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A Blasted Introduction to Artificial Intelligence 

Edward Feigenbaum, in his "Handbook of 
Artificial Intelligence" defines artificial 
intelligence (AI) as "the part of computer science 
concerned with designing intelligent computer 
systems". This is a very easy definition to make, 
since it shifts the burden of definition to another 
one, namely that of "intelligent computer system". 
Feigenbaum then proceeds to define intelligent 
computer systems as those which "exhibit the 
characteristics we associate with intelligence in 
human behavior". Unfortunately, this one is not 
very helpful · either, since we now must define 
intelligence itself, a rather formidable task. 

But even if we were able to define human 
intelligence, we would still 'have a problem, since 
"intelligent behavior", when applied to computers, 
cannot be equated with intelligent behavior in 
general. As little as a hund:red years ago, comput
ing the square root of a number was unequivocally a 
manifestation of human intelligence, since it 
required a number of decision-making steps deoending 
on the signs of intermediate values, remainders, and 
so on. Yet today, nobody would call the square 
root calculating ability of a computer intelligent 
behavior . 

In view of this inability to satisfactorily 
define intelligent behavior as applied to a computer, 
some people have slightly altered the classical 
definition to mean doing with a computer something 
you normally don't expect a computer to be able to 
do. This definition appears to be satisfactory, 
since taking square roots, for example, is something 
you expect a computer to do, so a system that takes 
square roots of numbers is definitely not an 
artificial intelligence system, while a system that 
composes concert music does appear intelligent, 
since computers do not usually compose concert 
music. 

The problem with this new definition is that 
it is self-defeating: the moment one builds a 
computer system that does something you do not 
expect a computer to do, it does it, so it ceases 
to become an artificial intelligence system. As 
paradoxical as this may seem, it actually makes 
some sense: today, one can purchase battery
powered toys at a department store that do a better 
job at synthesizing speech or playing chess than 
the most sophisticated experimental equipment did 
just ten years ago. 

In view of this difficulty in defining what 
precisely artificial intelligence is, perhaps we 
should simply describe a little of its history and 
some of its typical products. AI research has 
traditionally had three distinct objectives: first, 
to understand the high- level workings of the human 
brain by constructing functional computer models 
of human activities, such as vision and reasoning; 
second, to build computers based on the brain 
model; and third, to build a mechanical man, 
perhaps by combining the results of the other two 
efforts. 

The motivation of the first line of research 
is a better und.erstanding of the human brain , and 
any computer functionality that may 1·esult from 
this research is purely secondary. The motivation 
of the second, to build computer systems - both 
hardware and software - patterned after the human 
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brain, is the goal of building better computer 
systems, independently of the speci£ic applications. 

Now the third goal is the most elusive one; 
humans had the dream of building mechanical 
replicas of themselves for at least as long as they 
dreamed of flyin·g. If we have been able to fulfill 
the dream of flying, is there any reason we will 
not be able to build a true robot? Perhaps, but we 
should be very careful not to identify artificial 
intelligence with only ·this goal. If we do, we 
will miss what perhaps are the most useful benefits 
from AI research. However, these benefits are not 
the intelligent machines per se, but rather the 
computer technology that has been developed as a 
consequence of the quest for machine intelligence. 
AI is also not only expert systems. The popularity 
and press coverage tl1at expert systems have recent!) 
received have caused a lot of people to believe that 
the only useful product of artificial intelligence 
research consists of expert systems . 

Historically artificial intelligence had its 
roots in the discipline of mathematical logic, 
sometimes also called symbolic logic, the study of 
the processes by means of which we construct the 
mental models we call mathematics. It was with the 
discovery, by Turing and others, that these symbols 
could be manipulated and operated upon mechanically 
with the same ease as numbers - al though with a 
different set of operations, naturally - that the 
possibility of a computer performing these 
intelligent functions was first postulated. Indeed, 
Lisp, now considered to be the programming 
'lingua franca of the AI co.mmuni ty, can be considered 
either a progi·amming language, or a convenient, 
elegant, an,d powerful method of expressing 
mathematical concepts. 

The first attempts at using computers to 
manipulate symbols for a purpose started by 
defining a simple problem to be solved. The kinds 
of problems that early AI systems were capable of 
handling had two common characteristics: the goal, 
or problem, was very simple to state, but the 
solution to the problem was complex and non-trivial. 
The measure of success used in the development of 
these game-playing systems was this: could the 
program play a better game than the people that 
build it? 

