
* 	This paper has as itsmajor goal 
the initial formulation of a re-
search program on analytical 
structures for travel demand 

forecasting and the discussion of the mo- 
tivations for this formulation. 

By travel demand forecasting is meant 
the process of predicting the travel that 
will occur when a given transportation 
system is provided within a given activity 
system. (By activity system is meant all 
aspects of the world that are not parts of 
the transportation system, but that do 
have effects on that system.) This defini-
tion of travel demand assumes that we are 
looking at trip-making decisions only and, 
therefore, can ignore long-range changes 
in the activity system caused by travelers' 
changing their places of residence and 
work, except as those changes may be 
externally specified. The long-range 
changes in the activity system are left 
for the activity shift and land use mod-
elers, although it is recognized that the 
transportation system is an important de-
terminant of those long-range changes. 

By analytical structure is meant 2 
things: (a) primarily, the form of the 
travel demand forecasting function, 
whether it be a closed mathematical ex-
pression or an algorithm; and (b) to a 
lesser extent, the independent variables 
used in the forecasting process. More 
details and motivation for this definition 
are given later. 

This paper is structured into 3 some-
what unequal sections. Section 1 includes 
extended definitions of demand models 
and analytical structures and a listing of 
some alternative structures that have 
been applied to the travel demand fore-
casting problem. Section 2 discusses the 
factors that must be considered in decid-
ing on appropriate analytical structures 
for travel demand forecasting, and iden-
tifies a number of areas of necessary re-
search. Section 3 brings all of these to-
gether as a concise initial formulation of 
a program of research in the area of 
analytical structures. 

DEFINITIONS AND ALTERNATIVES 

Analytic Definition 

Because we are concerned with fore-
casting travel demand, it is useful to 
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develop an analytic definition with a basis in consumer demand theory as it has been 
developed in the fjeld of microeconomics (). Beginning with the preferences of in-
dividual consumers, Henderson and Quandt postulate utility functions that state the 
level of utility associated with the purchase of quantities Q1 of a number of goods. 

U(Q1, Q21 . . . , Q) 	 (1) 

Also, the consumer's budgetary limit is expressed as 

	

EPIQIY 	 (2) 

where P1  is the price of the ith good, and Y is the total budget, or income, of the con-
sumer. When U is maximized subject to the budgetary constraint, the following rela-
tions are obtained among the variables: 

	

Q = DI(P1, P2, . . . , 	P, Y) 	 (3) 

for all i, where Q1  is the optimal quantity of good i purchased by a consumer with in-. 
come Y. The functions D1(.) are demand functions in the classical economic sense. 
They relate the quantity of a good consumed to the prices of all goods and to the income 
level of the consumer. 

In theory all goods that contribute to the consumer's utility must be included in each 
demand function. Practically, however, it is impossible to find significant relations 
between the prices of many goods and the demand for others. We, therefore, group 
the subset of all prices that significantly affect the quantity of good i into a vector P. 
These prices include (a) the price of good i itself and (b) the prices of goods that are 
substitutes for good i. 

Using the vector P, we can rewrite the demand function as follows: 

	

Qi  = DI(P, Y) 	 (4) 

This equation represents the demand function for an individual. The summation of 
these functions to obtain total demand can be accomplished, at least theoretically, by 
assuming that individuals can be grouped into subsets of the total population with simi-
lar utility functions and income levels. Each subset can be described by socioeconomic 
variables, S, which include Y. This leads to the following functional form for total 
demand functions: 

	

= DI(P, S) 	 (5) 

To adapt this general formulation to transportation demand, we must recognize that 
transportation is a good that is a complement to-the demand for manyother goods. Con-
sumers travel to the corner to purchase bread; they travel downtown to purchase meals 
at restaurants; they travel to Florida to purchase sun in the winter; they travel to their 
working places to trade their labors for incomes. Transportation is therefore termed 
an intermediate good. Although it is a complement to many other goods, the quantity 
of transportation consumed does not contribute positively to the utility function, U. , The 
demand for transportation is a derived demand: It is due to the demand for other goods 
rather than to its own contribution to the consumer's utility. 

One approach to transportation demand forecasting, therefore, would be to model 
the demand for the final goods and services that result in transportation consumption. 
To date, however, this has proved to be too difficult. Instead, trips are typically 
classified according to trip purpose (class of final good), and the demand for transpor-
tation for each purpose is modeled separately. Also, an additional class of independent 
variables, measuring the attraction or intensity of the final activities, A, is added to 
the demand functions. Therefore, when the subscript i in Eq. 5 refers to a transportation 
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good, V (trips for purpose n from origin k to destination 1 by mode m), the general 
demand function becomes 

V 	= D(P,S,A) 
	

(6) 

Another characteristic of transportation is that the traveler "pays" in a number of 
ways when he consumes transportation. There are a number of "prices" that include 
not only money paid but also time consumed, discomfort experienced, and risks en-
dured. These and other prices can be classified together as level- of- service variables, 
L. The level-of-service variables have an added dimension not present in the prices, 
P. 	For each price, P1, there exists a vector of level- of- service variables, LI  = (P1 , 

t, ci, si, ...) where P = price, t j  = travel time, c1  = comfort index, and s = safety 
index. 

Our final general analytical expression of a travel demand function is obtained by 
substituting L for P: 

(7) 

Equation 7 serves as the starting point for considerations of the analytical structure 
of travel demand forecasting techniques. Itis useful to summarize the major ways in 
which this function differs from Eq. 5, the general demand formulation. 

L Because there are many costs associated with travel, monetary prices, P, are 
replaced by level-of-service variables, L. 

2. Because transportation is a derived demand, travel must be predicted by trip 
purpose and must be a function of the activities, A, available at the destination. 

The overall goal of this paper is to formulate a program of research that will lead 
to answers to the following questions: 

What forms of the function Djm  are appropriate for various kinds of travel de-
mand forecasting? 

What variables belong in each of the sets of independent variables shown in 
Eq. 7?  

Some Alternative Structures 

Before discussing the factors that must be considered in answering the above ques-
tions, we should classify and list some of the major types of analytical structures for 
travel demand forecasting that have been developed to date. The purpose is not to in-
dude all existing forecasting procedures, but rather to illustrate each class of struc-
tures with a typical example. The general classes of procedures are sequential ag-
gregate, direct aggregate, sequential disaggregate', and direct disaggregate. These 
classes are described in the sections that follow. 

Sequential Aggregate 	 S  

The urban transportation planning process (UTP) is a prime example of a set of 
sequential travel forecasting procedures Because this process has been used so 'ex-
tensively for so many of the travel forecasts made for the past 15 years, it will be 
described very briefly here, with emphasis' on the structural aspects. 

Trip generation is the first sequential step, involving the prediction of total trips 
from'an origin or to a destination by trip purpose (). The independent variables are 
most commonly in the socioeconomic and activity classes used in Eq. 7. The func-
tional form is usually linear. Symbolically, '  
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TI 	bS11 +k. 
1 

(8) 

T7 = 	cA 1 +k 
1 

where 

T n = trips of purpose n generated in origin 
T = trips of purpose n attracted to destination j, and 

b7, c, ki  = empirical parameters. 

Typical socioeconomic variables used are average annual income, average number 
of automobiles owned, number of workers per household, and percentage of households 
having an income greater than a specified value. Typical activity-system variables 
used are zonal population, acres of land in various land use categories, and zonal 
employment. 

The second sequential step is trip distribution, the prediction of trips from origin 
to destination. The independent variables are the trip ends resulting from the previous 
step plus level- of- service variables. Symbolically, 

T J 	= f(T 1''  L) 	 (9) 

where 

T 
n 
1 

j = trips of purpose n from origin ito destination j, 
T, T = results of the trip generation step, and 

L jj  = level- of- service variables between i and j. 

The 2 most common functional forms are the, gravity model and the opportunity 
model. A typical version of the gravity model is as follows: 

= T 	
On 	

(10) 
Tt1  

k 

where 

tij  = travel time from i to j, and 
Pn  = empirical parameter. 

A typical version of the opportunity model is as follows: 

= Te'(1 - 	 .. 	 (11) 

where 	 . 

