Comparison of Fare Collection Methods for LRT

TOM PARKINSON, Consultant to the Urban Transit Authority of British Columbia Rapid Transit Project

Fare collection is an important aspect in the design of a light rail system because it has a greater impact on both capital and operating costs than on a conventional rapid transit system, where these costs can be distributed over larger passenger volumes. The aim in designing the LRT fare system is to (a) minimize the collection cost per passenger; (b) be compatible with the existing transit fare system (assumed to be typical exact-cash fares, with or without passes); (c) permit transfers between modes without necessitating changes to bus collection or requiring machinery on buses; (d) be flexible to accommodate any future fare changes, including the introduction of zone or graduated fares, the use of passes (flash cards), other pre-purchased measures such as carnets, multi-ride tickets, strip tickets, tokens, or single tickets; various forms of concession fares; and time-variable fares, such as reduced off-peak fares; and (e) permit the use of low-cost LRT stations.

Conventional barrier fare collection is used on all North American rapid transit systems. Stations and vehicles are designated as fare-paid areas, and access to and from stations is controlled by barriers. Fare payment takes place at turnstiles or manned booths at the barriers. Differing degrees of self-service are possible, ranging from coin- or token-operated turnstiles to elaborate magnetic ticket systems where single or multiple tickets are purchased in advance in banks, trust companies, newsstands, or other commission outlets or from coin- and bill-accepting machines in the stations. Because machinery and turnstiles cannot detect whether passengers are entitled to concession fares, children and senior citizens must usually pay at or pass a manned booth.

Unmanned stations are possible, but problems occur with adults using concession fares or with evaders jumping turnstiles. Considerable losses are experienced in some cities. Total control therefore requires such stations (or just the specific unmanned entrance) to have full-height turnstiles and to preclude concession fare users. Except in Montreal and Atlanta, where machine-readable bus transfers are issued, bus transfer passengers must also pass the manned booth. The manpower expense of such arrangements is considerable. PATCO in Philadelphia uses unmanned stations with remote closed-circuit television surveillance to deter turnstile jumpers. PATH also has some unstaffed stations with TB surveillance.

Barrier systems impose considerable design constraints and additional capital costs on stations. Barrier collection cannot be used on LRT systems with on-street tracks and stops. However, hybrid collection may be possible to permit front-door-only boarding and driver collection at these locations or by using the "pay entrance in, pay exit outbound" system (as in Pittsburgh or Seattle) where no fare collection takes place on the street in the downtown area. This provides in effect a free downtown zone, which can be desirable in attracting transit use or reducing internal CBD automobile trips.

In general, barrier systems are not appropriate for LRT systems, particularly if any on-street running is planned initially or in later phases.1 Barrier collection costs are discussed later in this paper.

CONVENTIONAL LRT FARE COLLECTION IN NORTH AMERICA

Excluding the three new systems in San Diego, Calgary, and Edmonton, most North American LRT operations use motorman (or operator) manual fare collection. Thus, when multiple-unit trains are run, the operator in the front unit both drives the train and collects fares (as in normal bus operation) while all checks to the rear must be manned by an operator paid at the same rate as the driver but who is only responsible for collecting fares and operating the doors. This extra manpower requirement may appear inefficient, but if it is used only in the peak period and if the alternative is to man each station or stop, then it becomes either essential (surface stops could not all be manned) or an acceptable option.

An interesting variant on certain lines in Philadelphia, Newark, Boston, San Francisco, and Cleveland is that major downtown stations have fare-paid platforms, thus permitting faster loading through use of all doors on each car. Operator collection is retained at other stops.

Conventional fare collection is simple to implement and to administer. It is compatible with exact-cash fares, passes, multi-ride tickets, tokens, or concession fares. It permits issuance and acceptance of conventional manual transfers. Revenue collection and accounting involve the normal bus procedures with on-board farebox cash vaults. The operator on each car provides additional security and door operation safety as well as better availability of user information. In emergencies and when entering or leaving service, trains can be broken down into single units, each of which then has its own operator. However, conventional fare collection has disadvantages. Zone fares are inconvenient and cumbersome to collect manually (and possibly for this reason are rarely used on existing LRT systems). Station dwell times are lengthened by the need to board only the front door and file past the motorman, while the need for manual collection introduces high labor costs in manning the rear car(s) of multiple-unit trains.

