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Tools of Transportation Systems Analysis 

JOELL. HOROWITZ, University of Iowa 

Travel decisions frequently entail choices among 
discrete sets of alternatives, such as frequencies, 
destinations, modes, and routes of travel, and a 
large proportion of travel behavior research and 
practical travel demand analysis is oriented toward 
predicting the outcomes of such choices. A con-
venient behavioral and mathematical framework for 
modeling these choices is provided by a class of 
mathematical models called discrete-choice random-
utility models. These models are based on the as-
sumption that an individual's preferences among the 
available alternatives can be described with a 
utility function and that the individual selects the 
alternative with the greatest utility. The utility 
of an alternative is represented as the sum of two 
components: a deterministic component that accounts 
for systematic effects of observed factors that 
influence choice and a random component that ac-
counts for the effects of unobserved factors. The 
random-utility model then predicts the probability 
that a randomly selected individual with given 
values of the observed factors will choose a par-
ticular alternative (i.e., the probability that the 
utility of the particular alternative is greater 
than the utilities of all other alternatives). The 
multinomial log it (1,2) , multinomial probit (3-5) 
and generalized-extreme-value (6,7) models are three 
well-known examples of discrete-choice random-
utility models. (See the work of Domencich and 
McFadden (1) and Rensher and Johnson (8) for discus-
sions of the behavioral foundations of these models 
in the context of travel analysis.] 

Many of the fundamental concepts of random-
utility modeling have been known for more than 50 
years (9), and some of these concepts were used in 
travel demand analysis as early as 1962 (10). HOw-
ever, the development of random-utility modeling as 
a practical analytic technique did not begin until 
the late 1960s, and random-utility models were not 
brought forcefully to the attention of the trans-
portation community until the early 1970s. It was 
argued then that random-utility models had several 
important theoretical and practical advantages over 
other available travel demand modeling approaches 
such as the well-known four-step process. The main 
advantages claimed for random-utility models were as 
follows: 

They are based on an explicit principle of 
human behavior, whereas other available models are 
not; 

They can treat a wider range of travel 
choices, interactions among travel choices, and 
policy variables than can other available models; and 

They make more efficient use of data than do 
other available models. 

It was argued that these advantages enable random-
utility models to forecast travel demand more ac-
curately and less expensively than do other models. 

Since the early 1970s, there has been much re-
search on theory and methods of random-utility 
modeling, and random-utility models have been used 
in a wide variety of practical travel demand anal-
yses. As a result, the random-utility approach to 
travel demand modeling is understood much better now 
than it was 10 years ago. The purpose of this paper 
is to review current knowledge of random-utility 
modeling that affects practical travel demand anal-
ysis and to identify the implications of this knowl-
edge for practice. Three broad questions related to 
this objective are addressed: 

Do the initially claimed advantages of 
random-utility models still appear to be advantages 
and, if so, to what extent are these advantages 
being exploited in practice? 

What additional issues affecting the use of 
random-utility models have arisen since the early 
1970s, and what are their implications for practical 
travel demand analysis? 

What important problems concerning the prac-
tical application of random-utility models remain 
unsolved? 

The remainder of the paper is organized as fol-
lows. The next section reviews the main concepts 
underlying random-utility models and summarizes the 
methods normally used for developing empirical 
models; this section provides a basis for the sub-
sequent discussion. The third section evaluates the 
initially claimed advantages of random-utility 
models, and the fourth discusses additional issues 
that have arisen during the subsequent 10 years. 
Concluding comments are also presented. 
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BASIC CONCEPTS AND METHODS 

Let an individual face a set of J mutually exclusive 
alternatives, one of which must be chosen. Let C 
denote the set of all available alternatives, and 
for each j c C let Z1 denote the vector of at-
tributes of the individual and alternative j rele-
vant to choice among the alternatives in C. The 
fundamental premise of random-utility modeling (as 
well as of many of other models of human behavior) 
is that there exists a function U of the attributes 
with the property that for any two distinct alter-
natives i and j in C, U(Z) > U(Zj) if and 
Only if the individual prefers j to i. U is called 
a utility function. 

It is generally recognized that the attributes of 
individuals and alternatives that are relevant to 
choices among travel options are not all known to 
analysts and that it is usually not feasible to 
observe (or measure) the values of all the known 
attributes. In random-utility models, this inherent 
uncertainty as to the identities and values of a 
potentially large set of attributes is dealt with by 
dividing the utility function into deterministic and 
random components. The deterministic component is a 
function of the observed attributes of individuals 
and alternatives and accounts for the systematic 
effects of these attributes on choice. The random 
component accounts for the effects of the unobserved 
attributes. Mathematically, the utility U1  of an 
alternative i is written as follows: 

Uj =V(X,O)+ej(X) 	 (1) 

where 

Xj  = vector of observed attributes of the in- 
dividual and alternative j, - 

8 = vector of constant parameters, 
V = deterministic function, and 

ej = random variable. 

