
* This paper has 2 overall ob-
jectives with regard to travel 
demand forecasting: 

To bring together and discuss the 
rationale for various stands of previous 
work, and 

To provide a common point of de-
parture for discussion of improved use of 
existing methods and of development of 
research needs. 

Hundreds of millions of dollars have 
been spent on travel forecasting for de-
sign and planning of urban and intercity 
ground transportation systems in the 
United States alone during the past 20 
years. Only a small fraction of that 
money has been spent specifically for 
new travel demand model development. 
Even so, many transportation studies 
tried in a professional way during that 
period to make incremental improve-
ments in the methods they inherited. 

In the 1940s and 1950s, trip-generation 
models were developed to predict "gen-
eratedt' traffic on facilities, namely, 
"traffic created by one or more land 
uses" (62). Similarly, trip-distribution 
models were developed to predict shifted 
traffic, namely, "trips whose desire 
lines have shifted due to a change in or-
igin and destination" (62). And in the 
1960s as substantial new federal money 
became available for planning transit, 
modal-split models were developed to 
predict "diversion" of trips from high-
ways to transit facilities. All these 
models, applied sequentially, provide in-
put to shortest and multipath route-
finding techniques that assign total travel 
by mode to links at particular locations. 
The models use as input data aggregate 
values of zonal population, employment, 
and link capacity and average values of 
zonal incomes, car ownership, and inter-
zonal travel times and costs. They are 
based on aggregate travel definitions that 
describe what happens to facilities when 
changes are made to them. 

More recently, a different perspective 
on modeling travel has emerged. This is 
the perspective that asks, What happens 
to individuals when changes are made in 
the transportation system? In 1962 in a 
university setting, Warner applied this 
individual-choice perspective to the just-
emerging popular subj ect: transit-usage 
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forecasting. He used disaggregate data to develop the first probabalistic model of individ-
ual travel behavior—(binary) modal-choice behavior. Since then, research in, but not ap-
plication of, the disaggregate approach has been extensive. Generally, its purpose has 
been to explore the kinds of models and descriptions of travel behavior (e.g., value of time) 
that result if travel choices are viewed from the new perspective. Travel choices at the 
individual traveler level can include trip frequency (including the no-trip option), choice 
of destination, choice of mode, choice of time of day, and choice of route within mode. 

More recently, in the 1970s, information is being sought by planning agencies on 
relative trip peaking at the aggregate level. This corresponds to individual choice of 
time of day of travel. Transportation agencies seek "to measure the magnitude of peak 
loads, how long they last, and the extent of accompanying congestion" (84). Descriptive 
models are being developed that relate travel-peaking percentages to aggregate mea-
sures of city size and socioeconomic characteristics (53); they are similar to their 
precursor, aggregate trip-generation models. This relative trip-peaking modeling 
corresponds to modeling an individual's choice of time of day of travel, which only 
recently has been attempted (10). 

In the last few years, representing travel demand directly as a function rather than 
as a fixed quantity has been introduced to travel forecasting from economic demand 
theory. "Induced travel" as a term describes the change in travel resulting from shifts 
along a demand curve. The term incorporates the older aggregate descriptive terms 
of trip generation, trip distribution, and modal split. The first attempt to combine 
(short-run) travel-choice definitions and behavioral assumptions at an aggregate level 
was in 1963 (33) when the trip-generation and modal-choice decisions were combined 
and modeled by using interzonal system data in a direct demand model. The traveler 
was considered to evaluate simultaneously all the alternative modes available in the 
Northeast Corridor. Choices were not modeled separately (i.e., sequentially or in-
directly). The data were limited to the relatively few intercity zonal pairs in the 
corridor. 

Such a direct demand model was first used for an urban area in 1967 (9). Alternative-
route and time-of-day choices were consciously excluded from these early direct-
demand models, and the destination choice was modeled without cross relations (i.e., 
without cross elasticities between destinations). Because the number of choice com-
binations to be considered and modeled simultaneously is the product of the number of 
alternatives within each of the previously described sequential choices, the choice 
environment quickly becomes very complex and difficult to describe in a direct-demand 
model. Nevertheless, in 1969 a direct demand model was used (54) that explicitly con-
sidered alternate destinations for the Northeast Corridor divided into 8 "metrodistricts." 

The issue of aggregate versus disaggregate "probability" models permeates the 
above discussion. Most urban travel forecasting is still carried out "in the field" 
with the earlier aggregate "choice" models by state highway departments and regional 
planning agencies with the help of the U.S. Department of Transportation. Research 
is under way with disaggregate models in several universities and in consulting firms 
under contract to various agencies of the U.S. Department of Transportation and a 
few state departments of transportation. The often-used term "disaggregate behavioral" 
models gives the impression that individual-choice models have a monopoly on incorpo-
rating travel behavior. That is clearly unfair, for travel demand models can be derived 
from behavioral assumptions independently of whether they will use aggregate or dis-
aggregate data. 

Choice behavior in disaggregate models must be interpreted as probabalistic. De-
terministic choice (i.e., 0, 1 binary) behavior produces uninteresting results when ag-
gregated over all individuals to describe aggregate behavior in a planning application. 
However, the probability process is assumed to be in static equilibrium (see Appendix) 
and incorporates no time parameter in a behavioral sense; e.g., learning or ex-
perience does not change the probabilities (43). Disaggregate travel models should, 
therefore, be referred to as probabilistic and not stochastic if they are used with 
cross-sectional data. 

The generally strong arguments for using disaggregate models usually include data 
efficiency arguments. That is, more information on travel choice situations and 
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behavior is usually available with disaggregate data than with aggregate data. For ex-
ample, Fleet and Robertson (86) showed that aggregation of trip data to zones reduced 
the variation in trip-making (trip generation) between observations to only 20 percent 
of the value at the dwelling unit level. In the process of aggregation, nonlinear rela-
tions may also be lost by using averages of explanatory variables. However, disag-
gregate travel models have not yet demonstrated practical superiority in providing 
travel information to decision-makers. In fact, we have as yet a way to go in getting 
models based on individual-choice behavior into the field. [Disaggregate models of 
some of the conventional UTP steps (i.e., trip generation) will be easy to introduce 
"in the field??  (31).] 

However, there is little doubt that the emerging techniques (72) for using travel 
models based on the behavior of individuals and not the behavior of aggregate numbers 
of trips will accelerate our understanding of travel-choice behavior. The empirical 
results of the next few years should greatly improve our understanding of and our abil-
ity to base models on behavioral assumptions appropriate to the circumstances under 
which the modeling is undertaken. In most cases, travel models, whether aggregate 
or disaggregate, should be based on a well-specified structural or behavioral repre-
sentation of the decision process. Such models can be disaggregate or aggregate. 
Models should be avoided that are merely "best fit" curves, for they are impossible 
to interpret. Also, whether aggregate or disaggregate, the models should be evalu-
ated on the basis of their applicability in a given situation, e.g., ease of use or ef-
ficiency in the use of data. 

Unfortunately, current travel forecasting procedures fall short of satisfying current 
demands on their use. The needs and requirements of today's transportation decision-
makers for travel information are rapidly changing. The U.S. Department of Trans-
portation noted in its preliminary statement for this conference (76): 

Present passenger travel demand forecasting procedures. . . are most responsive to the issues of 
the 1950s and early 1960s concerning long-range regional transportation plans and the develop-
ment of information that was required to design the facilities. 

The planning issues of the late 60s and 70s are broader and more numerous. First, they involve 
a much wider range of alternatives that need to be evaluated. These include highway-transit trade-
offs, low and noncapital alternatives such as pricing schemes, new technological systems, and "do-
nothing" alternatives. Second, it is now insufficient to evaluate facilities on the issues of capacity 
and cost alone. Additional measures have become important in the planning process and include 
levels of service and price. Third, the environmental and social effects of transportation-facility 
construction and operation must become integrated into the planning process. Fourth, the inci-
dence of travel service, environmental, and social consequences on various groups within the study 
area must be considered in the evaluation of transportation facilities. Fifth, as a consequence of 
greater involvement by elected officials and citizens in the planning process, travel forecasts for 
transportation facilities must be made expeditiously and information must be summarized in a 
manner that facilitates communication. 

Travel forecasts are essential elements in reaching decisions on transportation. To be more 
responsive to the issues, travel forecasting methodology will have to be modified and improved. 
Travel forecasting procedures must be quicker and less costly to operate, be sensitive to the wide 
range of policy issues and alternatives to be considered, and produce information useful to 
decision-makers in a form that nontechnical people can understand. 

In some places, current travel-forecasting models are successfully providing useful 
information on very short notice. However, such instances normally occur only at large 
agencies that have several highly trained professionals and large continuing computer 
budgets. Costs are high not only to continue the operation of current procedures in a 
given location but importantly also to initially develop and install the methods in a given 
region. Calibration of existing travel models and procedures takes considerable skill 
and effort. Until travel demand models are transferable from area to area, very high 
start-up costs in the form of new data collection, program development, and model 
calibration will continue to seriously impede the ability of the profession to produce 
relevant and responsive travel information for decision-makers. 
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TRAVEL BEHAVIOR 

Travel forecasting procedures must have a basis in behavior if planners and 
decision-makers are to be able to understand and interpret the results of the forecasts. 
This is true for many reasons. The forecasts that result depend on the behavioral as-
sumptions. Behavioral models are needed for transferability (in space and time) to 
situations other than those for which the models were developed. Behavioral models 
are needed also for evaluation, if the (usual) assumption is to be made that the trade-
offs between time and money in a travel choice situation are valid for user benefit cal-
culations. 

In travel demand forecasting, therefore, we must confront squarely the validity of 
our theories describing relations among people and their locations on the one hand and 
travel on the other. This involves consideration in particular of how and in what se-
quence, if any, people view the origins and destinations of their journeys and the trans-
portation system that connects or potentially connects their origins and destinations. 

A travel demand model implements in a purposeful way the understanding that the 
modeler has of the behavior of the system of interest. A system can be defined as a 
set of objects and a set of relations among those objects and among their attributes (23). 
Every time we make or contemplate a decision, the complexity of urban and transpor-
tation systems confronts us with a need to make a simplified and intelligible imitation 
of reality (i.e., a model). This involves abstracting the important parts, to us, of the 
decision situation that confronts us. Clearly, the set of objects that describe the travel 
choices confronting travelers is important in travel demand forecasting. Transpor-
tation planning concerns itself with making, or contemplating making, changes to the 
transportation system or changes that will affect that system. Our interest is in de-
scribing the behavior of travelers as they respond to travel choices and to changes in 
travel choices that confront them. The ability to predict the amount and distribution 
of travel in any situation is, therefore, only as good as our understanding of the under-
lying perceptions that travelers have of the choices that confront them. 

Modeling Choices 

There are developing some basic modeling choices based both on explicit statements 
of alternate understandings of travel-choice perceptions and decisions and on the real-
ization that a travel demand model, like any model, is ultimately a subjective imitation 
of reality. The basic modeling choices are founded on differing behavioral premises, 
for ultimately the modeler's view of behavior in the system of interest must be the 
starting point. 

Strategy of Paper 

In this paper, certain basic modeling choices will be described at the outset. Where 
possible, the analytically derivable implications of each modeling choice on appropriate 
mathematical-structural forms of travel demand models are also described. Finally, 
the travel demand models that have implemented or might implement the modeling 
choices are described. 

Issues exist when there are unsolved problems or unresolved conflicts over appro-
priate solutions. This paper was written specifically for a conference dealing with 
such problems and conflicts. We made the initial presumption in the conference, as in 
this paper, that issues relating to theory and practice in travel demand forecasting are 
researchable and in many cases can be made subject to empirical testing. [Causality, 
unfortunately, cannot be empirically demonstrated, although empirical results can be 
demonstrated to be inconsistent with certaln causal chains (68).] 

It may be clear from this review paper that our theory and prior understanding of 
how travelers perceive their travel-choice environment are weak. This is certalnly 
not a criticism so much as a description of the state of the art of understanding choice 
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behavior in the social sciences in general. Our weakness in understanding is evidenced 
by the variety of different assumed perceptions of the travel environment on which ex-
isting travel demand models can be shown to be based. This paper attempts to organize 
several of these perceptions into alternate modeling choices, without making strong 
statements about which choices seem preferable, or more plausible, to the author. All 
the basic modeling choices are indeed worthy of further research and application and 
will be shown to be combinable for still additional modeling choices. 

The supplier's perspective and concern with describing and evaluating what happens 
to facilities when changes are made to them may be fairly credited with leading to the 
earlier aggregate travel forecasting models. Those models respond directly to the 
question of what happens to flows on transportation facilities when changes are made 
in the facilities. 

The social science (academic) disciplines are more concerned with what happens to 
individuals and groups of individuals. Thus, it is no surprise that Warner's early work 
on individual travel-choice models took place in a university setting. IWilson et al. 
(83) make the useful distinction between primarily academic disciplines concerned with 
analysis (i.e., the social sciences, including economics) and the professional disciplines 
concerned with design and policy-making (i.e., engineering, city planning, and archi-
tecture). The latter can plausibly be said to be traditionally concerned with the objects 
of their design and their use in the aggregate, while the former are concerned with 
analysis of cities and regions at all levels of (dis)aggregation.J However, the issue of 
aggregation has been argued to be separable from the issue of travel behavior. 

The more fundamental behavioral choice is whether the attributes of travel choices 
are considered or perceived independently from or together with the objects or facili-
ties that carry or support or propel the traveler. That is, the most basic behavioral 
modeling choice is whether travel attributes are perceived by themselves or whether 
they are mapped on particular supply-side choices (e.g., mode and route, or choice of 
technology). The argument can similarly be extended to attributes of alternative des-
tination choices. These alternate perceptions of the travel environment imply that at-
tributes of the transportation system can be included in travel demand models in 1 of 
2 ways: as choice abstract or attribute specific, or as choice-specific attributes. 

Particular names for these 2 modeling choices are not yet settled on. Manheim 
(44) calls the first choice the "hypothesis of commodity-independent utilities." The 
authors (57) of the best known example of the first type of model, the abstract mode 
model, have more recently referred to their model as an "attribute-specific" model. 
This gets away from the needlessly restrictive modal-choice emphasis indicated by 
their original "abstract-mode name. In this paper, the terms choice abstract and 
choice specific are used to describe these 2 basic travel modeling choices. 

