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Extensive research in travel demand in recent years has been based on theories of 
individual choice. These choice theories assume a selection from a finite set of mu-
tually exclusive and collectively exhaustive alternatives. We assume that, with quali-
tative or discrete alternatives, probabilistic behavior explains observations of differ-
ent choices for the same set of observed independent variables. Such choice theories 
have been developed in the context of unidimensional choice situations. A consumer 
was assumed to select an alternative i out of a set of alternative choices A. If the set 
A includes the alternative choices of a single commodity, then the choice probability, 
P(i:A), is the choice analog of a demand function for a given commodity. A consumer 
is faced with a multidimensional choice situation in determining a consumption pattern. 
(The term multiple choice refers to a choice from a set of more than 2 alternatives. 
A choice from 2 alternatives is termed binary choice. The term multidimensional 
choice is used for a set of related choices, each of which can be either multiple or 
binary.) For example, a consumer who is selecting a residence location within, the 
metropolitan area is choosing also among alternatives such as housing types and auto-
mobile ownership levels. 

The total number of choices that a consumer makes is very large. The assumptions 
of a "utility tree," or a separable utility function, and negligible income effects permit 
the independent modeling of demand for a subset of commodities. That is, the demand 
functions for a subset of commodities are independent of the prices of all other com-
modities. [The notion of separability was introduced by Leontief (4). Separable utility 
functions hays bccn .evelopad by Mutb () and Siruiz (ii,iz)J 	- 

We assumehere that mobility and travel choices are such an independent branch or 
subset of the consumer's utility function. Choices within this subset are interdependent. 
This subset may be treated as a block recursive system. That is, the first block con-
sists of the mobility choices, and the second block consists of the travel choices (as-
suming the mobility choices as fixed). Travel choices with respect to different trip 
purpose categories can also be considered independently of each other. Thus, we can 
model separately the set of mobility choices and the sets of travel choices for differ-
ent trip purposes (assuming that mobility choices are predetermined). Yet, each of 
the above sets of choices represents a multidimensional choice situation. 

The purpose of this paper is to extend the choice theories from unidimensional to 
multidimensional choice situations. In a multidimensional choice situation different 
assumptions about the dependencies among choices result in models with different 
structures. The alternative structures are identified, and their applicability to travel 
demand models is discussed. 
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PROBABILISTIC CHOICE ThEORY 

Choice theories are reviewed in other reports (1,2,3,5,6). The consumer is visu-
alized as selecting the alternative that maximizes utility. The probabilistic behavior 
mechanism is a result of the assumption that the utilities of the alternatives are not 
certain, but rather random variables determined by a specific distribution. 

If the utility of alternative i to consumer t is denoted as lJ1 , the choice probability 
of alternative ï is 

P(i:At) =prob £U 	Ut, -'-j€A] 	 (i) 

where At  is the set of alternative choices available to consumer t. The utilities are 
essentially indirect utility functions, which are defined in theory as the maximum level 
of utility for given prices and income. In other words, the utility Ult  is a function of 
the variables that characterize alternative i, denoted as Xi, and of the socioeconomic 
variables describing consumer t, denoted as St.  Thus, we can write 

= u (x1, s) 	 (2) 

The set of alternatives At  is mutually exclusive and exhaustive such that one and only 
one alternative is chosen. The deterministic equivalent of this theory is simply a com-
parison of all alternatives available and the selection of the alternative with the highest 
utility. 

The mathematical form of the choice model is determined from the assumption about 
the distribution of the utility values. 

DEPENDENCIES AMONG CHOICES 

To simplify the discussion we will rely on an example of 2 choices. We consider a 
consumer who is making a trip for a given trip purpose, say, shopping, and is faced 
with the choices of destination d and mode of travel m. We distinguish between 2 types 
of dependencies among choices: dependency in the structural sense and dependency of 
the sets of alternative choices in a physical sense. 

Dependency in the structural sense arises from substitution and complementary re-
lations among choices and different choices being made with respect to the same final 
commodity, i.e., the utilities from different choices are not independent. For example, 
the choices of automobile ownership level and residence location are dependent on each 
other because a downtown location could be a substitute for a high automobile ownership 
level. The utility from an alternative location will therefore depend on the chosen car 
ownership level and vice versa. 