= L T = "subtended volume," 
k = all destinations for which tjk,< t, and 

L = empirical parameter. 

These models are "share" models; they divide the total trips from i, T, among all 
destinations by using a fraction that, when summed over all destinations, equals 1. 
Travel time by a single mode, usually highway, is typically the only level- of- service 
variable used although, in some applicatiOns,' a generalized cost has been used that is 
a linear combination of travel time, distance, and out-of-pocket costs. The level-of-
service variable enters the opportunity model in an indirect way only. It affects the 
ranking of destinations from each origin, which'in turn affects the subtended volumes 
that enter the model directly. 	 . 
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In some applications of both the gravity and the opportunity models, adjustments of 
T are made alter initial application of Eq. 10 or 11 in an attempt to force the total trips 

.to each destination (T'3 = Z T) to equal the original T. This constraint, though 

logical, is not guaranteed by the functional form of either distribution model. Follow-
ing adjustments of the original T7, the equations are applied again. Iteration through 
application of the equations and adjustment of the original T continue until a desired 
level of correspondence between each T and T'3  is reached. 

The third sequential step is modal split, the prediction of trips by mode from origin 
to destination. The independent variables are the trip interchanges' resulting from the 
previous step plus modal level- of- service variables. Symbolically, 

m _ ; 13k 	- nk(m  13, T  i3 	Q  1  A 
3 
	 (12) 

where 

Visi = trips of purpose n from origin ito destination j by mode k, 
Tn j  = results of the trip distribution step, 
L13 = level-of-service variables for all modes m between i and j, 
'S1  =' socioeconomic variables of travelers in i, and 
A3  = activity-system variables in j. 

Many approaches have been used to develop functional forms, fk,  for modal-split 
models. The most commonly used prior to the past 3 or 4 years were regression or 
table look-up models based on the relative levels of service offered by each mode (i). 
Typically, origin zones have been classified by income level and automobile ownership, 
and for each subgroup linear equations or tables are developed that relate fraction of 
trips by automobile and transit to time and cost ratios or differences. Symbolically, 

- 	' 1_ ci3\ 
= fn k 	, - T 3 	\ ut 	-) 	

(13) t  

or 
b 

IT 	
g,,, (t13  - tub, Cj1  - Cija) 

Ii 
where 

P11k = fraction of travel for purpose n between i and j by mode k, 
t118 , t11  = travel times by automobile and transit, 

C jj , cijt  = costs by automobile and transit, and 
m = income and automobile ownership group. 

Various time and cost variables have been used, and often more than one of each 
has been used. Time has been divided into in-vehicle time, waiting time, and access 
'time, for example. Cost has been divided into out-of-pocket cost, tolls, parking fees, 
fares, and total operating costs. 

More recently, the following functional form has been used for fk (11, 20): 

pn 
IJt

- 	1 	 ' 	 (14) 
- i + eL 

and 

hk  (L13) = C +' 	a (t 	- t1) + E b (Cjt - c 3 ) 
1 	•' 	 1 

Again, times and costs have 'been divided into various variables. The constant Ck, 
as well as the parameters alk  and b, allows the relative characteristics of modes not 
measured by times and costs (such as comfort, convenience, and modal "image") to be 
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represented in the model. The function hk  can be interpreted as a difference in con-
sumer utility between travel by transit and travel by automobile. 

Direct Aggregate 

In contrast to the sequential application of a number of models in the UTP process, 
direct aggregate procedures involve the prediction of travel demand by origin, destina-
tion, and mode with a single equation whose general form is given in Eq. 7. The orig-
inal application of these procedures has been to the prediction of intercity trips between 
large zones, typically entire urban areas. More recently, application to urban areas 
has taken place. Functional forms that have been used for direct aggregate equations 
may be placed in the following major groups. 

Independent Mode-Specific Equations 

T Jk  = f(Ljjm, S1, SA1, A) 	 (15) 

In the present models of this type, 3 forms of the function f are most common. 

The product form (2k) was applied to intercity travel for business and personal 
purposes. 

2k V 3k = aOk P' P3 	
ya4k 

IT (ciJE t:) 	 (16) 
m 

where 

P1, P3  = populations, 
Y 1, Y 3  = average incomes, 

clim = travel costs by mode m, and 
t1 	= travel times by mode m. 

The linear-log form () was applied to automobile work trips in a metropolitan 
area. The socioeconomic and activity-system variables are labor force at origin, em-
ployment at destination, median income at origin, and number of automobiles per 
person at origin. The level- of- service variables for both automobile and transit are 
in-vehicle travel time, out-of-vehicle travel time, line-haul cost, and out-of-pocket 
cost. 

TLJk =M(S1OA3e)( 	a1L1 	+ 	bkm 1lnL11  
m,l 	 m,1 

(17) 

+ E c 1 S1  + 	d i lnSi) 

where 

M = constant term, 
1 = variable number, 

Si., A 0, S1  = socioeconomic and activity-system variables, and 
L jjkl  = level-of-service variables. 

The product-exponential form () was applied to automobile shopping and transit 
work trips in a metropolitan area. The activity-system variables in the model for auto-
mobile shopping trips are number of households at origin, number of persons per 
household at origin, median income at origin, number of automobiles per person at 
origin, and density of retail trade employment at destination. The level- of- service 
variables for the automobile shopping-trip model include all listed for the linear-log 
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form, with the exception of out-of-vehicle travel time for the transit mode. For the 
transit work-trip model, the activity-system variables were the same as those used in 
the linear-log form. The level-of-service variables included no automobile model var-
iables. The transit variables used were the same as those for the linear-log form. 

T jk = M 	IT 	L1 ' 	. IT s' e1S1 	 (18) 
m ,l 	 1 	 - 

where the variables are as defined for, Eq. 17. 

Independent Mode-Abstract Equations 

	

T'jk = f" (L1 , Y1, Y, A1, A) 	 (19) 

This general representation only differs from Eq. 13 in that the function f' is inde-
pendent of mode, k. The prime example of this model is the following form developed 
by Quandt and Baumol (j). Because it was developed for intercity travel for all pur-
poses, no purpose superscript is used. 

1

a10 

2 
a 4 a 5 a6 a7 (Clik \ (f~t,j k \ 

ag 

iJ!Tjk aoPpY3Y clbtIbfl,b \7)) 	fljb) 	 (20) 

where ftJk is the frequency of service; and the new variables, Cub, tljb, and fljb, are the 
cost, time, and frequency for the "best" mode with respect to each parameter: the 
cheapest cost, the fastest time, and the most frequent service. 

A distinct advantage of a mode-abstract direct demand equation is its ability to 
predict the demand for new modes without changing the functional form of the model or 
its parameters. 

Modal Share Mode/s 

fk (L jJk ) 
T J k = f (AIAYIYLIJ ) 	 (21) 

f(L) 
m 

As the general form of this model indicates, these models include 2 separable func-
tions: one to predict total trips from i to j(f) and a second to predict the share of 
these trips that will use mode k(f 5). Therefore, this model can be classed as a 
direct aggregate model or as a partially sequential model. 

The prime example of this model is McLynn's composite analytic model developed 
for intercity travel for all purposes (j). In that model, -the function fkl and f2 are as 
follows: 

a5 a3k 
fIb = 	-Ijk IiJk 	 (22) 

b5 
01 	j = b 

bib2b3b4 

( 	fia) 	 (23) 

The 2 functions are typically estimated sequentially: First the fia functions are 
estimated, and .then their -sum is obtained as a variable to be used in the estimation 
Of f2 . - - 
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Sequential Disaggregate 

Both of the analytical structures discussed above have been developed and applied to 
aggregated travel data: data for entire zones whose sizes range from fractions of 
square miles for urban applications to entire metropolitan areas for intercity appli-
cations. Modeling at either of these levels of aggregation smoothes out most of the 
variations of the individuals who actually make the travel decisions being modeled. 
For this reason, much of the recent demand modeling effort has addressed the problem 
of predicting the travel decisions of individual travelers. Initially, these studies were 
concerned only with the mode-choice decision. The models developed were individual 
traveler applications of the utility model form shown in Eq. 14 (, 10, 22, 23). When 
applied to individuals, the dependent variable can only take on the values 0 or 1, re-
quiring a different set of estimation procedures to be used. in the initial models of 
this type, only 2 modes were included, leading to a binary-choice situation. More 
recently, multiple-choice models have been developed (j). 