FOUNDATIONS: BASIC MODELING CHOICES 

In general, demand models relate quantities demanded to resources that must be 
expended to obtain those quantities. In travel demand modeling, the first behavioral 
question is, Whose resources? Are they the resources of the individual traveler, i.e., 
his money, and the use of his most basic resource, his time? (In theory, of course, 
the "behavioral" resources expended are always those of the "demanders.") Or are 
they the resources of society that provides facilities that "produce" travel, i.e., the 
aggregate of individual trips on the transportation system? This divergence in view-
points or "values" has led fundamentally to the development of different kinds of travel-
forecasting models. The alternate perceptions of the travel-choice environments re-
sulting from each view provide the most basic (behavioral) modeling choice for 
travel demand forecasting. 

That is, by whom shall the important parts of the transportation system be defined? 
By the supplier who considers the objects that he is able to provide, and who finds it 
useful to differentiate among modes, routes (path) within modes, and the locations, 
sizes, and technical characteristics of the means of producing transportation? Or by 
the individual traveler who may or may not consider the same description of the hard- 
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ware of transportation as the supplier? Is there any overlap whatsoever between sys-
tems defined from each point of view? Or are the important parts of the system so de-
fined completely disjointed? That is, does the traveler consider only the services pro-
vided by the transportation system to the complete exclusion of any identification of the 
objects (facilities) provided? 

CHOICE-ABSTRACT TRAVEL DEMAND MODELS 

Attributes 

In classical utility analysis, consumers maximize some function of quantities of 
various commodities that can be consumed (see Appendix). Travel is, of course, a 
commodity. Depending on how travel is defined, the number of alternate commodities 
possessing utility that can be consumed is very large (i.e., ultimately all combinations 
of alternative trip origins, destinations, times of day, modes, and paths). 

Utility theory may be modified to base utility on attributes or characteristics of the 
quantities to be consumed. According to Lancaster (36), "Utility or preference order-
ings are assumed to rank collections of characteristics and only to rank collections of 
goods indirectly through the characteristics that they possess.. .. Furthermore, the 
same characteristic may be included among the joint outputs of many consumption ac-
tivities so that goods which are apparently unrelated in certain of their characteristics 
may be related in others." The traveler is assumed to derive utility, U, from the at-
tributes, Z, consumed and obtained as a result of the transportation activity. 

SimultaneousChoice: Abstract-Mode Model 

The abstract-mode model (57) is derived consistent with this modification of utility 
theory. The model provides a striking example of the modelers' perspective on the 
problem determining the forecasting model that is developed. 

The Northeast Corridor project, for which the model was developed, was charged 
with analyzing and predicting the demand for new transportation services in the cor-
ridor. This required that travel forecasts be made for travel modes that might not 
currently exist (the new-mode problem). Therefore, the introduction of a new mode 
should not change the demand function (model) derived from a utility function, U = U(Z), 
estimated on the basis of the attributes, Z, of existing modes by using existing data (see 
Appendix). Technology or production function equations, Z. = g(X), could indeed be 
mode specific and describe choice environments having different attribute levels as a 
function of amount of travel, X. However, travel (demand) choices were to be de-
termined only by the attributes of the choice environment so produced, independent of 
mode. 

In the derivation of this choice-abstract, or attribute-specific, demand model, the 
concept of attributes is used "to define a mode in terms of the type of service it pro-
vides to the traveler and not in terms of the administrative entity that controls its op-
erations or the sort of physical equipment it employs" (57). However, the derivation 
of the model did not proceed analytically from consideration of personal utility. The 
modification of utility theory was (only) relied on to justify characterizing modes "by the 
values of the several variables that affect the desirability of the mode's service to the 
public: speed, frequency of service, comfort and cost" (57). 

The estimated travel -forecasting equations are, therefore, not mode specific but 
mode-attribute specific. They take the following form: 

01 (Y 	
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where 

= volume between k and 1 by mode m, 
P, = population in zone k, 

= median income in zone k, 
t,,, CU.=  travel time and (money) cost between k and 1 by mode m, 

tkib =  travel time by fastest mode, 
CkIb = cost by cheapest mode (not necessarily same as fastest mode!), and 
0,0 = parameters of the model. 

This is a simplified statement of the model. Separate parameters for each variable 
can be added, and the variable list can be extended to include others such as frequency 
of service and employment. Note, however, that the model has only one set of param-
eters regardiess of the subject mode, m, for which travel is being predicted. Thus, 
the equations are mode-attribute specific and not mode specific. The introduction of a 
new mode, if not the best mode in any attribute (and not the subject mode), does not 
change the travel prediction for the subject mode. 

Particular assumptions are made about the perceived interaction of modal attributes 
in determining travel demand. For example, there are cross elasticities (cross re-
lation) only with respect to the best competing mode in any attribute. These are equal 
in magnitude to the direct elasticities for the subject mode. 

Young (85) changed the representation of the competing modal attributes in Eq. 1 
from only the best values among all the modal choices to weighted averages of the at-
tribute values of the competing modes. That is (58), 

Tjjk  = aoX 	Flik 	 (2) 
F 

where 

i = origin, 
= destination, 

k = mode, 
a = constants, 
T = travel volume, 

X jJ  = exogenous economic and demographic variables, 
- r 	1.,a 	..a3 Ijk - 	' Ijic, 

Dtjk  = number of trips by mode k, 
CtJk = cost (money) on mode k, and 
Hjjk  = journey time on mode k. 

Consistency with the independence axiom (see next section) is obtained if the D's are 
removed from the product term for F and made a separate relative frequency term in 
Eq. 2. That is, 

T jjk  = a0X (Dij ia) Flik 	 (3) 
FjJk  

Practical difficulties must be noted in completely reducing travel-related (dis)utility 
to mode -independent attributes. These difficulties can include quantifying the time and 
space restrictions from car-pooling or transit travel, as contrasted with automobile-
driver travel (not to mention quantifying the comfort and privacy differences) and be-
tween transit mode combinations as represented by its several access modes (walk, 
park-ride, kiss-ride, feeder bus). To the extent that such differences, as they affect 
travel-choice behavior, can be subsumed in door-to-door travel times, departure fre-
quencies, and fares, the abstract-mode model can be considered applicable. However, 
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if the list of attributes that must be quantified to adequately describe travel alternatives 
in terms only of the perceived levels of attributes becomes extensive, the alternative 
modeling choice of identifying the attributes together with the modes may be more prac-
tical as a strategy. However, the new-mode problem (if relevant) must then be faced. 

These 2 models, Eqs. 1 and 2, are examples of choice-abstract direct demand 
models, which assume that the traveler considers all the attributes of alternative travel 
choices simultaneously when making a travel decision. The result is a simultaneous-
choice or direct demand model. 

However, there is a choice-abstract modeling alternative. That is an assumption 
of nonsimultaneous, or sequential consideration of, system-independent or choice-
abstract attributes. 

Sequential Consideration of Attributes 

An important alternative modeling choice is to formulate travel behavior models 
that are not based on the simultaneous consideration of values of attributes across all 
alternatives. Probability mechanisms can be proposed based on the individual's at-
tending to different aspects of the choice situation at different times. One proposal, 
(75) based on earlier work by Marschak, is the notion of eliminating alternatives in a 
multiple-choice situation by successively considering single aspects (attributes) of the 
choice situation. Each successive choice is governed by one aspect selected from 
those included in the available alternatives "with probability proportional to its weight" 
(75). All alternatives are eliminated that do not include the selected aspect, and the 
process continues until only one choice remains. Aspects that are common to all the 
alternatives do not affect the choices made. Obviously, the way aspects are defined 
is critical. The theory might be extended to include groups of aspects (factors) not 
easily described by a single measure. 

A scenario of the elimination -by -aspects method of modeling travel-choice behavior 
might be as follows: 

The most important aspect results from the trip purpose. For example, for shop-
ping trips, only destinations containing the aspect, retail stores, are considered 
as alternative destinations. A more precise definition of the shopping purpose (e.g., 
shopping goods as opposed to convenience goods) serves to delimit further the allowable 
alternative destinations. The next most important aspect (following the findings of 
Hille and Martin, 27) is "reliability of destination achievement." Unsafe and unreli-
able modes and routes are eliminated. This will generally not eliminate many alterna-
tives in U.S. urban areas because, through nonuse, most unsafe travel alternatives 
have been eliminated as economically nonviable. However, because random elements 
might be allowed, some alternatives for some individuals may be eliminated because 
they did not meet some stated safety threshold. The next most important aspect, 
comfort, with emphasis on flexibility and ease of departure, is used to eliminate the 
transit mode for all travelers from all origins to all destinations not near a transit 
line. The automobile mode is eliminated for travelers with no car (or car pool) avail-
able. The possibility of a trip is eliminated if no car is available, no transit is avail-
able to the "available" destination alternatives, and walking distance is too far to all of 
the available destinations not yet eliminated through the purpose and reliability aspects. 
Again, random elements allow this to be a probability model of choice. Other aspects 
of travel time are considered next, then cost, and so on, according to the sequence of 
importance in, for example, the Hille and Martin (27) findings. 

Summary 

A diagram may be useful in summarizing the travel demand modeling choices de-
scribed thus far (Fig. 1). The lowest level of the hierarchy is not the result of choice 
forks but rather contains examples of models that have implemented or might implement 
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the modeling choices. The elimination-by-aspects method of Tversky is not likely to 
be the only possible model structure that implements travel behavior that considers 
choice -abstract attributes sequentially. 

CHOICE-SPECIFIC TRAVEL DEMAND MODELS 

The alternate assumption about how travelers perceive their choice environment is 
that the attributes of the travel-choice environment are not perceived or at least 
modeled independently of the objects provided, i.e., the facilities that constitute the 
transportation system. This modeling choice, as before, breaks down into the be-
havioral modeling subchoices of (a) simultaneous consideration of all the attributes 
and (b) sequential consideration of the attributes. 

The distinction between direct and indirect demand models has already been made. 
In the former, all attributes of an entire trip are assumed to be known and considered 
simultaneously by the traveler. As shown in Figure 2, this behavior can be described 
as involving the simultaneous consideration of all the attributes normally associated 
with each of the 5 conventional descriptors of travel: frequency, time of day, destina-
tion, mode, and path. If each path through the travel decision tree is considered an 
alternative travel choice whose attributes are considered simultaneously "in competi-
tion" with the attributes of all the other travel choices, the models can become very 
complex. The number of choice combinations to be considered and modeled simulta-
neously is the product of the number of alternatives within each of the travel choices. 
For example, a simultaneous model of travel that considers 3 modes, 2 times of day, 
20 destinations, and 1 path requires the modeling of (3 x 2 x 20 x 1) or 120 travel 
choices for each origin. [This number may be reduced by eliminating zero-probability 
choices in calibrating models that satisfy the independence axiom (see next section).] 
The number of explanatory variables and the allowable interactions among variables 
that may be assumed to explain (model) simultaneous travel behavior can multiply very 
rapidly for realistic travel-choice situations in urban areas. 

The need for "simple robust models" has been well articulated (2). Calibrating 
models for large numbers of alternatives (choices) with very low probabilities of choice 
is difficult in the extreme. Attributing properly the separate effects of large numbers 
of (possibly highly correlated) attributes describing complex choice environments 
(where calibration techniques often require certain assumptions, e.g., normality or 
homoscedasticity) boggles the mind. (One may speculate that the "number of variables 
required to predict probability of choice is finite and rapidly approaches the limit of 
human discrimination.") For these reasons, travel demand models must be reduced 
in complexity in some plausible way. 

Restricting the choices available restricts the products or attributes the traveler is 
assumed to evaluate in making his travel decision. Restricting the choices that are 
presumed avallable to the traveler appears to be the way in which choice-specific 
travel demand models can be reduced in complexity. However, this involves making 
some important assumptions on the separability and the sequence of travel choices. 

The assumption that travelers behave as though they sequentially consider (travel) 
choice-specific attributes (Fig. 2) means that there is a hierarchy of travel decisions 
in which certain travel decisions are made independently (separately) of others. In 
turn, other travel choices (e.g., higher level choices like destination, Fig. 2) are 
made given that lower level choices (e.g., mode) are predetermined. 

There are 2 ways to model such sequential travel behavior. The first assumes that 
the relative valuation of choice attributes is constant throughout the set of travel 
choices. This requires that models of the independently made lower level travel 
decisions be calibrated based only on a subset of attributes describing those choices. 
The estimated (and preserved) utilities from the lower level choices are then added to a 
set of attributes on the basis of which the higher level choices are made. The traveler, 
it is assumed, makes some sequence of choices, and the earlier choices are based on in-
dependent and separate evaluations of personal utility(separate) from the "later" condi-
tional or "constrained" choices. For example, the time of day (shopping purpose) choice 
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was modeled(1O) on the assumption that "there is a utility associated with the trip itself 
which is additive to the utility or disutility associated with the choice of time of day, which 
is additive with the utility associatedwith the place to which the trip is made. . . 

Thus, the choice of mode is modeled separately and prior to the destination choice 
and is assumed to be independent of the overall number of trips between the origin and 
destination. Similarly, the choice of time of day is assumed to be made independently 
of the choice of destination. 

The attributes that are assumed additive must map on the (sequential) choices. 
Otherwise, a choice-abstract model results. If difficulty is encountered, either the 
travel choices can be redefined or the supply side description of choices (e.g., mode) 
can be abandoned and sequential choice-abstract models can be developed. 

The assumption of sequential travel choices, given that travelers perceive their 
choices as described by attributes inseparable from choices, is a difficult assumption 
to make. Yet it is an attractive strategy for reducing the complexity of travel demand 
models because it greatly reduces the number of interaction terms in the model. The 
other strategy is to reduce the number of independent variables that are assumed to in-
fluence travel behavior. That is, reduce the number of attributes the traveler is as-
sumed to evaluate in his travel decision-making process without excluding interaction. 
Because the attributes that the traveler evaluates are identified with particular travel 
choices, this second strategy for reducing model complexity is more appropriate to 
choice-abstract models than to choice-specific travel demand models. 

A second way to model sequential travel behavior requires the still stronger (more 
difficult) assumption that some travel choices are made completely independently of 
other travel choices and that the relative valuation of choice attributes common to 2 
or more travel choices is not necessarily the same in successive travel choices. This 
represents a third-level assumption regarding the consideration and valuation of the 
attributes (i.e., the relative marginal utilities) of the choice situation confronting the 
traveler. These 3 levels of assumptions are summarized in order from the weakest 
to the strongest (or most heroic) assumption. 

All the attributes of the choice situation confronting the traveler are considered 
simultaneously. The complete trip is one decision. The relative valuation of the at-
tributes is constant in any travel choice in the hierarchy shown in Figure 2. 