The choices of mode and destination are made with respect to the same final 
commodity—a trip. Some of the attributes of a mode, such as travel time by bus, will 
be different for different destinations. Therefore, mode m to destination d is a differ-
ent alternative from the same mode to destination d'(d' d). Similarly, some of the 
attributes of destination d depend on the chosen mode. Therefore, destination d reached 
by mode m is a different alternative from the same destination reached by mode m' 
(m' 	m). In other words, the utility from an alternative mode is dependent on the 
destination and vice versa. 

Thus, the dependency among travel choices can be attributed to the commonality of 
the attributes. In other words, some attributes of a trip are specific to all travel 
choices. For example, the travel cost for shopping at a certain frequency depends on 
attributes such as where one shops and what mode one uses. Similarly, the travel 
cost of shopping at a given destination depends on how often one shops and what mode 
one uses. Therefore, a traveler can trade off among choices. For example, one can 
shop frequently at a nearby grocery store or less frequently at a distant shopping center. 

The dependency, or the causality, can be assumed either in 1 direction (e.g., the 
utility from a mode depends on the chosen destination but the utility from an alterna-
tive destination is independent of the chosen mode) or in 2 directions (e.g., the utility 
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from an alternative mode depends on the chosen destination and the utility from an al-
ternative destination depends on the chosen mode). It is realistic to assume that all 
travel choices are interdependent. However, we consider here also alternative as-
sumptions that result in models with different structures, as will be shown in the fol-
lowing sections. 

If the choices of mode and destination depend on each other, then the set of alterna-
tive modes is different for different destinations and the set of alternative destinations 
is different for different modes. We denote the set of alternative modes for a given 
destination as Md and the set of alternative destinations for a given mode as D. 

In addition, the set of alternative modes can be physically dependent on the chosen 
destination and vice versa. For example, a bus service may be available to 1 desti-
nation but not to the other. Therefore, the sets of alternative modes Md can have dif-
ferent numbers of alternatives for different destinations. 

If 2 choices are independent, then their alternative sets will also be independent. If 
the choice of mode and destination is assumed to be independent, we denote the set of 
alternative modes as M and the set of alternative destinations as D. 

OVERALL SET OF ALTERNATIVES 

The consumer can be viewed as selecting an alternative destination and mode com-
bination dm from an overall set of alternatives DM that include all possible destination 
and mode combinations. For example, if the number of alternative modes available to 
every destination is identical and equal to M and the number of alternative destinations 
is D, then the total number of alternatives in the overall set will be D x M. 

The overall set of alternatives DM can be partitioned according to modes or ac-
cording to destinations.. If we partition according to destination, then we can write the 
overall set of alternatives as follows: 

DM = EM1, M.2, . . ., M, .. ., M03 	 (3) 

In this scheme we denote the set of destinations used for partitioning as D. Partitioning 
according to modes, we write 

DM = ED1, D2, ..., D, ..., DM] 	 (4) 

The set of modes used for partitioning is denoted as M. If the alternative sets are in-
dependent, then 

Md = M, dED 	
(5) 

D = D, mM 

ALTERNATIVE STRUCTURES 

If we assume that the choices are independent, then we can write the following struc-
tural choice probabilities (the probabilities that have direct behavioral interpretation 
and are originally writien to describe a structure are called structural probabilities): 

P(d:D) = prob [Ud 'a Ud', -d'ED] 
(6) 

P(m:M) = prob EU 2t U,', -m'EM] 

where Ud and U. are the utilities from destination d and mode m respectively. In es-
sence, the independence assumption implies an additive utility function: 

Ud = Ud + U. 
	 (7) 

In words, the total utility from a destination and mode combination is equal to the utility 
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from the destination plus the utility from the mode. Since the choices are independent, 
we can write the joint probability of d and m as follows: 

P(d, m:DM) = P(d:D) P(m:M) 	 (8) 

The structure that represents independent choices, or an independent structure, con-
sists of marginal probabilities of the different choices. 

If the choices of mode and destination are dependent on each other, then we can write 
the following conditional choice probabilities: 

P(d:D.) = prob [U1 ~: U'1 	' d'ED] 
(9) 

P(m:M) = prob[U a 2t U'1 , mEM] 

where U1 is the utility from destination d given that mode m is chosen and U. is the 
utility from mode m given that destination d is chosen. The conditional probability 
P(d:D) is the choice probability of destination d given that mode m is chosen, and sim-
ilarly p(m:lVLj) is the choice probability of mode m given that destination d is chosen. 