The common technique used in these systems 
was the generation of large sets of alternatives, 
followed by a process of search (for a desired 
solution), usually coupled with procedures that 
reduce the number of alternatives to be evaluated 
to a reasonable subset. In a chess-playing program, 
the alternatives are the sequence- of legal moves 
and counter-moves that can be made by the program 
and its opponent from the current state of the 
board, alternatives that can be structured as a 
tree; the search consists in the successive 
evaluation of each branch of the tree to find the 
most convenient immediate move, evaluation that may 
include not only the eventual end state of the board 
at the end of that branch of the tree, but the 
likelihood of each of the opponent's moves (Figure 1). 

Before these solutions can be generated, 
searched, reduced and evaluated, some SYl!lbols and 
operations must be defined; in other words, a 
representation of the problem must be designed. 
For example, a ches·s-playing system may operate on 
descriptions of the state of the chess board, that 
is, the position of each of the pieces; the opera
tions that can be performed on these descriptions 
would include valid piece movements, or functions 
that measure the desirability of having a piece in 
a certain position relative to other pieces. Other 
symbols that may be involved could include standard 
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Figure 1. Demonstration of alternative moves on a chess board . 
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moves, such as the classical chess opening moves, 
in such a way that the system can easily recognize 
when the opponent has performed such a move, and 
know what the consequences of tl1aL muvt; !h' t ,;. the.Lit 
elaborate analysis. 

In spite of the spectacular performances that 
such systems exhibit - fe1~ human chess players can 
outperform the best chess playing programs today -
these efforts were in a way disappointing because of 
the extremely narrow focus of the results. While 
some of the searching and problem reduction techniques 
developed as a consequence of that research are 
applicable to a large class of problems, the problem 
representation aspects were extremely case-dependent: 
the symbols and ope1•ations developed to solve chess 
moves are of little Ol' no value outside t hat specific 
problem domain. 

This frustration led in the late 1960s and 
early 1970s to a flurry of efforts to find more 
universal problem representations; ideas such as 
problem solving systems and logic reasoning systems 
seemed attainable at the time. At one time work 
actually began on a general purpose problem solver 
system, with no clear limitations on what kind of 
prohlems it could solve . l'lhen it became apparent 
t hat finding truly domain-independent means of re
presenting problems was a little too difficult , 
researchers then directed their efforts to more 
restricted, but still relatively generic problems, 
for example proving mathematical theorems or 
automatic computer programming. 

Also at this time, and perhaps influenced by 
the success of the early game-playing programs, some 
i ndividuals beg11.n t.o make exaggerated claims about 
the practical possibilities of AI systems. Actually, 
this had already happened before , even before the 
term artificial intelligence had been coined. 
Grossly unrealistic estimates of t he potential of 
computers to perform intelligent functions - whatever 
those may be - were common during the ettrly <lays of 
electr onic computers, as exemplified in the contem
porary label electronic brain. 

Figure 2 was produced directly from the 
terminal screen in the Flight Transportation 
Laboratory of the Massachusetts Institute of 
Technology computer complex. Lines with numbers 
beginning with the letter C are the authors' inputs, 
while lines identified ·with the letter D are the 
outputs from M.I.T. 's MACSYMA program. We begin 
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this example by typing in an equation in a form which 
looks very much like FORTRAN. Notice, howeve1-, that 
MACSYMA displays the in1mt back in a form that 
rasamblcs th ... way or..~ would ~·.1ri te this 43qu!\tion on 
a blackboard; this is possible because the represen
tation of that equation used in MACSYMA has concepts 
such as power and denominator. 

We then ask MACSYMA to "solve" for the variable 
Y in that equation; what happens next is that MACSYMA 
recognizes a binomial equation pattern in that 
expression, and invokes the rules to solve such 
equations that we all lea~:ned in high school. If, 
on the other hand , we ask MACSYMA to integrate the 
right-hand side of that equation, it will recognize 
a polynomial pattern, and invoke the classical poly
nomial integration r ules. Whilewe could do that 
ourselves , we would be hard pressed to integrate the 
expression shown in the next figure, which i nvolves 
knowing some rather exotic rules of integration. We 
use MACSYMA frequently in our work, especially to 
manipulate rotation matrices that transform, for 
example, position vectors in radar site coordi nates 
to mosaic- relative coordinates . This kind of system 
which is composed of an i nternal repvesentation of a 
dornain, a set of rules representing knowledge in that 
domain, and a set of conunands that allow the user tu 
invoke the appropriate rule without knowing the 
details of that r ule is called a knowledge-based 
system, or more precisely, a stored-knowledge system; 

Figure 2. A typical MACSYMA session. 