Building on the earlier work in modeling the individual mode-choice decision, re-
searchers have developed equations to model not only mode choice but also destination 
choice and the choice of whether to make a trip. 

Charles River Associates () developed a sequence of individual choice models based 
on the assumption.that travelers first choose whether to travel, then where to travel, 
then what time to travel, and finally what mode to use. Because of this assumed se-
quence of choices and the use of inclusive prices, the models must be calibrated in the 
reverse order of the assumed order of choice. They are presented in thatorder here. 

The modal- choice submodel is based on a bihary choice between automobile and 
transit 

pn 

U = exp Ia + Ibi (L jja j - L11) + 	cS11
1 	

(24) 
1P1 	

1. 	i 	 . 1 	j 

where 

pn 
tj = fraction of trips by purpose n (work or shopping) by household i to 

destination j made by automobile rather than transit, 
L11, L11  = automobile and transit level-of-service variables, and 

S11  = socioeconomic variables. 

The socioeconomic variables are automobiles per worker in the household, indicator 
for race, and indicator for occupation. The level- of- service variables are waiting 
time (assumed to be 0 for automobile trips), invehicle travel time, and operating, 
parking, and fare costs. 

2. 	The time- of-day-choice submodel is based on a binary choice between traveling 
in both directions during off-peak hours for shopping or traveling in at least one direc-
tion during a peak hour. The shopping purpose is the only one modeled. 

p1.10 1 	 •1 

1 - 	
= exp [a + b(IPI.1O  - IP1 ).+ 	•c0S10 	 (25) 

p1j
In 	J 

where 

P110  = fraction of shopping trips made by household i to destination j com-
pletely during off-peak periods, 

S 	= socioeconomic variables, 
IP 9  = inclusive prices for off-peak and peak shopping trips, 
IP, jo  = 	bLjjkl0 , 

1 
b = parameters from Eq. 24, and 

L jkl. = level- of- service variables for the mode used during - off-peak travel. 
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IP 	is similarly defined for peak-hour shopping trips. The socioeconomic variables 
used are indicator for sex of the head of household, number of workers per number of 
residents in the household, and number of preschool children in the household. 

The destination-choice submodel is based on a multiple-option choice of travel-
ing to each of a number of destinations for shopping. The shopping purpose is the only 
one modeled. 

PIJ  = exp[aj(IP - IP) + a2(A3  A) + a3(1P3  . S1  - 1P1 S1)J 	(26) 

where 

P11, P = fraction of shopping trips to destinations j and m by household i, 
A3, A. = activity-system variables for destinations j and m, 

S1  = socioeconomic variable for origin i, 
1P3, 1Pm  = inclusive prices for shopping trips to j and m, 

1P3  = Z bL131, 
1 

b = parameters from Eq. 24, and 
Lt jai = level-of-service variables for automobile trips to destination j. 

1Pm  is similarly defined for trips to m. The activity system variables are the fraction 
of total retail employment occurring in each destination. The socioeconomic variable, 
used with the inclusive price in the interaction term, is the number of preschool chil-
dren in household i. No level-of-service variables for transit trips were used. 

The trip-frequency-choice submodel is based on a binary choice between making 
o or 1 shopping trip per day. The shopping purpose is the only one modeled. 

_ - exp(a1IP1  + a2IE1  + a3Y1 ) 	 (2'7) 
1 - P1  - 

where 

P1  = probability that household i will make a shopping trip, 
Y1  = family income of household i, 

1P1  = inclusive price to household i = E ip3 , and 

1E1  = average shopping opportunity = E A3  Pjj  

1P3, P, A3, and P are obtained from Eq. 26. 

Direct Disaggregate 

The set of equations presented above is the disaggregated analog of the UTP sequen-
tial process. A disaggregated analog of the direct aggregate models also has been pos-
tulated and calibrated (2). The functional form of this model is as follows: 

PIJk= expEza'(' - A3 '1) + E b1(M 1  - M'1 ) + E ciY1(M1 - 
1 

	

	 1 	 1 

- L'k'l) + E-- (L J k l  - LYk'l  
t 	

)] 	
(28) 1 	 lY 

where 

P1 , P1 	= fraction of total trips from household i going to destinations j and 
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by modes k and k' (either j and j' or k and k' may be the same, but 
not both), 

A 1, A'1  = activity-system variables, 
M 1, M'1  = modal variables, 

L?k1, L'k'1  = level-of-service variables, and 
Yj  = household income variable. 

As estimated by Ben-Akiva, the following variables were used: 

Activity-system variables, A 1 —number of jobs in wholesale and retail establish-
ments in the zone of destination j and indicator for CBD destinations; 

Modal variable in separate term, Mj—indicator for automobile usage; 
Modal variable in interaction term with income, M 1 —indicator for automobile 

usage; 
Level- of- service variables in separate terms, L 31  —out- of- vehicle travel time 

and in-vehicle travel time; and 
Level- of- service variable in interaction term, L—out-of-pocket cost. 

This model was calibrated for automobile and transit trips for the shopping purpose 
only and does not deal with trip-making or time-of-day choices. It, therefore, repre-
sents a model that can be used to divide total shopping trips from a household among 
the available modes and destinations. 

This concludes a brief survey of the major classes of analytical structures that have 
been applied to travel demand forecasting or proposed for application. In later sec-
tions, I will refer to these structures to illustrate the issues involved in the choice of 
an appropriate analytical structure for a given travel forecasting problem. 

FACTORS AFFECTING ANALYTICAL STRUCTURE 

Two questions were posed as the overall goal of a program of research to be de-
veloped by this workshop: 

What forms of the function MI. are appropriate for various kinds of travel de-
mand forecasting? 

What variables belong in each of the sets of independent variables shown in Eq. 7? 

The factors discussed below must be considered in answering these questions. 

Travel Demand Theories 

Theoretical constructs that can be applied to travel demand are available in 2 gen-
eral fields: economics and psychology. We have drawn on classical demand theory to 
develop a starting point for our definition of the analytical structure of travel demand 
forecasting. This discussion includes not only the basics of classical theory but also 
the adjustments and extensions that make possible its application to travel demand. 

Other theoretical developments can be analyzed in the same way. This is done in 
this section for the alternative approach to consumer theory developed by the economist 
Lancaster and for the behavioral theory of choice developed in psychology. (The re-
source paper for Workshop 5 should be referred to for a more complete discussion of 
the theories underlying travel demand forecasting.) 

As stated by Lancaster (8), the following assumptions, each of which differs from 
the classical theory, are the essence of his approach: 

The good, per Se, does not give utility to the consumer; it possesses characteristics, and 
these characteristics give rise to utility. 

In general, a good will possess more than one characteristic, and many characteristics 
will be shared by more than one good. 

Goods in combination may possess characteristics different than those pertaining to 
the goods separately. 
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When the nature of transportation as a derived demand with many "prices" is con-
sidered, the relevance of Lancaster's approach to travel demand becomes evident. 
Transportation is a good with a number of characteristics that give rise to disutility, 
but is nevertheless consumed in combination with other goods because it makes pos-
sible the consumption of those goods. The other goods have 0 utility until they can be 
reached; then they provide utility that exceeds the disutility of transportation. 

Without going any deeper into Lancaster's approach than the 3 assumptions quoted 
above, I shall provide a theoretical basis for expanding the single-valued price of 
classical economics to a vector of characteristics—the level-of-service variables—and 
for including measures of the activity system. This can be shown by developing the 
analog of Eqs. 1, 2, and 3, which arise from Lancaster's approach. 

Utility functions now state the level of utility associated with the purchase of the 
quantities Z1  of a number of characteristics. 

u(Z1, Z2, . . ., Z,) 	 (29) 

These characteristics are obtained by engaging in a number of activities, j, each at 
level W. The relation between the vector of characteristic quantities, Z, and the vec-
tor of activity levels, W, is 

Z = BW 
	

(30) 

where B is a matrix of elements b1 ,, each of which is the amount of characteristic i 
provided per unit of activity j. 