For forecasting, however, the 2 conditional probabilities are insufficient informa-
tion to compute the joint probability of destination and mode. In this case, as opposed 
to independent choices, the joint probability is not a product of 2 marginal probabilities 
since P(m:1VL4) is functionally dependent on d, i.e., P(m:Ma) P(m:M). If we had P(m:M)., 
then the joint probability is equal to its product with P(d:D). However, to model the 
marginal probability, P(m:M), we need to identify a utility function for an alternative 
mode that is independent of what destination is actually chosen. Therefore, for such a 
simultaneous structure, in which the choice of destination depends on the choice of 
mode and vice versa, we must model explicitly the joint probability P(d, m:DM). Given 
the joint probability, we can derive the marginal probabilities and the structural prob-
abilities as follows: 

P(m:M) = , 	 P(d,m:DM) 

d ED 

P(d:D) I P(d,m:DM) 

	

mEMa 	 (io) 

P(d:D) 
- P(d,m:DM) 
- p(m:M) 

P(m:Ma) 
= P(d,m:DM) 

P(d:D) 

A dependency that goes only in 1 direction results in a recursive structure. If we 
assume that the choice of destination is independent of what mode is actually chosen 
and that the choice of mode is dependent on the chosen destination, we write the follow-
ing probabilities: 

P(d:D) = prob[TJd Ui', -d'ED] 
(11) 

	

p(m:Md) = probEU1  	TJm, -m'EM4] 

This recursive structure implies the following additive utility function: 

Ud = Ud + Ui 
	

(12) 

The utility for a destination and mode combination is equal to a utility from the desti-
nation plus a utility from the mode that is dependent on the destination. In a recursive 



133 

structure, the joint probability is the product of the structural probabilities. 
Since we assume in this recursive structure that p(m:M4) p(m:M), it is possible 

to derive from the joint probability a conditional P(d:D) that is not equal to P(d:D). 
However, this conditional probability is not causal but simply a mathematical relation 
derived from the model with no behavioral interpretation. 

A recursive structure represents a hierarchical conditional decision structure. It 
is a common practice to replace a complex decision with a large number of alternatives 
by a recursive structure. The decision is decomposed into stages by successive par-
titions of the overall set of alternatives. Luce (5) noted that different partitions give 
different results. Therefore, a recursive strucTure can be viewed either as a simpli-
fying assumption (this will require a sensitivity analysis of the partitioning scheme to 
determine how the results are affected) or as truly representing a sequential, or con-
ditional, decision-making process. 

SEPARABILITY OF CHOICES 

Implicit in the discussion of the alternative structures was a separability-of-choices 
assumption. The conditional choice probability of mode given a destination was written 
as p(m:M4). This implies that the choice of m given d is independent of alternative 
modes to all other destinations d'(d' d), and is dependent only on the alternative modes 
for the given destination. 

This is a reasonable assumption. It is required in order to be able to model choices 
separately. If we model directly a joint probability and assume a simultaneous de-
pendency, then it appears that this assumption is not necessary. However, the inter-
pretation of the derived conditional probabilities will not be the same as the one used 
here. It was also impossible to find an example of a model that does not make this 
assumption. 

If we partition the set DM according to destinations, we can write the joint probability 
as follows: 

P(d,m:DM) = P(m:Md) P(d:D) 	 (13) 

This equation is similar to the way in which Luce and Suppes (6) described the choice 
axiom, 

P(i:A) = P(i:B) P(B:A) 	 (14) 

for i€BcA. The subset B corresponds to the subset of alternative modes to a given 
destination. However, the choice axiom is more general than the separability-of-choices 
assumption. It applies to any partitions of A to nonoverlapping subsets B. The 
separability-of-choices assumption applies only to partitions according to choices. 

There is some iuiiarhy between the concept of functional separability and the 
separability-of-choices assumption. Functional separability is based on the idea that 
the marginal rate of substitution among a set of variables is independent of other vari-
ables. Separability of choices implies that a conditional probability for a given choice 
depends only on a part of the total utility function. The choice of mode given a desti-
nation is assumed to be dependent on U. d which is the part of the utility function that 
for a given d varies across modes. 