This conventional form of fare collection has been retained despite its inefficiencies because of simplicity, compatibility, and union pressures against job reduction. Most LRT lines are operated as part of a bus system rather than as an entirely separate mode because they have historically evolved from earlier streetcar networks. They frequently use single-car trains, which impose no cost penalty for manual collection, and, in fact, where there are no headway capacity restraints, the need for an operator on each car removes any incentive for multiple-unit operation.

CONVENTIONAL LRT FARE COLLECTION IN EUROPE

Most LRT systems in Western Europe use a self-service barrier-free fare system, sometimes called a "proof-of-payment" system. Although there are many combinations and permutations in terms of fare purchase, ticket validation, and checking, the basic principle remains the same. There are no barriers such as turnstiles at stations or any fare payment necessary on boarding a vehicle. Each passenger must ensure that he is in possession of proof of valid fare paid when on the vehicle or in the section of a station designated as a fare-paid zone. Fare payment is typically by the purchase of passes (flash cards) or multi-ride or single-ride tickets from outlets or machines located on or off the transit property. These must be validated (i.e., cancelled) when entering a station or vehicle by inserting into a small machine that imprints the location or zone, time and date, and usually clips a portion of the ticket to prevent reuse (overprinting). This stamped ticket then serves as both proof of payment and as a transfer under whatever transfer rules the property specifies.

To control fare evasion, a system of checks is necessary. This usually involves roving transit police, either solely as ticket inspectors or with a supervisory role. The number of checks should be in proportion to the
determined evasion rate, which in Europe ranges from 1 percent to 5 percent. Thus from 1 in 50 to 1 in 20 passenger trips should be checked on an organized sample basis. As the evasion rate is to be allowed to vary hour to hour or day to day, the use of transit supervisors has advantages. Such staff can drop fare checks, without harm, to cope with emergencies or regulatory tasks, thus providing much better supervision than could normally be justified. Their presence can perform an important security role, particularly in late evenings or on unmanned cars.

When a passenger is found without a valid ticket or pass, penalties are usually applied. One of the most significant penalties is just the embarrassment of being detected and the resulting confrontation with a uniformed official. However, at the discretion of the checker, monetary penalties can be requested. These start with a request for correct fare payment, and the designated "cash" fare can be much higher than the "ticket" fare. Under common law, a passenger can typically refuse to pay or to provide identification and thus can only be asked to leave the vehicle at the next stop. Therefore, most Western European systems have obtained powers for their checkers similar to those of traffic warden or police officer. Identification can be requested and an "evasion notice" or "citation" issued. This carries a penalty of $1 to $10 (early 1970s data, presumably higher now)—ideally the fare multiplied by the check rate, e.g., times 20. Such citations can either be paid on the spot, taken to the transit office for payment or to be disputed, or very rarely, pursued into court.

Tickets or passes can be purchased in a variety of ways: by mail or in person from transit offices, at banks, savings and loan offices, stores (large or small), and from booths at major transit locations where a manned location can be justified for security or information purposes. Multi-ride tickets are often machine-vended in stations; and single-ticket machines may vend at individual stops or on each car. In the latter case, single-ticket machines usually precancel the ticket with the zone, time, and date imprint. Such vending machines are subject to vandalism, and thus curb locations are rare outside Switzerland and a few German cities. The track record on vandalism in Europe and North America is good but requires attention in machine design, location, and security practices. Closed-circuit television surveillance and remote vandalism alarms are often used. However, a simple internal alarm can be effective.

Several systems utilize the operator to accept cash fares or sell tickets to passengers boarding through the front door of a train. Charges are slightly higher than from other outlets, to deter frequent use of driver transactions and possible delays. This is of particular help to tourists or other people unfamiliar with the transit system.

The self-service barrier-free system is regarded in Europe as offering the greatest flexibility at the lowest cost. It is fully compatible with any fare system on connecting modes, since any transfers are subject to the fare inspections while the imprinted tickets serve as transfers to the other mode. The system is exceptionally flexible, accommodating flat or zone fares, various types of passes and concession fares, and fares that vary by time of day (since each ticket is time-stamped). Long-term promotional fares are possible. For example, the central business area or an area within 1 mile of a shopping center can be designated as fare-free for a short or long time and no fare checks carried out in that area.

A self-service fare system should not be confused with the so-called "honor" system. Honor systems have been used in several eastern European countries but appear to be phased out. In an honor system, the passenger pays the fare into a box onboard the vehicle; no receipt or transfer is issued and no checks are imposed other than "each comrade watching the other." It does not work! This confusion with honor fare systems has tended to delay implementation of self-service fares in North America because of unforeseen attitudes that North Americans are less honest than their European counterparts.