The amount of each good, k, consumed is Q, which depends on the consumption of 
goods in each activity, as represented by the following relation between the vector of 
goods consumed, Q, and W: 

Q = AW 
	

(31) 

where A is a matrix of elements a, each of which is the amount of good k consumed 
per unit of activity j. 

As in the classical theory, a budget constraint exists. In matrix notation, 

PQ !g Y 
	

(32) 

If U could be maximized subject to the constraints shown in Eqs. 30, 31, and 32, the 
following relations would be expected: 

= t(P, Y, W, A, B) 	 (33) 

Although Lancaster provides no general solution in terms of forms of the demand 
function Dk (•), he does discuss a number of implications of his approach. As an ex-
ample, Eq. 33 provides a theoretical base for including measures of each of the fol-
lowing in demand functions in general and in travel demand functions in particular: 

P = prices of goods, 
Y = income level of the consumer, 
W = activity levels of the consumer, 
A = consumption of goods per unit of activity, and 
B = provision of characteristics per unit of activity. 

A second implication occurs when a new good, such as a new mode of transporta-
tion, is considered. In the classical theory, this situation requires the reformulation 
of the utility function, U, in an additional dimension before estimates can be made of 
the effects of this new good on the former equilibrium state. Before the new good is 
available, there is no way to estimate the changes to the utility function. Because in 
Lancaster's approach the utility function is dimensioned by characteristics rather than 
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goods, it remains unchanged when new goods are added. To revise the demand func-
tions, therefore, if no new activities are expected, requires only adding to the dimen-
sions of Q, A, and P. Because Q and P are variables, only a new row of coefficients 
of A must be determined, based on the amount of the new good that is consumed in each 
of the activities. This is a much more straightforward task than formulating a new 
utility function based on consumers' responses to a situation that does not yet exist. 

In many cases, a new good may result in new activities. This can also be repre-
sented by expanding the dimensions of A, B, and W. New columns must be added to A 
and B to represent the consumption of goods and production of characteristics of these 
new activities. This also can be done much easier than adding a dimension to the 
utility function. 

In summary then, Lancaster's approach provides a number of bases for travel de-
mand forecasting that are not provided by the classical theory. This added power has 
been recognized by a number of travel demand model developers. Others have gone 
beyond classical theory in ways that can only be supported by Lancaster's approach. 
His approach, therefore, can probably be profitably explored further by demand model 
developers. 

One attempt to explore this approach has sought to formulate a general equilibrium 
model that adapts Eqs. 29, 30, 31, 32, and 33 to transportation (3). This is done by 
concentrating on the following classes of goods: transportation,—consumer goods with 
fixed locations in the short run (work, home), and consumer goods available at many 
alternate locations (groceries, entertainment). 

Although no tractable solution has been obtained with this formulation, 3 types of 
further work may be warranted. 

Continue searching for a utility function form that results in a closed-form solu-
tion in terms of demand functions, L(.), for the transportation variables; 

Continue exploring the existing formulation, as far as it has been developed, for 
its implications on suitable analytic structures; and 

Search for realistic revisions of the formulation that will result in useful demand 
functions. 

Both in the classical theory of the consumer and in Lancaster's formulation, only 
monetary prices are considered. Lancaster deals with multiple characteristics, but 
only price has a budget limit. In transportation demand work, it is often useful to con-
sider time as a price also and to recognize that each traveler has a limited budget of 
time available for transportation or, in general, for the consumption of all goods. It is 
desirable, therefore, to expand Eqs. 2 and 32 to include a time budget that must be 
greater than or equal to the time used in consuming each good or in carrying out each 
activity. This added constraint can be expected to be more important for transporta-
tion demand analyses, where alternatives can have significant time variations, than for 
general demand modeling. 

In the area of psychology, a theory of rational choice behavior has been developed 
(11). Its basic assumptions are that a decision-maker can rank possible alternatives 
iorder of preference and will always choose from the available alternatives the option 
that he considers most desirable. These assumptions lead to the specification of utility 
functions that measure the desirability of an alternative, i, to a decision-maker with 
characteristics S. 

U(z1, S1) 	 (34) 

where 

Z1  = vector of attributes of alternative i, and 
Sj  = vector of characteristics of decision-maker 

The decision-maker maximizes his utility by choosing the alternative with the highest 
value of the function; or, in the case of random variables, the decision-maker chooses 
the alternative for which his utility is maximized with some probability, P1 . 
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To make probabilistic choice models tractable, an axiom on choice behavior de-
veloped by Luce is often used. Termed the independence_of_irrelevant-alternatives 
axiom, it requires that the relative odds of 2 alternatives being chosen be independent 
of the presence or absence of third alternatives. Symbolically, if i and k are 2 alter-
natives, both of which are chosen part of the time, and if there exists another set of 
alternatives n1, n2, . . ., then 

= f(Z1, Z, S) 	 (35) 

and this function is not affected by the presence or absence of any of the alternatives 

n1, n2..... 
This is a critical axiom to accept because it has important benefits and costs. One 

benefit is that, in the modal-choice case, for example, it allows demand to be predicted 
for new modes before they are built, if all of the Z variables are based solely on ge-
neric attributes of the modes, such as travel time and cost. On the other hand, an im-
portant cost is that, when such a new mode is introduced, the reduction in usage of all 
existing modes will be a constant percentage. These characteristics do not exist when 
some of the Z variables are mode-specific (for example, a dummy variable that is 1 
for the transit mode and 0 otherwise). This, however, is equivalent to replacing Z1  and 

Zk  in Eq. 35 with Z th  and Z, which implies rejection of the independence- of- irrelevant-

alternatives axiom. 
The theory of rational choice behavior provides a powerful tool for the development 

of disaggregated demand models. It is not, however, a perfect tool. Additional de-
velopment of the theory of rational choice behavior, with the goal of providing a more 
realistic model for travel demand forecasting, appears to be a worthwhile effort. 

Data for Travel Demand Forecasting 

The effects of data availability on the analytical structure of travel demand forecast-
ing procedures can be described in terms of the data limitations that now exist, the 
present needs for new data types and new survey procedures, and the problems caused 
by the use of the available data when present estimation procedures are applied. 

The major source of data for travel demand model development continues to be the 
home interview survey, which has been conducted in every major city of the United 
States. The data obtained from this survey are deficient for all kinds of demand model-
ing work for a number of reasons, including these two. 

The data have been collected by sampling large metropolitan areas with relatively 
low sampling rates—typically 2 to 10 percent. Any subdivision of the results into a 
large number of cells (by origin, destination, mode, and purpose, for example) results 
in a large number of observations of either 0 or 1 trip. These surveyed trips must be 
factored to represent 0 or 10 to 50 trips, and the factored trips are much too "lumpy" 
for advantageous use in model development. 

The tedious process of interviewing, filling out forms, coding, and keypunching 
can only be done for large surveys by relatively untrained people who must work fast. 
The net result is that many of the data that result are inaccurate and often are not com-
plete because of the inability of the interviewee to remember all of the details requested. 

Additional problems occur when these surveys are used for behavioral disaggregate 
demand modeling. 

Home interview surveys only produce data on the trips actually made. Informa-
tion on the use of alternate modes must be reconstructed from other sources, after the 
fact, in order to use the data in the development of disaggregated models. Similarly, 
information on potential trips for households that did not make trips of various kinds 
may be required, but are not available from the data. 

Accurate disaggregate modeling at the household level often requires ignoring the 

190 



machine-readable data obtained from surveys in favor of returning to coding forms, 
which include more precise location information (street address versus traffic zone, 
for example). This greatly increases the costs of disaggregated modeling. 

3. The definition of a trip in home interview surveys is an arbitrary one requiring 
a single mode and purpose. This definition is then modified somewhat by forming new 
"linked" trips. Often, however, what is desired in behavioral modeling is a "tour" 
composed of a number of trips that take a traveler from home to one or more destina-
tions and then back home. To obtain such tours often requires a return to coding-form 
analysis. 

