IAN V. OLIVER, Ontario Ministry of Transportation and Communications

There are two major areas in which we see a critical need for more appropriate analytical tools to support transportation decisionmaking at the strategic policy and systems-planning levels. These are the areas of urban transportation and intercity goods movement and personal travel.

In the urban area, we need to be better equipped to test policy or system-level decisions by answering a series of "what if" questions, which would need to address the whole range of exogenous, as well as endogenous, variables affecting our traditional views of the transportation supply-and-demand relationships.

In the intercity area (nonautomobile mode), we are entering a period in which state or provincial levels of government in North America are identifying a role for themselves that is significantly different from the traditional regulatory one. We do not have the same in-depth knowledge and understanding of this essentially private-enterprise domain as we do of urban transportation and rural highway sectors.

New policies and programs are attempting to address intercity needs on the basis of minimal standards of accessibility, mobility, shipper and passenger service, etc., while at the same time seeking to preserve or enhance the commercial viability of the private carriers.

In the intercity area, we need methods of determining the current and potential market responses to any new initiatives for which government is the proponent. The implications of any initiatives proposed by government agencies need to be tested beforehand and monitored during implementation against factors related to public response, revenues and costs, carrier viability, and public expenditures.

More specifically, our future efforts in the area of demand analysis and forecasting techniques must emphasize the development and application of methods that are more responsive to the quick-turnaround requirements of today's decisionmakers. In other words, we need methods that are fast, economical in terms of cost and input data, and transparent to the decisionmakers. We must be able to easily comprehend the relationship among the model structure, the inputs, the outputs, and the sensitivity of the decision choices to these variables within the broader context of uncertainty in the environment that affects the transportation sector.

In order to be relevant to real-world requirements, travel demand analysis and forecasting methods need to be translated, simplified, and applied as the discrete steps of the traditional four-stage process rather than as mystical computerized operations contained within a black box.