In 1975 Atlanta examined self-service fares as part of a major fare study for its conventional rapid transit system, which included grade crossing separation and controlled-access station platforms. The study could find no socioeconomic justification why North Americans would be any different with respect to self-service fares than West Germans. Fare evasion of some 100 transit systems in Europe ranges from 0.01 percent to 3 percent, with the higher value on commuter rail lines, which have higher fares, and in larger cities where people feel more "anonymous." The typical range was around 0.5 percent (see Table 1).

The percentage of passengers checked ranged from under 1 percent to 10 percent but typically is in the 1.5 to 3 percent range. Penalties (either a spot fine or supplementary ticket) range from $1 to $10 (1975), the most common being $5 in West Germany and $1 in Switzerland. There was little correlation between the penalty and the amount of evasion or the percentage checked, although evasion was lower on systems where a high proportion of passengers use passes and thus have little or no incentive to cheat. Where a cash transaction is required for every trip, each trip requires a decision, "Shall I pay or shall I evade?"

A reverse philosophy appears to apply where fare checks are frequent, inconvenient, or brusque, and penalties high, whereby the resentment created encourages people to try to beat the system. The largest disincentive to evading payment is not cash penalty but the social penalty from the embarrassment of being caught and admonished in public. This is particularly pronounced in small cities, on suburban buses, or on regular commuter runs where the evader perceives that someone he knows may see him being caught.

The Atlanta study looked at fraud in other areas of North American life. At self-service gasoline stations, driveaways are far less than 1 percent and about comparable with regular gasoline stations, despite the typical purchase value of $6 to $10. Telephone fraud by billing to other numbers or credit cards and by coded messages on person calls are estimated at less than 1 percent. Newspaper vendors (honor type) have losses below 0.5 percent.

Automatic highway tolls have a fraud rate of 1 percent to 2 percent when adjacent to manned lanes but 5 percent to 10 percent when entirely remote (usually 10 cents to 50 cents toll). About one-third of these higher levels appears to result from lack of correct change. Shoplifting, on the average (study by National Retail Merchants Association) is 1–2 percent compared with 5–6 percent loss on gross revenue from employee theft and error. Fraud on existing exact-cash fare systems runs from 0.5 percent to 4 percent and encompasses counterfeit tickets or transfers and slugs. The bulk of this fraud is transfer abuse and relates to a system's caliber of driver training and supervision.

The net result is that, while most North Americans have few qualms at minor legal infractions—exceeding the speed limit, stealing pencils and pads from the office—a self-service fare system can expect fraud levels of 0.5–2 percent on the basis of European experience with enforcement, whereas with no minimum enforcement a rate between 0.5 percent and 3 percent is likely.

Evasion rates on self-service barrier-free systems in Europe are given in Table 1. The data originate from a 1972 UITP survey of member properties. More recent information indicates that higher rates are being tolerated in certain German cities to reduce the cost of inspectors. There is a trade-off between inspection costs and revenue lost. Past tendencies were to reduce fraud at all costs, but now a more realistic attitude is appearing, with evasion rates allowed to climb if there is a net overall saving.
Table 1. European self-service barrier-free evasion rates (1971-72 data).

<table>
<thead>
<tr>
<th>System</th>
<th>Percent of Detected Evasion</th>
<th>Percent of Passengers Checked</th>
<th>Amount of Fine $US (1972)</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duisburg</td>
<td>0.41</td>
<td>2.2</td>
<td>3.1</td>
</tr>
<tr>
<td>Dusseldorf</td>
<td>0.48</td>
<td>2.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Flensburg</td>
<td>0.21</td>
<td>3.0</td>
<td>3.1</td>
</tr>
<tr>
<td>Frankfurt</td>
<td>3.06</td>
<td>0.8</td>
<td>6.2</td>
</tr>
<tr>
<td>Hagen</td>
<td>0.5</td>
<td>3.0</td>
<td>4.6</td>
</tr>
<tr>
<td>Hannover</td>
<td>0.3</td>
<td>3.5</td>
<td>6.2</td>
</tr>
<tr>
<td>Kiel</td>
<td>0.3</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Köln</td>
<td>1.6</td>
<td>5.0</td>
<td>3.1</td>
</tr>
<tr>
<td>Stuttgart</td>
<td>1.03</td>
<td>3.6</td>
<td>3.1</td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basel</td>
<td>0.3</td>
<td>10.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Geneva</td>
<td>0.75</td>
<td>2.3</td>
<td>7.7</td>
</tr>
<tr>
<td>Lausanne</td>
<td>0.35</td>
<td>5.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Lucerne</td>
<td>0.27</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>Neuchatel</td>
<td>0.2</td>
<td>5.0</td>
<td>2.6</td>
</tr>
<tr>
<td>St. Gallen</td>
<td>0.4</td>
<td>7.0</td>
<td>2.6</td>
</tr>
<tr>
<td>Winterthur</td>
<td>0.1</td>
<td>10.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Zurich</td>
<td>0.48</td>
<td>9.0</td>
<td>1.3</td>
</tr>
</tbody>
</table>