The notation Cj(j, 0) signifies that the probability 
distribution of Cj may depend on X. and 0. In typi-
cal transportation applications, observed attributes 
of individuals might include income, automobile own-
ership, and household size. Unobserved attributes 
might include health, social status (except as indi-
cated by income), occupation, and schedule commit-
ments that affect travel choices. Observed attri-
butes of alternatives typically include travel times 
and costs and, if the alternatives are locations, 
employment and population levels. Unobserved attri-
butes of alternatives usually include reliability 
and comfort if the alternatives are modes and 
prices, quality, and variety of available goods and 
services (except as indicated by employment and pop-
ulation levels) if the alternatives are locations. 

An individual chooses alternative j rC if Uj  
> U for all i c C such that i = j (i.e., if j 
is preferred to all other available alternatives). 
In random-utility models, choice cannot be predicted 
deterministically because the utilities are random 
(or, more fundamentally, because of the dependence 
of the utilities on unobserved attributes of in-
dividuals and alternatives). Rather, random-utility 
models give the probabilities that each of the 
available alternatives is chosen. Let X denote the 
matrix 	 Then the probability that a 
randomly selected individual chooses alternative ) 
C C is 

P(j IN, 1, Q = Pr(Uj  > U1  for all ieC,i*j) 	 (2) 

or 

P(JIX, 0 , C) = Pr[V(X, 0) + ej > V(X1, 0) + ei for all icC, i * j 	(3) 

An explicit functional relation between the 
choice probabilities and the deterministic compo-
nents of utility can be obtained if the probability 
distributions of the random-utility components are 
known or assumed. The simplest assumption that 
leads to useful models is that the random variables 
ci 	(i = 1,2,... ,J) are independently and identi- 
cally distributed (lID) with the followinq distribu-
tion function (the Gumbel Type I extreme-value 
distribution) 

F(c) = exp [-exp(-c)] 	 (4) 

The choice probabilities are then related to the 
deterministic components of utility through the 
well-known multinomial logit model: 

P(jIX, 0, C) = exp[V(X, 0)] /, 	exp[V(X, 0)] 	 (5) 

Other distributional assumptions that yield useful 
choice models are that the C's are multivariate 
normally distributed, thereby leading to the multi-
nomial probit model (3-5), and that the C's have a 
generalized extreme value (GEV) distribution, there-
by leading to the GEV model (6,7). The sequential 
or nested logit model can be obtained as a special 
case of the GEV atodel by choosing appropriate values 
of the parameters of the GEV distribution. 

The values of the constant parameters 0 rarely 
are known a priori in practice. They must be esti-
mated by fitting the model to data consisting of 
observations of the choices and values of the at-
tributes (or explanatory variables) for a random 
sample of individuals. The method of maximum like-
lihood usually is used for this purpose. [Discus-
sions of the technical aspects of maximum-likelihood 
estimation of random-utility models may be found 
elsewhere (2,3,7,11).] 

If the estimation data set contains observations 
of large numbers of independent choices corre-
sponding to each set of values of the explanatory 
variables (i.e., independent repetitions of the 
observations), it is possible to use regression 
techniques to estimate the values of the parameters 
0. The Berkson-Theil method for logit models (1,2, 
12) is a well-known example of this estimation tech-
nique. Berkson-Theil and other regression-based 
estimation methods usually cannot be used when the 
estimation data consist of observations of real 
choices among real travel options since the nec-
essary repetitions of observations rarely are avail-
able. However, the methods can be useful when the 
data are generated by design in laboratory environ-
ments, where repetitions can be incorporated into 
the experimental design, simulated by asking re-
spondents to indicate the percentages of the time 
they would make various choices, or avoided entirely 
by asking respondents to assign cardinal rankings to 
their preferences among the alternatives. [Seethe 
paper by Louviere and others (13) for examples of 
the use of the BerksonTheil method to estimate logit 
mode-choice models from laboratory-generated data.] 

Regardless of the estimation technique used, the 
computations associated with parameter estimation 
are simplified greatly when the deterministic com-
ponent of the utility function is linear in the 
parameters, i.e., when 

V(X, D = i() 	 (6) 

where f is a known, vector-valued function. Ac-
cordingly, most practical applications of random-
utility models are based on the assumption that 11 
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has this form. Note that linearity in parameters 
does not imply linearity in the explanatory vari-
ables Xj since the components of f can be, and in 
practice often are, nonlinear. There is no be-
havioral justification for the linearity-in-
parameter assumption, but the assumption can be 
justified mathematically by the observation that any 
function satisfying certain broad regularity condi-
tions can be approximated arbitrarily well by a 
polynomial, which is a linear-in-parameter form. In 
principle, this observation implies that only 
linear-in-parameter forms need to be considered in 
developing specifications for the utility functions 
of random-utility models. However, in practice an 
inconveniently large number of polynomial terms may 
be needed to achieve satisfactory approximations to 
functional forms that psychological theory or other 
considerations may suggest are useful. Accordingly, 
the specifications of the function f that are used 
in practice often include nonpolynomial components 
(e.g., logarithms or quotients of explanatory vari-
ables). There also are situations in which theo-
retical or empirical considerations may suggest the 
desirability of using nonlinear-in-parameter utility 
functions. Although parameter estimation with non-
linear-in-parameter utility functions is more dif-
ficult than parameter estimation in the linear-in-
parameter case, it is by no means impossible. [For 
examples of random-utility models with nonlinear-in-
parameter utility functions, see studies by Lerinan 
and Louviere (14), Daly (15), and Koppelman (16).] 