(C1) x ~ 3 • 7·2 • 2 • 1 + 17; 

(01) I • 3 T • 2 T + 17 

(C2) •olY1(41,7); 

SQRT(3 I • 60) • 1 SQRT(3 I · 60) • 1 
(02) [T • • ················-· T • ··················) 

3 3 

(C3) 111t1grato(p1rt(cl,2) ,7); 
3 2 

(03) T • T • 17 T 



Figure 3. A typical MACSYMA session (continued). 

(C4) 1qrt((x+l)/(x-I)); 

(D4) 

(C6) integrate (d4, x); 

(06) 

I + I 
LOG(SQRT(-----) + !) 

I - t 

- 4 (- --------------------
4 

(Ce) rat1imp(d6); 

I • 1 
SQRT(-----) 

I - I 

I + 1 
LOG(SQRT(-----) - I) 

I - I 

4 

I + 1 
SQRT(---.--) 

I - 1 

- -------------) 
:I (I • I) 

--------- - 2 
I - I 
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I+! I+t I+t 
(D6) LOG(SQRT(-----) + I) - LOG(SQRT(-----) - I) + (I - I) SQRT(-----) 

I- I-1 I-1 

the computer program has the knowledge, but does 
not know when and how to apply it unless 
specifically instructed by the user (Figure 3). 

The indisputable success of these stored
knowledge systems, coupled with the failure of 
totally generic problem-solving or thinking 
programs, resulted in the expert system concept. 
Like the stored knowledge system, an expert system 
operates with symbols and operations representing 
knowledge in a particular field, and sets of pre
stored rules which embody knowledge, just like the 
integration r ules of MACSYMA. The expert system, 
however, has two additional ingredients: first, 
the capability of chaining the given rules , perhaps 
with the help of intermediate :results, to reach 
conclusions that are not covered by any single rule; 
and second, logic to direct both the invocation of 
the rules and the chaining of simple rules to 
achieve a specific objective. 

Perhaps the best way to understand the notion 
of expert systerrsis to observe one in operation, 
The next figures will show a typical conversation 
with perhaps the most famous, or successful, of 
all expert systems: the mycin bacterial infection 
diagnostic program. In the mycin system a 
moderately large set of rules (about one hundred) 
is used to store knowledge about bacterial infec

tions. But whereas in MACSYMA the rules were 

Figure 4. A typical mycin session. 

---------- PATl£HT•t 

I) Pa that' a nuo: (fiut· lut) 
••• Frod Smith 

2) Su 

••• Nale 

3) Age: 
••• 66 

4) HaTo you boon able to obtain po1itiT• culturo1 tro• 1 lite 
at which Frod Smith h11 an iaf octioa? ... , .. 

INFECTIOH·t ····------

6) What 11 tho infection? 
•• Primary·bactoremia 

scanned to see if one of them satisfied the request 
typed by the user (e.g., integrate a given expres
sion), mycin rules are automatically activated in a 
complex way by a logic in the program called the 
inference engine, whose puilt-in goal is fixed: to 
determine the best antibiotic treatment for a 
patient whose infection is not precisely known. 

Figure 5. A typical mycin session (continued). 

C) Plea•• giT• the date and approximate ti•• when algu1 or 
1ymptom1 of tho pri•er7-bact1r1mi1 (infoctioa•I) tir1t appeared 
(mo/da/yr) 
••• Nay 6 1980 

Tha moat recent podtiu culture a11ociated with thr, 
primary·bactoremia (infoctloa·I) will bo reforrod to 11: 

----·----- CIJtruRE-1 ----------

7) Fro• what •it• w11 the 1pecim1n for culture·! tak1af 
••• Blood 

8) Pl•••• giTo tho date and time •boa thi1 blood culture 
(culture-I) wa1 obtainod. (mo/da/yr) 
••• Nay II 11180 

Tho tlr1t 1lgnif icant organl1• fro• tbia blood culture 
(culturo·l) will be roforrod to 11: 

To understand why mycin behaves the way it 
does, i ndeed to understand the importance of the 
development of mycin, we have to review briefly what 
kind of problem it is solving. There are thousands 
of bacteria that can cause infections in humans, 
and hundreds of available antibiotic drugs that act 
specifically on a bacteria, or groups of bacteria, 
while having more or less desirable side effects. 
If the identity of the bacteria causing a patient's 
infection were to be known, a very precise anti
biotic treatment could be prescribed . lhfortunately 
full identification of a bacteria from a culture 
requires from a few days to a few weeks, while anti
biotic treatment must begin immediately. Thus, 
treatment is begun with only sketchy data on what 
kind of bacteria is involved - usually a two to 
three hour culture yielding only very basic 
information about the bacteria, not its precise 
identity. 
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Figure 6. A typical mycin session (continued). 