LOSSES WITH CONVENTIONAL FARE COLLECTION

Other transit fare evasion rates are difficult to determine. Operators are reluctant to discuss or even admit to losses. However, it is generally accepted that the common exact-cash fare payment in North America has a 2-4 percent evasion rate from vehicle entry without payment (via the rear door or skipping past the driver at busy stops; short payment into fareboxes, many of which make it difficult, if not impossible, for the driver to determine the exact value of coins deposited; counterfeit bills, tickets, passes, coins, and tokens; fraudulent use of concession fares, particularly older students using high-school-only privileges; and transfer abuse (making two or more distinct trips on a transfer). Poor training and discipline of operating staff have contributed to increases in this last form of evasion. Major fare increases in 1980 and 1981 to $0.75-$1.00 have compounded the problem of exact fare payment in nonregistering fareboxes. Dollar bills in these boxes are now common in many cities and involve significant handling difficulties and expenses, while multi-coin fares cannot be realistically checked by the operator. The result is a de facto honor system where any handful of coins can get a passenger on board. Attempts to introduce a 1 dollar coin in the United States have failed, although this will soon be a useful coin in both the transit and the automatic-vending industries.

NORTH AMERICAN EXPERIENCE WITH SELF-SERVICE FARE SYSTEMS

Vancouver

The first self-service fare system in North America started on June 17, 1977, on the Burrard Inlet Rapid Transit Ferry (Seabus) between downtown Vancouver and a cross-harbor suburb. Volumes of up to 22 000 passengers per day have been carried. Although many passengers transfer from buses, some 60 to 70 percent buy tickets from coin-operated European machines at either terminal. These are issued stamped with the location, date, and time and serve both as fare receipts and transfers to connecting buses. Inspection is by existing ferry personnel on a "time available from other duties" basis; no extra staff was hired except for machine maintenance. There is no monetary penalty. Fare evaders are asked to return to the terminal fare machine to pay their correct fare; the intent was to prosecute for theft of transportation only if necessary and to implement a "citation" type of penalty only if existing legal means proved inadequate or evasion rates were too high. This has not been the case, and after 4 years of operation and more than 15 million passengers, no prosecution has taken place and ideas of penalties have been dropped.

The Vancouver Seabus data indicate that total detected evasion ranged from 0.9 percent to 1.8 percent, with a mean of 1.35 percent (the introduction of unrestricted time-value transfers in 1981 resulted in the mean evasion rate dropping to around 1 percent), but on weekdays, when the majority of riders is regular users, detected evasion ranged from 0.44 percent to 0.75 percent, with a mean of 0.62 percent. This is exceptionally good, better than some European rates and less than the probable evasion on the exact-cash fare buses. In round terms, $80 000 of coin-operated ticket machinery is estimated to save $300 000 per year in manpower (manual collection costs less machine maintenance costs) for a fare evasion loss of about $10 000 per year. The net annual balance is a saving of $280 000 per year, or a return on investment of 350 percent (1978 dollars).

The Seabus experience has shown two valuable lessons. First, evasion is significantly and consistently lower in the northbound direction, where the fare payment terminal is better located and more clearly signed. Passengers cannot get to this terminal without passing close to the brightly colored and lighted fare machines. Second, evasion is much higher on weekends and holidays when tourists and persons unfamiliar with transit and its need for exact-cash fares make up a significant number of riders. These people often cannot or do not read the fare payment signs, do not pay until asked, or do not pay because they have no change. Clear signing and availability of change are therefore important design objects.
Edmonton

The Edmonton LRT opened in 1979 with manned barrier collection. Costs of fare collection were so high that they exceeded all other transportation labor costs (operators and supervisors), and thus a self-service proof-of-payment system was introduced in 1980. The system is not barrier-free but uses turnstiles in conjunction with a fare receipt vending machine called a POP (proof-of-payment) machine. Free-wheeling turnstiles are provided for pass and transfer holders. Additional POP machines are located by the elevators for the handicapped.