INITIALLY CLAIMED ADVANTAGES 

Behavioral Basis 

If there were convincing empirical evidence that the 
utility-maximization principle provides a correct 
description of travel behavior, random-utility 
models clearly would be superior to other models in 
both theoretical and practical terms. The use of 
other models would be justified, if at all, only if 
they were good approximations to random-utility 
models. Unfortunately, there is no empirical evi-
dence either for or against the validity of utility 
maximization as a principle of travel behavior. it 
is worth noting, however, that in certain situations 
not related to travel it has been found empirically 
that some individuals' preferences are intransitive 
and therefore inconsistent with utility maximization 
(17,18). Although this finding has no immediate 
application to travel analysis, it does demonstrate 
that the utility-maximization principle is neither 
tautoloqical nor unchallengeable, and it suqgests 
the possibility that the principle may be testable 
empirically in travel-related contexts. 

Since there is at present no empirical evidence 
concerning the validity of utility maximization as a 
principle of travel behavior, it is necessary to 
find other grounds for evaluating the principle as a 
basis for travel demand analysis. One possibility 
is to examine its intuitive plausibility. Some 
investigators have suggested that utility maximiza-
tion lacks plausibility for reasons such as the 
following: 

Utility maximization seems to preclude non-
compensatory decision rules, although such decision 
rules may be used in some circumstances. For exam-
ple, an individual may refuse to use a mode that is 
perceived as being unsafe, regardless of how attrac-
tive the mode is in other respects. 

Utility maximization seems to ignore the 
possibility that some individuals' travel decisions 
may be constrained by schedule commitments or other  

factors, thereby precluding choice of certain 
seemingly attractive alternatives. 

The utility-maximization principle seems to 
imply that individuals have knowledge of and evalu-
ate all alternatives independently and simulta-
neously. However, in cases where there are large 
numbers of alternatives, some may be unknown to any 
given individual and others may be evaluated by 
using a sequential decisionmaking process. Sequen-
tial processes also may be used if the alternatives 
are perceived as belonging to groups such that the 
members of each group are similar to one another and 
the members of different groups are dissimilar. 

Although these criticisms usually are directed at 
random-utility models as a whole, they are more 
appropriately applied to the particular forms of 
models that are in current use. It is not difficult 
to construct random-utility models that incorporate 
noncompensatory decision rules [e.g., the elimi-
nation-by-aspects model (19-21)]. Lack of knowledge 
of alternatives and constraints precluding the 
choice of certain alternatives can be dealt with by 
excluding unknown or precluded alternatives from an 
individual's choice set. Simple models of choice-
set generation have been proposed by several in-
vestigators (22-24), and additional research may 
make it possible to relate choice sets to observed 
attributes of individuals and alternatives. [See 
paper by Landau, Prashkar, and Alpern (25) for some 
initial efforts in this area.] Finally, the elimi-
nation-by-aspects and sequential logit models are 
examples of sequential decision models that are 
consistent with utility maximization. With the 
exception of the sequential logit model, which is 
used relatively frequently (7,26), these variants of 
random-utility models have not entered practice, and 
most require further developmental work before they 
will be ready for practical application. Until this 
developmental work occurs, it will not be possible 
for practical random-utility models to exploit the 
ability of the utility-maximization principle to 
accommodate a wide variety of seemingly different 
and, in some circumstances, highly plausible be-
havioral principles and decision processes. 

If utility maximization is a correct or approxi-
mately correct principle of travel behavior, one 
might hope that its use would bring certain prac-
tical benefits in addition to increased realism and 
accuracy of models. Examples of such benefits are 

Guidance regarding the correct functional 
specifications of travel-demand models, 

Transferability of models among geographical 
areas, and 

Ability to forecast demand for alternatives 
not present in the estimation data set (e.g., new 
modes). 

