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Foreword 
This Special Report was prepared to summarize and evaluate 
the theory and application of sonic testing to bituminous mixtures. 
It is a state-of-the-art report and contains no new test data. 
The report summarizes and evaluates contributions to the 
theory of sonic testing, the development of sonic test apparatus, 
and the application of sonic testii^ to bituminous mixtures. 

Modulus of elasticity as determined by the sonic test is a 
measure of stiffness and is related to resistance to cracking of 
bituminous pavements, especially at low temperatures. Since 
the sonic test is a nondestructive type of test, i t is useful in 
studying progressive deterioration and weathering of bituminous 
mixtures in the laboratory. 

This report was written for the use of paving technologists 
in carrying on future research on bituminous mixtures and in 
developing standard test methods. It is hoped that this report 
wi l l further stimulate application of sonic testing to research 
on bituminous pavii^ mixtures. 

—L. F. Rader 



s t a t e of the Art 
Theory and Application of 

Sonic Testing to Bituminous IMixtures 
H. HONG* 

Associate Professor of Civil Engineering 
Ohio State University 

THIS REVIEW of sonic testing is a state-of-the-art literature survey conducted by the 
Subcommittee on Simimary and Evaluation of MC-A4 (Committee on Mechanical Prop
erties of Bituminous Mixtures). The purpose of this survey is to provide a consolidated 
comparative study of a number of scattered research activities in a particular area or 
subarea of mechanical properties of bitimiinous mixtures so that (a) future research in 
this particular area or related areas wi l l be facilitated and (b) assistance may be given 
to interested persons to keep abreast with the current state of the art in this particular 
area. 

The sonic method of testing materials has been £y)plied in the qualitative analysis of 
Portland cement concrete beams for a number of years. This testing method is em
ployed to determine the dynamic modulus of elasticity of a specimen in the laboratory 
by measuring the resonant frequency of a specimen. The advantages of this method 
are its simplicity of measurement and its nondestructive nature, which facilitates a 
repeated measurement of a certain physical property over a period of time. This test 
has been one of the important tools for studying the durability of portland cement con
crete in the evaluation of the freeze-thaw test. 

This dynamic testing method, utilizing sonic vibrations, has found very limited 
application in the field of bituminous mixtures to date. However, the advantages of 
this method and the potential of its use are such that i t may be very desirable to ex
plore the possibility of ever greater application to bituminous mixtures, in spite of 
some limitations. 

DISCUSSION OF THE THEORY OF SONIC TESTING 
The basic theory of sonic testing as developed in the study of the modulus of elas

ticity of Portland cement concrete beams is discussed. This basic theory would be 
applicable to the study of some of the physical properties of bituminous-aggregate 
mixtures. 

From the data on resonant frequency for the fundamental mode of flexural vibration 
of laboratory specimens of portland cement concrete and from the weight and dimen
sions of the specimen. Young's modulus of elasticity is determined by means of a for
mula such as 

E = CWn* (1) 

where 
E = Young's modulus, 
W = weight of the specimen, 
n = a resonant frequency, and 

•Chairman, Subcommittee on Summary and Evaluation. 
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C = a factor which depends on the shape and size of specimen, the mode of vibration, 
and Poisson's ratio. 

There has been considerable confusion in regard to the formulas used for computing 
C. An attempt to define factor C is made by (a) discussing the various differential 
equations that have been used for flexural (transverse) vibration of prisms, (b) discuss
ing the shear constant K' in Timoshenko's differential equation, and (c) comparing the 
results from Goens's solution of Timoshenko's equation with results obtained by means 
of the theory of elasticity (1). 