Edmonton Transit "fare agents" in supervisors' uniforms have enforcement powers under a city by-law (ordinance) to issue fines (i.e., tickets) between $25 and $100, the higher amount for repeat offenders. Sixty tickets were issued in January 1982, indicating an evasion rate of about 12 percent. There were 4 complaints in that month, but generally the fare agents are positively received and are perceived in more of a supervisor, public information role than one of law enforcement.

Calgary

The Calgary LRT line opened in May 1981 with a self-service barrier-free system, using Xamax (Swiss) automatic ticket-vending machines that also validate 10-ride tickets. Security and fare checks on the "C-Train" are provided by "protective services officers" with powers of and a uniform similar to city "by-law enforcement officers."

By-laws (ordinances) 4M81 and 62M82 provide the following:

- It is unlawful to ride the C-Train without a valid pass, ticket, or transfer in your possession.
- Passengers must be prepared to produce proof of payment at any time during their ride. Proof of payment must be shown to a peace officer (a member of a police force, a special constable, or a by-law enforcement officer) of the City of Calgary upon request.
- Anyone failing to produce proof of payment upon request will be immediately issued a voluntary payment tag for $25.
- Failure to pay to $25 within the time specified on the tag could result in a fine not exceeding $2500, and on default of payment of the fine to imprisonment for a term not exceeding 6 months, unless the fine is paid sooner.
- The transit platforms at Anderson, Southland, Heritage, Chinook, and Erlton Stations are restricted fare areas, and you must have a valid ticket, transfer, permit, or pass in your possession on the platform.

An evasion study was under way in March 1982. Early experience indicates an evasion rate of about 12 percent. As in Edmonton, the enforcement officers are seen positively as offering security and information.

San Diego

San Diego initiated LRT service in July 1981 with a self-service barrier-free system using Autelca (Swiss) machines to vend validated tickets or to validate multi-ride tickets ("READY 10"). Uniformed ticket inspectors conduct random checks. The 6 bilingual officers plus a supervisor are each equipped with 2-way radios. State legislation permitted the MTDB Board of Directors to adopt an ordinance that establishes $20 bail and a mandatory court appearance on a third offense. MTDB receives 85 percent of any fine revenue for fare evasion.

The first 6 months of operation showed 2231 citations for evasion among the 829 000 riders checked. This represents 41 percent of the 2,001,000 total riders and an evasion rate of 0.27 percent. As in Vancouver, inspection personnel have time to check a much greater number of passengers than is necessary to enforce payment and also play a major security and information role. San Diego MTDB feels that the inspectors have become ambassadors of the system. They are the only employees of the system exposed to passengers and offer an important public relations benefit. A firm yet positive attitude was stressed during staff training, and this has seemingly paid off with resulting positive attitudes from patrons.

San Diego feels that the system has met and exceeded expectations and demonstrated the cost-effectiveness of self-service barrier-free collection. Although data from other cities are not directly comparable, the performance of the ticket-vending machines in San Diego appears significantly better than elsewhere. The expected initial surge of malfunctions was experienced as the machines were "burnt-in" and maintenance staff and passengers became familiar with the equipment. However, the December 1981 rate of 6.7 percent service calls per machine per month was about half the initial rate and, while higher than the manufacturer's specifications, is still falling. (About 25 percent of these service calls were false reports, and 20 percent were validator jams, in part due to vandalism, in part due to incorrect paper stock, which has been corrected. However, vandalism and machine tampering have not been a major problem. This rate is equivalent to 1 service call per 1660 vends or validations.)

San Francisco

A self-service fare system has been introduced on the cable cars.