Hence, a separability assumption implies that, from the utility function for a des-
tination and mode combination Ud, we can identify the utility from a mode given a 
chosen destination U. I d and the utility from a destination given a chosen mode Ud I 
Clearly, their sum is not equal to U. The separability assumption in an independent 
structure implies the additive utility function of Eq. 7. The separability assumption 
in a recursive structure where m depends on d implies the additive utility of Eq. 12. 
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ESTIMATION OF ALTERNATIVE STRUCTURES 

It is possible to estimate directly the conditional probabilities or to derive their es-
timates from the estimated joint probability. [Estimating the joint probability and then 
deriving the conditional probabilities are analogous to the method of indirect least 
squares (7).] If the purpose of the analysis is to make only conditional predictions of 
one choice, given that all other choices remain constant, then the conditional probabili-
ties are all that is needed and one can estimate them directly. However, the coefficient 
estimates of the conditional probabilities will not necessarily be equal whether they were 
estimated directly or indirectly through the estimation of the joint probability. 

It appears that, if estimated through the joint probability, the coefficient estimates 
of the conditional probabilities can gain in statistical efficiency and can be less sensitive 
to specification errors. (Specification errors are the consequences of an incorrect set 
of explanatory variables or incorrect mathematical form or both.) The basis for this 
statement is the possibility of incorporating restrictions across conditional probabili-
ties and thereby using more information to estimate some coefficients in the estimation 
of the joint probability. As an example, consider the simultaneous structure of desti-
nation choice and mode choice described previously. It is possible that Udl. and U]  d 
have common coefficients. By directly estimating Ud.  we constrain them to be equal 
and we use simultaneously all the information from the choice among alternative modes 
as well as from the choice among alternative destinations. If we directly estimate 

Udi] we can only use information on alternative destinations for the chosen mode, i.e., 
the alternatives in D]. TI we directly estimate U. I d we can only use information on al-
ternative modes for the chosen destination, i.e., the alternatives in M4. In estimating 
Ud]  we use information on all the alternatives in the overall set DM. 

Only under very restrictive conditions will direct estimates of, say, U]1 d  result in 
the same coefficient estimates as indirect estimation through U,. This happens when 
the alternatives in DM that are not in M4  do not provide additional information to that 
obtained from M4  alone. In other words, this happens when the variability of modal 
attributes for destinations d'(d' d) is the same as that for the chosen destination d. 
The exact conditions that have to be fulfilled by the data for this to occur depend on the 
exact specification of the choice model. However, knowledge of the exact condition 
seems to be unimportant because as a practical matter it never occurs. Furthermore, 
even if it occurs there is no reason not to estimate Ud,, if it can only be more efficient 
and it is needed for forecasting anyway. 

In a recursive probabilistic structure, there is no reason to estimate directly the 
jointprobability. Therefore, it could be estimated in its structural form, as it was 
done (3). 

A simultaneous structure could also be estimated as a recursive structure as follows: 
(a) estimate one conditional, say p(m:M4); (b) derive from the analytical form of the 
joint probability the marginal P(d:D); and (c) estimate the marginal with the coefficients 
that are included in P(m:M4) constrained to their estimates from P(m:M4). This esti-
mation procedure is suggested only when for some reason the direct estimation of the 
joint probability is computationally difficult. 

MODELING THE TRAVEL CHOICES 

The preceding discussion indicates that the appropriate structure for the travel 
choices is a simultaneous one. In the remainder of this paper we discuss alternative 
structures of travel demand models in more detail. 

A trip taken for a specific purpose is characterized by its origin, destination, time 
of day, mode of travel, and route. We are interested in predicting the volume of 
trips Vidbmr from origin i to destination d during time of day h by mode m via route r. 
From the point of view of the individual trip-maker or the household, we consider the 
probability of a trip instead of a quantity or volume of trips. A trip decision consists 
of several choices: choice of trip frequency f (e.g., how often to go shopping), choice 
of destination d (e.g., where to shop), choice of time of day h (e.g., when to go), choice 
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of mode m, and choice of route r. Hence, for an individual traveler, we are interested 
in predicting the joint probability: 

P(f,d,h, m, r:FDHMRt) 	 (15) 

where t denotes an individual or a household in origin i and FDHMRt  is the overall set 
of alternative trips that consists of all possible combinations of frequencies, destina-
tions, modes, times of day, and routes available to individual t. (The choice of resi-
dence location is assumed as given. Travel demand models assume that mobility de-
cisions are fixed.) The alternatives in this set are exhaustive and mutually exclusive. 
The individual t is always selecting one and only one alternative from this set. (In the 
following sections a notation for different subsets of FDMHR is used. This notation 
follows the same logic that was used to define subsets of DM and is, therefore, not ex-. 
plained in the text.) 

For simplicity, we will write the probabilities in the remainder of this paper without 
denoting the set of alternatives. We write the above probability (Eq. 15) as 

Pt  (f, d, h, m, r) 	 (16) 

A conditional probability previously denoted as P(m:1v14) will now be written as P(m'd). 
The joint probability previously written as P(d, m:DM) will now be written as P(d,m). 