In the transverse vibration of prismatic bars, the following differential equations 
have been developed: 

E r _ ^ a V ^ 9 ! x = o (2) 
P 3x' at' 

Erz* 3*v a*v 2 9*v 
p ax* at'' ax^at* 

(3) 

^ ' J l . ' J l . r ^ J l . . (r^-rJ) 0 (4) 
p ax* at* ax'at' ax'at' 

5 S ! 5 ^ . 4 1 . . 0 (5) 
P ax* at* ax*at* 

Er^* a*v 

ax* at* V * K - o j ax*at* ^ K'G 5t* 
(6) 

where 
p = mass per imit volume, 

rz, Ty = radii of gyration of the cross section with respect to centroidal z- and y-
axes respectively, 

V = displacement (deflection in y-direction), 
X = the coordinate in the direction of length, 
t = time, 
H = Poisson's ratio, 
G = modulus of rigidity (modulus of elasticity in shear), and 

K' = a constant introduced by Timoshenko to account for the effect of shear on 
the slope of the elastic line. 

When a bar vibrates, a cross-sectional element may be thought of as executing two 
movements: a motion of translation laterally, and one of rotation relative to the posi
tion of the unbent neutral axis. In the derivation of Eq. 2 the effects of rotatory and 
lateral inertia and of shear are neglected. But if the thickness of the bar is a relatively 
large fraction of the length, as i t is in most concrete specimens, the rotatory inertia 
must be taken into account. 

Eq. 3, given by Lord Rayleigh (2), differs from Eq. 2 in that a term has been added 
to correct for the effect of rotatory inertia. 

Eq. 4, given by Love (3), differs from Eq. 3 in that a term has been added to correct 
for the effect of another inertia, namely, that due to lateral contraction and expansion 
of the specimen. This term is never of much importance and is zero for prisms of 
square cross sections; therefore, its effect can be disregarded in most cases. 

Eq. 5 is the differential equation used by Mason (4) and Thompson (5). They state that 
the term -rz* (1 + n) ( a | corrects for both rotatory and lateral inertia and quote 

\ ax at / 



Love (3) and Timoshenko (6, 7) as authority. In these details Mason and Thompson are 
in error as may be verified by examining the references cited. Apparently, in obtain
ing Eq. 5 from Eq. 4, Mason assumed ry to be negligibly small and inadvertently used 
the wrong sign for TZ^I ^ \ • Therefore, all formulas based on Eq. 5 are of ques-

V^x^atV tionable value. 
Eq. 6, given by Timoshenko (6, 7, 8), corrects for the effects of shear and of rotatory 

inertia. As none of the preceding equations correct for shear, they are therefore con
sidered less accurate than Eq. 6. 

The constant K' occurring in Eq. 6 has been a subject of discussioa Some investi
gators use the value %, the value suggested by Timoshenko for rectangular sections; 
others use %, the value suggested by Ckiens (9). 

Since in his derivation of Eq. 6 Timoshenko defined K' as the ratio of the average 
unit shear across a section to the unit shear at the neutral axis, i t follows on this basis 
that K' should be % for rectangular sections and % for circular sections. However, in 
the derivation, Timoshenko considered the effect of shear on the slope to be equal to 
the angle of shear at the neutral axis. Generally, in static loading the effect of shear 
on the slope is less than the angle of shear at the neutral axis and therefore one would 
expect K' to be more than Vs- The assumptions used in regard to loadings and supports 
would cause the value of K' to vary. 

Also of importance in the study of the significance of K' is the fact that in his deriva
tion of Eq. 6 Timoshenko neglected the effect of warpii^ of a section on its rotatory 
inertia. When this effect is taken into consideration in the derivation, the result is an 
equation identical with Eq. 6, except that the second K' is then defined in terms of the 
effect of warping on rotatory inertia instead of the effect of shear on slope. However, 
it turns out that the second K' should have a value approximately equal to %, i.e., about 
the same value as the f i rs t K'. 

From the preceding it appears that K' should be about % for rectangular sections. 
Although these and stil l further refinements in the derivation of the differential equation 
would help to establish the best value for K', the most practical answer appears to be 
to use that empirical value that gives results most nearly in accord with those obtained 
by means of the mathematical theory of elasticity (1.). 

The equation giving the necessary relation between the resonant frequency and the 
dimensions, density, and elastic properties of a specimen is called a frequency equation. 