Portland

Tri-Met is progressing with the implementation of a systemwide self-service system that is the subject of a separate paper.4

ECONOMIC EVALUATION

Assumptions have been made for a hypothetical LRT line with two levels of patronage. Although many cost estimates may appear approximate and will require adjusting for system specific requirements, the comparative costs of different fare systems are regarded as realistic and revealing. The following general assumptions are made:

- A 10-mile LRT line with 10 stations.
- An average speed of 40 km/h (25 mph) with a round-trip time of 60 minutes.
- Peak loading of 165 passengers per car.
- Two passenger volumes:
 - A: 5000 ppphd (passengers per peak hour duration) = 20 000/day = 6m/year.
 - B: 10 000 ppphd = 40 000/day = 12m/year.
- Service in peak hours:
 - A: 2-car trains every 4 minutes = 15 trains/hour, total 30 cars and spares.
 - B: 3-car trains every 3 minutes = 20 trains/hour, total 60 cars and spares.
- Peak-hour configuration is retained for 13 hours, 6 a.m. to 7 p.m. Then 8 hours of service with A = 1 car/train, B = 2 cars/train. Daily train hours are then A = 450, B = 900.
- One-man train operation self-service proof-of-payment used.
- Revenue collection, off system sales, and ticket printing are assumed identical for all systems.

Estimates are in Canadian dollars (1982).

Barrier Collection

All stations will be equipped with an area of 60 m² (700 ft²) as a fare collection module containing a manned booth and 6 low-level turnstiles that are coin- or magnetic-ticket operated.
Capital costs for fare collection are as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>700 ft² of building at $100/ft²</td>
<td>$70,000</td>
<td></td>
</tr>
<tr>
<td>Land for above (at half of stations only)</td>
<td>$10,000</td>
<td></td>
</tr>
<tr>
<td>6 turnstiles</td>
<td>$25,000</td>
<td></td>
</tr>
<tr>
<td>1 booth equipped with telephone, PA, vault</td>
<td>$20,000</td>
<td></td>
</tr>
<tr>
<td>Underpasses at half of stations, 50 percent of 60,000</td>
<td>$30,000</td>
<td></td>
</tr>
<tr>
<td>Fencing for barrier control</td>
<td>$10,000</td>
<td></td>
</tr>
<tr>
<td>Total per station</td>
<td>$165,000</td>
<td></td>
</tr>
<tr>
<td>Total for 10 stations = $1.65 million</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equivalent annual amount (15 percent) =

Operation with 1 man per station,
- required staff of 50 at union rate with fringe benefit and overhead of $35,000/year*
- 1,750,000
- Turnstile and building maintenance,
 - 2 men = 2 percent
 - 100,000
- **Total annual cost**
 - $2,100,000

Cost per passenger,

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.8 cents</td>
<td>8.8 cents</td>
</tr>
</tbody>
</table>

Comparison

Cost per passenger in cents excluding common costs.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5000 pphd</td>
<td>10,000 pphd</td>
</tr>
<tr>
<td>Barrier (turnstile) collection</td>
<td>35 cents</td>
<td>18 cents</td>
</tr>
<tr>
<td>Driver collection</td>
<td>20 cents</td>
<td>30 cents</td>
</tr>
<tr>
<td>Self-service barrier fare</td>
<td>9 cents</td>
<td>9 cents</td>
</tr>
</tbody>
</table>

Other Factors

All three options have advantages and disadvantages beyond the simplistic economic evaluation above.

Barrier Collection

Only adult cash or coded tickets can be accepted by the turnstiles. Concession and transfer passengers must normally pay their fares to the collector. At busy stations or ones with many transfer passengers, line-ups will occur, or duplicate manning may be necessary. Certain stations may demand a physical layout with more than one entrance. In this case, a separate manned fare collection module would be required. This would increase collection costs by approximately 10 percent per extra manned entrance.

Manned stations permit a high level of security and a higher quality of public information, provided the staff is properly trained and supervised.

Self-Service Barrier-Free Collection

Capital costs for 2 coin-operated ticket machines per car plus validators at $30,000 and $1,000 each plus 10 percent spares:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,980,000</td>
<td>3,960,000</td>
</tr>
<tr>
<td>132 validators</td>
<td>$122,000</td>
<td>$264,000</td>
</tr>
<tr>
<td>Annualized = $320,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,960,000</td>
<td>7,920,000</td>
</tr>
<tr>
<td>264 validators</td>
<td>$264,000</td>
<td>$528,000</td>
</tr>
<tr>
<td>Annualized = $640,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operating cost for a 5 percent check rate, assuming 60 checks per man-hour:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>105,000</td>
<td>210,000</td>
</tr>
</tbody>
</table>

Additional control will use normal proportion of transit supervision. Inspectors will have 30 percent to 50 percent of their time free to deal with security and information needs.

Machine maintenance at 1 man-year per
- 30 coin machines and 1 man-year per 130 validators:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>105,000</td>
<td>210,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total annual costs,</td>
<td>$530,000</td>
<td>$1,060,000</td>
</tr>
</tbody>
</table>

*Typical of large city rates, $11.40 per hour + 35 percent benefits + 15 percent administrative overhead.
inspectors with a multiple role in security supervision and public information can provide a high perceived level of presence.