There is a hierarchy of travel decisions in which certain travel decisions are 
made independently of other decisions. However, the relative valuation of choice at-
tributes is constant in any complete travel decision (i.e., any single path through the 
travel decision tree shown in Fig. 2). 

As in assumption 2, there is a hierarchy of travel decisions in which certain 
travel decisions are made independently of other decisions. However, the relative 
valuation of choice attributes common to 2 or more travel choices is not necessarily 
the same in successive travel choices. 

The first assumption is the easiest to make. It requires the concomitant assumption 
of constant relative valuation of attributes in component travel choices of a complete 
travel decision. 

The second (strict utility) assumption is made for ease of estimation (reducing the 
number of variables in the models to be estimated relative to the first and third as-
sumptions). It requires some sequence of travel choices to be assumed for purposes of 
estimation as discussed above. Inclusive prices must be used to preserve the previ-
ously estimated utilities in strict utility models. The separately calibrated models 
using inclusive prices may be combined and applied simultaneously, or sequentially 
in any order. 

The third assumption is the present assumption of UTP models that completely and 
independently estimate the different travel choices with different valuations of the inde-
pendent variables in each model. The traveler, nevertheless, must face the same 
values of the independent variables in more than one component travel choice. For ex-
ample, "the costs of the various modes influence not only the choice of mode but also 
the selection of destination and the determination of whether the trip should be made at 
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all" (14). The most damaging indictment of the third assumption is that the sequence 
of application of the models determines the results. That is, no unique equilibrium can 
be reached with these models so long as flow and congestion conditions and the resulting 
travel costs change in any way from those used to calibrate the models. That is, even 
if the conventional series of models (including trip generation) were system sensitive, 
the sequence of their application determines the network equilibrium reached after 
more than one iteration. In addition, of course, the third assumption poses the prob-
lem of what appropriate value to place on user benefits (e.g., time savings) in evaluation 
of transportation system alternatives when different valuations of the independent vari-
ables are assumed in each component travel choice. 

From the above discussion, the conclusion may be drawn that the assumption is 
easier to make that travel choices are separable than that travel choices are made in 
some sequence. This assumption implies only that the marginal rates of substitution 
(trade-offs) among attribute variables that govern one travel choice do not vary among 
travel choices. Stated another way, this means that the trade-offs or ratio of "weighted" 
attributes that explain one travel choice are independent of the other choices. 

It is with the last statement that 2 important results from separate disciplines can 
be joined. In mathematical psychology, this is a statement of separability property of 
the independence-of -irrelevance -alternatives axiom (41, 42). In economics (utility 
theory), at the conditions assumed at equilibrium (see Appendix), the ratio of the mar-
ginal utilities of 2 choices is equal to the ratio of their "weighted" attributes (i.e., their 
revealed "prices"). The relative marginal utilities of the attributes of a choice situa-
tion can be solved for (inferred from) observed data on the choices made (61). 

Thus, the assumption of separable travel choices potentially allows complex travel 
choices to be broken down into simple travel choices whose relative marginal utilities 
can be inferred from observed data. However, a sequence assumption is necessary to 
determine which (separable) travel choice will be "simply" modeled, the inferred rela-
tive marginal utilities from which will be preserved in the remaining travel choices. 
Before the possible plausibility of any sequence and separability assumptions is dis-
cussed, the important properties and implications for travel demand modeling of the 
independence axiom will be described. 

Independence-of-Irrelevant-Alternatives Axiom 

The independence -of -irrelevant-alternatives condition (41) implies that, for any 2 
alternatives i and j having a positive (nonzero) selection probability, the relative odds 
of choosing j over i in a set containing only the 2 alternatives are equal to the ratio of 
their probabilities of being selected from any larger set of alternatives containing both 
i and j. This can be expressed as (48) 

= P(j:Ai) 
P, 	P(i:A1) 

(4) 

where 

= probability of selecting j in a 2-element set A1  = i, j; 
= probability of selecting i in a 2-element set A1  = i, j; 

P(j:Ai) = (nonzero) selection probability of choosing j contained in any set A1; and 
P(i:Ai) = (nonzero) selection probability of choosing i contained in any set A1. 

This condition states that the odds that alternative j will be chosen over i in a set 
containing both are independent of the presence of irrelevant "third" alternatives in A1. 
This is the separability property of the independence -of -irrelevant- alternatives axiom 
(41, 42). 

"Strict utility" is defined by Luce (41) as being the function h(ZkI) that satisfies Eq. 
4 for the binary case i = 1, 2. That is, the relative odds of choice or share of, say, 
travel, PI/P, between any 2 alternatives i and j are simply some function of the van- 
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ables describing the 2-choice alternatives (and no others:). 

h(Zkl) 	
(5) P h(ZkJ ) 

where 

P1  = probability of choosing i; 
P = probability of choosing j; 

h(ZkI  = strict utility of i; and 
ZkI =  (scale) variables, k, describing i. 

The actual odds or probability P1  of choosing alternative i from a larger set of al-
ternatives can vary, of course. 

The binary-choice strict-utility model, Eq. 5, generalizes into a multiple-choice 
model only if the independence axiom holds, that is, only if the probability of a choice 
from a subset of alternatives is independent of what other choice alternative may also 
have been available. The resulting multiple-choice strict-utility model is (41) 

P(iA) - h (Zkl) 	
(6) 

jeA 

for j = 1, . . ., i, j, . . ., where 

P(i:A) = probability of choosing i from a set of alternatives A; 
h(Zkj) = strict utility of alternative j in the set A, a monotonic function of the scale 

variables Zk  describing j; and 
jcA = complete set of alternatives between which a choice is made. 

An exponential transformation of the strict utilities (and an abandonment of set nota-
tion) yields the multinomial logit formula: 

VZkj) e( 	
(7) 

e'' )  

j =1 

for j = 1, . . . , i, j, . . . , J. 
Equation 7 says that the probability that a traveler will choose alternative i out of a 

set of J alternatives is directly proportional to its strict utility V(Zkl) (a monotonic 
function of attributes k of the alternative i) and that the probabilities of choosing one 
alternative in the set of available alternatives, each with a nonzero probability of being 
chosen, must sum to one. ["Perhaps the most general formulation of the independence 
axiom is the assumption that the alternatives can be scaled so that the choice probability 
is expressible as a monotone function of the scale variables, k, of the respective alter-
natives" (75). This assumption is called simple scalability by Krantz (35).] 

The function V(Zkt ) in Eq. 7 can, of course, be interpreted and estimated. In the 
language of the psychologist, it represents some function of the environment that stimu-
lates a decision (70). In utility terms, it represents some function of the attributes of 
value to travelers of the alternative travel choices. A correct model specification is 
needed to capture appropriate effects on behavior of variables (attributes) describing 
the choice situation. A constant term, 8, in an equation for V(Zkl), e.g., OIIIZ, 

k 
will include the effects of all attributes not explicitly included in the model. 
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Separability Property 

The independence axiom is a general statement that has consequences that can be 
tested. For example, it says that, if alternative i is preferred to j in one context 
(choice situation), it is preferred to j in any context for which both are available. 
Furthermore, if the odds of choosing i over j are 0.7 in one context, those odds will 
be preserved in any choice situation. The traveler is assumed to exhibit transitivity 
in his behavior with respect to his "strict utility" h(ZkI) versus h(ZkJ ). That is, he 
values the attributes, Z, of any choice, i, the same (ratio scale) relative to choice 
regardless of the context. Thus, the probability that an alternative (choice) will be 
chosen is exactly proportional to its strict utility (therefore, Eq. 6). And from Eq. 5, 
the relative odds that an alternative will be chosen from 2 alternatives is constant and 
a function only of the strict utilities of the 2 alternatives. This allows the introduction 
of new alternatives in a model application without calibration of the model, provided 
the previously estimated strict utilities are preserved. 

In 1962, the author used the separability property of Eq. 6 to calibrate a share 
model of (multiple) choice among 4 access mode (walk, park-ride, kiss-ride, and 
feeder bus to line-haul rapid transit) alternatives being tested in Washington, D. C. 
The model was calibrated with paired aggregate modal-split data from a number of 
surveys because of the lack of data describing the relative usage of all 4 feeder modes 
together. This was allowable because of the "startling" behavior of the model (Eq. 6) 
that "the relative substitutability of any two sub-modes without the third being available 
is assumed equal to the relative attractiveness of the two in the presence of the third" (6). 

McLynn and Woronka (50) used this property extensively to calibrate their "single 
pair" market share model developed for the Northeast Corridor project (see Appendix). 
In their model, automobile was used as the "base mode" (16). When difficulties were 
encountered with certain nonsensical parameter estimates and the single-pair estimates, 
all single-pair equations were estimated simultaneously. From Eq. 52  it follows that 
such simultaneous estimation is irrelevant from the point of view of the behavioral 
grounding of the model, however much it may be desirable to constrain certain pa-
rameter estimates. [The derivation of the model from strict-utility considerations 
highlights certain of its behavioral groundings that may not be clear from the McLynn 
derivation (see earlier sections).] 

The property of "separability" of alternatives is not restricted to alternatives among 
modes. Alternatives can characterize the entire range of choices of trip frequency, 
destination, time of day, mode, and path, as already discussed. Thus, separate 
choice models can be calibrated separately and later combined into a travel-demand 
model. However, behavioral assumptions as to the sequence of travel decisions are 
required, as already discussed. The separability property of the independence axiom 
was first explicitly recognized and used to calibrate a travel-demand model by Charles 
River Associates (CRA) (10). 

Share models have been used in travel forecasting without recognition of their sep-
arability properties for many years. For example, the gravity model of trip distribu-
tion (77) is a share model whose standard derivation is simple and general (18). 

VI GI AJ Z J  

V1J  = CIGAJZJ 	

) 
GI = E V = E CIGI A3 Z J  I 

(8) 

G1  = C1G1 E AZJ 	( 
j 

AjZtJ 
1 	 I 

I 
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V,3  - G' A3ZJ 
	 (9) 

- EAjZ 

YiL A3ZJ 	 (10) 
G, 	ZiJ 

 

Equation 8 states that the volumes between zones i and j are proportional to the pre-
viously estimated trips generated, G,, and attracted, A3 , and to the attributes, k, of 
travel between i and j. C, is the constant of proportionality, which is solved for in the 
remaining equations. The result, Eq. 9, is the usual form of the gravity model, which 
is equivalent to a share model, Eq. 10, for the split fraction of total trips from a zone 
i destined to zone j. However, the previously estimated "strict utilities" that (may 
have) resulted in the estimation of the G, and A3  are not normally preserved. 

In fact, of course, no transportation attributes are normally used in the estimation 
of the productions, G,, and the attractions, A3 . Empirical evidence to support the use 
of strict utilities is the juggling necessary to bring the V13 's into line with the G, and A3  
in any gravity model application. That is, the results of the separately calibrated trip-
generation and -distribution models are not (internally) consistent with each other. 

The separability property implies that the conventional gravity model should be 
calibrated only with subregional structures (partitionings) that define distinctly dif-
ferent destination alternatives with nonzero probabilities of being chosen from a par-
ticular origin by a particular traveler (type) for a particular trip purpose. This would 
considerably simplify calibration but would appear to complicate gravity model appli-
cation, i.e., predicting trip distribution (see discussion in section on applying forecast-
ing models). An understanding of the separability property may thus lead to substan-
tially more effective gravity models. Empirical research is clearly needed. 

The derivation of the gravity model (Eqs. 8, 9, and 10) from a simple proportionality 
statement can easily be generalized to derive any split fraction (e.g., fraction of total 
regional trips emanating from an origin zone, or fraction of total interzonal trips on 
each mode). Each split fraction is in turn dependent on the previously derived trip 
universe being split. The models can then be "solved," one in terms of the next, in 
one multiple-choice share model. The result is similar to Manheim's "general share 
model" (45): 

VkjP  = &0kY1CI8k1MWkIMP 	 (11) 

where 

= travel between origin k and destination 1 by mode m and path p, 
= total (regional) travel, 
= split fraction of a from origin k, 

Vkl = split fraction of aO,, to destination 1, 
= split fraction of OkYk1  to mode m, and 
= split fraction of 	to path p. 

Each of the terms on the right side of Eq. 11 is intended to be a function of activity 
system and transportation system variables in Manheim's model. 

In summary, in the calibration of a travel demand model, the separability property 
of the independence axiom implies that the (marginal) probability distribution of choice 
of mode can be separately estimated and multiplied by the conditional probability dis-
tribution of another travel choice, e.g., P (destination, mode), to give the joint proba-
bility distribution of both: 

P(M,D) =P (M) P(DIM) 	 (12) 

provided the previously estimated strict utilities from the modal-choice model are 
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preserved. This operation requires 2 assumptions: (a) that destination choices are 
made conditional on mode choices and not the reverse, and (b) that the (dis)utility from 
the mode choice is additive to the utility from the destination choice. Thus, the mode 
choice is assumed to be independently made from the destination choice (in this case) 
but not the reverse. Given the separability and sequence assumptions, the choices can 
be separately modeled, assuming negligible income effects, and later recombined into 
one joint probability model by simple multiplication of the separately calibrated proba-
bility models, as in Eq. 12. Conversely, the joint distribution, P(M, D), must be es-
timated directly if the sequence and separability assumptions appear too strong. The 
possible behavioral bases for sequential and separable choice assumptions are dis-
cussed in the next section. 

Travel-Choice Behavior 

Existing travel demand models are classified as short-run or long-run demand 
models, according to whether (short-run) travel decisions (choices) are modeled sep-
arately from (long-run) activity-location decisions. The additional classification of 
direct and indirect demand models is used to describe whether the short-run travel 
decision is modeled as one simultaneous "joint" choice or as a series of separate 
choices (e.g., mode, destination, frequency, and so on). In this section, certain be-
havioral assumptions in these choice classifications are discussed. 

Activity (Land Use) Location 

In travel demand forecasting, activity-location choices are assumed to take place 
in a much larger market than travel choices. Also, the time periods over which 
activity-location choices are made is assumed to be much longer. If activities are 
considered substitutes for each other in one market, this requires long-run demand 
models where activity locations and intensities are allowed to vary. The recent mixed 
success in land use modeling (38) testifies to the difficulty of describing the attributes 
of all the related choices in this larger market (which also includes travel choices). 
Thus, the present state of the art of travel demand forecasting with a few exceptions 
allows only amount of travel to vary, i.e., to be the dependent variable. [Some demand 
models have been formulated and calibrated that forecast (long-run) residential location, 
car ownership, and modal split in one equation set (1, 30). However, these models do 
not forecast quantity of travel. Nevertheless, the models provide a direction for fur-
ther work.] 