The frequency equation that is found by mathematical derivation depends upon what 
differential equation (or equations) and what boundary conditions are assumed to hold. 
If the ends are free (or, in any case m which the boundary conditions are the same at 
the two ends), the frequency equation can be reduced to either of the following forms 
(1, 9): 

^ • ^ =0 (7) 
tanh a/2 tan P/2 

" * - ^ = 0 (8) coth a/2 cot P/2 

Eq. 7 applies to the f irs t , third, f i f th , etc., modes of vibration with respect to the 
plane midway between the two ends. Eq. 8 applies to the second, fourth, etc., modes of 
vibration, i.e., assymetrical vibratioa The factors a and /3 in Eqs. 7 and 8 depend 
primarily on the ratio of depth in the direction of vibration to length. In Goens's solu
tion (9), the expressions for a and jS are determined on the basis of satisfying Eq. 6. 
The factors M and N are chosen so as to meet the requirement that the ends be free of 
resultant shear force and resultant moment. 

Goens's solution gives the following expressions for a, P, M, and N in terms of r / L 
(reciprocal of slenderness ratio), n, K', and k: 



a = k 

/S = K 

M 

N 

( B V + i j / ' - Ak* 

( B ^ * + l ) ' / " + Ak* 

aA" ( B V + ly/" + Bk» 

|8/k» (B"^* + ly/* - Bk* 

(9) , 
i 

(10) 

(11) 

(12) 

where 
A = ( r / L ) ' 

B = (r/L)» 

1+M 
K' 

l + £ 
K' 

+ 1/2 

1/2 , and 

K' = shear constant; should be %, %, and 0.85 respectively for n equal to 0, Ve, 
and Vs. 

The factor k has a value greater than a and less than P and is related to frequency 
and other properties by the equation 

47r 'n^L* 
r 'E 

% 

E 4ff'n'pL* 
r V 

(13) 

(14) 

After the factors a, jS, M, and N have been found in terms of k for particular values 
of r / L and n, substitution can be made in either Eq. 7 or Eq. 8 as desired and k can be 
found by trial . The lowest value of k that satisfies Eq. 7 corresponds to the first mode 
of vibration, the next lowest to the third mode, etc. 

If the ends of the beam were assumed to be hinged, then M = 0 and Eqs. 7 and 8 would ' 
reduce to tan P/2 = » and cot /3/2 = ». The solution of Eq. 6 for this case is given by 
Timoshenko (8). 

Results have shown that for the same values of r / L and of n, the values of k (and 
consequently the resonant frequencies of vibration) are only slightly less for plane 
stress (thin beams) than for plane strain (wide slab), both of which satisfy the require
ment that the lateral surfaces be free of stress. 

Although a solution based upon the equations of elasticity has not been obtained for 
a prism of rectangular section, i t seems reasonable that the resonant frequency ob
tained by such a solution would lie between those for plane stress and plane straia 
Probably i f the section is nearly square, the frequency would be very close to that of 
a cylinder of the same r / L (1). 

As stated previously, theTactor C in Eq. 1 depends on the shape and size of speci
men, Poisson's ratio, and mode of vibration. From Eqs. 1 and 14: 

ay 3 4ff''L' 
glk* (15) 

where 
g = the acceleration of gravity, and 

I = the moment of inertia of the cross sectioa 



In the limit as r / L approaches zero, a = j8 = k. Furthermore M = N in this limit if 
both ends are free. For this limiting case of r / L approaching zero, Eqs. 7,8, and 15 
reduce to: 

tan ^ + tanh ^ = 0 (16) 
2 2 

cot 2? - cot - = 0 (17) 
2 2 

and 

C- . (18, 
gim* 

respectively, where C is written for C and m is written for the l i m i t i i ^ value of k. 
Thus, C may be expressed as 

C = C'T (19) 

where T (= m*/k*) is the correction factor introduced by Goens (9). From Eq. 19 i t may 
be seen that T is the factor by which values of C based on Eq. 2, i.e., C', should be 
multiplied in order that C based on a more accurate differential equation may be found. 
Consequently, T is the factor by which the values of E based on Eq. 2 should be mul
tiplied in order to obtain the E based upon the more accurate differential equation under 
consideration. 