Other Costs

Common to all systems are certain additional costs: All options—in fact, any fare system—should offer the convenience of prepayment and the concomitant advantage of an advance cash flow (a float). All three options will vary with changes in the basic assumptions. This, together with sorting and collection crew. If arrangements must be established with an armored car money service company or a 2-man storage depot—under easily secured conditions.

Sensitivity Analysis

All three options will vary with changes in the basic assumptions:

- Length of route will change the running time and hence the number of vehicles and operating staff. This is a disadvantage for the driver collection option with its onboard labor but has minimal impact on the other two options. Driver collection costs are almost proportional to round-trip time and hence route length.
- Number of stations affects driver and SSBF collection only slightly (other than where this changes running time). Barrier collection costs will change in direct proportion to the number of stations.
- Speed and hence travel time will have an almost inversely proportionate change in the costs of driver collection, with little effect on the other options.
- Passengers per car including different car sizes (4-axle versus articulated) will have an almost proportionate change in driver collection costs, with no impact on the other methods.
- Passenger volumes in cases A and B give different costs for different volumes. Barrier collection is independent of volume up to the point where volume at an individual station requires more than one manned collector’s booth. In effect, costs fixed by the number of stations are shared by the applicable volume of passengers. Driver collection is proportionate to volume at high volumes. However, where volume is so low that only single-car operation is required, no extra staff is needed beyond the one operator per car. This favors driver collection at volumes below about 3000 passengers per day.
- Peak versus off-peak passenger ratio changes will reduce the cost of driver collection substantially if low off-peak ratios allow reduced train consists at these times. For example, in case A, multiple-unit operation only during the peak will reduce costs from 20 cents to about 12 cents per passenger.
- Unmanned barrier stations with automatic equipment (possibly with closed-circuit television surveillance from an adjacent manned station) will reduce costs in proportion to the number of manned stations plus some extra equipment costs. Evasion potential increases with the availability of concession fares. For example, with only 5 manned stations, costs would reduce to about 15 cents for case A and 19 cents for case B per passenger.
- Capital cost estimates are given at median 1981 prices. Reductions are possible by using the simpler designs—for example, if only 3 fares need be vended rather than multiple-tariff zone fares. This would reduce the capital component of SSBF collection. Costs for the barrier system station module are most subject to variation. More elaborate arrangements, with facilities such as washrooms, crash gates, and automatic vending machines, could substantially increase the estimates. Provisions for handicapped passengers give highest costs for this form of collection.
- Annualization of capital costs in the simplistic approach used assigns 15 percent of total capital cost to each year. This is reasonable for such a comparative exercise. More precise methods would use discounted cash flow and allocate depreciation based on the estimated life of 10 years for machinery and 30 years for buildings.
- Labor costs constitute 88 percent of barrier cost estimates, 98 percent of driver collection cost estimates, and 40 percent of SSBF estimates. All are highly sensitive to labor costs. Although station collectors may be expected to have a lower hourly rate than drivers (operators), many properties use ex-drivers who have developed a physical disability as collectors, with comparable pay. Inspectors and supervisors in the SSBF system can expect to receive a premium rate, but neither variance will significantly affect the overall comparison.

Hybrid Alternatives

It is possible to use driver collection with certain heavy-volume stations equipped with manned barriers to save boarding time. Conversely, on a barrier system, certain low-volume stations can use driver collection via the front door of the first car. SSBF can use the driver to collect fares, reducing or even eliminating coin-operated ticket machines. On bus systems with SSBF collection, drivers can be used to check tickets on a time-available basis at timing points and transfer points where there may be scheduled layover time. Each of these situations is system-specific and requires a special economic analysis.

CONCLUSIONS

All fare systems will gain by maximizing fare prepayment. In the considered range of passenger volumes, self-service is by far the lowest cost. In all cases, SSBF collection costs less than half the cost per passenger of the other options. SSBF systems are fully compatible with other fare systems on connecting modes, provided proof of fare payments is given, such as when a transfer is issued.