------···· ORCANJSM·l ---------· 

9) tntor tho id•ntitJ of orgontaa-1: 
••• WJ.lmon 

10) 11 orguiioa-1 1 rod or coccua : 
••• rod 

11) Tbt rr11..11 ataia of org1.111••·1 : ... gr&m111g 

12) Ha•• thoro b•ta poaiti•• cultur11 from •ltoa which art NOT 
a11ociat1d with tnf 1ctloa1 about which JOU are 111tlag ad•lcoT 
••• DO 

13) Did orguii1m-l rro• aorobic1llJ? 
••• JU (0 .8) 

14) Did orguitom-1 grow 11.DaorobicallJ 
••• 1•• 

Figure 7. A typical mycin session (continued). 

16) What 11 tho 1u1p1ct1d portal of 1ntr7 of orguit1m-I tato 
tht1 otorilo 1tt11 
••• Cl (O.e) 

NJ tboropJ rocomaoadottoa will bt baud oa tho following 
probable tnf1ctioa(1) a.ad potential cauoat1Yt orgaalam(o): 

INFECTION-1 11 PRINAJIT-BACTEJ\EMIA 
<Item I> Tbt ideatitJ of organioa-1 .. , bt PSEUDONONAS-AEllUCINOSA 
<Item 2> Tb• tdontltJ of organhm-1 ma7 b• kLEBSIELLA·PN£UMONIAE 
<JtH 3> Tbt idtntl tJ of organhm-1 .. , bt E.COLI 
<Item 4> Tho id1ntit7 of organha-1 .. , bt BACTDIOIOES· FRACILIS 
<I tea 6> Tho idontitJ of organilm-1 .. , b• ENTEROBACTER 
<Ittm ti> Tho ldentitJ of orgaah•-1 .. , bt PROTEUS· NON·NIRABILIS 

4tl) On 1 1c1l1 of 0 to 4, •h•r• htghor nW1btr1 indtcato 
tncroaalng ••••rtty, ho• would you rate Fred Smith'• d1gr11 
of etcknua? 
••• 3 

Figure 9. A typical mycin rule. 

Figure 8. A typical mycin session (continued). 

47) Doti Fred Saith h••• 1 cltntc1llJ aignlfic1.11t ollorglc 
r11ction to UIJ uitlaicrobtal ogoatT 
••• AO 

48) Fred Smith'• ••l1bt tn kilogra.ma (or <aW1b1r> pouada): 
70 

Ia ardor to COYtr for It••• <I 2 3 6 e> : 
Cl•t: CENTAMICIN 
Do11: 119 •1 (1.7 ag/kg) qBb IV (or IN} for 10 d171 

Comaeat1: Nodif7 do11 la r1a1l failure 

In order to co•or far It•• <4> 
Cl••: CLINDAJIYCIN 
Do11: 606 mg (B.6 mg/kg) q&h IV (or IN} far 14 day• 
Coma1nt1: If diarrhea or other Cl 1:rmptoa1 daulop, 

patient 1hould be •••luatod for poa1ibl1 
p11udomembr1nou~ coltti1 . 

P~EDio, 7' ;:., ATTl?iBeiT"!i 
I ce.rEcr I nULE 060 I VAlUC: OF A1TR/BuTt: 

(AXD (SAICE CNTXT INFECT PRINAJIY-BACTEJIEH!Al ..._ 
(NEMBF CNTIT SITE STERILSITES) .. ---=:::-....... 
(SAJIE CNTXT PORTAL CI)) - - (L,qU.Sf".S 

( 

(COllCLUDE CllTIT !DENT SACTEROIDES TALLY O.~ CtliiTAiA/T)" 

(ENCLISH·TEIT'---~-:~ 1-~LU~ Of:. 
"" 1

u A17R1aur1:~ 
('OtJCLUSiON "If 1) tho inhction h priiur7-boct1rHta, a.net 

2) tho alto of tho culture i• oat of tho 
1t1ril1 11tea, and 

3) tho •uapoctod portal of ontr7 of tho orga.n11m 
ia tho g11trointoottnal tract, 

Tboa tboro 1• auffictont ••ldanco (0.7) that the 
id1nttt7 of tho organ!•• ta b1ctoroid11 . •) 



The way mycin achieves this objective is by 
assuming a very llll'ge number of possible al tern.a.ti ves 
and then asking the user to provide information that 
it can use to eliminate as many alternatives as 
possible, until all the information is exhausted. 
This technique is known as backwards-chaining the 
rules. 