In modeling travel separately from activity location, the attribute variables describ-
ing the choice situation must be limited to those "highly" involved in the decision (i.e., 
close substitutes and complements). Indeed, a necessary condition for utilities derived 
from separately modeled travel decisions to be considered additive is that their com-
ponents must be neither competitive (substitutes) nor complementary (43). 

Trip purpose is the first way of describing the restricted set of choices that are said 
to be available to the traveler as an individual decision-maker. No substitution is as-
sumed 

s-
sumed among trip purposes because the purpose of the trip corresponds to the activities 
at the trip destinations. The activities in place are taken as given in the partial equi-
librium framework. If activities are taken as substitutes, a long-run demand (land 
use) model results. 

The choice ordering implied by assuming that travel choices are made, conditional 
on activity locations, is represented in Eq. 13. 

P(T,A) =P(TIA) P(A) 	 (13) 

where 

P(T, A) = joint probability distribution of travel and activity location; 
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P(T I A) = conditional probability distribution of travel, given activity location; and 
P(A) = marginal probability distribution of activity location. 

Equation 13 implies the sequence assumption that activity-location choices are made 
first and precede travel choices. The sequence requires that the strict utilities in-
ferred from activity-location behavior be used in the calibration of the travel demand 
model. This is, of course, not the way travel models are currently calibrated. 

It is, of course, possible to assume that travel and activity location are independent. 
That is, 

P(TIA)=P(T) 	 (14) 

This is exactly the assumption that is made when one assumes that there is a se-
quence of travel-choice decisions in which mode and route choice precede destination 
choice. That is, these choices are assumed to be made solely on the basis of the 
(dis)utility of the trip itself. Making this particular assumption of travel choice or-
dering (discussed in the next section) is at least consistent with Eq. 14. 

In summary, although the logical conclusion of the theory of travel as a derived de-
mand is to allow both short- and long-run travel activity to vary as complements in a 
general equilibrium framework (7), the assumption is made that we can eliminate the 
imposing structure this would require and model travel choices separately as an ac-
tivity with a set of complements (activities) in place and fixed. 

The resulting set of attributes needed to describe the choice environment for input 
to a travel-choice model is correspondingly (greatly) reduced. Further, the choice 
ordering implied by this assumption is that travel choices are adjusted much more 
quickly to a change in travel conditions than in residence and work-place location. 
Modeling the latter requires a dynamic model where changes are measured over rel-
atively long periods. Thus, if a static travel model is assumed, the effects of changes 
in travel conditions on travel can be modeled (inferred), it is assumed, separately from 
their effects on activity location. This assumption and its implications are worthy of 
considerable research. 

Travel Choices 

The open question is, What does the traveler perceive in his evaluation of his travel 
alternatives? Modeling travel directly as a simultaneous decision means including the 
attributes of every conceivable alternative to a specific choice in any model of that 
choice. By modeling long-run demand separately from short-run travel, we exclude 
moving the traveler's residence and work-place location as alternatives to his travel 
choice. However, such alternative choices remain as traveling to activities at varying 
locations as an alternative to staying put (destination choice versus no-trip choice); an 
automobile trip at a different, say, off-peak, time of day as an alternative to a transit 
trip at the peak hour; and so on. 

As noted in the introduction, the conventional breakdown of individual travel choices 
is to separately model trip frequency, trip destination, time of day, mode choice, and 
route choice. Such a breakdown involves a stronger set of assumptions than the as-
sumption of simultaneous travel decisions. The trade-off is generally between a 
stronger set of assumptions but less complex models and weaker assumptions but more 
complex and difficult-to-calibrate models. The unanswered questions are, How diffi-
cult to calibrate are models that combine travel decisions, and how difficult are they 
to forecast with? 

At least 2 of the conventional travel choices might plausibly and relatively easily be 
combined, at least for purposes of empirical testing. That is, combining trip frequency 
and trip destination into 1 set of alternative choices appears theoretically plausible and 
convenient. Zero-trip frequency is the equivalent of no change in traveler location. 
Other combinations may also be speculated on. However, some appear more difficult 
than others, not because of the difficulty in assuming that travel-choice behavior is a 
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simultaneous decision, but because of the separability property of most existing travel 
models. For example, combining mode and route choice into one decision may be dif-
ficult because of the similar characteristics of alternative routes within modes and the 
overly strong separability property in this situation. [The evidence is that "the addi-
tion of an alternative to an offered set 'hurts' alternatives that are similar to the added 
alternative more than those that are dissimilar" (75).] 

Because the basis of calibrating travel demand models using the separability prop-
erty is to constrain some decisions on the basis of attribute (utility) evaluations made 
in decisions modeled earlier in the chain, a discussion of travel-choice-separation as-
sumptions cannot proceed far without including consideration of the ordering of the sep-
arate choice assumptions. 

Choice Ordering 

The assumed order of the travel decisions, given a separation, determines which 
choice situation is used to estimate the initial strict utilities. Empirical testing with 
alternate orderings and breakdowns can provide some evidence as to "natural" order-
ings, given the underlying assumption of "conditional" choice behavior. Is there a 
logical or natural ordering of travel choices? If there is any separation at all, hypoth-
eses can be attempted for specific orderings of the choices. The following hypotheses 
are some that support the assumption that travel choices are separable and proceed in 
some sequence or order. 

Sequential choice ordering based on timing. Traveler decision-making proceeds 
from the latest to the earliest decisions in time. For example, for a particular trip 
purpose (choice -of -destination activity), the traveler may be hypothesized to have some 
notion of the conditions on the available modes and routes when choosing his destination. 
That is, he has already considered the modes and routes that are available to him. He 
anticipates and makes choices on routes and modes that may then limit or constrain his 
available destinations and departure times. (Within a mode, he is apt to have antici-
pated the conditions on the alternative routes within the mode when he makes his mode 
choice. This suggests that mode-choice decisions are made after path decisions as op-
posed to both decisions being made simultaneously.) This implies a logical order of 
travel-choice decisions running counter to their sequence in time. 

The possibility of a logical order of decisions running counter to their sequence in 
time in the case of travel decisions was discussed already by Beckmann et al. in 1955 
(3). This reverse order also gets us around the practical difficulties (probably impos-
sibility) of having to compute supply-sensitive system characteristics (travel attributes) 
on an area-wide basis for input to (disaggregated) trip-frequency decisions made at a 
point (or zone), or for input to a modal-split model that precedes trip distribution. 
Production functions g(x) for, say, travel times, are well known on a link and route 
within modal basis (28). 

Sequential choice ordering based on adjustment time. Models that assume some 
choice ordering in a sequence could rest their plausibility on the time it takes to adjust 
behavior to a change in policy. Some decisions (e.g., route choice) can be adjusted 
more quickly by an individual than others (e.g., an origin change involving a house 
purchase or a mode change involving a car purchase) because they involve less com-
mitment to their former situation. Thus, sequential choice models that involve adapt-
ing to changes in supply considerations can be considered in this sense dynamic or 
stochastic (5). Conversely, simultaneous -choice assumptions result in models that 
are in this sense static. Unfortunately, only cross-sectional data exist at present to 
empirically test most travel demand models. 

Sequential choice ordering based on experience. Traveler decision-making pro-
ceeds from those choices on which there is the most experience to those choices on 
which there is the least experience. Most, if not all, current travel demand models 
are based on or can be shown to be equivalent to rational "economic man" assumptions. 
These yield plausible (if normative) descriptions (models) of travel behavior, but they 
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demand more of man's capabilities than he can generally "deliver." In addition, they 
assume that the traveler's values, and the choices he confronts, are constant over time. 
Conversely, there are other descriptions of behavior that assume less (or a bounded 
set of) knowledge on the part of the individual decision-maker. These provide alter-
nate but as yet largely unexplored bases for modeling travel behavior, and the dynamics 
of commitment to old and selection of new travel choices as families move spatially and 
socially over time. 

Important theoretical support for separate and sequential choice modeling comes 
from the theory of decision-making called "satisficing" (46). This theory rejects the 
notion that there exists a rational economic man who is perfectly knowledgeable and 
perceptive about all the possible alternatives that confront him and who can compare 
all possible alternatives with one another to find his optimal choice by manipulating 
stored criteria describing the alternatives. Satisficing substitutes for this true or com-
plete rationality a hypothesis of bounded rationality. This implies sequential search and 
limited sets of criteria used for evaluation. That is, in place of simultaneous (or sep-
arable and transitive) comparison of all alternatives, alternatives are examined sequen-
tially according to satisficing. And rather than being compared to one another on the 
basis of a set of (interval scale) operational criteria, the alternatives are compared to 
a simpler set of minimal criteria until an alternative is found that satisfies the decision-
maker. Alternatives are discovered or searched sequentially until a satisfactory alter-
native is encountered. No attempt is made to exhaust all possible alternatives. More-
over, search for new alternatives will only occur if the traveler perceives a discrepancy 
between his level of aspiration and his level of reward from the existing behavior. 

This "model" in its general formulation can be interpreted as supporting models of 
sequential travel behavior. Travelers can be considered to evaluate sequentially well-
defined travel alternatives in terms of the objects that provide the travel service (modes) 
and in terms of the benefits from the travel service (destinations). Conversely, the 
traveler may sequentially apply a limited set of criteria that are used to reject alter-
natives that do not meet threshold levels of those criteria.' (This latter interpretation 
provides support for choice-abstract sequential models.) In both cases there is support 
for the hypothesis of choice behavior that involves sequential examination of choices. 

We may describe the present trip of a traveler as one path through the tree shown 
in Figure 2 (assuming he presently makes a trip). If he is dissatisfied with any aspect 
of his present trip or, if confronted by a new alternative with a promised or expected 
improved level of service, does he sequentially examine "near" alternatives at only 
one level of choice? Or does he reconsider many paths involving changes throughout 
the hierarchy? Or does he simply consider only the new alternative if available and 
accept it or reject it? 

According to the theory of satisficing, there is generally a conservative bias in the 
system of choice. That is, over time, levels of aspiration tend to adjust to levels of 
achievement. (It is the difference in the levels that is said to motivate search for new 
alternatives.) A new alternative may or may not change the traveler's perception of 
difference between present and possible (future) alternative states if he changes his 
travel behavior. We clearly need to better understand what those perceptions of dif-
ference are, at what level in the hierarchy they occur, in what sequence they occur, 
and how their relative requirements of adjustment time may operate to eliminate cer-
tain choices from the sequence. 

The above hypotheses that support sequential travel decision-making are not made 
as a matter of idie speculation. The current conventional procedure of travel forecast-
ing assumes sequential travel choice and a very particular choice ordering. The choice 
ordering is allowed to vary only slightly in practice. For example, the place of modal 
split in the order of trip-choice decisions has been called "the most actively debated 
issue in modal split" (80). The context of this statement referred to whether modal 
split should precede or follow trip distribution. The alternatives can be represented 
by the following 2 model structures (probability statements in this case): 

P(M,D) =P(DIM)P(M) 	 (15) 
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P(M,D) =P(MID) P(D) 	 (16) 

where M = mode, and D = destination. If Eq. 16 were true and Eq. 15 false, destina-
tion choice would be independent of the availability of a mode (say, automobile) to reach 
the destination. This does not seem plausible except possibly in the case of work trips. 
(In such a case, the car is assumed to be purchased if not available and if necessary 
for reaching the destination.) In the reverse case (Eq. 15 is true, and Eq. 16 is false), 
the choice of mode is assumed to be made independently of the choice of destination. 
For example, the automobile, if available, might be selected for the trip, and the des-
tinations that can be reached by automobile are then considered by the traveler. This 
appears somewhat plausible (say, for convenience shopping trips), at least more plaus-
ible than the reverse sequence. (If this is true, at least for some important trip pur-
poses, it augers badly for transit usage. That is, choice of mode, e.g., transit usage, 
would be independent of origin- destination transportation system characteristics, in-
eluding origin -destination pairs in larger cities where transit service may be excellent.) 

There is an alternative model structure that poses a way out of the above dilemma 
if the order of travel behavior is not stable or must be subjected to further empirical 
testing. Equations 15 and 16 may be rewritten in the following form (17): 

P(M,DIMEx0) = P(DIM) P(MIMEx0) 	 (17) 

P(M,DIDEXM) = P(MID) P(DIDEXM) 	 (18) 

where X0  is the set of all decisions made prior to the choice of destination, and 
P(M,DIMEX0 ) is, therefore, the conditional probability that M and D will be chosen 
if mode choice precedes destination choice. Analogous statements apply to Eq. 18. 
Because MEX0  and DEXM are mutually exclusive, Eqs. 17 and 18 can be added together 
to yield 

P(M,D) = P(DIM) P(MIMEXO) + P(MID) P(DIDEXM) 	 (19) 

This is an exact expression for P(M, D). Equation 19 is equivalent to Eq. 15 or 16 
only if mode choice always precedes destination choice or vice versa. It is also pos-
sible to expand Eq. 19 to include all aspects of travel decision-making. 

The logical place of the time of departure decision in an assumed sequence of de-
cisions is diffucult to establish even in theory. It may, for example, plausibly come be-
fore or after the trip-destination decision. The separation of time-of-day utility from 
destination-place utility and trip (dis)utility, as noted before, may make this the weak-
est assumed separation, leading to confusion as to its place in a logical order of travel 
decisions. The choice of time of departure might best be combined with frequency or 
destination or both, even though this would make travel models more complex. 

Unfortunately, a solid case cannot be made for many trip-choice sequence assump-
tions. Our theory is weak, and we must look at whatever empirical evidence is available. 
Ben-Akiva (5) showed empirically that mode choice, assumed before or after desti-
nation choice, or the 2 travel choices modeled jointly all lead to different valuations 
(relative marginal utilities) of the trip attributes, (e.g., time and money costs of travel). 
(But this is insufficient evidence to lead to the conclusion that both sequences are wrong 
or that the separation assumption is incorrect.) His work on estimating the joint prob-
ability of mode and destination choice directly is the first demonstration that disaggre-
gate data can be used for simultaneous travel-choice models, though not all travel 
choices were included. [The first simultaneous choice model using aggregate (zonal) 
data was by Kraft in 1963. The trip-generation and mode-choice decisions were com-
bined and modeled simultaneously. Again, not all travel choices were included.] By 
combining choices and modeling them simultaneously, the need for sequence assump-
tions, but not separability assumptions (except when applying the model directly), is 
avoided. That is, the separability property of any formula satisfying Eq. 6 (e.g., mul-
tinomial logit) allows travel choices to be separated while still preserving the strict 
utilities. The separability property allows the conditional and marginal probabilities 
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of the travel choices to be computed from the joint probability distribution estimated 
from the simultaneous model. Thus, for forecasting purposes, models satisfying Eq. 
6 may be separated and applied sequentially (indirectly) or combined for application in 
a direct model (see later discussion of alternative methods). 