Thus, Eq. 1 may be written: 

E = CWn* = C'TWn* = [C'Wn*] T (20) 

or as expressed by Obert and Duvall (10): 

_ 47r'L*f*p' 
" . r*m* 

E = p : L i l 4 P T (21) 

where 
f = frequency of vibration, 

E = modulus of elasticity, 
p = density, 
L = length of specimens, 
r = radius of gyration of the section about an axis perpendicular to the plane of 

bending, and 
m = a constant depending on the mode of vibration (4.73 for fundamental). 
The value of T as escpressed in terms of li and r / L may be approximated by math

ematical equations, but graphical solutions expressed in t / L (depth to length ratio) are 
often employed (Fig. 1). 

After T has been determined, the factor C may be obtained by means of Eqs. 18 and 
19. Then for the f i r s t mode of vibration: 

Ci = 0.00020436 y Ti sec* psi (22) 

or 
Cib = 0.0024523 Ti sec* per i a (23) 
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•j- ( RATIO OF DEPTH TO LENGTH OF PRISM ) 

Figure 1. Goens's correction factor Ti vs ratio of depth to length of prism. 

for a prism of rectangular section, and 

Cid = 0.0041632 Ti sec^ per in. (24) 

for a circular cylinder, where t, b = dimensions of rectangular section, t being in the 
direction of vibration, and d = diameter of cylinder. Subscript 1 denotes the f i r s t 
mode of vibratioa 

Graphs of Cib and Cid vs L / t and L/d respectively are shown in Figure 2. With the 
value of C known, the Young's modulus as originally e^qpressed in Eq. 1 (E = CWn') can 
be obtained for the resonant frequencies of various modes of flexural vibratioa 

Dynamic modulus of rigidity (sometimes designated as "the modulus of elasticity in 
shear") may be calculated from the fimdamental torsional frequency, weight, and di
mensions of the test specimen as follows: 

where 
Dynamic G = 

W = 
n" = 
B = 

L = 
R = 

g 
A 

Dynamic G = BW (n")* 

dynamic modulus of rigidity in psi; 
weight of specimen in pounds; 
fundamental torsional frequency in cycles per sec; 
4LR 2 

sec' per s q i a ; 
gA 

length of specimen in in.; 
shape factor: 
1.183 for a square cross section prism; 

a/b + b/a 
for a rectangular prism whose cross-4a/b - 2.52(a/b)' + 0.21(a/b)'' 

sectional dimensions are a and b ia , with a < b; 
gravitational acceleration; and 
cross-sectional area of test specimen in sq in. 



SONIC TEST APPARATUS 
The sonic measurement of the modulus 

of elasticity requires f i rs t , a method of 
supportii^ the specimen so that i t wi l l 
vibrate in some prescribed mode of vibra
tion; second, a method of vibrating the 
specimen in that mode; third, a means of 
measuring the frequency of vibration; and 
fourth, a measurement of the dimensions 
and density of the specimen. 

The dimensions and density of the speci
men can be readily obtained, but the nat
ural frequency is somewhat more difficult 
to evaluate. Not too many years ago the 
natural frequency was found by s t r ik i i ^ a 
specimen with a mallet and comparing the 
sound emitted with that produced by vari
ous tuning forks. This method led to 
errors of comparison besides being limited 
by the small range of vibrations heard by 
the human ear. Today, the determination 
of the natural frequency is done almost 
entirely by electrical instruments such as 
the sonometer. 

The method of mounting the specimen 
determines the mode in which i t wi l l v i 

brate. For the fundamental tone of the longitudinal vibration, the specimen should be 
mounted at the center. For the transverse fimdamental tone and free-free mode of 
vibration, the beam should be mounted at the nodal points, which are 0.224L (L = length 
of specimen) from each end in order that no dampening of the vibrations occur at the 
supports. For the same reason narrow rubber or wooden balls free to rotate are used 
as supports (Fig. 3). 