On the disaggregate level, the travel demand function for a given trip purpose pre-
dicts the joint probability Pt (f, d, h, m, r). On the aggregate level, the demand function 
predicts the volume Vtdh. In either case, we have a complex product—a trip—with an 
enormous number of substitutes. Microeconomic consumer theory tells us that a de-
mand function expresses the quantity of a product demanded as a function of its price, 
the prices of related commodities (substitutes and complements), and income. The 
complexities stem from the large number of relevant prices (i.e., price and many 
price-like attributes) for all the alternative trips. 

ALTERNATIVE STRUCTURES OF TRAVEL DEMAND MODELS 

With no further assumption, the travel demand model predicts the probability 
P(f, d, m, h, r), or the volume V1dhr, as a function of the attributes of all the alternative 
combinations of fdmhr. (For additional simplicity, we drop the subscript t in writing 
the probabilities in this section.) We denote the explanatory variables as Xld.br, Xdhr, 

., )tr, ..., Xar, or as a vector Xfdbr. (The explanatory variables include all 
the levels of service, the spatial opportunities, and the socioeconomic variables. The 
socioeconomic variables are specific to an individual and not to a trip alternative. How-
ever, we assume here that they are introduced into the model as having alternative 
specific values.) Hence, we can write the travel demand model as follows: 

P(f, d, m, h, xT= F[XfdF,-'-fdmhrEFDMHR] 	 (17) 

where 	-'fdmhrEFDIvIBR] is a vector that includes all the variables X for all rel- 
evant combinations of the subscripts 1, d, m, h, and r, and F is the demand function. 
Alternatively, we can write the utility function for an alternative trip as 

= U(Xfd) 	 (18) 

Clearly, this results in a very complex demand model. Without further assumptions, 
for a simultaneous structure this is the type of travel demand model that must be cal-
ibrated. 

If, however, we make some assumptions about the travel decision-making process 
we can divide the overall travel demand function into several less complex functions, 
each including only a subset of all the explanatory variables. That is, under some as-
sumptions we can formulate the travel demand function as a recursive or as an inde-
pendent structure. 
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The first assumption that is required is the separability-of-choices assumption that 
was described earlier and is usually made also with respect to a simultaneous model. 
The separability assumption with respect to a certain choice says that the conditional 
probability of this choice given other choices is a function of only a specific subset of 
the explanatory variables, as depicted in the following example for route choice: 

UT  I tdwh = ur (XfdhT) 
('9) 

P(r I f, d, m, h) = F1'[Xfdmhy, rERf d h] 

In words, the conditional probability of choosing a route given other choices is a func-
tion only of the explanatory variables for all routes for given fdmh. If we considered 
only 2 choices, say, mode and destination, then the separability assumption with re-
spect to mode choice says that the conditional probabilities of choosing a mode given a 
destination is a function of the variables for all modes but for only 1 specific destina-
tion. For this example we write 

P(d,m) = FdmLX,dmEDM] 

Ud = u(xdm) 

P(dlm) = FLXd,'-dEDJ 

ud1 = U'(x) 	
(20) 

P(m ld) = rLx'meM4] 

u1 d = tr(xd) 

If we calculate the marginal probabilities P(d) and P(m), they will be a function of the 
vector [X6m,--dmEDM1. 

An independent structure is possible only if the set of attributes is separable. That is, 

LXfd:hrJ = EXf, Xd, X, Xh, X] 	 (21) 

where we can identify only attributes that vary only across a single choice. The inde-
pendent utility function can be written as 

= V(x) + ud(xa) + u(x) + u(xh) + UT(xr) 	 (22) 

The independent travel demand model can be written as 

P(f) = FLX, -fF] 

P(d) = F"LXd,-dED] 

P(m) = FT LXm,mEM] 	 (23) 

P(h) = 

P(r) = 

and 

P(f, d, m, h, r) = P(f) P(d) P(m) P(h) P(r) 	 (24) 