When travel-choice models are calibrated separately, the alternatives allowed are 
determined by the conditional probabilities. That is, in Eq. 15, the only alternatives 
allowed are the destinations that are available or can be reached by mode in. The es-
timated strict utilities from this set of choices are then assumed to be independent of 
the choices as soon as the separability property of Eq. 6 is used in travel forecasting 
(see later discussion of definition of alternative choices). 

The hypothesis of simultaneous (i.e., not conditional) travel choices can be easily 
tested by using standard chi-square tests for differences between marginal and condi-
tional distributions of the same random variable. If there are no differences, the hy-
pothesis of no relation between, say, mode and destination could not be rejected. Be-
cause it is relatively easy to show a relation by the chi-square test with large sample 
sizes, an inability to reject no sequence might be considered evidence that the decisions 
are being made simultaneously. (However, the power of the test is low.) 

Theories of choice that consider different choice-abstract aspects of travel attended 
to at difference times and in some specific order were discussed earlier. Aspects of 
travel can overlap with the definitions of travel choices because attributes in the defi-
nitions of each are often common to both. Some arguments against transitive value 
(strict-utility) models can be used in part to advance the case for assuming sequential 
travel choices and thus advantageous use of the separability property to calibrate de-
mand models. 

Similarly, arguments against a logical ordering of travel-choice decisions argue 
also for strict-utility travel-choice models because such arguments are consistent 
with assuming a single monotonic function of the scale variables of the alternatives 
and the single estimation of joint probability distributions of simultaneous travel choices 
(i.e., "direct" demand models). Therefore, uncertainties as to whether travel choices 
can be assumed to be separable and occur in some logical order do not point to abandon-
ing strict-utility models. They may point to combining choices and making less use of 
the separability property in model calibration. 

In summary, there may be some clear-cut travel-choice ordering that can be as-
sumed from the standpoint of travel behavior and, thus, lead to the conclusion that 
probability models for combined choices should be calibrated directly wherever pos-
sible. Fewer sequence assumptions can lead to improved use of the separability prop-
erty for combining separately modeled choices into a demand model. Because the in-
dependence axiom excludes, in any event, alternatives with zero probability of being 
chosen, the data requirements for estimating strict-utility models of combined travel 
choices can be greatly reduced. Simultaneous (direct) demand models rather than se-
quential choice models seem indicated from a behavioral point of view, although the 
discussion cannot be closed in view of the above hypotheses. 

Combining Strict-Utility Sequential Travel-Choice Models 

CRA (10) used the separability property of the independence axiom to calibrate a 
series of shopping-trip travel models in the following assumed sequence: mode choice, 
destination choice, time-of-day choice, and trip frequency (including whether to make 
the trip). Data at the individual traveler level were used. The relative marginal util-
ities of modal attributes revealed (estimated) in the mode-choice decision were pre-
served in the next choice modeled, namely, trip destination, by weighting the attributes 
of travel by mode to each destination by the probability that the mode would be chosen, 
given the selection of the destination. The weighting and aggregation are done with the 
estimated parameters from the previous (mode-choice) decision. The previously esti-
mated strict utilities or "inclusive prices" are preserved. A proof is given that this 
method of combining separately calibrated travel-choice models is consistent with the 
assumption of additive utilities. There is no summation over the estimated number of 
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trips because the choice of mode is assumed to be independent of the number of trips 
between an interzonal pair. "Tastes about modes are (assumed) independent of tastes 
about trip frequency" (10). 

The method can be schematically portrayed for the 4 sequential shopping-trip de-
cisions as follows: 

P(mode) = f(p, 5) 

	

P(time of day) = 	s) 	
(20) 

P(destination) = f(p, s) 

	

P(frequency) = 	s) 

where 

p = vector of travel attributes, 
= previously estimated strict utility = "inclusive price," 
= inclusive prices previously estimated, and 

py s = vector of socioeconomic variables. 

This is the logical conclusion of the assumption of transitive tastes. (Strict utility 
suggests that "behavioral time values" have a legitimate place in transportation benefit 
measurement, assuming transitive tastes: 

Sum ma ry 

Figure 3 shows all the travel demand modeling choices considered thus far. The 
assumption of individuals' evaluating choices such that their probability of choice is 
expressible as a monotonic function of the choice-specific attributes of all the alterna-
tives (simple scalability or strict utility) has been shown to be the expression of the in-
dependence of irrelevant alternatives axiom. This means that the relative probability 
of choice between 2 alternatives is independent of the attributes of other alternatives 
in the offered set of alternatives. The transitive nature (strict utility) of the resulting 
choice behavior results in multinomial, multivariate probability or share models. The 
separability property of the independence axiom and its resulting multiple-choice share 
models allow big, complicated travel decisions (e.g., those modeled in direct demand 
models) to be broken up into smaller, more easily modeled choices. However, these 
models may be separately calibrated only if separation and sequence assumptions are 
made. The separately calibrated models can then be linked through their previously 
estimated parameters into a demand model (i.e., a direct or one stage-pass demand 
equation). To do so requires use of probabilities (or relative frequencies), not sum-
mation of numbers of trips from the prior travel choice in the assumed sequence. 

There is, in addition, a set of travel-choice models based on the strong assumption 
that the choice probabilities are expressible as a function of attributes of subsets of 
travel choices making up one complete travel decision. This requires the assumption 
of sequential and completely independent travel choices where the relative valuation of 
attributes common to 2 or more travel choices, making up one trip decision, is not 
constant throughout the hierarchy of travel choices (Fig. 2). These models (e.g., the 
present UTP models) cannot be combined into one direct demand model, but must be 
applied sequentially in the order in which they have been calibrated, as discussed in the 
next section. 
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Figure 1. Incomplete diagram of travel-modeling choices based on 

alternate travel-behavior assumptions. 
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Figure 2. Presumed hierarchy of travel choices. 
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Figure 3. Less incomplete diagram of travel-modeling choices based on alternate 

travel-behavior assumptions. 
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APPLYING TRAVEL FORECASTING MODELS 

Alternative Methods 

The question remains of how to apply travel forecasting models. Five alternative 
methods are apparent. 

Apply the models in chains in their usual UTP order (i.e., trip generation, trip 
distribution, modal split, traffic assignment); 

Apply the models in chains as travelers are assumed to order their choices; 
Link sequentially calibrated travel-choice models parametrically and apply them 

in one stage (i.e., as a direct demand model); 
Apply simultaneously calibrated travel models in one stage (i.e., as direct-

demand models); or 
Apply sequentially the conditional and marginal probabilities of separate travel 

choices derived from the joint probability of a simultaneously calibrated model. 

In the first (conventional) strategy of chaining independently calibrated travel-choice 
models with different relative valuations of independent variables common to 2 or more 
choices, the sequence of application determines the results. In such cases, the sepa-
rability property of the independence axiom does not apply among choices. For example, 
in the application of binary-choice modal-split models in a chain, shown in Figure 4 (65), 
the results (i.e., splits) calculated higher in the chain are preserved lower in the chain. 
And in conventional UTP, the trips calculated higher in the chain are normally preserved 
lower in the chain on any pass through the chain. 

The critical problem in method 1 is how to input the system characteristics (attri-
butes) of the choices lower in the chain at points higher in the chain. For example, how 
in trip generation-trip frequency can the system characteristics for the entire region 
be aggregated to a single point or zone for input to this first step? The choice attri-
butes can either be summed over (weighted by) trips calculated lower in the chain (e.g., 
potential functions or gravity-model weighted sums) and brought "up" to be input to 
higher models in the chain. Or the estimated parameters common to all the ordered-
choice models can be used to probabilistically aggregate the choice-specific attributes 
from the lower level choices. The latter method, as noted before, is the only method 
consistent with the assumption of additive utilities from sequentially calibrated separa-
ble multiple-choice travel models. 

If sequential models are derived and calibrated consistently with the (implicit or ex-
plicit) behavioral assumptions of preservation of strict utilities in separable multiple-
choice models, there is no difference among methods 1, 2, and 3 in the resulting com-
puted network-equilibrium travel patterns. That is, the same separable model may be 
applied sequentially in a series of separate travel-choice forecasts, or the joint proba-
bility distributions of choices may be calculated directly by parametrically combining 
the separately calibrated choice models as per the independence axiom. However, the 
sequential application of the models in this case can actually be in any order including 
methods 1 and 2. The estimated strict utilities are independent of the choices, as per 
the original behavioral assumption implemented by using the separability property of 
Eq. 6. 

Conversely, from a simultaneously calibrated model satisfying the independence 
axiom, the conditional and marginal probabilities of travel choice may be derived, and 
the separate submodels of travel choice may be applied sequentially. Submodels so 
derived may be applied in any order, including methods 1 and 2. Joint estimation of 
the choice probabilities eliminates the need for the sequence assumption, but not the 
separation assumption, for models based on or consistent with the independence axiom. 

Models based on or consistent with the independence axiom are separable multiple-
choice models. Preference for any method of application is a matter of convenience, 
control, and purpose of the transportation systems analysis. For example, it is often 
desirable to be able to compute travel in sequential steps (generation, distribution, and 
so on) in order to be able to check the intermediate results and exert control over the 
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forecasting process in some way. A direct application of the parametrically combined 
or simultaneous model may be appropriate if the user is confident of his results and 
wants to save time and money. If the model has been derived in a fashion consistent 
with its behavioral assumptions, both methods will produce the desired output for cal-
culating the flow volumes on links in a transportation network. The choice of method 
should be based on the requirements of different planning environments. 

Because the aggregate of trips, not the probabilities, are assigned to a network, a 
complete run through the sequence will be required to produce the joint probability dis-
tributions of travel (including trip-frequency probabilities) needed for aggregating over 
the total number of individual trip-makers to calculate the aggregate demand. Assign-
ment of trips must also be made to update link and path supply functions for computation 
of an appropriate network equilibrium. Network equilibration can proceed either through 
incremental (fractional) loading or by iterating. 

Defining Alternative Travel Choices 

In the application of separable, multiple, choice-specific travel models (models 
having the separability property of the independence axiom), great care must be taken 
in choosing alternatives in order that the separability property not be too strong for the 
application. The strict utilities in these models are estimated in choice-specific situ-
ations even though the separability property of Eq. 6 allows travel choices to be sepa-
rated for forecasting purposes while still preserving the strict utilities. Truly inde-
pendent and distinct alternatives as perceived by travelers should be chosen in the 
application of separable multiple-choice share models. A black bus following the 
same route as a yellow bus, when chosen as an "independent" alternative, has the ef-
fect of reducing the use of automobile (the third choice) in order to preserve the rela-
tive odds of choosing automobile over either of the bus alternatives taken singly. This 
is a misapplication of the separability property because the property would appear to 
be too strong in this application. In model calibration, the color of the bus does not 
usually specify or identify a choice, so this seems perfectly clear. The black bus run-
ning on a different route from that of the yellow bus between the same origin and des-
tination would have the same effect; and again this effect appears too strong, unless 
the strict utilities are clearly identified as route (choice) specific. If the yellow bus 
were now changed to yellow rail transit, and if the multiple choice-specific model were 
calibrated specifically with rail and bus transit parameters, as well as with automobile 
parameters, the separability property would appear not to be troublesome. Caution, 
however, is certainly advised. 

Alternative destinations are rarely if ever defined in such a way that choice-specific 
strict (destination place) utilities are estimated for each destination. That is, the use 
of socioeconomic variables to describe the (static) trip-end activities amounts to the 
behavioral assumption of choice-abstract destination -place attributes embedded in an 
otherwise choice-specific travel demand model. Even more troublesome for the use 
of separable travel models are the implications of changing the destination alternative 
set from a small set of alternatives used for model calibration, each having nonzero 
probabilities of choice, to the usual large number of alternatives, among which trips 
are forecast in order that a high degree of resolution may be obtained for traffic-
assignment purposes. In such cases, forecasting should probably be a 2-step process. 
That is, forecasts of trips should be made to large aggregations of zones, grouped on 
the basis that they are distinctly different and real (known) alternative destinations to 
travelers at the origin. Such grouped destinations might be based on a hierarchy of 
increasingly regionally oriented work or shopping places for the type of worker or 
shopper in each zone. Destinations not likely to be known to travelers at each origin 
would be eliminated from consideration. Forecasts to these zonal aggregations would 
then be allocated in some way to the small component zones for traffic-assignment 
purposes (e.g., based on employment share). Another possible way of forecasting is 
simply to truncate to zero trips to low (calculated) probability destinations, just as low 
or zero probability destinations were excluded from the data used in model calibration, 
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as per the separability property of the independence axiom. 
In summary, in an application of a separable multiple-choice share model (Eq. 6) 

within a hierarchical level (e.g., mode choice), the implication of the independence 
axiom is that the introduction of an additional transit alternative (mode or submode 
other than one for which the choice-specific strict utilities were estimated) will change 
the probability of choice (modal split) for all the existing modes. The relative share 
of all the existing modes included up to then in the analysis will be preserved because 
of the independence axiom. This also means that the cross elasticity of the modal frac-
tion for each old mode with respect to an attribute of the new mode is the same for each 
of the old modes. For example, the cross elasticity of modal fraction on the old modes 
with respect to fare on a new transit submode will be equal for all automobile and tran-
sit alternatives considered thus far. This precludes a pattern of differential substituta-
bility among modes and, in effect, implies a (mode) choice-abstract model with respect 
to the modal fraction, but not with respect to aggregate demand, however (10, 50). 

A number of specific examples, such as the above black and blue bus versus the yel-
low and red bus, can be and have been used as criticisms of the overly strong sepa-
rability properties of the independence axiom in many instances. Much practice will 
be required in defining alternatives before multiple-choice share models are usable in 
any but the most straightforward mode-choice situations in which they have thus far 
been applied with apparent success (e.g., by Rassam, Ellis, and Bennett, 60). One set of 
arguments in certain situations consists of citing examples where the relative odds of 
choice in a binary-choice situation are unlikely in fact to be preserved when new choices 
are offered [i.e., the black and yellow bus argument, or a second Beethoven record 
added to an original Debussy and Beethoven binary choice (12)11. Luce and Suppes (43) 
state: 

We cannot expect the choice axiom to hold over all decisions that are divided in some manner 
into two or more intermediate decisions. It appears that such criticisms, although usually directed 
towards specific models, are really much more sweeping objections to all our current preference 
theories. They suggest that we cannot hope to be completely successful in dealing with preferences 
until we include some mathematical structure over the set of outcomes that, for example, permits 
us to characterize those outcomes that are simply substitutable for one another, and those that 
are special cases of others. Such functional and logical relations among the outcomes (alternatives) 
seem to have a sharp control over the preference probabilities, and they cannot long be ignored. 