The electrical apparatus serves a twofold purpose: to produce a sustained vibration 
in the specimen and to serve as a means of determining the frequency of this vibration. 
The apparatus consists of a mechanism for vibratii^ the driver at known frequencies. 

20 25 » » 40 45 50 

ROTO OF LENGTH TO DEPTH FOR PRISM 

OR 

RATIO OF LENGTH TO DIAMETER FOR CYLINDER 

Figure 2. Curves for the graphical determination 
of C for prisms and cylinders. 

LONGITUDINAL FLEXURAL 
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PICKUP 
'AMPLIFIER 

TORSIONAL 

o 
OSCILLO

SCOPE 
3-

AUDIO 
OSCILLATOR 

DYNAMIC TESTING 

APTORATUS 

Figure 3. Diagram of apparatus and beam positions. 
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The specimen is set against this driver and is set in vibration by i t A pickup system, 
much like that used in a phonograph, is attached to one end of the beam to measure its 
energy output. When the frequency of the driving force is equal to the fundamental 
frequency of the beam, the systems are in resonance, i,e., the beam vibrates with maxi
mum amplitude. Other details of the apparatus are well described elsewhere (11). 
Additional details of usage of sonic apparatus given by Davidson (12), Stauss (jJTj and 
Goetz (16) are recommended. 

APPLICATION OF THE SONIC TESTING TO BITUMINOUS MIXTURES 
In the sonic testii^ of portland cement concrete beams, because this material is 

essentially elastic over the whole range of temperature to which it is normally subjected, 
the application of the elastic theory is reasonably valid. Various results indicate that 
the moduli of elasticity determined by sonic and other mechanical means are in reason 
able agreement. However, the physical properties of bituminous mixtures are very 
much subject to temperature. Bituminous mixtures may be considered elastic-plastic 
materials, depending on the specific temperature level. At substantially low tempera
tures, bituminous mixtures become rigid and behave elastically. However, at suffi
ciently high temperatures, bituminous mixtures are essentially plastic. In this plastic 
state, a continuous deformation may occur without fracture or a continuous deformatior 
may occur without increase in stress. For these reasons of temperature susceptibility 
i t is very important to realize the limitations of the sonic testing method as applied to 
the study of the physical properties of bituminous paving mixtures. 

The earliest known application of sonic testing to bituminous mixtures was made by 
Davidson (1^) and Stauss (13) in 1949 under the direction of L. F. Rader atthe Universit 
of Wisconsin. Davidson and Stauss utilized the sonic test in the study of physical prop
erties of asphaltic concrete at low temperatures. They concluded that the sonic methot 
of determining the modulus of elasticity is a suitable test for determining the E of 
asphalt paving mixtures chilled to low temperatures. They also concluded that at room 
temperatures the sonic method is not applicable for determining the modulus of elas
ticity. They further showed that the sonic modulus of elasticity was increased as the 
density of mixture and bitumen content increased (Fig. 4). The effect of moisture on 
the sonic modulus of elasticity decreased as the density of the mixture increased. The 
effect of moisture on the sonic modulus was insignificant at temperatures above 32 F 
(Fig. 5). The size of aggregates did not seem to have any influence on the sonic moduli 
of elasticity. 

4 % BITUMEN 
5 % BITUMEN 
6 % BITUMEN 

10 20 30 40 50 60 70 80 
TEMPERATURE ' F 

Figure 4, Sonic modulus showing the influence of bitumen content. 



Davidson and Stauss related that hand temper plus static loading was not quite sat
isfactory in obtaining uniform density. The beam size was specified as 4 in. by 2/4 in. 
by 18 i a after a number of experiments with several different dimensions. 

Later, at Purdue University, Bawa (14) indicated that a sonic modulus of elasticity 
could be obtained for beam specimens using the theory of sonic vibrations. Yong (15) 
also found that the sonic method of testing would be a useful tool in determining and 
following the relative deterioration of bitumen-^gregate mixtures subject to weathering 
tests. 