Clearly, this is an unrealistic structure for a travel demand model. 
A recursive structure requires the assumption of a sequential decision-making pro- 
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cess or a hierarchy of conditional decisions. The sequence is expressed in a recursive 
travel demand model in 2 ways. The first is the manner in which the set of all trip al-
ternatives is partitioned. In a recursive model of mode and destination choices where 
mode choice is conditional on the chosen destination, the set of all alternative combina-
tions of mode and destination is partitioned according to destination. The second way 
is the composition of explanatory variables. For the same example, the problem is 
how to include in a model of the marginal probability of destination choice the variables, 
such as travel time and fare, that are defined by destination and mode. The way this 
is handled is to construct a composite variable that combines the above variable across 
modes to create a variable that is specific only to a destination. Consider for example 
the following recursive structure: 

= Ut + Ud I t + Urn I fd + Uh I fdrn + U,. I tdrnh 
(25) 

= ut(x) + U'(x) + u"(xt4rn) + U'(Xfdrnh) + 

and 

P(dlf) = Fd[Xfd,dEDf] 

P(mf,d) = r[Xtarn, mEM] 	 (26) 

P(hlf,d,m) = FhLXfdrnh, rn'hEHto.m] 

P(r I f, d, m, h) = F"EXfdrnhr, rERrdrnh] 

where each variable is defined as follows: 

Xfdrnh = LXfdb,., reRfdrnh] 

Xtdrn = 	-''hEH] 
(27) 

Xfd = [Xtrn, -'meMta] 

Xt = [Xtd, -dEDt] 

If we keep the variables in their original form, then the model for P(f) will include all 
the explanatory variables [x drnbr -fdmhrEFDMHR]. The definition of composite vari-
ables allows the treatment of Xj, Xttrn, X, and Xt as single variables. In other 
wr.:!s, these'aria!!es are ercseo az-a zpccific 	ctiai f tieir-eienieris. -- Ok 

example, we express 

Xfrnh = gLXtdrnhr, -crERfh] 	 (28) 

where g is the composition function. The functional form of the composition rule re-
quires further assumptions. 

There are a variety of possible composition schemes. One such scheme that was 
derived from an assumption of additive utility function (3) is as follows: 

Xfdrnh = 	Xttrn r 	P(r If, d, m)  h) 	 (29) 

rsRfarnh 

This composition scheme is essentially a computation of the expected value of the orig-
inal variable. Another way to observe this is to rewrite Eq. 29 and use the definition 
of conditional probability as follows: 
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Xfa1h P(f, d, m, h) = 	Xfa1h P(f, d, m, h, r) 	 (30) 

r (Hf diD 

Thus, the composite variable as defined by Eq. 29 is in accordance with a consistency 
requirement that the expected value of a variable is maintained. If X is a price vari-
able, then Eq. 30 says that the expected expenditure is consistent in the different stages 
of a recursive model. 

Clearly, there are many other schemes of creating the composite variables, among 
them a simple sum, 

Xfdh = E Xfdh 	 (31) 

rER 

or the value for the "best" route (io), 

Xfd.h = Xfd.hb 
	

(32) 

where r = b is the best route according to some criteria. 
Often, several price variables are combined to form a generalized price. Then, the 

composite variable is a composition of the generalized price instead of each variable 
separately (•, 8). 

Constructing a composite variable from several explanatory variables together 
amounts to maintaining equal marginal rates of substitution among those variables in 
the different probabilities of a recursive structure. 

Thus, given a separability assumption, a specific sequence assumption, and an as-
sumption on the mathematical form of the composite variables, the overall travel de-
mand model can be formulated as a recursive structure. 

A simultaneous structure requires the estimation of an equation that includes a large 
number of explanatory variables. On the other hand, each equation in a recursive struc-
ture includes only a subset of the explanatory variables that are included in a simulta-
neous model. In addition, the number of variables is reduced by the construction of com-
posite variables. Therefore, a recursive model can be easier to implement, computa-
tionally and analytically, than a simultaneous model. 

The separability and the sequence'assumptions required by a recursive travel de-
mand model are equivalent to an assumption of a conditional decision structure. The 
choice of a particular fdmhr combination is made from a relatively large set of alter-
natives. It makes sense to partition the set of all alternatives into collections of non-
overlapping subsets. Consider, for example, 2 choices: destination and mode. The 
set of all alternative combinations of d and m, DM, is large. We can partition DM into 
the subsets M1, M.2, ..., Md, .. ., MD, where each subset includes all the alternative 
modes to a specific destination. The assumption is that the traveler is, first, choosing 
among these subsets or choosing a destination and, second, choosing within the chosen 
subset or choosing a mode. The choice of mode is now a function of only the character-
istics of available modes to a given destination. The choice of destination depends on 
some measure of the expected attributes of all modes to a given destination. The utility 
function of a dm combination is assumed to consist of 2 parts: one for each choice. The 
choice of destination is based on the utility of the destination, which is also dependent 
on the expected attributes from the modes available to this destination. 