COMBINING MODELING CHOICES: RESEARCH DIRECTIONS 

Previous sections have described the major choice-behavior assumptions (stated or 
unstated) of existing travel forecasting models and discussed some of their implica-
tions. This section discusses briefly how those modeling choices might be combined 
and suggests some further research directions in this area. 

Combining Modeling Choices 

The choice-specific sequential and the choice-abstract sequential (elimination -by -
aspects) models of choice behavior can be combined in their use. That is, when all 
available (noneliminated) alternatives contain all the remaining aspects (as, for ex-
ample, if travel time and cost were the entire set of remaining aspects in the scenario 
in an earlier section), the independence axiom is shown by Tversky (75) to again hold. 
Thus, the elimination -by -aspects model can be used to select the "independent" alter-
natives having non-zero-choice probabilities among which choice is allowed. These 
allowable choices may then be modeled by using forecasting models based on monotonic 
functions of the remaining important attributes. The remaining attributes may or may 
not be perceived by the traveler as identified (or modeled) with specific supply-side 
choices (i.e., as choice-specific attributes). Figure 5 shows these modeling choices 
(as arrows) added to the previously described set of modeling choices. This "com-
pletes" the diagram of modeling choices based on alternate travel-behavior assumptions. 
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Figure 4. Modal-split chain for commuter travel. 
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Figure 5. Complete diagram of travel-modeling choices based on alternate 
travel-behavior assumptions. 
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It is perhaps also possible that the arrows can be drawn symmetrically from right 
to left, that is, from choice-specific models to choice-abstract models. For example, 
this might more accurately describe a travel demand model having choice-specific 
mode and route attributes (assumed first in the choice ordering) and choice-abstract 
destination and origin-place attributes. This highlights the difficulty that existing 
travel demand models have in discriminating among competing activity locations. 
That is, there are no specific cross relations among place (choice) specific trip des-
tinations in practically any existing travel (forecasting) models. However, the diagram 
need not be additionally embellished at this writing. 

Additional Research Directions 

Other decision rules can also be imagined in the sequential choice-abstract case. 
For example, more than one aspect at a time can be applied to eliminate alternatives. 
However, this produces the same results as applying aspects one at a time because all 
alternatives not containing the aspects are eliminated either way. A search of the 
mathematical psychology literature will no doubt turn up additional possible sequential 
choice rules. 

Is there a remaining possibility that certain travel choices are decided on the basis 
of different weightings of the attributes than other choices? This would require that 
trip choices be perceived as fundamentally different, independent, nonhierarchical 
choices and that alternatives considered for each choice be disjoint (no aspects or at-
tributes contained in common) with the alternatives for another choice. This appears 
to be the strongest (most heroic) assumption, as discussed earlier. If the assumption 
can be verified, it would certainly strengthen the basis in behavior of present UTP 
models. Clearly, some important research questions remain. 
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APPENDIX 

Utility Analysis 

Perhaps the most plausible descriptions and interpretations of travel-choice be-
havior derive from utility theory. That theory describes the traveler as an individual 
welfare maximizer, one who maximizes his own personal welfare from travel, subject 
to constraints, such as not exceeding his total time or resources available. Consider-
able scholarship in the field of economics has been devoted to developing a "science of 
rational choice," resulting from the utilitarian foundations of modern economics that 
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people do (or tend to) act rationally (15). That.is, that people act to maximize their 
own utility. Whether or not the reader agrees with utility analysis is inconsequential 
to the theoretical development in the body of this paper. Certain important travel 
models that can be analytically derived from consideration of an individual traveler's 
maximizing personal utility from travel can more simply be derived on the basis of 
logic from assumptions on consistent choice behavior. However, utility theory deri-
vations highlight certain additional assumptions of these models, which are usefully 
documented in a state-of-the-art paper. 

Principles 

Travel forecasting can be based on consideration of the rational individual's max-
imizing his own welfare or benefit from travel. Travelers are presumed to be rational 
decision-makers, acting in their own behalf. This constitutes the basic normative 
statement of behavior of the system that has as its objective adequately describing that 
behavior. For this property to be used to solve rigorously (analytically) for the state 
of the system at any time requires that the assumption be made that the system is in 
static equilibrium. Comparison of alternatives via the comparison of (travel) outcomes 
of alternatives is made by the method of comparative statics. 

The equilibrium solution proceeds from the property that "the conditions of equilib-
rium are equivalent to the maximization of some magnitude" (61). In utility analysis, 
personal utility is maximized subject to certain time and resource constraints. "The-
individual confronted with given prices and confined to a given total expenditure selects 
that combination of goods which is highest on his preference scale" (61). At equilib-
rium, the ratio of the marginal utility of 2 choices is equal to the ratio of their 
"weighted" attributes (i.e., their revealed "prices"). The relative marginal utilities, 
of the attributes of a choice situation can be solved for (inferred from) observed data 
on the choices made. 

In general, therefore, the utility, U, of a trip is related to the attributes of charac-
teristics, Z, of a trip through some constants of proportionality, 1k.  For example, in 
linear form, 

U=U(Z)=uO +Euk Zk 	 (21) 
k 

In equilibrium analysis, this function is maximized, subject to certain constraints 
(e.g., budget). The attributes are related to the amount of travel, X, and the charac-
teristics of the choices by means of "supply" or production functions, 

Zk  = gk(X) 
	

(22) 

where g(X) is specified by the choices (e.g., the transportation "technology" and link 
characteristics in the case of travel time over a single link in the usually depicted 
speed and volume supply function). In the general case, the attributes Zk  are outputs 
of the consumption activityX, travel. 

The problem of deriving a demand function then becomes one of specifying the at-
tribute variables, Zk, that describe the traveler's choice situation, and the form of 
the utility function, U = U(Z). Utility maximization calculus is then applied to solve 
for travel, X, at the point at which the marginal costs of travel equal the marginal ben-
efits from travel. (Continuous functions are assumed in the usual formulation, al-
though discrete choice alternatives can be encompassed in programming solutions.) 
This results in some function of the scale values of the attributes. 

X = f(Zk ) 	 (23) 

where X = quantity of travel. 
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Specifying Utility 

The first step in deriving demand models analytically from utility assumptions in-
volves specifying the utility function, U = U(Z). Travel, according to prevailing thought, 
is a derived-demand commodity (34): "A trip is made because a household member 
wishes to purchase commodities or services, or obtain other satisfactions such as the 
purchase of food, a visit to the doctor, or obtaining of income (through work)." 

Travel activity can be considered to consist of positively valued time foregone at the 
trip origin, time and money spent in travel, and positively valued benefits at the trip 
destinations. The quantity being maximized would therefore be some function of the 
benefits (utility) from the purpose(s) served by travel and the cost (disutility) of travel. 
The utility function, U(Z), includes Z variables that describe characteristics of con-
sumption activities, A1 , as well as transportation "activities," Zk. 

U.=U(At ,Zk ) 	 (24) 

Models derived analytically from utility theory must include other than transporta-
tion variables, Z. Travel choices that are based on maximization of personal utility 
and that exclude positive utility from activities at the trip destinations will result in 
minimum quantities of travel, X. Such models omit or set equal to zero the relations 
between travel and the consumption activities resulting from travel. 

CRA (10) includes the characteristics of the trip-making populations, s, in its char-
acterization of utility, U(Z). Some others do not (e.g., Golob and Beckmann, 21). On 
practical grounds, Stopher and Lavender (71) show that separate choice equations es-
timated for each population group (or "market segment") gave better fits than choice 
equations that included separate socioeconomic variables. On the other hand, the in-
clusion of s, the population characteristics, in the utility function avoids the necessity 
of stratifying the data by population group and thus allows all the data to be used in es-
timation when the data are limited. However, the penalty is to increase the number of 
variables and interaction terms in the utility function. 

Analytically Deriving Travel Models from Utility Analysis 

Several examples exist in the literature of models of travel demand derived analyt-
ically from assumptions of maximizing personal utility from travel. Excellent ex-
amples for purposes of illustration and clarity are provided by Golob and Beckmann (21). 

Their derivations start out with the statement of the utility functions in the form of 
Eq. 24. That is, trips, X, by mode in to destination k, generate utility, Z, based on 
the achievement of purpose, p, equal to the sum of the achievements of p at all desti-
nations, k, visited. 

A1  =Z= Z  oX 	 (25) 
k, in 

where oç = degree to which purpose p is served at destination k; and the trips generate 
disutility, yr,  equal to the sum of the traveler's expenditures in terms of attributes, r, 
incurred on trips to all destinations visited. 

Zk =yr 	 (26) 
k, m 

where Mr= perceived expenditure in terms of attribute r on a trip to destination k by 
mode m. 

The utility function, therefore, includes both the utility derived from the trip and the 
disutility incurred in making the trip. 

U = U(Z', Z2, ..., Z", y', y2, ..., yr) 
	 (27) 
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The equilibrium solution proceeds from the hypothesis that the traveler maximizes 
this function with respect to the decision variables (trips), X. If continuity and other 
conditiOns are satisfied, the necessary utility maximization calculus can be applied. 
The necessary condition for a maximum, 

dU/dX = 0 	 (28) 

says that trips to destination k by mode m will be pushed to the point where the mar-
ginal net utility is zero (i.e., where the combined marginal utilities of the trip purposes 
equal the costs of the trips), while trip mode combinations that do not occur have a 
nonpositive initial marginal utility. 

This particular approach assumes direct maximization of utility with no money or 
time expenditure constraints. Golob and Beckmann go on to derive a generalized grav-
ity model that assumes purposes are identical with destinations, power form utility 
functions, U = U(Xi, and separable (additive) utilities. 

XIk 
kCIkI 
	 (29) 

where 

X = number of trips, 
i = origin, 
k = destination, 

uk = attraction of a destination, 
Clk = generalized trip cost (an empirically derived constant), and 

w = constant varying between 0 and 1. 

The authors also deduce other demand functions based on other assumed forms of 
U(z) (e.g., step functions). They conclude, "While a great number of demand functions 
can be deduced from corresponding utility functions, not necessarily every proposed 
demand function can be interpreted as the result of utility maximization." 

In summary, travelers are assumed in a (static) partial equilibrium mode 1 to be-
have in such a way that their jointly derived satisfaction from both travel and the ac-
tivities at the trip end(s) is maximized. Travel is assumed to increase until the mar-
ginal (dis)utility of the trip itself is equal to the additional marginal utility of the activity 
that can be engaged in. Thus, utility-based travel demand models, calibrated at (as-
sumed static) equilibrium, reveal or show marginal rates of substitution among all the 
separate attributes associated with the travel decision. 

Travel Models: A Review 

Probability Models 

An important accommodation to the practical difficulty (impossibility) of exactly 
specifying the worth (utility) of a particular travel choice to an individual traveler is 
to assume that the utilities from these choices are random variables. In these random-
utility models, probabilistic behavior is assumed from the randomness of the utility 
function. Another class of probability models can arise from the assumption of con-
stant utility and a probabilistic decision rule, that is, where the utility function is a 
fixed numerical function of the attributes of the choice alternatives and the response 
probabilities are some function of the scale values of the relevant alternatives (43). 
[AccordingtoBeckmann et al. (4), "Trip behavior is held to be rational, albeit with a 
random component... within the decision-maker's own value set. If the random com-
ponent were greater than the rational component, then any attempt at prediction would 
have to be abandoned, at least at the individual level."] 

CRA (10) derives analytically the multinomial logit model of probabilistic travel 
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choice from considerations of maximizing personal utility from travel. That is, the 
utility-maximizing individual discussed previously will choose alternative travel choice 
i if 

u(z1 ) > u(z) 	 (30) 

for i / j, j = 1, . . . , J. The model is derived on the basis of attributing a random 
element to the worthy (utility) of outcomes. Full information on the outcomes is as-
sumed available, and individuals are assumed to exhibit no bias in the valuation they 
attach to the worth of choice alternatives. 

The utility, U(Z), is taken as randomly varying because the vector of attributes of 
the choices "does not capture all of the factors influencing the formation of tastes or 
the perception (measurement of attributes) of alternatives" (10). There is a value of 
U(Z) for each individual drawn from the population with the same observed character-
istics and choice alternatives. 

The utility of a travel choice can be written as the sum of a nonstochastic function, 
v(Z1), and a stochastic term . 

	

u(z1) = v(z1 ) + 91 	 (31) 

The deviations are assumed to be independently distributed random variables 
containing the effects on utility of the choice -situation attributes that are unable to be 
measured. 

The choices of individuals are then modeled in a probabilistic manner. That is, the 
probability of choice of option i is 

P1 = probability [V(Z1) + 	> V(Z) + 
j] 	 (32) 

P1 = probability 	
- 	

< v(z1) - v(z)] 	 (33) 

for i/j and j=1, ...,J. 
The specification of the probability function, P1, requires an explicit functional 

form and probability distribution for each of the terms in the (probability) argument. 
CRA shows that, if the 6, are independentiy distributed with identical reciprocal ex-
ponential distributions, 

	

Prob Qj !~ w) = e0 	 (34) 

for the 2 (binary) choice case where i = 1, 2, 

P1 = Prob (2 - tl  <w) 
- 1 + e" 	

(35) 
 

and, from Eq. 33, 

1 
= 1 + e122' 	

(36) 

This is the logit function for the probability of choice of alternative 1, analytically 
derived from considerations of maximizing individual (personal) utility. 

If the stochastic term 2 - is bivariate normally distributed, then the standard 
binary-choice probit model is derived [assuming V(Z) is linear in parameters]. And 
if the stochastic term is uniformly distributed over the feasible range (for which P1 
varies between 0 and 1), a truncated linear ogive curve is the resulting probability 
model of binary travel choice. 