Another important source of data for demand modeling work is the U.S. census, 
which collects a wide range of income, activity-system, and some trip-making data. 
Because these data must be aggregated to some geographical unit greater than the 
household to meet confidentiality requirements, they are mainly useful in aggregate 
rather than disaggregate model development. Expanded data on work trips are avail-
able from the 1970 census, and it is possible to consider the development of an aggre-
gate work-trip model based on census data and network data only. Drawbacks remain, 
however: The degree of aggregation, especially of destinations, often is high, and the 
data are collected only every 10 years. 

The paragraphs above imply a number of needs for new kinds of travel data and for 
new data collection methods. When disaggregated demand modeling is contemplated, a 
number of the limitations of existing home interview data can be overcome by designing 
surveys better suited to these models. Because it is not necessary to have data ob-
tained from entire metropolitan areas to develop these models, surveys can be designed 
with high sampling rates in relatively small areas. Data recording can be modified to 
preserve as much locational information as necessary and to represent tours rather 
than arbitrarily defined trips. Information on alternative modes and destinations can 
be requested explicitly. Better trained and higher paid interviewers can be used to 
help improve the reliability of the data. These changes will remove a number of lim-
itations of present travel data, but will only make the obtaining of accurate data more 
critical. Research aimed toward the improvement of survey data accuracy should be 
undertaken. Also, methods of integrating survey data with engineering information, 
such as travel times on highway and transit facilities, should be improved. 

With regard to the use of travel data to develop travel demand models, a number of 
problems can be identified. These problems depend not only on the use of the data but 
also on the estimation procedures. 

As pointed out, there are definite advantages in developing mode- independent demand 
functions. Such functions require, however, that each alternative mode be described 
by using the same variables. This raises the problem of developing a set of variables 
that are meaningful for all modes. The major problem arises when one attempts to 
describe automobile transportation in terms of variables such as frequency and cost; 
the variables are relatively straightforward for common-carrier modes. Should auto-
mobile cost be out-of-pocket cost only or out-of-pocket cost plus operating cost or both 
of these plus depreciation, insurance, and other fixed costs? These problems often 
make the use of mode- independent models impractical. 

A second data-estimation problem is multicollinearity among 2 or more variables. 
As an example, for any mode, both travel time and fare will be strongly related to dis-
tance and, therefore, to each other. How can a model be developed that includes both 
time and cost variables when the estimation procedure cannot accurately determine 
their parameters because of multicollinearity? Often, this question can only be an-
swered by conducting special experiments or studies to determine the relative effects 
of 2 or more collinear variables. 

A third data-estimation problem is the choice of accurate proxy variables to take 
the place of ones that theoretically belong in a demand formulation but that are not 
available. As examples, retail employment may be used as a proxy for shopping op-
portunities or occupation indicator as a proxy for income. The model developer must 
analyze the suitability of each proposed proxy variable before accepting it as a potential 
variable. 
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In summary, the analyst who must develop demand forecasting procedures by using 
available data must choose his analytical structure carefully to ensure that he will not 
be defeated by a lack of the proper data. Also, the analyst who is asked to specify his 
data needs before a survey strategy is developed should be able to recommend survey 
procedures and questions that will provide a maximum of data useful for demand model-
ing. 

Demand Estimation Methods 

The estimation methods discussed in this section are the distribution model calibra-
tion procedures, linear regression, nonlinear regression, and simultaneous equation 
estimation. 

Distribution Model Calibration Procedures 

For both the gravity model and the opportunity model (Eqs. 10 and 11), specialized 
calibration procedures have been developed. In the case of the gravity model, to  is 
replaced by a generalized distance function f(t), and the values of this function for each 
value of t are determined such that the actual distribution of trip lengths is matched. 
In the case of the opportunity model, the parameter L is determined such that the actual 
average trip length is matched. In both cases, the actual observations, T1 , are not 
used in the calibration, but instead more aggregate characteristics are matched. Each 
of these procedures is limited to the particular analytical structure of the correspond-
ing trip distribution model. 

Linear Regression 

This general parameter- estimation procedure requires that the functional form of 
the model, or a transform of it, be linear in the parameters. This limits the use of 
linear regression to functional forms of the following types: 

	

y = a0  + 	a1x1 	 (36a) 

	

y = a0 +Z.a1lnx 	 (36b) 

	

Y = a,, + E (a1x1  + b1lnx1 ) 	 (36c) 

	

lnY = a,, + E ax1 	 (36d) 

	

lnY = a,, + 	alnx1 	 (36e) 

lnY = a,, + 	(a1lnx1  + bx1) 	 (36f) 

where 

Y = either trips, T, or a probability variable P/( 1 - P) or p/P3, where P1  is the 
probability of making a specified trip; 

a1  = coefficients to be estimated; and 
= independent variables. 
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The untransformed versions of Eqs. 36d, e, and I are 

Y = ex(a0  + IT aixi) 	 (37a) 

0 	aj 
Y = e lTx1  

1 
(37b) 

Y = ?° IT xe01 	 (37c) 

Each of the models presented in Eqs. 8, 14, 16, 17, 18, 20, and 22 through 28 can be 
expressed in one of the forms shown in Eq. 36. However, because of limitations on the 
independent variables in disaggregated models, linear regression was not used to esti-
mate the equations. 

Linear regression is based on the minimization of the sum of the squares of a linear 
error term. When the dependent variable is transformed, as in Eq. 36, the untrans-
formed error term is no longer linear. In Eq. 37, if U is the transformed error term, 
then the untransformed error term is e', and in each case it has a multiplicative effect 
on Y. Often this effect is not desirable and, therefore, linear regression is not appli-
cable to the calibration of models such as those of the form of Eq. 36. 

A number of modifications of simple linear regression, or ordinary least squares 
procedures, have been developed. Some of these are 

Generalized least squares, where observations or error terms or both are 
weighted to take account of the variation in reliability among observations; and 

Constrained regression, where some parameters are constrained to equal pre-
specified values (more flexible constraints are discussed below). 

These modifications do not significantly affect the cost of using linear regression and 
often prove to be useful in travel demand estimation. 

Nonlinear Regression 

A number of nonlinear regression procedures exist. They overcome the restriction 
that the model to be calibrated, or a transform of it, be linear in the parameters. How-
ever, this requires that th solution method be an iterative programming or direct 
search procedure, and these procedures are significantly more costly than ordinary 
least squares. Some of the available features of these procedures are 

Replacement of the additive (in the linear transform) error term of linear regres-
sion with a general error term, depending on the model formulation; 

Inclusion of constraints on the coefficients, including inequality constraints in-
volving either single coefficients or functions involving both coefficients and indepen-
dent variables (these constraints can represent theoretical considerations such as the 
proper signs for the coefficients of price and socioeconomic variables); and 

Incorporation of procedures to determine maximum likelihood coefficient esti-
mates such as those typically used in multiple logit models (Eq. 26). 

Simultaneous Equation Estimation 

These methods are essentially methods of determining the best parameters for sys-
tems of simultaneous equations usually based on 2-stage least squares procedures. 
They allow model calibration in the situation where supply and demand functions are 
shifting simultaneously, as they do over time and across zones. Because few time 
series data sets or models exist in travel demand forecasting and because demand 
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functions are usually assumed to be fixed in cross-sectional models, little use has 
been made of simultaneous equation estimation methods. 

The most common statistical estimation procedure, ordinary least squares, severely 
limits the number of functional forms available for travel demand forecasting. Many 
functional forms cannot be estimated by using this procedure, and, in addition, the num-
ber of independent variables is usually limited because of muiticollinearity. Only by 
using more costly procedures, and by developing specialized procedures, can these 
limitations be overcome. 

Structural Characteristics 

Three critical structural characteristics of demand forecasting procedures are sum-
mations, elasticities, and zonal aggregations. Early demand forecasting procedures 
stressed the summations of demand by mode, by mode and destination, and by mode, 
destination, and origin as quantities over which the analyst should have significant con-
trol. More recently, the influence of economics has been felt, and the elasticity of 
trip-making with respect to activity system and level-of-service variables has become 
more important to the analyst. The effects of aggregation on demand procedures have 
always been important to the transportation analyst. In this section, each of these 
terms is formally defined, and their theoretical ranges are stated. The nature of these 
measures for a number of the analytical structures discussed above is then displayed. 