With regard to the first of these benefits, ad-
herence to the utility-maximization principle does 
not prevent models from being misspecified. (Speci-
fication errors in random-utility models are dis-
cussed in greater detail in a later section of this 
paper.) However, the principle provides modest 
guidance on specification by excluding models that 
are clearly inconsistent with it (e.g., models that 
permit intransitive preferences). Depending on the 
tastes of the analyst, models whose consistency with 
utility maximization is questionable (e.g., sequen-
tial logit models in which the coefficient of the 
inclusive price term lies outside of the interval 
[0, 1)) also may be excluded. In addition, the 
utility-maximization principle provides analysts 
with a useful conceptual framework for thinking 
about how models should be specified. 
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The situation regarding qeographical transfer-
ability and predicting demand for new alternatives 
is less encouraging. Among the few reported in- 
vestigations of geographical transferability, two 
resulted in acceptance of the hypothesis that the 
models being considered could be transferred without 
changing their functional specifications or the 
values of their utility function coefficients 
(27,28). However, most investigations have resulted 
in rejection of the hypothesis of geographical trans-
ferability (29-32). In addition, the two available 
empirical studies of the ability of random-utility 
models to predict the demand for a new mode (both of 
which used the same data) suggest that at present 
such predictions cannot be made reliably (29,33). 

There are many possible reasons for the failure 
of random-utility models to be transferable among 
geographical areas or to give reliable predictions 
of demand for new modes (34,35). Three particularly 
likely ones are as follows: 

The probability distributions of the random 
components of models' utility functions may be dif-
ferent in different geographical areas. 

Knowledge of the distributions of the random-
utility components for existihg modes may provide 
little information on the distribution of the 
random-utility component for a new mode, making it 
necessary to guess (perhaps erroneously) the new 
distribution. 

Errors in measurements of explanatory vari-
ables (especially level-of-service variables) and 
the use of zonal aggregate or proxy variables (e.g., 
to represent the attractiveness of alternative des-
tinations) may bias models in ways that differ among 
geographical areas and modes (31,33). 

The first of these reasons may explain the obser-
vation that a model's geographical transferability 
sometimes can be improved greatly by using data from 
the new area to reestimate the values of any alter-
native-specific constants in the utility function 
(32). Reestimation of alternative-specific con-
stants is equivalent to reestimating the means of 
the distributions of the random components of 
utility. Further improvements in geographical trans-
ferability may be achievable by using the data from 
the new area to rescale the remaining utility func-
tion coefficients (36). This is equivalent to re-
estimating the variances of the distributions of the 
random-utility components. Koppelman and Wilmot 
(104) have reported promising results with this 
procedure. Since reestimating alternative-specific 
constants and rescaling other utility function coef-
ficients requires a smaller analytic and computa-
tional effort than does development of a completely 
new model, reestimation and rescaling may provide a 
practical method for obtaining satisfactory models 
in geographical areas where development of new 
models is not feasible. However, additional re-
search is needed to determine the types of models to 
which this procedure is likely to be applicable 
(e.g., work-trip mode choice, nonwork destination 
choice) and the extent of the improvements in trans-
ferability that can be achieved. 

Range of Choices, Interactions, and Policy variables 
That Can Be Treated 

Travel and travel-related choices that have been 
treated with random-utility models include choices 
of 	mode 	(,26,37-,,,), 	destination 
(1,28,31,37,43,45,48-50), 	travel 	frequency 
(1,28,31,40,47,48,50), multidestination travel or 
trip chaining (28,31,48-50,63), time of day of 
travel (1,44,51), residential location (52,53), 

retail location (i.e., a retail store owner's choice 
of where to locate) (54,55), number of automobiles 
owned (39,43,52,53,56), types of automobiles owned 
(57,59), and gap acceptance at intersections 
(60,62). Interactions among choices or joint 
choices that have been treated include mode and 
destination (37,40,43,45); mode, destination, and 
frequency (1,47); mode, destination, frequency, and 
trip chaining (48); destination and frequency (28); 
destination, frequency, and trip chaining (31); 
mode, destination, and trip chaining (49,50); auto-
mobile ownership and work-trip mode (39,56); resi-
dential location, automobile ownership, and work-
trip mode (52,53); and work-trip mode and time of 
day of travel (44). Transportation policy variables 
that have been included in random-utility models 
include a wide variety of travel-time and cost com-
ponents; various indicators of transit comfort, 
convenience, and reliability (44,51,64,67); carpool 
incentives (42,43,65,66) ; and households' gasoline 
allocations in a fuel-rationing program (68). (The 
foregoing reference citations are illustrative, not 
exhaustive. An exhaustive listing of transportation 
applications of random-utility models is beyond the 
scope of this paper.) 

Many of the foregoing choices and some of the 
policy variables can be treated with models other 
than random-utility models. For example, the stan-
dard four-step travel demand modeling process treats 
choices of trip frequency, destination, and mode; 
and the destination and mode models used in the 
four-step process (and occasionally the trip-
frequency model) normally include indicators of 
travel times and costs. However, no other class of 
models currently in use permits treatment of the 
variety and complexity of choices, interactions 
among choices, and policy variables that have been 
treated with random-utility models. 

With the exception of mode-choice modeling, for 
which random-utility models now are widely used, 
most transportation applications of these models 
have been carried Out by individuals who are either 
engaged mainly in research in travel behavior anal-
ysis or closely associated with such research. The 
ability of random-utility models to represent unusu-
ally broad ranges of travel choices and policies is 
not being exploited by wider applications in the 
community. 