In the multiple-choice case, the same assumption on the distribution of the random 
terms results in the multinomial logit formula: 
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V(Zk.) = e 	 (37) 

j=1 

Equation 37, which is the same as Eq. 7, says that the probability that alternative 
i will be chosen is directly proportional to its utility, V(Zkj ) (a function of attributes, k, 
of the choice situation, i), and that the probabilities of choosing one alternative in the 
set of available alternatives, each with a nonzero probability of being chosen, must 
sum to one. This is the same "strict-utility" multinomial, multivariate choice model 
of Luce (41), which was presented before in Eq. 7. The strict-utility model is shown 
by Luce and Suppes (43) as being a (independent) random-utility model, but not all 
random-utility models are strict-utility models, In fact, only independently distributed 
reciprocal exponential distributions of the random utilities, or monotonic transforma-
tions thereof, result in this equivalence. According to Luce and Suppes (43), "It is con-
jectured that these are the only reasonably well behaved examples, but no proof has yet 
been devised." CRA also rejects multiple-choice generalizations of other random-
utility models (which assume other probability distributions of the utility functions) as 
being analytically intractable or otherwise computationally impossible to work with. 
For example, the multivariate normal distribution of the utilities with a known covar-
iance matrix, which would yield a multiple-choice generalization of the binary-choice 
probit model, is rejected on this basis. Thus, the binary logit model is the only binary 
probability model for which the multinomial extension is practical. 

By a logarithmic transformation of the utilities, we can write Eq. 37 as follows 
(similar to Eq. 6): 

p = h(Z1) 	
(38) I 	

j 

> 
j =1 

for j = 1, . . . , i, j, . . . , J. 
And, if the utility function is in product form, 

P1 = 
	 (39) 

> 
j=1 k 

where X is used instead of Z to represent choice variables. 
Equation 39 is the McLynn and Woronka "market share" modal-split model (50). 

The derivation of this model, which proceeds from aggregate travel-behavior assump-
tions, is shown in an earlier section on travel behavior. If the parameters of Eq. 39 
are not mode specific (i.e., do not contain subscripted j parameters), the equations are 
the same for all modes in a modal-choice model. This is the Mansod relative shares 
model (52). This model "approaches mode abstractness" (11) (but not "abstract mode" 
or complete choice abstractness because the constant term is assumed to capture the 
effects of the unmeasured attributes of any choice alternative in the context of the 
choices available.) The model was developed for the Northeast Corridor where the 
new-mode problem was of great concern, as discussed earlier. 

The class of separable multiple-choice share models of which Eq. 6 or33 is the 
general statement has been shown (and will later be shown) to be derived from many 
different assumptions. The CRA derivation from consideration of personal utility shows 
the consistency of utility theory with the independence axiom. More important, it pro-
vides an additional basis in behavior for interpreting strict utility and specifying ap- 
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propriate choice-specific variables (attributes) that determine choice behavior within 
(assumed) separate choice situations. 

For example, depending on the travel choice, revealed marginal utilities from equi-
librium analysis will probably vary simply because marginal utilities are generally not 
constant according to well-known theories of diminishing marginal utility. [In the psy-
chological literature this is expressed as follows: The weight or importance of any 
attribute will vary with the individual's level of satisfaction with respect to that attri-
bute (27). Also, stated attitudes toward the importance of a particular attribute are a 
function of both the underlying strength of the human need and its present satisfaction 
level (8). This appears to reduce considerably the ability to transfer the utilities in a 
model based on attitude survey results (24) from one surveyed situation to another situ-
ation. Also, the direction of change of an attribute is thought to influence the weight at-
tached to that attribute (66). A method for including directionality of effect of a change 
in the attribute in a travel demand model has been proposed by McLynn in his metric 
model (51).] Constant marginal utilities need not be assumed in travel choice models 
based on the independence axiom. However, constant relative marginal utilities must be 
assumed for the strict-utility function, V(Zkl ), i.e., constant marginal rates of substitu-
tion between travel-related attributes, such as the traveler's willingness to trade off 
time and money. Functional forms of strict-utility functions should be used that are 
plausible from the standpoint of prior understanding of travel behavior and not be solely 
based on goodness-of-fit considerations (i.e., which describe best, or discriminate best 
among, alternative choice situations within the data set used for model calibration). 

Multiple-Choice and Direct Demand Models 

Stopher and Lisco (70) propose a multiple-choice probability model as follows: 

P = Pg PdP,Pr 
	 (40) 

where 

P = probability that an individual will make a trip to a specific destination by a 
given mode and route; 

P = probability that an individual will choose to make a trip; 
Pd  = probability that an individual will accept a destination, d, given that he will 

make a trip; 
P. = probability that an individual will choose a mode, m, given that he will make a 

trip to a particular destination; and 
Pr  = probability that an individual will choose a route, r, given that he will make a 

trip to a particular destination by a specific mode. 

In Manheim's (45) general share model, Eq. 11, the split fractions (shares) are 
separately modeled and must each sum to one for "internal consistency." This allows 
a probabilistic interpretation similar to the Stopher-Lisco model, Eq. 40. Both are 
multiplicative and, thus, assume separability of the travel choices. However, there 
is no guarantee that Eq. 5 will hold because of strict utilities having been estimated in 
accordance with an assumption of constant relative valuation of attributes throughout 
all travel choices in the hierarchy. Stopher and Lisco (70) address themselves to this 
point as follows: "The objective is to make sure that the behavioral relationships iden-
tified in one detailed disaggregate (choice), model still retain their basic identity in the 
more aggregate general ones. The aim is to see that the summed models are indeed 
the sum of their parts." And Manheim (44) states, "A desirable property of a sequential 
implicit system is that it be internally consistent." 

The authors thus appear to be leaning heavily toward assuming constant relative val-
uation of attributes throughout the complete travel decision. In this case, their choice 
models can be only separately calibrated given the additive utility assumptions as dis-
cussed in the earlier section on the separability property. 
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Manheim's (45) more detailed specification of his general share model, Eq. 11, is 
as a series of special product models. Each split fraction is in the form of Eq. 6, 
where the Zkj include both activity and transportation system variables. For example, 
destination share, y, is a share model in the form of Eq. 10, with A being activity 
system variables instead of trips attracted. Aggregation of costs (travel attributes) 
is carried out by simple summation. That is, the denominator in the (assumed) pre-
vious choice (e.g., trip distribution) is used to weight the (interzonal) travel attributes 
for input to trip generation. There is no (additional) relative frequency or probability 
weighting as there must be to preserve the basis in behavior of the additive utility and 
separability assumptions of the separately calibrated travel-choice models. The sep-
arability property can only be used to combine separately calibrated models on the ba-
sis of these assumptions. 

Manheim (45) states, "Any explicit (direct) demand model can be expressed as a 
general share model." We note that it must be expressible as a multiplicative choice 
(share) model to be consistent with the basic travel-behavior assumption. However, 
none of the existing "1-stage" direct demand models is equivalent to the multiple-
choice share model. It may be no accident that attempts to derive the present "stan-
dard?? direct demand models analytically from considerations of maximizing personal 
utility have failed despite rather heroic attempts (10, 37). The possible reason the 
direct demand models cannot be analytically derived is that their causality premise 
(travel is a derived demand) results in a long-run demand (land use) model (7). Thus, 
short-run travel demand models, which are monotonic functions of scale variables de-
scribing the choice situation, can only be derived by resorting explicitly to the assump-
tion that the (dis)utility of travel is additive to the utility from activities in place. The 
resulting models are probability share models of short-run travel choice. 

McLynn and Woronka's composite analytic model (50) is a 2-stage (2-choice) 
aggregate demand model that incorporates the results of his separately estimated 
modal-choice share model (Eq. 39). The derivation of the model is only in terms of 
the shares themselves rather than the attributes (derivation is described below in the 
section on modal split). The method of aggregation of costs is similar to Manheim 's 
method described above. Both models are in concept extensions of the gravity model, 
discussed in an earlier section; the gravity model is taken specifically as a starting 
"analogy" (50) in McLynn and Woronka's derivations. 

In sum, the travel model that satisfies both the utility-maximizing (rational) travel 
behavior premise and the independence axiom is the (separable) multinomial probability 
or share model (Eq. 6). But to use the separability property of the independence axiom 
to reduce the number of choice alternatives and allow calibration of separate, less 
complex models that may later be combined requires the assumption of additive util-
ities from sequentially made travel choices to estimate sequential choice models that 
may later be combined into 1 multinomial, multivariate probability 
or share model. 

Figure 6. 
Conventional UTP 

Separate Travel-Choice Models 
	

travel-forecasting 
chain. 

The conventional series of (aggregate) sequential choice 
travel forecasting models are usually chained, as shown in Fig- Trip Generation 

ure 6. 	Current travel forecasting procedures that predict quan- 
tity of travel on transportation networks are based on the theory _____________ 
of equilibrium between supply and demand on the transportation Trip Distribution 
network. 	That is, there should be an equality between the travel  
conditions, such as times and cost, on the loaded network and the 

I travel conditions used as input to the prediction. 	As shown in 
Figure 6, the current conventional procedure is to model travel Modal Split 

behavior as a series of sequential, independent choices of trip 
generation, trip distribution, modal split, and traffic (route) as- 
signment. 	Land use forecasting precedes travel forecasting as a Path Assignment 
separate step. 	For.each travel choice, the existing pattern of 
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usage in the region at the prevailing equilibrium between supply and demand is related 
to a small set (often one) of independent variables. The trend or description is then 
assumed to hold in the future. 

For example, trip distribution is modeled as a function of a description of the trip 
lengths that prevailed at the equilibrium between supply and demand represented in the 
base-date data file. Trip generation usually relates total trips in and out of a zone only 
to measures of the activities existing in the zone. The assumption is made that total 
travel, as measured by trip ends, varies only as development varies, not as conditions 
on the tested networks change. 

In a single pass through the chain shown in Figure 6, the initial number of trips gen-
erated is kept constant, regardless of what happens later in the chain. Iteration is 
the conventional method of feeding back the effects of changes in travel conditions lower 
in the chain on forecasts made higher or earlier in the chain in order to equilibrate be-
tween supply and demand on the transportation network. The difficulties of introducing 
"lower down" choice attributes higher in the chain is well known, in part because of the 
incomplete and irregular specification of choice variables (e.g., transportation system 
attributes) in each step (7,45). The way to overcome this problem is through paramet-
ric aggregation, as already discussed (assuming constant relative valuation of choice 
attributes throughout a complete travel decision). 

The next sections discuss existing models of travel choice. Each is taken individu-
ally, except trip generation, which is discussed above and in the introduction. Issues 
of combining models into one demand model are not discussed. 

Trip Distribution 

The gravity model was shown earlier to be derivable from a general statement of 
proportionality to attributes of a cons trained- choice situation, i.e., constrained in the 
sense that these attributes included the constraining (previously calculated and held 
constant) trips generated and attracted. The attributes can potentially include all the 
attributes of travel (disutility) between origins and destinations. Solving for the con-
stant of proportionality results in the multinomial share model. This may be the sim-
plest possible statement of the multinomial model as the logical result of assuming ra-
tional choice (transitive values) throughout the travel decision. 

The gravity model was also shown earlier to be analytically derivable from con-
siderations of maximizing personal utility (21), assuming destinations expressed the 
utility of the trip (purpose identical with destinations). 

Wilson (81) derived the gravity model as the "most probable distribution of trips 
among zones" given the usual assumptions that the numbers (i.e., frequency) of trips 
generated from, and attracted to, each zone are fixed (constant) and the total "gener-
alized" cost of travel is held constant. He later attempts to embellish this very inter-
esting result by showing its consistency with maximizing entropy (82). 

Loubal and Potts (40) derive a trip-distribution model that is equivalent to the ex-
ponential form of the gravity model and assumes that a "trip potential, giving an ex-
pected number of trips in the absence of resistance to travel can be combined with a 
correction term dependent on network constraints." Two of the initial assumptions made 
are the same as Wilson's (81); namely, trips to and from each zone are constant and 
known. However, Wilson's assumption that the total generalized cost of travel is con-
stant is dropped. The model is derived on the basis of probability statements whose 
normalization properties allow the model to be applied with different zone configura-
tions provided that "network parameters are adjusted with appropriate weight factors." 

Wilson (81) also derives the intervening- oppor tunitie s model (63) by the same 
methods and from the same assumptions plus one, namely, that intervening oppor-
tunities are a proxy for cost. That is, "the number of opportunities passed (so far are) 
a measure of the cost of getting so far" (81). The total opportunities passed sum to 
total trip-end destinations, which are assumed fixed, as is total cost. The derivation 
provides an interesting equivalence statement between opportunities and cost of travel. 
If we assume that there is some utility derived from the purpose of travel, the state- 
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ment says that the number of opportunities passed is minimized in order to maximize 
net benefit from travel. Thus maximizing net benefit from travel means minimizing 
the number of destinations passed. The L in the opportunity model, which is supposed 
to be a constant probability of accepting a given destination, can then be interpreted as 
a parameter, estimated on the basis of minimizing destinations passed, or trip cost, 
both of which are now considered equivalent. The (constant) parameter suggests that 
the value attached to trip cost (its "marginal utility") is constant. 

Modal Split 

There are numerous derivations from different "first principles" of the multiple-
choice share model. Wilson (81) derived it (Eq. 7) in its aggregate form (P1  in Eq. 7 
equals the split fraction on the i th mode) by using the method and assumptions for de-
riving the gravity model, adding the restriction that the cost of travel among all zones 
over all modes is fixed. He notes that the function (Eq. 7) is "identical in form to that 
derived from a statistical approach to modal split using discriminant analysis" (59). 
Warner (79) and later others (39, 69, 73) also use the probabilistic formulation (Eq. 7) 
or its equivalent as fitting functions to estimate the probability of mode choice in the 
so-called disaggregate probabalistic behavioral models, as noted previously. One of 
the principal interests of the latter group is to estimate the value of time from a binary-
choice probit model or a strict-utility function, rather than to analytically derive a new 
demand model. 

The next attempt to analytically derive the share formulation (Eq. 6) in modal split 
from some statement of first principles is by McLynn, Goldman, Meyers, and Watkins 
(49). Their model (Eq. 39) is derived analytically from assumptions only on the split 
fractions of each mode. The first assumption, or statement of behavior, is quite fa-
miliar: "The split fractions which define the share of the market are assumed to be 
functions of the choice influencing attributes of all the competing products." The split 
fractions, of course, express the aggregate result of modal-choice behavior. The 
choice influencing attributes are represented by a vector, XkJ, where j is the mode and 
k is the variables (attributes) describing the choice situation. According to the authors, 
"Xu need not have the same interpretation as X12, and might even refer to some quality 
of (j = 1) that is meaningless for (j = 2)." The authors next define terms. 

M j  =wM 

where 

M = total market size, 
Mi  = size of j's market share, and 
w = j's fraction of the total market. 

