Management by objectives requires input by all members of the management and supervisory staff of an organization; efforts are aimed at the achievement of stated results or objectives. Transportation system management in urban areas demands that transit and highway interests join forces in developing plans and action programs to make better use of existing facilities. This paper explores both management by objectives and transportation system management and provides suggestions on how the MBO technique can be used to design a TSM action plan.

One of the important recent developments in policy is the requirement that transportation system management (TSM) plans be undertaken and programs implemented in urbanized areas to qualify for federal aid for highways or transit. In other words, rather than purchasing additional transit equipment or building additional lanes of highway, we must now make the use of existing facilities and equipment more productive and more effective.

In part, the notion that lies behind TSM is a reflection of the growing concept of a mature transportation structure in the United States. Up to the present time, this country has been in the process of building transportation facilities and of constructing equipment to use those facilities. In the earliest days of nationhood, there were moves toward the beginning of a public road system; the federally aided National Road from Cumberland, Maryland, into the Northwest Territories is an example of this in the late eighteenth and early nineteenth centuries. A spate of turnpike building in the same time period was followed by the introduction of steamboats on navigable rivers and canal construction in the east and midwest in the 1820s. This was followed immediately—and, indeed, overtaken—by the development of railroads, beginning in the 1830s and going on for more than 70 years. On the heels of railroad development came the beginnings of the building of a national highway system in the twentieth century, culminating most recently in the work on the Interstate highway system. Also, in this century, the improvement of rivers for inland navigation, the forgoing of a vast pipeline system, and the development of airports and air traffic control system for air transportation have provided the United States with an unparalleled transportation structure.

The diligence in construction was joined by the provision of equipment in a chicken-and-egg relation. The development of better and larger steamboats brought pressures for river improvements. The twentieth-century push for highways was spurred by the development and growth of the popularly priced private automobile; better highways stimulated the provision of better automobiles, which in turn stimulated a demand for better roads.

One thing that did not occur in the 200 years of growth in transportation was the development of a transportation system. Each mode of transport developed independently and, to a large extent, competitively. Each was treated separately in the policy sense. For example, the Interstate highway system was undertaken with little consideration of its impact on other forms of transportation. The bankruptcy of railroads in the northeastern United States is, in part, due to the intense competition provided by motor carriers enjoying the not insubstantial benefits of the Interstate highways. As a consequence of the lack of concerted transportation policy and programs, there are considerable duplication and overlap in the U.S. transportation picture; at the same time, it is often dif-
ficult to make an intermodal trip or to use more than one transport mode in shipping freight in a reasonably simple and expeditious fashion. The U.S. transportation structure is conspicuous by its cumbersomeness, duplication, and, inescapably, its inefficiency.

The days of building new transport facilities appear to be over. The continent is pretty well filled up, and the transportation structure apparently needs more to be refined and rationalized than to be expanded. Moreover, in many communities there is enormous hostility to the construction of more facilities; a new segment of urban interstate highways is not usually thought of as a blessing today. Ostensibly the concentration of effort under currently evolving federal policy will be toward making existing facilities function more efficiently rather than adding materially to the stock of capital goods in transportation.

The inspiration behind the TSM policy is also a reflection of rapidly escalating costs due to inflation. Where once tax revenues to build a highway or private capital to expand or improve a railroad were about sufficient to do the required job, rapidly escalating costs of material and labor have made the transmission of the system demands careful thought and much money. Building additional facilities is, therefore, not likely to take place easily or quickly any more.

Certain types of effort commonly spring into the minds of those involved in trying to figure out what to do about the TSM requirements. For a highway, TSM means, in essence, better traffic engineering. Efforts similar to the old Traffic Operations Program for Increasing Capacity and Safety seem to fit within the TSM rubric. Actions programs in TSM involve things such as one-way streets, better traffic signal control, and parking restrictions at certain times of the day. As far as transit is concerned, TSM appears to imply actions such as signal preemption by transit vehicles, reserved lanes for buses and other transit vehicles, and use of express highways by transit vehicles (1).

However, the action programs can be summed up neatly; as Federal Highway Administrator Tiemann indicated, the program is essentially reducing demand, increasing capacity, and maintaining system capacity (2). Another way of viewing TSM is that it is aimed at reducing demand and increasing capacity. Because a large proportion of transportation problems occur in urban areas, where increasing capacity by adding more facilities is difficult, reducing demand seems to be the wisest course to follow in such places. Unfortunately, the reduction of demand is closely related to the distribution of population and destinations. The spread-out patterns of growth that are closely related to the distribution of population and existing facilities appears to be the most practical sphere for buses and other transit vehicles, and use of express highways by transit vehicles (1).