One aspect of travel demand analysis that has not 
yet been treated satisfactorily with random-utility 
models is equilibration of transportation system 
performance with such travel choices as frequency, 
destination, mode, and time of day of travel. 
Equilibration is important in practice because traf-
fic engineering and other measures to improve trans-
portation system perfomance may, through their 
effects on travel times and costs, induce signifi-
cant changes in travel frequencies and the other 
choice dimensions. Because travel times and costs 
are determined jointly by the physical capabilities 
of transportation facilities and the choices of 
individual travelfrs, the effects of system improve-
ment measures on travel times and costs Cannot be 
determined independently of their effects on travel 
demand. This problem is difficult to treat with 
random-utility models for two reasons. First, de-
pending on the models being used, it may be neces-
sary to enumerate the routes between each origin and 
destination. This can be a task of substantial 
Computational magnitude. Second, existing network-
equilibration techniques operate with aggregate 
measures of travel demand (e.g., trip tables), 
whereas random-utility models produce disaggregate 
demand estimates. Although numerical procedures for 
aggregating random-utility models are well known 
(69), their use in connection with existing equili- 
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bration techniques entails substantial computational 
difficulty and expense. Analytic aggregation proce-
dures are available for multinomial probit models 
(70), but the use of probit models is not feasible 
in many situations because of their complexity. 
when probit modeling is feasible, its use may help 
to reduce the computational magnitude of the equili-
bration problem. The use of probit models for 
equilibrating travel demand and transportation sys-
tem performance has been discussed by Sheffi and 
Daganzo (71,72). 

Efficiency of Data Use 

Econometric estimation and forecasting with random-
utility models typically require data sets con-
taining observations on several hundred individuals 
compared with the several tens of thousands of ob-
servations that can be required by other modeling 
approaches. The ability of random-utility models to 
operate with relatively small data sets makes these 
models particularly well suited to small-area 
studies, studies involving observations of travel 
behavior in several different time periods, and 
other applications in which acquisition or manipula-
tion of large data sets is not possible. 

Depending on the circumstances, additional econ-
omies in data acquisition and use may be available 
through use of choice-based sampling and estimation 
techniques (73,77). In choice-based sampling, the 
observations are stratified on the choice variable. 
For example, the estimation data for a mode-choice 
model might be obtained from roadside interviews of 
automobile travelers and on-board surveys of transit 
users. In binary choice situations, choice-based 
sampling yields considerably greater estimation 
efficiency than does simple random sampling when one 
of the alternatives is chosen by less than 5-10 
percent of the population (77). The relative ef-
ficiency of choice-based and simple random sampling 
when there are more than two alternatives and the 
relative efficiency of choice-based and exogenous 
stratified sampling (i.e., stratification on the 
explanatory variables and not the choice variable) 
have not yet been investigated. The relative costs 
of data acquisition through choice-based sampling 
and other methods also have not been investigated, 
although it seems certain that some choice-based 
methods (e.g., roadside and on-board surveys for 
acquisition of mode-choice data) are less costly 
than some conventional methods (e.g., home-interview 
surveys). Choice-based sampling and estimation 
methods are not yet being used in practice for the 
development of random-utility models, possibly be-
cause these methods are relatively new and their 
merits in comparison with conventional methods are 
not yet well understood. 

Another method that has the potential for greatly 
improving the efficiency of data acquisition and use 
is the collection of data through designed-choice 
experiments. In these experiments, individuals are 
asked to choose among alternatives whose attributes 
are specified by design. The main advantage of this 
method is that since the alternatives and attribute 
values are controlled, the experiments can be de-
signed to include alternatives that do not yet 
exist, span wide ranges of attribute values, and 
achieve high levels of estimation efficiency. An 
important issue that must be resolved before this 
method can be applied with confidence is the extent 
to which models developed from designed-choice ex-
periments can be used to forecast real choices among 
real transportation options. (Examples of the use 
of designed-choice experiments for developing models 
of travel and travel-related choices are described 
elsewhere (13,14,78-83) .1 

ADDITIONAL ISSUES 

Specification Errors and Specification Testing 

Random-utility models, particularly logit models, 
are subject to a large number of specification er-
rors. Errors that can arise in logit models include 

Misspecification of the choice set; 
Use of an incorrect functional form for the 

deterministic component of the utility function 
(this includes as a special case the use of an in-
correct set of explanatory variables) 

Correlated deterministic and random com-
ponents of utility; 

Random taste variation, i.e., the parameters 
of the deterministic component of the utility func-
tion are not the same for all individuals; 

Nonidentically distributed random components 
of utility; and 

Correlated random components of utility. 

There have been several theoretical studies of 
the magnitude of the errors in forecasts of choice 
probabilities that can be caused by specification 
errors (23,84-86). Although it is risky to attempt 
to draw general conclusions from this limited group 
of studies, the results seem to suggest that errors 
2, 3, and 4 above are particularly serious. These 
can cause errors of more than 100 percent in fore-
casts of choice probabilities and thus are clearly 
capable of destroying a model's practical value. 
The remaining errors appear to be less serious, 
although they too can impair a model's usefulness. 
Errors of up to 50 percent in forecasts of choice 
probabilities have been reported from these causes. 
The limited empirical evidence that is available 
seems to confirm that specification errors can cause 
forecasting errors of these magnitudes (5,87). 