However, we can also partition the set DM according to modes as follows: D1, D2, 
Dm, ..., D. When we apply choice models to this or the previous sequence we do 

not expect the predictions to be the same. The problem is, therefore, to know when 
the consumer decomposes his or her decision into stages and what partitions are used. 

If we modeled the choice of an fmdhr combination as a deterministic optimization 
problem, it would not be important what partitions were used. The reason that we ex-
pect different partitions to give different results is due to the probabilistic choice mech-
anism and the computation of expected attributes from lower stages. 

The problem with travel decisions is that we cannot find a unique natural sequence of 
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partitions that will be generally applicable. Therefore, a simultaneous structure is 
superior to a recursive structure. In general, the simultaneous structure of a travel 
demand model consists of the following conditional probabilities: 

p(fld,m,h,r) 

P(df,m,h,r) 

P(mlf,d,h,r) 	 (33) 

p(hlf,d,m, r) 

P(rlf,d,m,h')  

Under particular behavioral assumptions 'we can place restrictions on this general 
structure and obtain alternative simultaneous structural forms. Consider the following 
simultaneous structure: 

P(fjd,m,h,r) 

P(dlf,m,h) 

	

P(mjf,d,h) 	 (34) 

P(hjf,d,m,r) 

P(rlf,d, in,  h) 

The conditional probabilities of mode choice and destination choice are not conditional 
on the chosen route because we cannot generally identify alternative modes or destina-
tions for a given route. 

The choices that are conditional on fin either a simultaneous or a recursive struc-
ture are defined only for f > 0 because it does not make sense to define alternative trips 
when no trip is taken. It may be argued that for some trip purposes the choice of trip 
frequency is based on some measure of expected accessibility and is not dependent on 
the actual values of d, m, h, and r. Therefore, it is natural to partition according to 
f and, for each f, have all possible combinations of mdhr. 

II for some trip purpose the choice of time of day is constrained or limited to alter-
native times for which the traveler can be assumed to be indifferent, then it is. possible 
to partition according to f and, for each f, have all possible combinations of m and d. 
Then, partitioning according to dm combinations creates. the sets of alternative routes' 

	

.trip.= 	 th 	1ing trucraiprobabiUes 

P(f) 

	

P(dlf,m) 	
(35) 

P(mf,d) 

p(rf,d,m) 

The choices of mode and destination are simultaneous, but recursive with respect to f. 
The choice of route is recursive with respect to f, d, and m. This is essentially the 
structure that is assumed in the empirical study reported elsewhere (i). Time of day 
was excluded because the sample included only off-peak shopping trips. 

It should be clear that in simultaneous and recursive structures we can derive any 
conditional or marginal probabilities. (However, only the structural probabilities are 
causal.) Therefore, for forecasting, it is possible to use the joint probability directly 
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or any combination of marginal and conditional probabilities provided that their product 
is equal to the joint probability. For example, 

P(f,d,m,h,r) = P(f) (Pdf) . P(mlf,d)  p(hlf,d,m)  P(rlf,d,m,h)  

= p(f) P(hjf) .P(mjf,h) P(dlf,h,m) . P(rjf,h,m,d) 	(36) 

= p(f) p(h,m,df) p(rlf,h,m,d) 

DIRECT AND INDIRECT TRAVEL DEMAND MODELS 

A distinction was made between simultaneous, recursive, and independent travel 
demand models. It was based on the behavioral assumptions of the model. Another 
distinction that is often made is between direct and indirect travel demand models (8). 
This distinction, however, is based on the way that the travel demand model is used 
for forecasting. 

A direct demand model predicts directly the joint probability P(f, d, m, h, r), or the 
volume Vidb,, as a function of all the explanatory variables. In an indirect travel de-
mand model the joint probability, or the volume, is predicted with several intermediate 
steps. Each step corresponds to a single choice or to a single subscript of the volume. 
For example, one equation can predict the number of trips taken by the household, 
another equation will distribute trips among the various destinations, and so forth. 
Hence, in a direct model a forecast is made with a single equation, while in an indirect 
model a forecast is made by a multi equation. model. 

There are a variety of possible indirect models in which an intermediate step may 
predict directly more than one choice. For example, one equation can predict the 
number of trips taken by the household to a certain destination, another equation will 
split these trips among the various modes of travel, and so forth. 