Bawa and Yong used the following equation for the determination of Young's modulus 
of elasticity: 

E = CWn" 

where 

C = 0.00323 
bt*' 

b = width of beam, ia , and 
t = thickness of beam, in. 
This equation is basically correct. However, the coefficient 0.00323 of C is correct 

only when the value of T (correction factor proposed by Goens) is 1.3172. As previ
ously indicated, the value of T is dependent upon the depth to length ratio ( t /L) and 
Poisson's ratio. Therefore, for any value of T other than 1.3172, the coefficient 
proposed by Bawa and Yong is in error. Thus, i t is desirable to calculate the value 
of coefficient by considering the dimensions of specimen and Poisson's ratio in order 
to avoid the error that may be introduced by Bawa's proposed coefficient of 0.00323. 

Goetz (16) in 1955 showed that even though the modulus of elasticity values calculated 
from the fundamental frequency measurements with the aid of elastic theory may not 
be strictly valid, particularly at temperatures above 40 F, such measurements do 
provide valuable information concerning the elastic-plastic characteristics of bituminous 

MOISTURE CONTENT 

DRY - SOLID LINE 
SATURATED-DOTTED LINES 

-10 0 10 20 30 40 50 60 70 

TEMPERATURE ' F 

Figure 5. Sonic modulus showing the influence of moisture content. 
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Figure 6. Variation of sonic modulus with 
temperature. 
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Figure 7. Variation of sonic modulus with 
temperature. 

aggregate mixtures and appear to be sufficiently valid at lower temperatures so as to 
provide a measure of stiffness. He emphasized that the nondestructive test is useful 
for the study of accelerated weathering of bituminous mixtures. 

Goetz further showed that the sonic modulus of elasticity increases as the tempera
ture decreases; that there is no consistent relationship between the sonic test values 
and the amount of asphalt in the mixtures; and that the influence of asphalt penetration 
on sonic modulus is very small (Figs. 6 ,7 ,8 ,9) . In comparing the modulus of elas
ticity values determined by sonic method and conventional mechanical means, Goetz 
indicated that at 40 F there is a general lack of correlation between results from sonic 
tests and flexure tests. The sonic modulus of elasticity values are somewhat more 
than ten times as large as modulus values obtained from the flexure test (Fig. 10). 
This discrepancy might have been due to the difference in the rate of strain and the 
level of temperature, which is not sufficiently low. At 70 F the differences in 
modulus of elasticity determined by the sonic test, unconfined compression test, and 
flexure test are in even more serious disagreement than was the case for tests made 
at 40 F. In this case the modulus values determined from the sonic test are as much 
as 1,000 times as great as the values determined from the flexure tests. Therefore, 
it is quite clear that the temperature of the specimen and the rate of strain are of 
critical importance with respect to the modulus of elasticity. 
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Figure 8. Variation of sonic modulus with 
temperature. 
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Figure 10. Comparison of modulus of elasticity 
from sonic and flexure I tests. 

INDIANA AH TYPE B SURFACE COURSE In the fabrication of specimens Goetz 
TEST TEMPERATURE = - I - 4 0 - F Utilized both Cylindrical and beam speci

mens. It was found that cylindrical spec
imens could be vibrated transversely if 
their length was not less than about three 
times their diameter, but vibration in 
other fundamental modes was not possible. 
Furthermore, more power was required to 
vibrate the cylindrical specimens than 
was the case for corresponding beam 
specimens, and calculation of sonic modulus 
was more involved. The beam specimens 
were from 14 to 18 in. long with a cross 
section of 4 by 3 i a Some difference in 
modulus value was noted depending upon 
direction of vibration with respect to the 
4- or 3-in. thickness, which probably was 
due to direction of compaction. As a 
result of these tests, the dimensions of 
beam were standardized at 12 i a by in. 
by 2 in. for maximimi size aggregate of 
% in. 