The variety and severity of specification errors 
that can occur in randotr-utility models make it 
important to carry out specification testing as part 
of the development of empirical models. One group 
of specification tests that is used routinely in 
practice consists of examining the signs, 
t-statistics, and possibly ratios of the estimated 
utility function parameters for consistency with a 
priori expectations. These tests have the virtue of 
being very easy to carry out, and they can be useful 
for ruling out models with clearly unreasonable 
properties. However, the tests lack power. Models 
with specification errors that cause large errors in 
the choice probabilities can have parameters with 
satisfactory signs, t-statistics, and ratios and 
therefore escape detection with these tests (88). 

A more powerful class of specification tests 
consists of formal statistical comparisons of models 
with different specifications (88-92). Depending on 
the models being compared, these comparisons usually 
are carried out by means of likelihood-ratio tests, 
Lag rang ian-mult ipl ier tests, or the likelihood-ratio 
index goodness-of-fit statistic. The limited evi-
dence that is available suggests that many of these 
tests have high probabilities of detecting incor-
rectly specified models when the resulting errors in 
the choice probabilities exceed 10-20 percent 
(86,88,92). Moreover, the computational effort 
involved in carrying out these tests is modest. 
However, the tests are not yet in widespread use, 
possibly owing to their newness, the statistical 
formalism associated with them, and the lack of 
generally available computer software for imple-
menting them. [Examples of applications of specifi-
cation tests based on formal statistical comparisons 
may be found elsewhere (5,28,29,31,33,51,89) .] 

The probability of identifying an erroneously 
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specified model when it is compared with one or more 
alternative models depends on the specifications of 
the alternatives. Hence, it is possible that com-
parison tests may fail to identify a highly er-
roneous model due to inadequacy of the alterna-
tives. In addition, comparison tests do not provide 
direct indications of the forecasting errors that 
would be caused by use of an erroneously specified 
model. The possibility of inadequate alternatives 
can be avoided and direct measures of forecasting 
accuracy obtained by comparing a model's forecasts 
of aggregate-choice shares with observations of 
these shares (93). This method of testing models 
has obvious intuitive appeal in addition to avoiding 
complicated statistical formalism, and these charac-
teristics may account for its relatively widespread 
use. However, the method also has some important 
difficulties. One difficulty is that predicted and 
observed aggregate shares both are subject to 
random-sampling errors. Depending on the sample 
sizes used in parameter estimation and aggregation 
and the magnitudes of the true (but unknown) choice 
probabilities, the sampling errors may be very 
large. Although most of the statistical theory 
required to estimate the magnitudes of these errors 
exists, software for carrying out the necessary 
computations does not. Thus, in practice it can be 
difficult to determine whether differences between 
predictions and observations should be attributed to 
random-sampling errors or treated as evidence that 
the model in question is misspecified. 

A more serious difficulty is that it is not clear 
what population groups should be used for computing 
aggregate shares. For example, the population might 
be grouped according to income, location of resi-
dence, trip length, or location of workplace, among 
other criteria. The choice of group affects the 
differences between predicted and observed aggregate 
shares and the magnitudes of the sampling errors in 
these differences, and it can cause the differences 
to be irrelevant to the question of whether a model 
is correctly specified. For example, suppose a 
model is estimated from observations on individuals 
living in the northern suburbs of a city and is 
tested by comparing predicted and observed 
aggregate-choice shares of individuals living in the 
southern suburbs. Then large differences between 
the predictions and observations would indicate that 
the model transfers poorly to the new (i.e., south-
ern) population, assuming that the effects of 
random-sampling errors are known to be small, but 
would not necessarily imply that the model is er-
roneously specified relative to the population from 
which it was estimated. (Of course, knowledge that 
a model transfers poorly to a new population can be 
of great practical importance, depending on the 
intended applications of the model, even if it is 
irrelevant to the question of whether the model is 
correctly specified.) 

Because of these difficulties, comparisons of 
predicted and observed aggregate shares do not now 
provide as firm a basis for identifying erroneously 
specified models as do formal statistical compari-
sons of alternative models. FExamples of applica-
tions of the method of comparing predicted and ob- 
served 	shares 	may 	be 	found 	elsewhere 
(,325,667,93-95) .1 

Data Adequacy 

Erroneous measurements of the explanatory variables 
are well-known causes of error in econometric 
models. In travel demand analysis this problem is 
particularly apparent in random-utility models, 
since these models typically include more explana-
tory variables than do other models. 