One important thing that the TSM requirement does is demand that those involved with urban mass transportation and urban highways work together. As simple as that may appear, it is really quite revolutionary, considering the history of separation that has existed in the past. If real coordination of effort can be brought about on the local scene, the outcome should be beneficial, particularly to the taxpayers and to those who must travel in urban areas.

Clearly, transit management has a key role to play in carrying out the transportation system management program. TSM provides a superb opportunity to improve transit performance as well as highway efficiency. This opportunity is also a burden because many transit managers have had little experience in working with other parts of the transportation sector on the local level. Moreover, many transit managers are not particularly apt at managing transit, much less at embarking on a cooperative planning and action effort with highway officials. The lack of professionalism in the transit industry is serious and is only in the early stages of improvement. Forging TSM plans and putting those plans into action will not be an easy chore for transit management in most places.

The lack of professionalism in the transit industry is serious and is only in the early stages of improvement. Forging TSM plans and putting those plans into action will not be an easy chore for transit management in most places. The idea of management by objectives (MBO) is a tool that may be used by transit managers—and highway and traffic engineers as well—for solving transit problems and for developing the kinds of plans and action that TSM calls for. In this paper, the MBO process is examined as a means of approaching transportation system management, particularly as it is useful for transit managers and planners.

MANAGEMENT BY OBJECTIVES

The idea of management by objectives was first introduced by Drucker in 1954 (3). Management by objectives in the sense in which Drucker used it was aimed at increasing motivation; it allowed lower level managers to set objectives for themselves and thereby to control their own performance. The self-control was supposed to result in a stronger motivation on the part of individuals to do their best rather than just to get by. Higher levels of management would act to coordinate the objectives of the disparate parts of the enterprise under their direction, in keeping with the objectives of the overall enterprise.

The basic philosophy of MBO has been viewed a trifle differently by others (4), who see it as 'a process whereby the superior and subordinate managers of an organization jointly identify its common goals, define each individual's major area of responsibility in terms of the results expected of him, and use these measures as guides for operating the unit and assessing the contribution of each of its members.'

As thinking on MBO has progressed, it has become a highly useful way of conducting the affairs of an enterprise. The emphasis in management by objectives is on management rather than objectives, because MBO is nothing less than a systematic method of managing; it embraces objectives, plans, managerial direction and action, control, and feedback. All of the component parts must be present for MBO to function properly. Because of its complete and systematic nature, MBO is particularly valuable as a means of achieving results. Being result-oriented, rather than process-oriented, MBO is especially useful for public, non-profit organizations (5). Such institutions lack the discipline of "the bottom line" as a way (albeit often imperfect) of measuring the quality and success of managers and the success of the enterprise as a whole through the profit mechanism.

MBO techniques in the world of TSM are not used primarily at improving motivation or otherwise enriching the job. Rather, the idea of establishing goals and objectives—often foreign concepts in the transportation world—is what MBO can bring to TSM. It will help orient those involved with the mass transportation aspect of TSM as well as those involved in other transportation areas to a means of achieving results.

Very simply, in the public sector, where profit or return on investment does not guide action, there must be some substitute. That substitute is the establishment of broad goals and narrower and more specific objectives, the development of plans to achieve the desired results,
a systematic pursuit, and the achievement of the sought-for end. Goals can be generally defined as broad-scoped conditions that cannot be associated with any single improvement or modification. That is, a goal is a long-run condition considered to be ideal or model. The following example of a goal statement for urban transportation is a derivation and consolidation of several goal statements, including those emanating from UMTA, the Federal Highway Administration, and the American Public Transit Association.

1. Provide mobility for all;
2. Improve the environment by increasing energy efficiency, fostering rational land use, and minimizing air, water, and noise pollution;
3. Sustain and enhance economic growth and vitality;
4. Provide the highest feasible and practicable level of safety for people, goods, and the environment; and
5. Provide for an efficient and cost-effective transportation system.