The conversation shown in Figures 4 to 9 is a 
little long, but interesting. Mycin's questions are 
preceded by a number, while the user's answers are 
preceded by three asterisks. After the usual basic 
questions about the patient, mycin checks in 
question (4) that the basic operating premise, that 
is, the existence of an infection, is indeed true. 
If one we1·e to ans1<1er no to that question mycin 
1~ould simply say goodbye. 

At the very beginning of the conversation 
mycin printed the label PATIENT-!; after question 
( 4) it prints the label INFECTION-I; these labels 
are an indication of the context of the conversation. 
\\'hen humans exchange information verbally we 
implicitly establish a context in which indefinite 
articles such as it or the have a unique meaning. 
Although mycin does not understand English it always 
has a current <;ontext, or im1,licit object of inquii'y 
which begins with the patient, switches to the first 
infection (for that patient), and then may change to 
an organism, to a cultur.e, change back to the patient, 
and so on. 

After establishing that the type of infection 
is known, so that a series of questions leading to 
the identification of the type or possible types of 
infection is not necessary, mycin then proceeds to 
find out what laborato1·y information has been 
obtained on the organism or organisms producing the 
infection. Answers to a question, including the 
answer "don't know", dynamically modify the sequence 
of successive questions. Note also that the user's 
answers can be followed by a number in parenthesis, 
such as in question 13; this indicates the degree of 
confidence that the user has in that piece of 
informatio'n, with 1 indicating absolute certainty, 
and 0 being equivalent to a don 1 t know answer. 

After about forty or so questions mycin is 
ready to display a conclusion; perhaps it is 
satisfied that this ·conclusion has a low enough 
uncertainty facto1· , or, more likely, the user has 
begun to answer "I don't know" to so many questions 
that mycin d.ecided that to give up asking. In any 
case mycin displays first, its conclusions regarding 
the possible identity of the organism causing the 
infection. As you can see, it is not a single 
conclusion, but rather six conclusions. Next, after 
three additional questions mycin proceeds to issue a 
'preferred treatment', preferred in that there may 
be other treatments covering the same set of 
bacterial infections and which may be preferable 
to the user for reasons that mycin cannot handle 
(for example, local availability). 

Tho next figure sho1~s the form of a typ.ical 
mycin rule. On the top of the figure is the text 
of the 50th rule, as stored in mycin, while a 
comment in English .at the bottom of the figure 
explains the meaning of the rnle {for the benefit 
of hu111ans). The rule has two parts: a premise and 
a conclusion. If the premise is true then the con
clusion is true, much like an if - then statement 
in a traditional programming language such as 
rortran. A program using this kind of rules is 
sometimes called a production system. 

· The premise is in itself composed of the 
boolean, or logical combination of three clauses; 
each clause in itself consists of a predicate - a 
statement that may or may not be true ~ relating an 
attribute of an obj .~ct to a value. For example, in 
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the second clause of rule 50's premise, MEMBF 
(meaning "a member of") is the predicate, CNTXT is 
the object - actually, this stands for "the current 
context, whatever it may be" - SITE is the attribute, 
and STERILSITES is the va~ue with respect to which 
that object's attribute must satisfy the predicate. 
This clause would be true if the value of the SITE 
attribute of the current context is a member of 
STERILSITES (presumably a list of values). 

The action part of Rule 50 consists simply of 
the identifier CONCLUDE followed by a statement of 
value of an object's attribute, possibly followed by 
a certainty index: here, the rule affirms that the 
!DENT attribute of the context is BACTEROIDES with 
a certainty of 0.7. Note that this fact could have 
been established by the user if he had answered 
positively question number 9, which asked "Enter the 
identity of organism-I". Mycin rules are triggered 
by values of attributes, and these values can be 
established either by user's answers or by rules' 
conclusions. Indeed, mycin's backwards chaining 
logic determines which questions to ask the user by 
determining which rules, if triggered, would restrict 
the potential conclusions the most. 