There is evidence that the transportation level-
of-service data contained in standard transportation 
data sets may be highly erroneous. These data typi-
cally are obtained from network models and repre-
sent, at best, average values for traffic zones. In 
an analysis of level-of-service data obtained in the 
San Francisco area, it was found that network-based 
data gave particularly poor estimates of the out-of-
vehicle components of transit travel time (96). The 
network estimates were found to be biased, and the 
root-mean-square (RMS) differences between the ob-
served and network values were comparable in magni-
tude to the mean observed values. The RMS errors in 
the network-based estimates of transit and auto-
mobile in-vehicle travel times varied from 25 to 50 
percent of the mean observed values, depending on 
the mode. 

Not surprisingly, erroneous measurements of 
level-of-service variables cause the estimated 
values of the parameters of travel demand models to 
be biased and can lead to highly erroneous forecasts 
(38,96). For example, in the analysis of the San 
Francisco data it was found that use of zonally 
averaged values of observed level-of-service data 
instead of network-based data reduced the error in a 
logit mode-choice model's prediction of Bay Area 
Rapid Transit (BART) patronage from 92 to 23 per-
cent. The remaining 23 percent error is mainly the 
result of zonal averaging of the observations. 
Theoretical analyses have shown that zonal averaging 
of level-of-service or other explanatory variables 
can induce errors of roughly 100 percent in models' 
predictions of choice probabilities (85). 

The large estimation and forecasting errors that 
can result from use of network-based level-of-
service data suggest that in the future increased 
emphasis should be placed on measuring the values of 
level-of-service variables. The relatively small 
data sets required by random-utility models make 
this a considerably less onerous undertaking than it 
would be if data had to be obtained for a model 
requiring observations on tens of thousands of 
individuals. 

Another aspect of conventional data sets that is 
deficient is their representation of locational 
attraction variables. These variables usually are 
limited to indicators of the population, employment, 
and geographical size of traffic zones. Population, 
employment, and size are, at best, crude proxies for 
the characteristics of locations travelers actually 
consider when making destination choices. Empirical 
evidence for the inadequacy of these variables, 
including the possibility that they may cause large 
errors in forecasts of destination choice, has been 
presented by several investigators (31,97,98). In 
the future, efforts should be made to acquire data 
on locational attributes more closely related to 
travelers' decision processes. 

Simplified Methods 

Although random-utility models usually are presented 
in a context of elaborate mathematics and large 
computer systems, they also are amenable to simpli-
fied applications. Useful estimates of the effects 
of transportation policy measures on aggregate 
choice shares, fuel consumption, emissions of air 
pollutants, and costs of transportation services, 
among other impact variables, often can be obtained 
by hand with the aid of a desk calculator (99-101). 
In addition, the small data sets required by random-
utility models make it possible to carry out more 
elaborate computations, such as parameter estima-
tion, on microcomputers. Software packages for 
performing these computations are likely to become 
generally available in the near future. 



TRB Special Report 201 
	

133 

Interval Forecasts and Sensitivity Analysis 

Most forecasts of travel demand are made in the form 
of point estimates with few or no quantitative indi-
cations of the potential magnitude of the errors 
that may be associated with them. However, it is 
generally agreed that these errors can be larqe and 
that it would be useful to have information on their 
potential magnitude. 

There are three basic causes of error in travel 
demand forecasts: 

Random-sampling errors that arise in the 
processes of parameter estimation and model 
aggregation, 

Errors in forecasts of model's explanatory 
variables, and 

model-specification errors. 

The effects of random-sampling errors on forecasts 
can be treated by using standard statistical 
methods, and confidence intervals for the forecasts 
can be obtained. Procedures for doing this have 
been 	described 	by 	several 	investigators 
(4,93,102,103). Many of these procedures require 
relatively modest computational resources. However, 
the mathematics associated with the procedures is 
relatively complex, the required computations usu-
ally cannot be performed by hand, and computer soft-
ware for performing the computations is not gener-
ally available. Consequently, the procedures have 
been used only in a small number of illustrative 
applications (4,103). The results of these applica-
tions suggest that when logit models are estimated 
from data sets containing several hundred observa-
tions, the half-widths of the 95 percent confidence 
intervals for individual choice probabilities are 
roughly 15-30 percent of the estimated values of 
these probabilities. These results reflect only 
sampling errors in the values of the estimated param-
eters. Confidence intervals for aggregate shares, 
which also include sampling errors due to aggrega-
tion, are likely to be somewhat larger. 

The errors in models' forecasts caused by er-
roneous forecasts of the explanatory variables and 
by specification errors can be considerably larger 
than those caused by random-sampling errors (85) but 
are, unfortunately, more difficult to evaluate. 
This is because there are no objective methods for 
estimating the magnitude of errors in forecasts of 
explanatory variables or model specification. Con-
sequently, it is not possible to develop statisti-
cally meaningful confidence intervals for the ef-
fects of these errors. However, it is possible to 
evaluate the sensitivity of models' forecasts to 
judgmentally specified changes in the values of 
explanatory variables and specifications. The re-
sults of such sensitivity analyses provide qualita-
tive indicators of the robustness of models' fore-
casts in the presence of errors in the values of 
explanatory variables and specifications. 