The broad national goals are typically things about which there are few arguments; they are the sort of ends virtually everyone can agree with. These can be translated into somewhat more specific but still rather general goals on the local level, depending on the problems perceived on the local level. Moreover, depending on perceived local problems, there will be different priorities established for the various goals and the objectives that proceed from them. Priorities are, of course, essential; this is especially so in the use of MBO, whereby a potent means of attaining results is at hand. It is critical that the product of the effort be one that is not only wanted but also needed at a particular time. Local transportation-related goals should, of course, be in line with the needs of the community and should bear a relation to the hierarchy of community needs.

Unlike goals, objectives must be pertinent to a given point. In other words, objectives define a condition more strictly than goals do; they are the means by which broad, desirable goals can be achieved. Objectives have five critical elements that must be included in order to be considered a correctly stated objective.

1. Objectives must be clear, concise, and unambiguous statements of what is to be accomplished;
2. Objectives must be measurable and attainable in a reasonable period of time and with reasonable effort;
3. Objectives must be consistent with goals and priorities;
4. Objectives must be assigned a date of accomplishment; and
5. Objectives must indicate who is accountable for their accomplishment.

The following is an example of an objective: The maintenance manager is responsible for reducing road calls to 1/15 000 revenue vehicle-kilometers by January 1, 1978. Such an objective would help meet the goal for increasing the reliability of transit service. The main initial task of persons working with TSM on the local level would therefore be to establish transportation (highway and mass transit) goals based on overall community goals and priorities. From that point they would work to develop objectives that fit within the overall framework of TSM. The TSM goals and objectives obviously must be in line with overall community objectives. For the sake of practicality they should be within the spectrum of possibility in a community.

GOALS AND OBJECTIVES DEVELOPED INTO AN ACTION PLAN

There is a great need for planning to be carried out within an action framework. Too often, planners are frustrated because their plans are rarely implemented; some of the reasons for this are discussed later. For the moment, it is clear that planning cannot be done for the sake of planning alone; there must be an action output from each plan. That is, a plan must go far enough to develop a means by which the plan, be it for TSM or some other purpose, would have a reasonable chance of obtaining some desired results. This is merely another way of saying that all the elements of MBO must be applied if results are to be achieved.

The planning process often lacks closure; that is, it is never brought full circle to completion. It is similar to our nationwide penchant for the distribution of products without sufficient thought given to recycling. A person with an economic bent of mind who dwells on the subject is often appalled by the thought that our highly productive consumer durable goods industry can produce washing machines and refrigerators quickly and efficiently but cannot figure out a way to get used-up washing machines and refrigerators smoothly back into the scrap pile so they can be turned into new consumer durables. Much the same is true of transportation planning, especially TSM-related planning. The process must be designed to include an action plan that, when made operational, produces the desired results.

The aim of action plans is to reach the objectives established. The action plan itself is nothing more than a listing of all the intermediate steps necessary to accomplish a given objective. In the final analysis, the individual actions become subobjectives, as suggested in the following discussion of a model objective and action plan.

Let us assume that a transit operator involved in some aspect of TSM work decides that a prime goal is to increase the reliability of the service in order to make the service more attractive. One objective would be to increase reliability of service, as measured by on-time performance of buses at selected points along each route, by reducing the number of late or early arrivals on any average day by a certain date. (Each goal will probably have more than one objective, but for the sake of example only one will be used.) The objective is not quite complete; who is responsible for achieving the objective is not stated. Before that can be done, some investigation into any causes of delay has to be undertaken. The lack of reliability in service may be due to equipment breakdowns or it may result from delays caused by traffic congestion. Given the objective, the model action plan can then be set out. The first step includes actions to determine the extent of the problem. The initial action consists of spot checks by supervisors of major generator or terminal points and a notation of the number of late or early arrivals.

Actions can then be taken to analyze the problem. For example, route running can be clocked against scheduled running times by given route segments; particular running difficulties can be noted and the location of given difficulties can be isolated. The drivers can also be surveyed regarding the characteristics of each route related to running times. Conclusions can thereby be reached in the attempts to understand the problem fully. The situation may be simply resolved by changing the schedule to reflect realistically the running times at various times of the day. Of course, that type of action—however realistic in the short run—may yield a standard of service that is unattractive to the public.
Given an understanding of the situation, certain actions can then be taken in an effort to resolve the problem. Perhaps one of the key issues discovered in the analysis of the problem is that most bus stops are not marked and patrons flag down buses at many places along a route; two stops may be made within a single block, causing delay in maintaining schedules. An action to resolve this particular problem would be to place bus stop signs along the routes in order to help cluster the patrons at fewer points. Other actions might be to begin a customer information program to encourage the use of the bus stops and to speed up the process of boarding by encouraging passengers to have exact change and to use the rear exits when alighting. Still another action might be to impose an exact-fare policy to expedite fare collection.