(41) 

They then decompose Eq. 41 by differentiating in the usual fashion to derive the separate 
(additive) elasticities. 

E(M) = E,(M) + E,(w) 	 (42) 

where E( ) = elasticity with respect to the attribute x of the term in the argument ( ). 
They then focus separately on the E(w), the elasticity with respect to the X of the 

market share or split fraction of mode j. The assumption that actually specifies the 
form of the model is that the elasticities of the split fractions, with respect to the at-
tributes Xi , are a function only of the split fractions themselves. (This appears to be 
a general result, as well as a possible starting assumption, for multiple-choice share 
models—a result worth pondering.) That is, 

E,.[w11 = f(w1) 	 (43) 
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E. [w] = f(w1 ) 	 (44) 

The latter (Eq. 44) are the cross elasticities that depend only on the split fractions of 
the competing modes, not on the attributes Xi . This leads to possible nonmode speci-
ficityof the cross elasticity of the P or w1  (share) as discussed in the section on de-
fining alternative travel choices. 

After a lengthy and rigorous mathematical derivation, Eq. 39 results (P1  = w1). 
The model is calibrated with aggregated data on market shares and mode-specific 
variables Xk3 . 

The derivation of the model from these simple assumptions is indeed an elegant 
piece of work. Unfortunately the assumptions offer no particular basis in "behavior" 
that is helpful in specifying appropriate Ykj  variables. That is, the traveler is logically 
confronting situations described by the X, not the direct and cross elasticities. One 
wishes to tie the assumptions back into statements of choice behavior that are more 
easily interpreted. 

There follows a spate of additional derivations of the multiple-choice share model 
in transportation, and these should be mentioned. The first (48) follows from the Luce 
(41) independence -of -irrelevant-alternatives axiom. McFadden uses the statement of 
the independence condition (Eq. 4) to derive Eq. 7 by using the properties that the h(Z11) 

are proportional to the odds that i will be chosen and the sum over i of the h(Zkj ) must 
equal one. This is the same as McLynn's first quite general statement, in the form 

h(Zkj ) = f(X(J ) 	 ( 45) 

Townsend (74) derives the multiple-choice share model axiomatically from transitivity 
and continuity statements that are quite independent of, but analogous to, Luce (41). 
Mayberry (47) claims that Eq. 6 is "equivalent" to a statement that says that an in-
crease in attractiveness of mode in (with other modes unchanged) will cause travel on 
in to increase and travel on all other modes to decrease. A decrease in attractiveness 
of mode in would cause the opposite behavior. This is, of course, nothing other than 
simple scalability. Mayberry worries aloud that his statement has entailed too large 
an assumption because Goldman pointed out to him the "problem" with Eq. 6: "The 
ratio of travel by one mode to travel by another depends only on the characteristics of 
those two modes, and not on the characteristics of any other mode:" (47). However, 
after worrying about the problem of not always being able to describe independently 
perceived modes within the abstract mode formulation (is a flying blue bus a bus or an 
airplane?), Mayberry is apparently satisfied that "homogeneous population groups" 
will make the distinction and continues his axiomatic development of Eq. 6. 

Rassam, Ellis, and Bennett (60) derive independently an exponential-form multinomial 
logit model (Eq. 7) from 2 assumptions similar to those made before. Their first as-
sumption (similar to that of Mayberry) is that, if the attractiveness of a mode is ex-
pressed by a disutility function, which includes transportation variables, "then the 
share of that mode decreases when any of its transportation variables increase and, 
ceteris paribus, those of the other modes will increase or remain stationary." The 
second assumption (similar to that of McLynn et al., 49) "structure(s) the relationship 
between modal split and the explanatory transportation variables, namely, that the 
ratio of a small change in modal split of a given mode to that of a given transportation 
variable is proportional to the modal split of this mode and to a linear function of the 
modal splits of all modes." This statement is expressed as 

- W. Z c J wk 	 (46) 
FJXIJ 	kLm 

whereX and w are as defined in Eqs. 43and 44, i andj are origins and destinations, and 
k and in are modes. [This equation, which is in Rassa.m, Ellis, and Bennett's Eq. 5(60), 
is the linear case of McLynn's et al. Eqs. 1.17 and 1.18 (49).] The usual set of as-
sumptions and restrictions is made (choices are mutually exclusive and define the 
full alternative set, the sum of the shares, i.e., modal splits, equals one and so on) 
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and the resulting system of differential equations is solvable as a series of exponential-
form share equations (Eq. 7). The Zk j in Eq. 7 is a linear function of the attributes X: 

z, = E aX, + o, 	 (47) 
i 

The constant term, o, is again a mode (choice) specific constant that contains the ef-
fects of all attributes or purposes or both not considered or measured. Equation 7 has 
been used successfully in estimating the split among 4 modes to airports in the Wash-
ington, D.C., area. 

Because the fundamental assumptions are the same as those of McLynn et al. (49), 
the same comments apply as to that model—namely, that, although the assumptions can 
be shown to result in a multinomial share model, they are not grounded in behavior in 
a way that is helpful in specifying variables. Utility analysis is much more helpful in 
this regard. However, because the models are the same as those derivable from utility 
analysis, consideration of personal utility from travel can be used in specifying vari-
ables to be used in this share model of modal choice. Specification of appropriate at-
tributes in each choice situation is a critical issue in the aggregation of separately cal-
ibrated choice models. 

Pratt and Deen (55) fitted a logit function to aggregate sub-modal-split data in Wash-
ington, D.C. (In this case, submodal split is intratransit-mode diversion from surface 
bus to rapid transit.) In that application, they state, 

The final equivalent time diversion curve was formulated by first applying regression analysis 
and then hand fitting a logistics curve to the data points. The resultant submodal split relation-
ship can be expressed by 

I UU 	

(48) 
1 + 

where X is the equivalent time saving via rail (equivalence factor—weighting factor for out of ve-
hicle time—of 2.5) and y is the percent using rail. Weighting each data point by the number of 

observations, the A2  of the curve is 0.886. This A2  value is computed by comparing predicted 
and actual percent submodal split on an interchange basis. 

The aggregate "conventional" modal-split models familiar to us from the UTP pro-
cess are excellently summarized by Fertal et al. (19) and Weiner (80). These models, 
whether or not they are post- or pre-distribution, fiff the dependent variable (e.g., per-
centage of transit use) to some function of a set of variables describing the choice en-
vironment. The fitting is usually either eyeball smoothing of curves to plotted data (26) 
or linear regression fitting, necessitating the additional assumption that the effects of 
the independent variables on modal-split fractions in a linear regression equation are 
additive (20). 

S-shaped hand-fitted modal-split curves often bear some resemblance to ogives 
(e.g., cumulative normal or logit curves), and the possible translation in concept to a 
probability model (e.g., logit) is clear. The linear regression equation can also be in-
terpreted as a linear approximation to an ogive as long as it is appropriately bounded 
such that the dependent share, or probability of choice, is allowed only to vary between 
0 and 1 (where probability is defined as the limit of the ratio of the number of outcomes 
of a given choice to all possible choices in a large number of trials, i.e., observations 
on individuals, in which the attributes of the choice situation are held constant). 

Pratt (56) proposed a binary aggregate primary modal-choice model that was applied 
in Minneapolis-St. Paul (67). A disutility function is postulated for each modal alterna-
tive that transforms time, convenience, and dollar cost into a common unit of equivalent 
time (i.e., disutility). The differential weighting of various components of travel time 
was frequently used previously in coding transfer links in network analysis by Alan M. 
Voorhees and Associates (78) and probably by other organizations. Table 1 (67) gives 
the procedure. The weighting factors are drawn from a variety of previous modal-
split and value-of-time studies. The disutility difference between automobile and tran-
sit is calculated for each interzonal pair, and the percentage of trips (between zones) 
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using one mode, plotted as a function of this 	Table 1. Variables and weighting factors in Twin- 
disutility, is assumed to follow the cUmula- 	Cities marginal utility modal-choice model. 
tive normal (probit) probability distribution..  
The resultant predictive curve is said to 	variable 	 Symbol 	Factor 

have its point of inflection at 50 percent 	Walk time to and from transit 	T 	2.5 
probability on the y axis and zero-measured 	Wait time for transit 	 T. 	2.5 

disutility difference on the x axis. This as- 	Transit running time 	 T, 	1.0 
Transit fare 	 F 	1.0 

sumes, of course, that the choices are com- 	Automobile terminal time 	A, 	2.5 

pletely described by the disutility measures. 	Automobile running time 	A, 	1.0 
Parldng cost 	 p 	0.5 

The problem with the model (i.e., the pub- 	Highway distance 	 D 	4.0, 5.7 
lished versions) is that its analytic develop- 	Marginal utility5 	 V 	- - ment appears to have stopped with the ear- 	cost of time' 	 c 
lier Pratt and Deen (55) work. That is, the 	'Cost-per-milefactorsratherthanweights. FortripsattractedtoCB0, 

5.7 cents/mile was used; for other trips, 4.0 cents/mile was Used. later work represents a conceptual, but not 	'Computation equation for marginal utility of automobile over transit 

an analytic, translation in the 'concept of 	for non-CBD trips: U = 2.5(T,+ T,, - A,) + (T,- A,) + (F- 0.5- 
4.00)/C. ogive resembling aggregate modal-split - 	'Computed us25 percent of income: ([Annual income (cents/year)]/ 

curves (26) to a probability model. Un- 	()2,080hours/year)(60min/hour)fl xO.25=C. 

fortunately, once the translation is made 
in concept, no effort is made to use the 
'properties of the asserted normally dis- 
tributed probability behavior in the calibration of a (probit) mathematical model, that 
is, a model with analytically estimated parameters (Including a constant term that in-
cludes the effects of the left-out choice attributes) and significance tests on the vari-
ables and so on. The model continues to resemble the older hand-fitted diversion 
curves, but has the additional assumptions of additive and constant marginal rates of 
substitution of times and costs making up modal disutility. 

Traffic Assignment 

The first application of a multiple-choice share model in travel forecasting (aside 
from the gravity model, 77) appears to be by Traffic Research Corporation in route 
choice (traffic assignmeniY This route-choice model (29) was developed and applied 
in Toronto in the late 1950s. 

a 

I 1\ 

(AF)1 
EI1V' 
	 (49) 

where 

AF1  = proportion of interzonal trips by mode assigned to route i, and 
= inter zonal travel time on route i. 

Time, T, only is used as the measure of route impedence (cost). The formula is in 
the form of Eq. 6, where the "assignment fac.or" for route i (AF1) equals P1  in Eq. 6, 
and h(Zkj) = T°. The subscript k is dropped in Eq. 49 because there is only one (high-
way) mode being considered. T1  is the route (path) travel time for the ith route from 
the network. The parameter, at, was held constant over all paths. In effect, this is an 
"abstract-route" model, consistent with Eq. 39, where O, varies over modes k, and 
system variables (cots).i, both of which (k and i) equal 1 in this case. The value of 
the parameter was not mathematically fitted, but was selected on the basis of a reason-
ably proportional assignment to paths with Traffic Research Corporation's multipath 
capacity-restrained iterative assignment technique (29). Rapid settlement of volumes 
over (equilibration) iterations through trip generation, distribution, and so on was an-
other fitting criterion. 
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The direct traffic-estimation method (64) is also a probability formulation. That is, 
the probability of a vehicle on a link finding a destination in the valid domain or set of. 
destinations defined by the tree on which the link is located is inversely proportional to 
the further travel time (or impedance) to that destination. The derivation is similar to 
the previous gravity model derivation (Eqs. 8, 9, and 10). The resulting probability of 
accepting any destination, or destinations within a particular valid domain, is its frac-
tion of the total domain integral. The domain integral, J, is defined as 

ID 

= ID' FdV 

	
(50) 

where 

ID = domain integral; 
F = some impedance function, e.g., F = et, where k = constant and t = travel time; 

and 
V = set of destinations clustered around a point at which the function F has a defi-

nite value. 

The probability of having a destination in a subregion R within the valid domain, n 
(e.g., north of the point on the link), is 

P (destination in R) = 	 (51) 
I. 

Only destinations within the valid domain have nonzero probabilities of being ac-
cepted, and the probabilities of accepting all destinations in the valid domain sum to 
one. 

The probability expression, Eq. 51, is in the form of Eq. 6. The direct assignment 
technique calculates the appropriate domains for each point on each link of interest on 
the basis of shortest time (impedance) paths on the network and assigns traffic to links 
on the basis of Eq. 51 corrected for normalization and symmetry conditions. The 
direct traffic-estimation method uses practically the same inputs as conventional UTP 
models, namely, trip ends, an impedance function, and coded networks. It is advan-
tageous in assigning travel to individual links. However, the method assumes com-
plete symmetry in destination volumes and link and path loadings throughout the system, 
and capacity-constrained loadings are unavailable (22). 

Dial (13) has developed a probabilistic multipath traffic -as signm ent model that uses 
Eq. 7 to calculate the probability of paths between origins and destinations. The model 
makes use of a 2-pass procedure that generates all "efficient" paths between origins 
and destinations and loads them simultaneously. Incremental loading in a capacity-
restrained mode is allowed. Efficient paths are generally those that allow the traveler 
to make apparent progress toward his destination at every branch point (on the network). 
That is, that reduce the impedance between the traveler and his final destination. 

The parallel with the Luce choice axiom is clear. Backtracking on the network in 
order to "come out ahead" is not ordinarily allowed. Such backtracking can be con-
sidered equivalent to decisions that are really "two or more intermediate decisions." 
These violate the necessary separability assumptions in the independence axiom be-
cause such decisions are not simple substitutes for other alternatives at that branch 
point (node). Such backtracking alternatives must somehow be combined in order that 
all relevant alternatives may be considered as substitutes for one another with nonzero 
probabilities of being chosen. 

Dial's method appears to be completely general in the sense that any utility function 
may be used to calculate the probability of using any path (Eq. 7). 

The model is a Markov model. At each node, the fraction (probability) of trips as-
signed to each alternate link (on an efficient path) is calculated based on the path im-
pedance and the number of efficient paths through the link. The separability property 
of the multinomial formula (Eq. 6) is used (assumed) at every branch point. The use 
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of Dial's method to apply multinomial, multivariate logit models to calculate the prob-
ability of any path through complete travel decision trees (e.g., Fig. 2) appears to have 
considerable promise. That is, the method could be used (applied as described earlier) 
to calculate the (path) probability of any (relevant) alternative combination of frequency, 
destination, mode, time of day, and route (having a nonzero probability of choice). 
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