The only negative aspects are the additional passenger effort needed with its information requirement and the
enforcement process. Early fears that Canadian and U.S. legal systems were not amenable to enforcement have been dispelled by successful systems in Vancouver, Edmonton, Calgary, and San Diego. Edmonton is particularly revealing in that it started with a barrier system but within 2 years converted to self-service as an economic measure. In all 4 SSBF systems, evasion is now at or below 1 percent and is well below anticipated levels. Machine maintenance varies from satisfactory to very good. Vandalism has been shown to be a minor problem. The legalities of ticket inspection and enforcement have proved workable under different jurisdictional and legal systems. The protected benefits of added security and information services offered by enforcement staff have exceeded all expectations.

Any city that can adequately control and administer parking meter enforcement should be able to handle self-service. The self-service, barrier-free, proof-of-payment system has often been labeled as an "honor system." In fact, increasing fraud or potential for fraud on conventional transit fare collection systems makes these more of an "honor system" than self-service. Not only is SSBF clearly the preferred option for new LRT systems in a wide range of passenger volumes, but it may also have merit for use on the entire transit system. It now appears that Portland, Oregon, will be the first to implement this systemwide. The results could have a major impact on the entire future of transit fare collection in North America, which is still geared to concepts dating from when fares were a nickel and labor cost 15 cents an hour.

REFERENCES

San Francisco Muni Metro: Operating Issues and Strategies

DANIEL ROSEN and LEONARD OLSON, San Francisco Municipal Railway

The advent of a light rail vehicle system presented the San Francisco Municipal Railway (Muni) with new challenges associated with operating a high-speed subway system. The Metro, as the system is known, is a subway and surface operation on five existing streetcar lines in San Francisco. It carries about 120,000 passengers per day. Muni was able to run extensive tests with its new fleet of LRVs before starting revenue service to check operating characteristics, especially the ability to couple and run as a multi-car train. Muni's start-up strategy for a gradual phase-in of LRV service provided opportunities to learn about a far more complex operating environment than traditional streetcar operation. It became apparent in the early operational phases that a traditional schedule approach was unworkable. Before full-scale operation began, it was decided to abandon the usual schedules and use a "dynamic schedule." By headwaying the cars and providing a pool of fallback operators, it was hoped to maximize the use of the LRVs and help meet the ever-increasing demand of Metro passengers. This headway and fallback system was refined to help Metro break the turnaround bottleneck at the Embarcadero Station, which limited the system's capacity. In addition, a central trainmaster at Van Ness Station improved the consistency of service. The headway and fallback system's shortcomings include partially developed crew dispatching and trainmaster procedures and stacking of outbound trains caused by system saturation.

The five existing Muni streetcar lines are all that remain of an extensive network of electric street railways that once served most areas of San Francisco. Most of these lines were discontinued before or immediately after World War II. The 44 miles of double track in the five existing lines survived principally because of their exclusive rights-of-way, which were not, and are not, readily convertible to motor bus use.

Three of the five streetcar lines (K, L, and M) use the Twin Peaks Tunnel, which was completed in 1917. One of the lines (N) uses the Sunset Tunnel, completed in 1928. The fifth line (J) partially uses an exclusive right-of-way parallel to Church Street. Before the completion of the subway, all five lines used the same tracks for more than 2 miles on Market Street. At Duboce and Church Streets, in the Upper Market area, two of the lines separate from the other three: The N Line proceeds west to the Sunset district; the J Line serves a portion of the Mission district; and the K, L, and M lines travel through the Twin Peaks Tunnel to serve, respectively, the Ingleside, Parkside, and Ocean View districts.

This is the surface portion of the existing Muni streetcar network that has been transformed into a light rail vehicle system called Muni Metro. The primary objective of this modernization was to provide significantly improved speed, capacity, comfort, reliability, and safety to the patrons of the existing streetcar system. One of the major improvements provided by the Muni Metro has been the replacement of 2 miles of surface street operations on Market Street with nearly 5.5 miles of subway. This subway includes four stations in downtown San Francisco—shared by occupying the upper level of the BART subway—plus three new Muni Metro-only subway stations along Market Street. In addition, one subway station is to be remodeled in the Twin Peaks Tunnel, and one new station is at West Portal.

In addition to the subway improvements, the surface operations of Muni Metro were upgraded: The aging track and power distribution facilities were repaired or replaced; facilities were provided to aid the separation of rail traffic and vehicular traffic; and additional passenger-loading islands were constructed.

One hundred new U.S. standard light rail vehicles (SLRV) were procured for service on the Muni Metro. These vehicles were built by the Boeing-Vertol Company under a contract signed in 1973. The cars are capable of speeds up to 50 mph, are articulated to facilitate curves in streets, and have steps adjustable to high and low. High