The following summations of predicted trips by origin, destination, and mode 
(Tijk) are of concern to the transportation analyst: 

Tjj. = 	Tiji = trips by zone pair 	 (38a) 

Ti.. = EE Tijk  = trips by origin 	 (38b) 

T.. = E E TiJk = trips by destination 	 (38c) 

T = E E E Tl jk  = total trips 	 (38d) 
ijk 

in the UTP models, these summations are typically predicted in reverse to the order 
shown above, and an important part of each sequential step is to ensure that the pre-
vious predictions, taken as "control totals," are preserved. 

The formal definition of the elasticity of trip-making from ito j by mode k, with 
respect to any independent variable, w, is 

e(T13k:w) = 	. i_ 	 (39) 
w Tijk 

Elasticity is a dimensionless number that represents the percentage of change in trip-
making from ito j by mode k (Tjk)  for each percentage of change in the independent vari-
able w. For a number of independent variables, a more specific name is given. These 
are indicated below: 

= direct time elasticity, 
e(T 3 :t1 ) = time cross elasticity (in this case, only one of 

subscripts 1, m, n need be different from i, j, k), and 
e(T13 :Yi) = income elasticity. 
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Similarly, specific names can be given for the elasticities of other level-of-service 
and activity-system variables. 

Economic theory leads to the following statements of the ranges within which the 
various elasticities can be expected to occur: (a) Direct level-of-service elasticities 
are less than or equal to 0; (b) level-of-service cross elasticities are greater than or 
equal to 0; (c) income and similar activity-system elasticities are greater than or equal 
to 0, unless Ti, represents an inferior good. Equation 39 can also be generalized to 
apply to the summations shown in Eq. 38, resulting in the elasticity of trips by zone 
pair, origin, destination, or total trips with respect to any independent variable. 

3. A critical question to be answered for each alternative travel demand forecasting 
procedure is the range of zone sizes for which the procedure is valid. Because of the 
analytical structure and the magnitude of the coefficients of the socioeconomic and 
activity-system variables in many models, they are limited to the range of zone sizes 
for which they were calibrated. If the zone sizes are to be changed greatly, the model 
will require recalibration. 

To explore the conditions that will require recalibration, we must divide both socio-
economic and activity-system variables into 2 classes: (a) scaling variables, such as 
zonal population and employment, which express the "size" of the zones; and (b) rate 
variables, such as automobiles per household and dollars of sales per square foot of 
retail store area. In the remainder of this discussion, we can limit ourselves to the 
scaling variables, for these are the critical ones in zonal aggregation considerations. 

A useful index for any demand model is the sum of the exponents of all scaling 
variables that are multiplied together. For example, we may have a multiplicative 
model that predicts Ti jk by using the following scaling variables and coefficients: 
(origin population)°8  and (destination employment)07. In this case, our index is 1.5, 
which suggests that, for each 1 percent change inzone size, trips will change by 1.5 
percent. 

As this index begins to vary significantly from 1 for models that predict Tjk, we 
will expect changes in zone size to require recalibration. We will term this aggrega- 
tion index the Al. 

When these summations, elasticities, and aggregation indexes are obtained for the 
models discussed previously in this paper, the following characteristics of the models 
are discovered. 

Urban Transportation Process 

Trip Generation (Eq. 8) 

Equation 40c is the major deficiency of the standard trip generation approach: Total 
trip-making for a zone does not change as level- of- service variables change. The 
equations, are, however, usually insensitive to zone size. 

	

T.. (obtained directly) 	 (40a) 

	

(obtained directly) 	 (40b) 

e(T. . :Li,) = 0 	 (40c) 

for all subscript values. 

e(T. . :S11) = 
	 (40d) 

T1... 

Al = 1.0 	 (40e) 
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Trip Distribution (Eq. 9) 

Equation 41d shows that in the gravity model (Eq. 10) a change in level of service 
from ito any destination affects the number of trips to all destinations. Usually, only 
the L1  for the automobile mode is used. The elasticity for other modes is 0 if this is 
done. Equation 41e indicates that the level- of- service variables for all other origins 
are irrelevant. Equation 41f shows that the activity system has no effect on trip dis-
tribution beyond its effect on T11  and T, as represented in the trip generation step. 

T. (obtained directly) 	 (41a) 

Ti.. (constrained to equal T) 	 (41b) 

. (sometimes constrained to approximate T) 	 (4 ic) 

e(T. :Lim ) = 	
- __ j 	

(41d) 
Tj. 

whereô=1ifj=m and 0ifjm. 

	

e(T. :Llk) = 0 	 (41e) 

when 1 i. 

	

e(T. :Ai) = 0 	 (41f) 

for all values of 1. 

Al = 1.0 	 (41g) 

In addition, Eqs. 41; b, c, e, and f also hold for the opportunity model (Eq. 11). The 
differential in Eq. 42a is 0 except when m = j and the ranking of destinations from i 
changes because of the change in t (the differential is positive in this case) and when 
m 	j and the ranking of j changes, which will only occur when It, j  - t 	dt (the dif- 
ferential is negative in this case). These conditions imply that the elasticities of trips 
to all but a few destinations are zero. 

e(T?. :L1 ) = -L1 L 	 (42a) 
dtim  

Al = 1.0 
	

(42b) 

Modal Split-Binary Choice (Eq. 14) 

Equations 43b and c indicate the symmetrical nature of the binary-choice model. 
Equations 43d and e point out that only the travel variables for the various modes con-
necting i and j have an effect on Tjjk. 

(constrained to equal T) 	 (43a) 

e(TJk:L1k) = -ak L1 k 	 (43b) 
1+ e 

e(TJk:LIfl) = 	 (43c) 
1+ e 
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e(Tk:Llk) = 0 	 (43d) 

	

e(T jk:Ljmn) = 0 	 (43e) 

	

e(T Jk:Sl) = 0 	 (431) 

	

Al = 1.0 	 (43g) 

Direct Aggregate Procedures 

Product Form (Eq. 16) 

In Eq. 44, travel time is used as atypical level-of-service variable. All elasticities 
and cross elasticities for Tiji, are constants and are 0 for level-of-service and activity-
system variables not associated with zones i and j. The elasticities of the various sum-
mations all have a form similar to Eq. 44e; the simple elasticities are weighted by the appro-
priate trip share (TjJk /T13. in the equation shown). Because the simple elasticities are 
both positive and negative, it is possible that the elasticities of the summations with 
respect to level- of- service variables will be positive, which is contrary to economic 
theory. The use of constrained regression to prevent this is infeasible because of the 
large number of constraint equations required (one for each i-j pair) and cannot ensure 
that predictions will have the proper summation elasticity, because the shares will 
change in the future. Zonal aggregation can cause a problem if the coefficients in Eq. 
44g sum to a number significantly different from 1. 

	

e(T 3k:tlfl) = ck 	 (44a) 

	

= 0 	 (44b) 

	

e(T1Jk:S) = alk, a 	 (44c) 

	

e(T k:Al) = 0 	 (44d) 

cflkT1J  

	

e(T. :tn) = k 
	

(44e) 

	

= 0 	 (44f) 

	

Al = aik  + a 	 (44g) 

Linear-Log Form (Eq. 17) 

All elasticities and cross elasticities for TJk  are linear functions of the respective 
independent variables, inversely proportional to T 3k . Zero elasticities occur when-
ever the independent variable of concern is not associated with the i-j zone pair. The 
elasticities of the "scaling" activity-system variables (Sf0, A 0) are both unity, resulting 
in an aggregation index of 2. The elasticities of summations all take on a form similar 
to Eq. 45d. Because a kj  and b k1 can be expected to be negative and the remaining pa-
rameters can be expected to be positive, but small in magnitude when compared with the 
direct parameters, these elasticities will normally have the proper sign. It is possible 
to ensure that this will be the case by using constrained regression. 
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e(TJk:LI) = 	(4 1 L 1  + l) 	 (45a) 
T sk  

	

e(Tk:S10) = 1 	 (45b) 

e(Tk:Sl) = MS0A30 (c1S1 + d) 	 (45c) 
T Jk  

1 0A0 E M(a 1 Ljj1j  + b 1 ) 	 (45d) 

AL = 2.0 	 (45e) 

Product-Exponential Form (Eq. 18) 

All elasticities and cross elasticities for T Jk are linear funtions of the respective 
independent variables, independent of the level of Tk. Zero elasticities occur when-
ever the independent variable of concern is not associated with the i-j zone pair. 

e(T?k:LfJ.1) = 	+ 	 (46a) 

e(T k :S1) = c 1  + d 1 S1 	 (46b) 

e(T'jj.:Ljjja = 	 (a + 	 (46c) 
k T1,,. 

