choice. Because these sequences are so crucial to both aggregate and disaggregate
sequential models, the effects of alternative assumptions on model accuracy should be
determined for a number of classifications of trips, including urban work and shopping
trips and intercity business and pleasure trips. The priority is medium, and the time
frame is 1 to 5 years.

Data for Travel Demand Forecasting

1. Work should begin on developing travel survey methods that will provide the data
needed for disaggregated demand modeling in the most accurate and efficient manner
possible. This work should proceed from the development of alternative designs
through the conducting of prototypical surveys, the use of the data obtained in model
estimation, and the evaluation of the methods for future use. The priority is high, and
the time frame is 1 to 3 years.

2. Research into methods of improving the accuracy of survey data should be car-
ried out, including alternative methods of monitoring and recording travel data and of
integrating survey data with engineering information. This is an area where the use-
fulness of new technology, such as automatic vehicle (and perhaps people) locator sys-
tems, should be explored. The priority is medium, and the time frame is 3 to 8 years.

3. Specialized surveys and studies should be designed and conducted to help provide
answers to questions not answered by present demand procedures because problems of
multicollinearity prevented all relevant variables from being included. For example,
careful before-and-after studies and controlled experiments should be conducted to
learn more about the responses of travelers to fare, time, and frequency changes. The
priority is high, and the time frame is 1to 5 years.

Demand Estimation Methods

Research should be carried out by statisticians to develop accurate and unbiased
estimation procedures for use in travel demand model development. The concentration
should be placed on analytic structures that have theoretical appeal but have not been
used to date because it has not been possible to estimate their parameters. The
priority is medium, and the time frame is 3 to 8 years.

Structural Characteristics

1. The various analytical structures that have been developed or proposed should be
studied carefully to determine their characteristics: elasticities, cross elasticities,
aggregability, summations, and ability to balance trip origins and destinations by zone.
Characteristics that can be, or are always, contrary to theory should be pointed out,
and changes to the structures should be proposed to prevent such characteristics from
occurring. The priority is high, and the time frame is 1to 5 years.

2. As proposed analytical structures are found that have promising characteristics,
work should be done to calibrate them to determine their applicability to actual travel
phenomena. Alternative structures should be compared by using criteria based on
goodness-of-fit measures, ease of calibration, and constancy of parameters. The
priority is high, and the time frame is 1to 10 years.

3. Research should be conducted to proceed from alternative specifications of the
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structural requirements of demand models to the determination of analytical structures
that satisfy these requirements. The alternative sets of specifications should be gen-
erated with particular demand estimation problems in mind, such as predicting the
demand for a new mode by a particular market segment or predicting the effects of
relatively minor changes in operating policies. The priority is medium, and the time
frame is 3 to 8 years.

Integration Into Analysis Systems

1. Research should be carried out to determine methods by which the existing anal-
ysis systems can be modified to provide for the consistent estimation of travel de-
mand, both by modifying the structure of those systems minimally and keeping the
present demand procedures and by incorporating new procedures better suited to the
consistent estimation of network equilibrium. The priority is high, and the time frame
is 1to 3 years.

2. Research should be carried out to develop new analysis systems that will incor-
porate a wide range of demand procedures in an efficient system that consistently esti-
mates network equilibrium. The limitations placed on demand procedures by these
systems should be determined and removed if necessary to provide for the realistic
estimation of travel demand. The priority is medium, and the time frame is 3 to 5
years.

3. Research should be carried out to develop demand models that will be efficient
for use in consistent network equilibrium prediction systems. The general share
models should be examined in this light, and recommendations should be made on their
further development or on alternative directions of improvement. The priority is
medium, and the time frame is 3 to 5 years.

4. Research should be conducted to develop pivot-point procedures as integral parts
of transportation analysis systems and to develop the demand models and data needed
to make these procedures useful for a wide range of small-scale transportation pre-
diction problems. The priority is high, and the time frame is 1to 3 years.

5. The feasibility of developing a dynamic system of models to incorporate short-
term demand estimation and long-term land use predictions should be studied. Such
a study should address the data requirements that this approach will generate, the esti-
mation problems, and the convergence problems. The result should be a program of
work to provide the necessary data and tools to allow the calibration of such a model
in the future. The priority is medium, and the time frame is 3 to 8 years.

6. Methods to interface disaggregate demand models with aggregate zonal data in
analysis systems should be developed and tested. Also, the possibility of eliminating
the zonal aggregation of the data needed for demand models should be explored, taking
advantage of the data directly available from home interview surveys and from the
census. These research tasks should be addressed both to the use of disaggregated
models with existing and with predicted future socioeconomic, activity-system, and
level-of-service data. The priority is high, and the time frame is 1 to 3 years.
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