Another direction of action might be to step up on-the-road supervision in order to monitor on-the-street operations more closely. In somewhat the same vein, a driver-training program might be instituted to help emphasize the importance of reliability and on-schedule performance. A final action would be to continue the analysis of route running times for adherence to schedules on a regular basis in order to make sure that schedules and reliable performance are maintained.

Investigation may reveal that poor schedule adherence is mainly due to traffic congestion at certain times of day. The action to take under such circumstances might be the inauguration of a reserved lane for buses in a few key, bottleneck locations. Signal preemption by buses may be chosen as an attack on the reliability problem, or possibly a combination of the various alternatives sketched out above might be chosen. All of the various efforts mentioned are legitimate TSM approaches. Whatever actions are ultimately decided on must be accompanied by attaching the responsibility to one individual. The individual responsible for an "external" action will truly be furthering the TSM goal of a more integrated transportation system in that his or her efforts will require interaction with those in the highway and traffic engineering arena. Management by objectives provides an orderly means of approaching and resolving a problem.

The following are possible types of actions that could evolve from TSM goals.

1. Actions to ensure the efficient use of existing road space through (a) traffic operation improvements to manage and control the flow of motor vehicles, (b) preferential treatment for transit and other high-occupancy vehicles, (c) appropriate provision for pedestrians and bicycles, (d) management and control of parking, and (e) changes in work schedules, fare structures, and automobile tolls to reduce peak-period travel and to encourage off-peak use of transportation facilities;

2. Actions to reduce vehicle use in congested areas through (a) encouragement of car pooling, (b) restrictions on vehicle use on selected streets, and (c) congestion pricing arrangements;

3. Actions to improve transit service, such as (a) innovative transit services, (b) improvement of routing, scheduling, and dispatching of transit vehicles, (c) provision of shelters and other passenger amenities, (d) better passenger information systems and services, and (e) simplified fare collection systems and policies; and

4. Actions to increase internal transit management efficiency, such as (a) improved marketing, (b) developing cost accounting and other management tools to improve decision making, (c) establishing maintenance policies that ensure greater equipment reliability, and (d) using surveillance and communications technology to develop real-time monitoring and control capability.

The list of possible broad categories of action is a long one, and within each there are possibilities for extensive series of related actions. The items involve actions both internal and external to transit operation.

Nothing can work effectively in MBO without managerial action and direction. Since MBO includes the joint consideration of approaches to meet objectives by all levels of management down to the supervisory level, there is the opportunity for a unified and systematic effort to attain objectives. Management close to each action level is in the best position to act.

Monitoring under MBO, if properly handled, is quick and effective. Because each level of management is in a position to act within its own particular sphere and bears the responsibility for its actions, there is little need for all information to pass completely up and down the chain of command in order for some action or corrective step to be taken. Only absolutely necessary information and questions need be referred to higher levels of management for coordination, concurrence, or correction. As the objectives, target dates, and responsibility for the objectives and actions are established, milestones of performance are automatically set up and can be used on a regular basis to detect the quality of performance as progress is made. Action and its result are compared with the objective, and further action is taken quickly to get back on track; this takes place at the location closest to the point of action.

After a suitable time period, of course, there must be feedback on the action taken or the problem-solving procedure used. Each of the various actions taken has to be evaluated in light of what happened as a result of the actions. Was the objective attained? If not, why not? At the same time, goals and objectives must be continually evaluated and revisions made in both periodically as experience and the situation demand. Flexibility is necessary to obtain a desired result.

PROBLEMS WITH DEVELOPING GOALS AND OBJECTIVES ON THE LOCAL LEVEL

TSM requires that plans and action be taken on the local level. In accordance with the general thrust of this paper, then, the first step would be the establishment of the overall local goals and objectives. This is much easier said than done.

One would normally look to some national goals and objectives as guidelines for local activity. National goals and objectives on matters such as desirable levels of population density, population distribution, and sprawl could help local governments form goals, objectives, and action plans. However, apart from the list of broad national urban transportation goals given earlier, there is not much else, despite the fact that the majority of the population is urbanized or that the city is the locus of some of the principal social and economic problems of the nation.