Air Traffic Control Applications of AI Technology 

This overview of the world of artificial 
intelligence has been, by necessity, very brief. It 
has not covered, for instance, any of the work done 
in a natural language processing, that is, the 
analysis of human language - written or oral - to 
extract specific information. We have not covered 
speech synthesis and recognition - a different 
problem than that of undel:standing natu1·a1 language. 
We have not covered robotics, the discipline that 
deals with mechanical manipulators and touch sensors . 
Pinally, we will only mention vision and image re
cognition, even though we believe there may be an 
opportunity for air traffic conttol (ATC) applications 
of artificial vision. 

It seems that in order to do justice to the 
title of this presentation we should also briefly 
mention what we mean by ATC. By air traffic control 
we do not mean exclusively the activity of the man 
or . woman behind the radar screen issuing vectors 
and clearances to aircraft and looking out for con
flicts; we very specifically include all the activity 
that, combined, makes for a safe and efficient ATC 
system, such as planning the command and control 
structure of the system - that is, determining when 
and where information is transmitted, and when and 
where decisions are made - or selecting the set of 
airways that will constitute the preferential routes 
from two busy terminal areas in a particular complex 
weather situation. The possibilities for useful 
applications of AI technology to the world of ATC 
go well beyond the radar controller's screen. 

Some of the technologies of AI can be of quite 
immediate applications; others may have to wait five, 
ten or even twenty years before they can be seriously 
considered. We will mention both short term and 
long term applications and will divide these 
immediate and future applications in a different 
way, namely two groups which we call visible and 
invisible. 

Invisible applications are those where the AI 
component is hidden from the final user of the ATC 
product or system . Perhaps Al technology was used 
in the design, development or implementations of the 
system for economic reasons, or perhaps it is the 
only way in which to mechanize a certain function, 
but as far as the user is concerned, it is just 
another computer program. 
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In a visible application, on the other hand, 
the particular behavior of an AI product, as 
typified in the mycin example, is an essential part 
of the usefulness of the tool, and the user must be 
prepared and trained to use it in this way. In the 
invisible category we would like to mention symbolic 
programming, experimental simulation, radar tracking 
algorithms, and procedure genera ti on. Tn the 
visible category we would like to propose a 
theoretical flow orientP-d command and control 
structure, an expert system to help select runway 
configurations, two very similar applications of 
visual scene recognition, and the controller's 
assistant concept. 

"What?" you will say, "they are not going to 
talk about applications of voice recognition?" 
About the only application we can foresee for this 
technology is the simulation of pilots' voices -
and ears - in a real time ATC simulation, and we 
are afraid that the available technology is not 
capable of doing even this. At the present time 
voice recognition and synthesis seems to be more of 
a solution looking for a problem, than a solution 
to an existing problem. 

Artificial Intelligence and the Management 
of Complexity 

The history of aeronautical technology has 
al;·:a.y~ b~crL ch~T~cteTized by barrie-rs., 0!' m~B5tJre~ 
of performance that were considered unattainable: 
transoceanic flight, stratospheric flight, blind 
flying, the sound barrier, the heat barrier, ~pace. 

One by one these barriers have been conquered. We 
believe that the current barrier, the one performance 
limit we must conquer today, is the complexity 
barrier. Consider this: Charles Lindberg's aircraft, 
the Spirit of St. Louis, required 850 man-hours of 
engineering effort to design ; the Lockheed CSA 
Galaxy transport jet took 49 million man-hours to 
design. As aircraft become more complex, and as the 
relationships between aerodynamics, propulsion, 
avionics, and even rac\ar signature become morp, and 
more interrelated in determining the performance of 
the aircraft, this complexity, and the cost of 
designing it, will become greater and greater. 

Nowhere is this more dramatic than in present 
and future ATC systems. the United States ATC 
system has already been dubbed "the 111u:>L cornvlex 
man-machine system in the world"; indeed, its com
plexity has reached a point where nobody quite knows 

how the entire system operates, and it is becoming 
more and more difficult to estimate what effect on 
the entire system the introduction of a new component, 
such as direct routings, will have. 

Another area where the cost of this complexity 
is quite evident is computer software; it is a well 
established fact that the cost of developing a soft
ware system is not proportional to the size of the 
system: "two progranuners can do in nine months what 
any of t hem could do in twelve months" is the popular 
proverb. A more detailed analysis of the additional 
costs incu1·red when a large software project is 
partitioned in N smaller components is N to the one 
and one-half power, and this, coupled with the de
creasing cost of computer hardware has resulted in 
a reversal of the relative importance of hardware 
and software costs. Whereas fifteen years ago hard
ware costs for a large system were typically ten 
times larger than software costs, today it is soft
ware which is about ten times more expensive than 
hardware for a typical command and control system. 