AL = 1.0 	 (46d) 

Independent Abstract Mode Procedures (Eq. 20) 

Equation 47 indicates significant discontinuities for the elasticities of "best" modes 
and other modes. The 0 cross- elasticity of Eq. 47c when m b is especially trouble-
some. Equation 47 indicates that the elasticities and cross elasticities of this model 
are independent of the mode of trips, k, as would be expected in an abstract mode model. 

	

e(T Jk:Pl) = a1 	 (47a) 

I ag  when k i b 
e(Tjk:t jJk) = 

	

	 b 
a6  when k = b 

0 when m b 

= 	a6 - a9  when m = b 	 (47c) 
a6  when k = b 

a9  TI J I when I b 
T1 . 

= 	 (47d) 

a6  - a9(l_Lfwhen I =b 
Tjj  

	

AL = a1  + a2 	 (47e) 
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Modal Share Models (Eqs. 21.22. and 23) 

Equation 48 indicates that the elasticities and cross elasticities with respect to 
travel time by a given mode are directly related to the share of trips using that mode. 
The parameter b5  should be in the range of 0 to 1, with a value near 0 expected. If it is 
0, the elasticity of total trips by zone pair (Eq. 48e) will be 0. If it is 4 the direct time 
elasticity (Eq. 48b) will be simply az, and the cross elasticities (Eq. 48c) will be 0, as 
in the product form of Eq. 16. 

e(Tk:Pt) = b1  

e(Tk:tjk 	
T 

) = az [1i (b5  - 1) + i] 
1 . 

e(T k:t1) = a2  ILIa. (b5  - 1) 
T1 . 

T.=f2  

e(TJ.:t1 k) = ab5 IL1 
Ttj. 

Al = b1  + b2  

 

 

 

 

 

 

Disaggregate Separable Decision Models 

Modal Choice (Eq. 24) 

In a similar fashion to Equations 43a, b, c, d, and e, Eq. 49 indicates that the elas-
ticities of travel by a given mode with respect to the independent variables are directly 
proportional to the value of the independent variables, the value of their coefficient, and 
the fraction of traffic not using the given mode. The elasticities of travel with respect 
to variables not associated with origin i or destination j are all 0. Also, as expressed 
in the independence- of- irrelevant- alternatives axiom, the elasticity of travel by any 
mode with respect to level-of- service variable of any second mode does not depend on 
the characteristics of any mode except the second Let 

h = a+ 	b(L111  - 	 (49a) 
1 	 1 

Then Eq. 24 becomes 

= exp(h)  
1-P 3  

e(T ft:S j ) = cS(1 - P)  

e(T1:L1) = bL131(1 - P)  

= -bL11  (1 - P 1)  

e(T J1:Lk1) = 0  

T. (constrained to equal T)  

Al = 1.0  
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Other Decisions (Eqs. 25,26, and 27) 

The remaining decisions—time of day, destination, and trip frequency—an have 
basically the same structure as the modal-choice structure of Eq. 24. Their elastici-
ties and summations, therefore, also have the same characteristics. 

Direct Decision Model (Eq. 28) 

Equation 28 also has the same structure as Eq. 24 and, therefore, its elasticities 
have the same characteristics. However, because it is not a sequential model, the 
elasticities of trip summations are expressed differently. 

e(T1 J .:Llk1) =diLift, -  
Tjj. T1..) 	

(50) 

This equation indicates that the elasticity of trips by all modes from i to j with respect 
to an independent variable is directly proportional to that variable, its coefficient, and 
the difference between trips by the mode of that variable as a fraction of total trips be-
tween i and j and the same trips as a fraction of total trips from i. 

This concludes a summary of the structural characteristics for the set of currently 
used demand forecasting procedures described in an earlier section. It is obvious that 
these procedures have a wide range of characteristics and that in some cases the ana-
lytical structure itself does not ensure that all characteristics will agree with economic 
and travel behavioral theory. When these procedures are used, the analyst must in-
vestigate carefully the resulting characteristics, to be sure that all aspects of his model 
are realistic. 

After determining the characteristics of a number of forecasting procedures, we can 
list a number of desirable characteristics. Research can then be done to search for 
analytical structures that satisfy those desires. This approach to the development of 
improved analytical structures for travel forecasting has, to some extent, influenced 
past developments in the field (14, 16, 18, 24). Some of the kinds of desirable charac-
teristics are as follows: 

The mathematical form of critical elasticities and cross elasticities should be 
as specified, 

The effects of the aggregation of traffic zones on model predictions should be as 
specified, 

The variation in competition between pairs of modes should be reflected in the 
model, and 

The effects of adding new modes on summations of trips should be as specified. 

Integration Into Analysis Systems 

A number of desirable characteristics of transportation analysis systems place 
critical constraints on demand forecasting procedures and create requirements for a 
number of specialized kinds of procedures. Four examples of these characteristics 
are discussed in this section. 

Consistent Estimation of Network Equilibrium 

Manheim (12) has discussed the need for transportation analysis systems that use 
a consistent set FY level-of-service variables, consistent both with the demand proce-
dure and with the supply procedure. He points out that this requirement is violated in 
the UTP procedures when final values of level- of- service variables are not used during 
the trip distribution and modal- split phases. As a result, demand is erroneously esti- 
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mated, and the final level- of- service variables are incorrect. 
To modify present transportation analysis systems so that they can be consistent, 

less cumbersome demand procedures than those now used are desirable. Because of 
their structures, direct demand models have been seen as logical candidates to meet 
this requirement. In large measure, this accounts for their use in DODOTRANS, one 
of the first transportation analysis systems that explicitly attempts to estimate network 
equilibrium in a consistent manner (13). As discussed in the previous section, however, 
present direct demand models have tuctural characteristics that are not satisfactory. 
Therefore, improved models are needed—ones that have the ease of application of the 
direct demand models and are as controllable as the present UTP procedures. Manheim 
has proposed a family of analytical formulations to meet these objectives. These 
models, the general share models, can be expressed either as a sequential set of models 
or as a direct model. 

Pivot-Point Procedures 

Often, the analyst is faced with the following situation: The details of the existing 
travel pattern in an analysis area are known (all interzonal trips and level- of- service 
variables by mode), and the effects on the transportation system of relatively small 
changes on this travel pattern are desired. Usually the analyst has a number of choices. 
The first is to manually estimate the effects. The second is to perform a complete 
analysis from trip distribution through traffic assignment. The remaining choices fall 
somewhere in between, involving only partial use of the UTP, based on assumptions 
that trip distribution or that modal split will not change. Regardless of the choice 
maLle, very little of the existing information will be used and, therefore, the resulting 
estimates may differ from the existing situation more because of calibration errors 
than of the proposed changes. 

Pivot-point procedures have been designed to improve the analyst's forecasts when 
he is faced with the situation just described. They allow changes in travel to be esti-
mated, based on changes in the transportation system. These procedures minimize 
the calibration problem by using the existing data and by specifying the elasticities of 
travel-making with respect to the available level-of-service data. The equation used 
for estimating changes, based on the total differential of a function, is the following: 

= TjJk 	e(Tlk:Sl) 4! + 	e(T k:Al) 	+ E e(T:L:) 
Li 	S01 	1 	

(51) 

where 

ATnijk  = change in trips from i to j by mode k for purpose n, 
o = old or former value, 

S1  = socioeconomic variable, 
A1  = activity-system variable, and 
L1  = level-of-service variable. 

Regardless of what the demand model structure is, the elasticities can be assumed to 
be constant for small- changes. Equation 51, therefore, becomes generally applicable 
for predicting the effects of small changes. For larger changes, explicit functional 
forms of the elasticities (arc elasticities) can be used. 