In compacting specimens, 4-in. diameter 
cylindrical specimens were molded by a 
double-plimger compaction method. Beam 
specimens were formed by impact com
paction followed by static load. However, 
Goetz noted the need for an improved com
paction method and suggested the rolling 
action for compacting beam specimens. 
Based on the author's experience (17), the 
kneading compactor method appears to be by 
far the most suitable for beam specimens. 

Andersland and Gtoetz (18) utilized 
sonic testing for the evaluation of stripping 
resistance in compacted bituminous mix
tures. They indicated that the sonic test 
gave resvdts that revealed the stripping 
qualities of the aggregates employed as 
well as or better than either the immersion-
compression test or the visual stripping 
resistance test. Since specimens for the 
sonic test contained materials of the same 
kind, gradations, and proportions com
pacted in a similar manner as wovild be 
used in actual field construction, the sonic 
test has inherent advantages over both the 

immersion-compression test and the visual stripping test. The sonic test permitted 
observation of progressive stripping on the same specimen (Figs. 11, 12), This proce
dure eliminates errors caused by duplicate specimens having different characteristics 
as experienced in the immersion-compression test. The sonic test appears to have a 
further application in evaluating whether the stripping tendency of a specific aggregate 
or bitumen might be improved by the use of an anti-stripping ^ent. 

Abbott and Craig (19) indicated that, in the determination of age-hardening tendencies 
and water susceptibilli^ of paving asphalt by the sonic method, the sonic method is not 
an effective tool for evaluating the stripping characteristics of cutback paving mixes 
because of the long time required for the sample to reach an elastic state by evaporation 
of solvent (Fig. 13). The hardening of a paving mixture after aging can be followed by 

AGGREGATE, INDIANA GmOATKM 
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3 4 5 6 7 8 
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Figure 11. Immersion period vs retained modulus 
of elasticity using sonic test. 
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Figure 12. Immersion period vs percent total 
strength retained using immersion-

compression test. 

the increase in sonic moduli of the test 
specimens (Fig. 14). The increase in 
sonic modulus parallels the increase in 
imconfined compressive strei^h. For a 
given mix design and a given asphalt, a 
straight-line plot of sonic modulus vs 
compressive strength can be obtained 
(Fig. 15). Water susceptibility of hot-mix 
pavements can be readily determined by 
the sonic method and the effectiveness of 
adhesion-promoting additives evaluated 
(Figs. 16, 17, 18). Sonic modulus is a 
good indicator of loss of adhesion and 
compressive strength even thov^h their 
relationships are not linear. The rela
tionship of penetration of extracted asphalt 
with sonic modulus and compressive 
strength of beams duri i^ oven aging cycle 
is shown in Figure 19. 
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Figure 13. Changes during curing of RC and MC cutback beams showing (A) rate of cutback solvent 
loss, and (B)sonic modulus increase. 
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In the WASHO Road Test (20), a California Division of Highways study indicates that 
he pulse velocity increases with a decrease in temperature. It is seen from Figure 20 
hat the pulse velocity between 20 and 70 F is practically constant and that it decreases 
LS the temperature increases above 70 F. 
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CONCLUSIONS 
The dynamic method as described in this review is believed to give the modulus of 

elasticity of that class of materials which exhibits permanent set and plastic flow be
cause it is not complicated by these factors. The usefulness of the dynamic method 
would seem to be confined, therefore, to whatever use can be made of a knowledge of 
the true elasticity of a material. 

The advantages of the sonic testing are (a) that it does not destroy the specimen 
nor alter i t by the effect of high stress, and thus the specimen may be reused for vari 
ous other tests or even the same test where the effects of some deteriorating agent 
are to be studied; (b) that the test may be performed with simplicity, accuracy, and 
speed; and (c) that very little time and expenditure of money are necessary to com
plete the test. One disadvantage is that this testing method is limited in its applica
tion to a temperature range below 40 F. Further improvement of the testing method 
and greater knowledge may widen the applicability to all temperature levels. 

In view of the potential of the sonic testing method for the study of physical prop
erties of bituminous mixtures, it is deemed necessary to explore the possibility of a 
greater use and to standardize the test method in the future. 
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