From the forecasting point of view it makes no difference whether we use a model 
as direct or as indirect. The way a model is used for forecasting should be determined 
only on the basis of computational efficiency considerations. 

The sequence used for forecasting does not necessarily have a behavioral interpre-
tation. Even a recursive model could in principle be used for forecasting in an indirect 
fashion that does not correspond to the structural sequence. 

In this paper we are concerned with the behavioral structure of travel demand 
models. However, we can express any given model in many different ways. There-
fore, an obvious question to ask is, How can the behavioral structure of a given model 
be recognized? 

In general, the answer to this question is that the behavioral structure cannot be de-
termined unless the model is written in its structural form. This answer could be ex-
plained by the analogy of a structure of simultaneous equations; Given a reduced form, 
which is used for forecasting, it is impossible to determine the original structure. (A 
reduced form of a system of simultaneous equations is the solution of endogenous vari-
ables in terms of the exogenous ones.) However, in travel demand models that were 
structured with composite variables, the structure may be discerned. It is possible to 
recognize the sequence through the order of composition (e.g., order of summation) 
that is maintained in a composite variable no matter how the model is expressed. 

EMPIRICAL PROBLEM 

As mentioned earlier, the complexity of the overall travel demand function stems 
primarily from the large number of alternatives and attributes that call for a large 
number of variables. To appreciate the dimensions of the overall travel demand func-
tion, consider the following example of travel choices. 

Suppose that for a certain trip purpose a person has the following options: 2 daily 
trip frequencies (1 trip or no trip), 4 destinations, 2 modes of travel, and 2 times of 
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day (peak or off-peak). The total number of alternatives facing the decision-maker is 
17 (16 one-trip alternatives and 1 no-trip alternative). Suppose that for each 1-trip 
alternative there are only 2 price variables, travel time and travel cost. (The price 
of a no trip is 0.) The total number of price variables is 32. If we increment each 
choice by 1 additional option, we have 91 alternatives and 180 price variables. 

It appears that the joint probability may be too complex and the number of variables 
too large to be condensed into a single relation. The most important question is whether 
we can calibrate a choice model with such large numbers of alternatives and variables. 
Using a recursive structure, we will have to calibrate 4 choice models but with the 
number of alternatives in each model equal to the number of options for the correspond-
ing choice. The data requirements are identical for both structures unless further as-
sumptions are made. 

It is not clear whether it is less expensive to calibrate 4 models each with a small 
number of alternatives rather than 1 model with many alternatives (assuming, of course, 
that estimation of a joint probability is feasible). 

Under the presumption that the implementation of a recursive model is easier and 
less expensive, is the additional expense to implement a simultaneous model justified? 
The answer is unclear. Costs can be compared only together with the benefits. There-
fore, we need to know how the simplifying assumptions of a recursive model affect the 
results of the prediction process. 

These are critical issues that can only be addressed by an empirical study. The 
evidence from the calibration of alternative structures in another study (1) indicates 
that (a) it is feasible to calibrate the simultaneous model and (b) the calibration results 
are highly sensitive to the assumed structure. This empirical evidence is not absolutely 
conclusive, however, because it is based on a small sample and only on a subset of the 
travel choices for a single trip purpose. Future research is needed to extend the em-
pirical evidence to different data sets, larger samples, and a complete set of travel 
choices for all trip purpose categories. 

SUMMARY AND CONCLUSION 

A multidimensional choice situation can be represented by a simultaneous or re-
cursive model structure. The paper described assumptions of each structure and 
argued that, in the absence of restrictive assumptions about behavior, travel decisions 
are more realistically represented by a simultaneous model structure. It is simple to 
estimate a recursive structure, for each choice model contains fewer alternatives and 
variables. The primary issues in the selection of a strategy for calibration are (a) 
whether calibrating the simultaneous model is feasible and (b) what effect the use of a 
recursive rather than a simultaneous model structure has on the estimated parameters. 

In particular, the calibration strategy is independent of the method of prediction to 
be used. That is, both the simultaneous and recursive models can be used as direct 
prediction nio1ei btsed on the joint probabilities or as indirect prediction models by 
deriving any desired set of marginal and conditional probabilities. 

Empirical evidence for a 2-dimensional choice situation indicates that calibration of 
the simultaneous choice model is feasible and equally important and that calibration as 
a recursive structure leads to different parameter estimates, which are very sensitive 
to the order of decision-making assumed. Additional research is required to verify 
these results and to extend them to more complex choice situations. 
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