The differences in progranuning productivity 
are tremendous. While the industry standard for 
fully developed, tested and documented code rAngp,s 
between 1200 and 2000 lines of code per man-year, 
project-wide averages of 20000 to 50000 lines are 
not uncolM\on in AI projects. In addition to the 
simple increase in single-programmer productivity, 
this difference is compounded by the reduction in 
the number of individual pieces in which a large 
project must be subdivided in order to meet the 
required schedule (the N to the one-and-a half power 
law), with overall differences in softwru:e rost of 
up to 100 to 1, for the same resulting software 
functionality. 

The reason for this difference is actually 
quite simple. Programming is nothing more than the 
translation of the original functional specifications 
of the system to be designed into the simpler elements 
that can be executed in a computer. In the early 
days these were individual bits, representing either 
data or instructions, so that the entire translation 
process had to be performed by the human programmer. 
Next came the assembler or machine language which, 
while operating with the same machine-level elements, 
at least allowed the programmer to refer to them by 
names and symbols, rather than by anonymous numbers. 
The advent of the so-called high-order languages 
raised the interface to the level of vectors, arrays, 
strings and passive data structures, and produced 
what appeared to be a miraculous increase in program
ming productivity (Figure 10). 

Figure 10. Man-machine interface in programming an ATC system. 
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High-o-rder languages, even in thei-r most 
complex form such as Ada, are still rooted in the 
Von Neumann concept of the computer as a sequential 
executor of instructions. Code and data, for 
example, are two distinct and unmixable elements, 
linkable only through the process of compilation. 
By comparison, symbolic computation removes itself 
one step furthe1· from the details of hardware, and 
allows truly abstract concepts to be represented and 
mruiipul ated on a computer. Probably the most 
spectacular consequence of this increased level of 
abstraction is that the program itself, or code 
becomes simply one more abstraction, and thus can be 
directly mani1rnlated by a pl.·ogram without the com
pilation or interpretation barrier of high-order 
languages. 

And this is only the beginning. AI research 
is fast advancing in the direction of declarative 
programming languages, or rather, programming 
models, that allow the user to state the functional 
specifications for a computer system in extremely 
abstract terms without having to specify, for 
instance, t11e sequence in which operations have to 
be performed to arrive at the desired effect. 'J11ese 
languages, while still many yeai•s away, may make 
Lisp look as mechanical and complex as high-order 
languages look in comparison to Lisp. 

It is interesting to observe that while the 
attempts to build an automatic programming system 
during the early seventies were dismal failures, the 
same results are being arrived at by a diametrically 
opposite route. Instead of a very high level program 
that transforms any program specification to the 
detailed instructions that computer hardw1U'e 
:requires, we axe seeing computer hardware and soft
ware that operate at higher and higher levels of 
abstraction: a bottom-up approach , rather than the 
top-down appl'oach of the automatic prograuuning 
concept. 

Of course, nothing comes free. This increase 
in the level of abstraction at which the machine 
interfaces with the human programmer entails an in
evitable increase in the processing power required 
in hardware. But one should not look at this 
increase as inefficiency or overhead; in fact, this 
additional processing is performing an extremely 
useful function, namely the translation process from 
abstraction to machine bits and back, of both code 
and data. Therefore, we will have to learn to 
accept much higher computer processing requirements 
as a natural by-product of our increase in complexity. 
However, the continuing decline in the cost of -pro
cessing, ·or , if you wish, the inc1·easing performance 
of compute1· hardware 1~ill make it more palatable. 
The important point to consider is that the computm.• 
technology, both hardware and software, used today 
by Al researchel's may become the only economical way 
of implementing very complex software systems in the 
near future. 

Research Simulation Technology 

Leaving behind the world of computer software, 
we find that some of the same problems that plague 
builders of large software systems also haunt 
designers of large human systems. Even if the ATC 
system used no computers at all, the flow of 
information, and the distribution of decision-making 
authority makes the system look very much like a 
gigantic computer, with procedures, rules, regula
tions, and letters of agreement being its program. 

We have long passed the stage where the effects 
of major changes in procedures or technology can be 
evaluated effectively by simple analysis: simulation 
becomes the ultimate evaluation and verification 
tool. Unfortunately, building and running a 
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sufficiently good simulation of a very complex system 
can be extremely costly. 