The most significant impact of pivot-point procedures is on the design of analysis 
systems. They also, however, have an effect on demand modeling. They imply that 
much effort should be put into obtaining good estimates of elasticities, for these alone 
are needed to use Eq. 51. Because elasticities can best be estimated when a change 
is observed, this implies that many careful before- and- after studies of transportation 
should be carried out. 
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Dynamic Transportation Analysis 

As stated in the introduction, we assumed that transportation demand can be divided 
into short- run and long- run phenomena, and we will concentrate on modeling the short-
run situation. Actually, however, there is a continuous variation in effects over time 
from short run to long run. To reflect this continuity in our models, we must con-
struct dynamic systems by using variables that have a range of lag times, as discussed 
by Ben-Akiva (2). Such a system would incorporate both land use models and travel pre-
diction models into a set of demand models that would provide predictions of both the 
long- and the short-range effects of transportation. 

Although such an approach is useful as a method to incorporate the time dimension 
into travel forecasting, it will generate new problems in the areas of empirical estima-
tion, data collection, and convergence of the solution. Work should begin on a study of 
these problems so that in the future dynamic transportation modeling can be started. 

Aggregation of Disaggregate Procedures 

To incorporate disaggregate travel demand forecasting procedures into analysis 
systems, methods of interfacing these procedures with aggregate zonal data must be 
developed. If the models are applied directly to zonal averages of socioeconomic, 
activity-system, and level-of-service variables, the major advantage of disaggregated 
procedures will be lost. Some way must, therefore, be found to incorporate the dis-
tributions of zonal variables into the application of the procedures. 

One approach that has been suggested is the sampling from these distributions by 
using Monte Carlo simulation techniques to obtain observations of the independent vari-
ables required to predict trips. For some models, it may be possible to analytically 
obtain the expected value of trips,, based on incorporating all of the relevant distribu-
tions of variables. This is an area in which research should begin, both to look for 
alternate approaches and to test the various proposed methods to determine their use-
fulness and accuracy. 

RECOMMENDED PROGRAM OF RESEARCH 

In this part of the paper, all of the suggestions for further research included in the 
previous part will be brought together as a unified program of research in the area of 
the analytical structure of travel forecasting procedures. Each recommended area of 
research will be given a priority rating and a recommended time frame for carrying out 
the research. 

Travel Demand Theories 

Lancaster's approach to consumer utility and demand should be expanded to be 
applied directly to travel demand. The implications of this approach to estimating the 
demand for transportation as a part of activities that have utility to the consumer should 
be explored with a view toward developing additional theoretical guidelines to the travel 
demand model developer. The priority is medium, and the time frame is 3 to 8 years. 

Work should be continued on the development of a general equilibrium model that 
concentrates on transportation demand prediction. The work done to date (3) should be 
continued in the following areas: (a) searching for a utility function form that results 
in demand functions with a closed form, (b) exploring the existing formulation for its 
implications on suitable analytic structures, and (c) searching for realistic revisions 
of the formulation that will result in useful demand functions. The priority is medium, 
and the time frame is 3 to 8 years. 

Work should be begun on the incorporation of the total travel time constraint into 
economic theories of the consumer because of the importance of travel time as a deter- 
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minant of travel demand. The priority is medium, and the time frame is ito 5 years. 
The theory of rational choice behavior, as developed in psychology, should be de-

veloped further, with a view to its application to travel behavior in particular. The 
goal should be to develop a framework that can be used to construct more realistic 
models for travel demand forecasting. The priority is high, and the time frame is 1 to 
5 years. 

Work should continue on the testing of alternative assumed sequences of traveler 
choice. Because these sequences are so crucial to both aggregate and disaggregate 
sequential models, the effects of alternative assumptions on model accuracy should be 
determined for a number of classifications of trips, including urban work and shopping 
trips and intercity business and pleasure trips. The priority is medium, and the time 
frame is ito 5 years. 

Data for Travel Demand Forecasting 

Work should begin on developing travel survey methods that will provide the data 
needed for disaggregated demand modeling in the most accurate and efficient manner 
possible. This work should proceed from the development of alternative designs 
through the conducting of prototypical surveys, the use of the data obtained in model 
estimation, and the evaluation of the methods for future use. The priority is high, and 
the time frame is ito 3 years. 

Research into methods of improving the accuracy of survey data should be car-
ried out, including alternative methods of monitoring and recording travel data and of 
integrating survey data with engineering information. This is an area where the use-
fulness of new technology, such as automatic vehicle (and perhaps people) locator sys-
tems, should be explored. The priority is medium, and the time frame is 3 to 8 years. 

Specialized surveys and studies should be designed and conducted to help provide 
answers to questions not answered by present demand procedures because problems of 
multicollinearity prevented all relevant variables from being included. For example, 
careful before- and- after studies and controlled experiments should be conducted to 
learn more about the responses of travelers to fare, time, and frequency changes. The 
priority is high, and the time frame is 1 to 5 years. 

Demand Estimation Methods 

Research should be carried out by statisticians to develop accurate and unbiased 
estimation procedures for use in travel demand model development. The concentration 
should be placed on analytic structures that have theoretical appeal but have not been 
used to date because it has not been possible to estimate their parameters. The 
priority is medium, and the time frame is 3 to 8 years. 

Structural Characteristics 

The various analytical structures that have been developed or proposed should be 
studied carefully to determine their characteristics: elasticities, cross elasticities, 
aggregability, summations, and ability to balance trip origins and destinations by zone. 
Characteristics that can be, or are always, contrary to theory should be pointed out, 
and changes to the structures should be proposed to prevent such characteristics from 
occurring. The priority is high, and the time frame is 1 to 5 years. 

As proposed analytical structures are found that have promising characteristics, 
work should be done to calibrate them to determine their applicability to actual travel 
phenomena. Alternative structures should be compared by using criteria based on 
goodness-of-fit measures, ease of calibration, and constancy of parameters. The 
priority is high, and the time frame is 1 to 10 years. 

Research should be conducted to proceed from alternative specifications of the 
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structural requirements of demand models to the determination of analytical structures 
that satisfy these requirements. The alternative sets of specifications should be gen-
erated with particular demand estimation problems in mind, such as predicting the 
demand for a new mode by a particular market segment or predicting the effects of 
relatively minor changes in operating policies. The priority is medium, and the time 
frame is 3 to 8 years. 

Integration Into Analysis Systems 

Research should be carried out to determine methods by which the existing anal-
ysis systems can be modified to provide for the consistent estimation of travel de-
mand, both by modifying the structure of those systems minimally and keeping the 
present demand procedures and by incorporating new procedures better suited to the 
consistent estimation of network equilibrium. The priority is high, and the time frame 
is 1 to 3 years. 

Research should be carried out to develop new analysis systems that will incor-
porate a wide range of demand procedures in an efficient system that consistently esti-
mates network equilibrium. The limitations placed on demand procedures by these 
systems should be determined and removed if necessary to provide for the realistic 
estimation of travel demand. The priority is medium, and the time frame is 3 to 5 
years. 

Research should be carried out to develop demand models that will be efficient 
for use in consistent network equilibrium prediction systems. The general share 
models should be examined in this light, and recommendations should be made on their 
further development or on alternative directions of improvement. The priority is 
medium, and the time frame is 3 to 5 years. 

Research should be conducted to develop pivot- point procedures as integral parts 
of transportation analysis systems and to develop the demand models and data needed 
to make these procedures useful for a wide range of small-scale transportation pre-
diction problems. The priority is high, and the time frame is 1 to 3 years. 

The feasibility of developing a dynamic system of models to incorporate short-
term demand estimation and long-term land use predictions should be studied. Such 
a study should address the data requirements that this approach will generate, the esti-
mation problems, and the convergence problems. The result should be a program of 
work to provide the necessary data and tools to allow the calibration of such a model 
in the future. The priority is medium, and the time frame is 3 to 8 years. 

Methods to interface disaggregate demand models with aggregate zonal data in 
analysis systems should be developed and tested. Also, the possibility of eliminating 
the zonal aggregation of the data needed for demand models should be explored, taking 
advantage of the data directly available from home interview surveys and from the 
census. These research tasks should be addressed both to the use of disaggregated 
models with existing and with predicted future socioeconomic, activity-system, and 
level-of-service data. The priority is high, and the time frame is 1 to 3 years. 
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