Snow Removal and Ice Control Research Objectives for the Future

L. David Minsk, U.S. Army Cold Regions Research and Engineering Laboratory
Edward J. Kehl, Illinois Department of Transportation

The concluding session devoted time to a discussion of research needed over the next 10 years to improve present capability for removing snow and ice from highways, and for ensuring an all-weather capability for guideway systems, communication facilities, and aircraft and their ground facilities. Discussion was led by Dr. Ronald A. Liston, CRREL. Discussions during the other sessions also revealed areas of study that needed to be initiated or expanded, although not all of these were brought up in the concluding session.

Most discussion revolved around highway snow and ice control. The scope was enlarged, however, to approach the problem as one of increasing winter traction and trafficability, whether by reducing or eliminating snow and ice accumulation, or by improving the coefficient of friction between tires and the winter surface. To this end, it was recommended that research be directed to improve tire designs and materials, and the work done by Caltrans showing that graphite fiber tire additives significantly increase the friction coefficient was cited. Continuation of current research underway until it is translated into practice was recommended. This includes development of physical and non-chloride chemical approaches to snow removal and ice bonding, and the operational procedures required to integrate new materials and techniques into an effective, cost-saving system. Further work on electronic monitoring of road surface conditions in high traffic density areas to provide real-time information for traffic control and treatment level was suggested. Fundamental work on the mechanism by which disbonding agents weaken or destroy the ice-pavement bond, followed by determination of optimum chemical application rates and development of methods of applying precisely metered quantities in a controlled pattern, will have relevance to both highway and guideway practice.

Decision makers need better information and methodology to make economic determinations of snow-removal system operation and effectiveness. As an example, an economic model for impact of delays of variable durations on local or regional economy, and the cost function for the various treatment levels will enable selection of the least-cost option. System optimization by computer modeling needs further work and refinement and translation into a practical format for wide use by large and small winter maintenance organizations.

Traffic speeds and accident rates for traffic of specified density and mix as a function of depth of snow on the road are not well known. An improvement in this information, coupled with improved values for costs of delay time, will permit selection of an optimum time for commencing snow clearance or other remedial action. Traffic action can remove light snowfalls or some types of snow, but the conditions under which this can occur are not clearly known. Research on the response of snow to trafficking by rubber tires will provide answers to this question.

Improvement in the design of snow clearing equipment, both displacement plows and rotary plows (snowblowers) was recommended.

Non-chemical, or at least non-chloride, methods of snow and ice control on advanced guideway systems were stated as pressing needs which require research. Automatic controls on present and future guideway systems are intolerant of snow and ice, and either design of components to avoid accumulation, or development of positive means of removal, are proper research objectives.

Data on traction of high-pressure rubber tires such as are used on automated guideway systems, as well as on buses and trucks, are not readily available. An effort to gather together scattered data, and to perform the research necessary to fill in the gaps, was recommended. It was also recommended that joint participation by rail, airport, guideway, and other non-highway transportation modes in winter operations conferences such as represented by this symposium be continued.

Recent standards for errant vehicle restraints have virtually eliminated the use of cable guard in many Snow Belt states in favor of metal plate beam guardrail. Plate beam guardrail is often placed at the top of embankments and this, combined with its approximate height of 2 ft creates aerodynamic conditions ideal for causing snow drifts on adjacent pavement. The safety device itself creates a winter hazard. Study is needed to develop effective vehicle restraint designs with aerodynamic characteristics that will not cause the drifting of snow.
Registrants

Stéphen Ackley
CRREL
Hanover, NH 03755

Dr. T. Ashworth
Physics Department
South Dakota School of Mines and Technology
Rapid City, SD 57701

Dr. Andrew Assur
CRREL
Hanover, NH 03755

William C. Besseliervre
Federal Highway Administration
HDV-22
Washington, DC 20590

Robert R. Blackburn
Midwest Research Institute
425 Volker Boulevard
Kansas City, MO 64110

Philip Brinkman
Federal Highway Administration
HRS-42
Washington, DC 20590

Net Bryant
Chemelex Corporation
(Div. of Raychem)
Redwood, CA 94163

Dr. Paul Camp
University of Maine
Orono, ME 04473

W.N. Carey, Jr.
Transportation Research Board
National Academy of Sciences
2101 Constitution Avenue, N.W.
Washington, DC 20418

Dr. Brian Chollar
Federal Highway Administration
HRS-23
Washington, DC 20590

Curtis W. Christie
Minnesota Dept. of Transportation
529 Jackson, Room 221
St. Paul, MN 55101

Nicholas J. Cifelli
New Jersey Dept. of Transportation
1035 Parkway Avenue
Trenton, NJ 08625

Adrian G. Clary
Transportation Research Board
National Academy of Sciences
2101 Constitution Avenue, N.W.
Washington, DC 20418