There are typically no goals or objectives for transportation or urban areas on the state and local level. For the most part, state and local governments have not set out in any definitive form exactly what they want cities to be or how they want transportation to interrelate with other aspects of urban life.

Adding to the overall difficulty is the fact that urban transportation in general, and mass transportation in particular, are both highly interrelated with everything else on the urban scene. This means that great care has to be taken to choose plans and actions wisely, lest they have some unexpected and unfortunate consequence.
The urban segments of the Interstate highway system may be the best example in recent times of an action thought at one point to be good, but turning out, in fact, to be highly unpopular and destructive in many places at another point.

Overriding all, of course, is the great difficulty in formulating good goals and objectives and action plans, which is much more difficult in the public sector than in the private sector, where profit and return on investment can act as a guide. Members of boards of advisors of planning organizations or directors of transit agencies often have a strong private enterprise background. This is good, except that they tend to think most clearly in terms of profit and loss, not fully recognizing the special mission of nonprofit, public, tax-supported institutions attempting to achieve certain goals and objectives for the community. The consequence of this is the reluctance of highly profit-and-loss-oriented boards of directors to go along with proposals that may increase deficits, but will also actually increase the overall productivity and effectiveness of the system as the movement of people is concerned.

Clearly, the goals that have to be established for TSM, or any other transportation activity on the local level, have to be consistent with local needs, desires, and resources. Goals cannot be conflicting if anything is to work out well. For example, it was not unusual in the 1960s, as privately owned transit firms began to fail or be taken over by public agencies, for local government to make strong statements encouraging the continuance of privately owned mass transportation. At the same time, these same local governments were often involved in the widespread building of highly subsidized public parking garages. Local community leaders and elected and appointed officials, therefore, assured the creation of a situation in which a city would have the dubious but inevitable distinction of possessing publicly owned and subsidized transit as well as publicly owned and subsidized parking.

The objectives that are established in any TSM program on the local level must be consistent with the overall goals established for the urban area. Care must be taken to follow the rules and conditions laid out earlier for setting a good objective. One cannot have an objective to merely "make transit nicer." However, to paint the interiors of all the buses for a given date is a reasonable objective if an overall goal is to improve the general level of hygiene of the transit system.

The greatest difficulty may lie in getting local public officials to state just what it is they really want to have happen. Taking clear stands on issues has the associated problem of providing a standard by which public officials may be held accountable. The more blurred the issues are, the less definite is the expected achievement and the less chance that the public may react unfavorably at the ballot box at some future time.

WORKING ON THE TSM PLAN

In developing a transportation systems management plan, transit managers and highway and traffic officials must work with one another and with local transportation planners. Here the typical management-by-objective procedures would apply. All the various levels involved need to participate in formulating the goals, objectives, and action plans. TSM should not be solely a product of a top planner or top highway or transit official. Throughout all of the organizations that must be involved, there should be genuine attempts to understand one another's problems. It would also be hoped that public officials in a local area would be full participants in the discussions that must go on in developing a TSM program. The local metropolitan planning organization (MPO) is supposed to provide the liaison between government officials and the transportation world, but this role is not always played smoothly.

Early in the game there is, of course, a need to inventory the problems with TSM implications. Traffic bottlenecks, a high level of air pollution, overcrowded buses, underused traffic lanes, impediments to the free flow of traffic, inefficient or dangerous intersections, transit vehicles delayed by other traffic, parking difficulties that might be solved by car pooling, and a host of other things all have to be investigated and considered. The local level participants in this exercise must understand the parameters within which they are working. Low-cost, noncapital projects are in keeping with the concept of TSM. The plans put together must be consistent with overall urban goals, with urban transportation goals and objectives, and with transit goals and objectives.

Conflicts are possible and must be resolved. The highway, traffic, and transit people can find themselves in a fine imbroglio if the transit agency wants to improve the quality of service by spacing its routes more closely together while at the same time the traffic engineers plan to limit the operation of buses to only a few wide, major streets. Again, traffic management plans of designating certain streets one way to augment traffic flow may make it difficult and time-consuming for transit service to continue to be offered to major traffic generators on that street.