There are two methods for carrying out sensi-
tivity analyses of the effects of errors in fore-
casts of a model's explanatory variables. One 
method consists of varying the values of the explan-
atory variables singly or in groups over judg-
mentally determined ranges and observing the effects 
on the model's output variables. The other method 
consists of assuming a probability distribution over 
one or more explanatory variables and computing the 
resulting distributions of the outputs (4,93). The 
first method is simpler conceptually and easier to 
implement than the second, and it is used occa-
sionally in practice. For example, travel demand 
forecasts sometimes are made for several different 
forecasts of a region's population or land use pat- 

terns. However, the first method can exaggerate the 
uncertainties in a model's output variables. For 
example, assigning all of the explanatory variables' 
values on the boundaries of their assumed ranges of 
uncertainty may produce large changes in the output 
variables, but it may be highly unlikely that the 
true (but unknown) errors in the values of the ex-
planatory variables all would have their assumed 
maximum values simultaneously. The second method 
creates at least the appearance of avoiding this 
difficulty, since the assumed probability distribu-
tions of the explanatory variables can be specified 
so as to make the simultaneous occurrence of large 
errors in several variables unlikely. However, the 
results thus obtained depend on the assumed distri-
butions and can he misleading if these distributions 
are not specified carefully. 

To estimate the effects of specification errors 
on forecasts, it is necessary first to find a means 
of simulating these errors (i.e., of changing the 
model under consideration to represent the occur-
rence of specification errors). It is not clear at 
present how this can best be done, since the model 
adopted for use in forecasting presumably has the 
best of the specifications considered during the 
model development process. One possibility is to 
compute the range of forecasts resulting from the 
use of several differently specified models. This 
method may be particularly useful if it is possible 
to identify several models that fit the estimation 
data set roughly equally well but that give dif-
ferent forecasts of choice when the explanatory 
variables are assigned particular values of inter-
est. However, the method may tend to exaggerate the 
consequences of specification error if the model 
adopted for use in forecasting provides a substan-
tially better fit to the estimation data than do the 
other models used in the sensitivity analysis. 

Another possible way of representing the effects 
of specification error is by varying the values of 
one or more parameters of the model in question. 
This method may be useful for estimating the effects 
of forecasting errors arising from random taste 
variations (assuming that this is not already ac-
counted for in the model) or changes in individuals' 
tastes that may occur during the time period to 
which the forecast applies. It also may be useful 
in cases where a model's forecasts are determined 
mainly by a small set of parameters whose values are 
sensitive to specification. For example, the value 
of travelers' time implied by a model is likely to 
be sensitive to the specifications of the travel 
time and cost terms of the utility function. Thus, 
the effects of specification error on a forecast 
that depends mainly on the value of time might be 
investigated by varying the values of the parameters 
that determine the value of time. 

[Examples of sensitivity analyses of the fore-
casts obtained from a set of random-utility models 
may be found elsewhere (68).] 

CONCLUS IONS 

The main advantages claimed for random-utility 
models in the early 1970s when these models were 
first brought to the attention of the general trans-
portation community were their basis in an explicit 
behavioral principle, their ability to treat a wide 
range of travel choices and transportation policy 
options, and their ability to make efficient use of 
data. In retrospect, the behavioral basis of 
random-utility models and the practical benefits 
associated with it seem to have been exaggerated. 
The utility-maximization principle is clearly useful 
for model development, but its validity remains 
uncertain, and even if it is valid, it does not 
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guarantee that models will be behavioral, causal, or 
free of potentially serious specification errors. 
The other initially claimed advantages of random-
utility models appear to be real and, quite pos-
sibly, even more important now than they were 10 
years ago. In a period of limited resources and 
increased demands for nontraditional outputs from 
the transportation analysis process, the flexibility 
and efficiency of random-utility models are par-
ticularly valuable attributes. However, they remain 
largely unexploited by practitioners. 

Several relatively recent improvements in random-
utility modeling will be ready for widespread prac-
tical application as soon as computer software for 
implementing them becomes available. Examples of 
these are specification tests based on statistical 
comparisons of differently specified models and 
procedures for developing statistical confidence 
intervals for forecasts. The availability of the 
necessary software would make random-utility models 
the only class of operational travel demand models 
with systematic, easy-to-use procedures for specifi-
cation testing and error analysis. Another at-
tribute of random-utility models that may be of 
considerable practical value is their adaptability 
for use in simplified analyses. 

There also are a variety of unsolved problems 
affecting the practical application of random-
utility models. These involve such matters as al-
ternative decision processes, geographical transfer-
ability, prediction of demand for new alternatives, 
computational procedures for equilibrating travel 
demand and transportation system performance, and 
the relative merits of choice-based and exogenous 
sample designs, among others. Further research on 
these problms would be highly desirable and could 
significantly enhance the already substantial prac-
tical advantages of random-utility models. 
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