Dr. Samuel Colbeck
CRREL
Hanover, NH 03755

Samuel H. Conner
Public Works Publications
200 S. Broad Street
Ridgewood, NJ 07451

John C. Cook
Transportation Systems Section
Sloan 101
Washington State University
Pullman, WA 99164

Dr. James Costantino
U.S. Dept of Transportation
Cambridge, MA 02114

Richard P. Davis
Davis Tool Co., Inc.
Laconia, NH 03246

Robert C. Deen
Kentucky Bureau of Highways
533 So. Limestone
Lexington, Kentucky 40508

Henri De Lannoy
Ministry of Public Works
Translaan 255
1960 Sterrebeek, Belgium

Earle Dobson
Allied Chemical Canada, Ltd.
Toronto, Ontario, Canada

Dr. Charles A. Dougan
Connecticut Department of Transportation
24 Wolcott Hill Road
Wethersfield, CT 06109

Edward Dumalo
The Seaway, Transport Canada
P.O. Box 97
St. Lambert, P.Q., Canada J4P 3N7

Gordon Dunn
Morrison, Hershfield,
Theakston and Rowan Ltd.
341 Woodlawn Road West
Guelph, Ontario, Canada N1H 6R1

Dr. Stanley A. Dunn
Bjorksten Research Laboratories, Inc.
P.O. Box 9444
Madison, WI 53715

Peter Elsenaar
Rijkswaterstaat Bureau WNO
Koningskade 4
's-Gravenhage, Holland

H.W. Farrell
Pennsylvania Department of Transportation
Room 715 Transportation Building
Harrisburg, PA 17120

351
Kenneth Fewel
Vought Corporation
11152 Shady Valley Drive
Arlington, TX 76013

Ronald L. Fink
Virginia Department of Highways and Transportation
1221 E. Broad Street
Richmond, VA 23219

Robert G. Fletcher
Transportation Research Center of Ohio
East Liberty, OH 43319

Stephen Fokuo
Westinghouse Electric
2001 Lebanon Road
W. Mifflin, PA

Dr. Kazuo Fujino
The Institute of Low Temperature Science
Hokkaido University
N-18, W-7 Sapporo, Hokkaido, Japan

George Gerliczy
The Solvay American Corporation
609 5th Ave.
New York, NY 10017

Frederick H. Goodnight
Vought Corporation
P.O. Box 5807
Dallas, TX 75209

Robert J. Gould
Room 56/21
Department of Transport
2 Marsham Street
London, England SW1P 3EB

Lawrence L. Greer
East Hudson Parkway Authority
901 Bedford Road
Pleasantville, NY 10570

David G. Grimm
New Jersey Turnpike Authority
Hightstown, NJ 08520

James S. Guarre
ABAM Engineers, Inc.
Tacoma, WA 98402

Jerry Gulowski
Regional Highway Office
Koszalin, Chelmnoiwdo 2, Poland

Kent Gustafson
National Swedish Road and Traffic Research Institute
Fack, S-581 00, Linkoping, Sweden

Thomas C. Hackett
Department of Highways
Baddeck, Nova Scotia, Canada BOE 1B0

George Harding
16A Kennedy Drive
Dartmouth, Nova Scotia, Canada

Y. Hatori
Nissan Motor Co., Ltd.
560 Sylvan Avenue
Englewood Cliffs, NJ 07632

Darryl L. Hearn
Salt Institute
925 Spring Mill Drive
Hoffman Estates, IL 60194

Ken Heisel
Cargill Salt
Lansing, MI 48822

Fred Helvoll
Data Products of New England
Barnes Park North
Wallingford, CT 06492

Hans R. Hinnen
Snowblast
4635 Ironton Street
Denver, CO 80239

Robert A. Hogan
New Hampshire Department of Public Works and Highways
Concord, NH 03575

Henry Honeywell
HDV-22
Federal Highway Administration
Washington, DC 20590

Brice Horvoll
Allied Chemical Corporation
Box 1139R
Morristown, NJ 07960

John B. Howe
Mt. Washington Observatory
Gorham, NH 03581

Dr. Alan C.H. Hu
Rochester Institute of Technology
90 Clearview Drive
Pittsford, NY 14534

Dr. Eugene Huang
Michigan Technological University
Houghton, MI 04921

John G. Irving
Department of Highways
P.O. Box 186
Halifax, Nova Scotia, Canada B3J 2N2

George Izumi
Urban Mass Transportation Administration
2100 2nd Street SW
Washington, DC 20590

Tommy Johannson
The National Swedish Road Administration
S-102 20 Stockholm, Sweden

Prof. Terutoshi Kaku
Department of Civil Engineering
Hokkaido University
N-18, W-7 Sapporo, Hokkaido, Japan