After the TSM notion has been developed according to the goals and objectives set forth and agreed to by everyone, the worth of the action plan needs to be measured. The feedback necessary to measure the effectiveness of TSM operations must have at least three parts: evaluation of the idea, evaluation of the implementation of the idea, and evaluation of the results of the idea. Since TSM and a coordinated approach toward handling and managing transportation in urban areas are new, possibly the implementation will be the most severe problem at the present time. The level of general public awareness and understanding is critical to success, as is the need for support of public officials.

One of the best examples of a TSM type of idea that appears to have been a disaster is the diamond lane program in the Santa Monica Freeway in Los Angeles. The diamond lane (diamond shaped marks are actually painted in the freeway lanes) was set aside for use by buses and car pools only. The Santa Monica Freeway was chosen because it is a metered freeway, and results could be evaluated much more easily on it than on some of the other freeways in Los Angeles or in California. The reduction of one lane caused enormous traffic backups and many accidents. Irrate motorists threatened court action, and the Los Angeles press pilloried the California Department of Transportation, the Southern California Rapid Transit District, and any other person or agency that appeared to have something to do with the diamond lane idea. Cries about the inhibition of personal freedom to drivers as a result of the diamond lane project and screams of unconstitutionality were heard in the media.

Appropriately, one critical missing element in the whole diamond lane project (and an element that may also be missing in many future TSM undertakings that make changes in the patterns of movement on our streets) was the lack of relations with the press and other media early enough in the game so that the public and public officials could be informed about what steps were to be taken and why. Enormous effort must be taken by those responsible for TSM implementation to make sure that the public knows and understands why some action is being undertaken.
IMPROVING SERVICE QUALITY AND EFFICIENCY THROUGH THE USE OF SERVICE STANDARDS

Ronald J. Tober
Massachusetts Bay Transportation Authority

This paper describes the service policy of the Massachusetts Bay Transportation Authority for surface public transportation and its use in urban transportation system management. The establishment and use of a comprehensive statement of service policy are discussed in the context of TSM objectives. Such a service policy, which contains service goals and objectives, service standards and guidelines, and planning and evaluation procedures, provides the transit manager with a management control framework for monitoring service performance and identifying remedial actions that will improve the quality of service and the efficiency and effectiveness of resource allocation. The paper describes how MBTA uses the control framework embodied in its service policy to identify both general service improvements and some specific TSM service improvements such as reserved bus lanes on arterial streets. The paper concludes by discussing how the MBTA service policy through cooperative planning has begun to make local city and town policy makers more sensitive to transit operations, thereby enhancing the prospects for successful implementation of potentially controversial TSM projects.

The 1976 Transportation System Management Plan for the Boston urbanized area contains the following element:

SERVICE POLICY FOR SURFACE PUBLIC TRANSPORTATION PROJECT DESCRIPTION: The MBTA has adopted a comprehensive statement of Service Policy for its surface transit operations. The Service Policy provides a management control system for use in guiding the operation and improvement of surface transit services in the MBTA district. The Service Policy has five major components as follows:

1. Service Goals and Objectives—The establishment of generalized goals and specific objectives to guide the management and improvement of transit service.
2. Service Design Guidelines—The establishment of guidelines for use in the design of new surface services and the modification of existing services.
3. Service Performance Standards—The establishment of minimum performance standards in such areas as operating speed, schedule adherence, passenger loading, economic performance and labor productivity.
4. Service Warrants—The establishment of sufficient conditions for the discontinuance of a service and for relationships between the MBTA and private carriers.
5. Service Planning and Evaluation Procedures—The establishment of procedures for decentralization of planning and evaluation of surface services.

The MBTA is currently in the early stages of implementing the Service Policy. Some data collection and processing procedures have been implemented while others are under development. Additional staff resources have been added in the service planning and operations planning areas. Implementation of the service planning and evaluation procedures is near completion.

EVALUATION: The Service Policy will provide information which will be used to determine desired levels of service and the associated optimum allocation of resources. It will identify those services which are a drain on MBTA resources without sufficient offsetting benefits. It also establishes formal mechanisms for developing improvements in service performance and in service quality.

The Massachusetts Bay Transportation Authority (MBTA) service policy for surface public transportation was a logical element of the region’s TSM plan. The purposes for which the service policy was established are consistent with the urban transportation system management objective to achieve maximum efficiency and productivity for the (regional transportation) system as a whole. The MBTA service policy uses its various standards, guidelines, and procedures to indicate needed improvements to transit service quality and efficiency.