Consider the difference between an aircraft 
simulator and, for example, the simulation of an 
advanced ATC controller station of the year 2000. 
ll'hile the basic principles 0£ aerodyi1runics, structures, 
propulsion and so on cannot change radically from now 
to the yeai· 2000, the same cannot be said, at least 
in principle, of air traffic procedw·es . The.re are 
few physical limitations to what can be displayed on 
a futuristic cont1·011e1" s sc1·een . So whereas the 
aircraft simulation can count on a number of essential 
fixed elements no matter what the configuration of 
the experiment may be, the same cannot be said of an 
ATC systems simulation. 

The traditional way of designing, implementing, 
and using large system simulators was this: a 
detailed specification was drawn of the fixed part 
of the system, that is, the part that is not expected 
to change from one experiment to another. Next, the 
user defined some bounds on the kind of experiments 
that would be run on the simulator. The simulator 
designer then would convert the fixed part of the 
specification to detailed formulations of the core 
of the simulator, which would include generation of 
large amounts of data that could be used to feed the 
expected experiments. Also, the behavior of the core 
system would be dete1'mined, as much as possible, by 
parameters that could be read from a data file in a 
simulation initialization time, so that the core 
could be tailored as much as possible to the 
particular experiment that was to be run. 

The alternative to this traditional approach 
is to build not a core simulator, and an array of 
ad hoc extensions for each new experiment to be run, 
but rather a kit of building blocks with which a 
customized simulation can be built in a very short 
period of time. In other words, we not only accept, 
but actually encourage the notion that a new 
simulation will have to be built for each new 
experiment in ATC technology (Figure ·11). 

The key to this approach is the level of 
abstraction of these building blocks. Using symbolic 
progranuning techniques, it is possible to build 
blocks such as "VOR", "Aircraft", "Random Aircraft 
Generation Point", "Airport Runway", "Airway Inter
section", "Radar", "Display Screen", and the like. 
Moreover, there can be many different types of these 
blocks, not only in terms of their performance para
meters - you can do this in Fortran with initializa
tion files - but even in the level of detail being 
simulated (Figure 12). 

For example, the MIT Flight Transportation 
Laboratory is currently designing a building block 
kit which will allow the experimenter to intermix 
three very different levels of simulation at the 
same time: a Level I, where the smallest geographic 
unit represented is a control area, say several 
sectors large, and aircraft dynamics consist only in 
movements from an area to an adjacent area (Figure 13). 
At this level of detail, the entire continental 
United States could be modeled, with some 2000 air
craft, with very little effort required to set up 
the experiment. A Level II would look into the 
actual geometry of the airway structure, as well as 
direct routings, and be able to model individual 
sectors. At this level of detail, the position of 
each individual aircraft along an airway or along 
its direct route would be modeled, but not, for 
example, the effects of individual radar vectoring. 
The maximum number of sectors that one would like to 
model this way is probably ten or fifteen, with a 
total of one to two hundred aircraft, enough to 
analyze problems relating to the communications and 
handoffs between two centers. Finally , Level III of 
simulation detail would look at individual aircraft 
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Figure 11. ATC customized simulation building blocks. 
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dynamics and the performance of radar sensors, and 
would be the level of detail at which to look at 
problems such as simultanous instrument arrivals to 
closely-spaced parallel runways, or the sector-to-· 
sector interactions for a maximum of, say, three 
sectors and thirty or forty aircraft. 

This building block kit would then include not 
only three levels of airspace models and three levels 
of aircraft models, but also different display format 
for each level. The important feature of this 
approach is the possibility, if designed correctly, 
to run a simulation where the entire country is 
modeled with Level 1 elements, except for two 
centers, which are modeled with Level II elements, 
and have within these two centers two or three 
sectors modeled with Level III elements. 

Object-oriented and symbolic technology are 
capable of solving the problem of interfacing these 
rather dissimilar objects together. Conside1· a flow 
cont1·ol algorithm that wants to know ho1~ many air
craft are in a certain area, the smallest Level I 
unit of airspace. In traditional progranuning, the 
progranuner would have to know the location of that 
number in whatever d.ata structure contai11s that 
information for a Level I area, but would probably 
have to write a subroutine to obtain that information 
from a Level II center, since it would have to add 
all the aircraft in each of that center's sectors. 
With object-oriented programming, the burden of pro
viding any information about an object is shifted 
from the seeker of the information to the supplier 
of the information. 

The technique in question is called message 
passing; each object in the kit is known to respond 
to a certain numbe~ of requests, or messages . These 
requests can either ask for information about the 
object, or ask that the object perform some action 
that lias a side effect, such as displaying a symbol 
on a screen. All the interactions between objects 
must be through these publicly advertised messages. 
Part of the effort required in designing such a 
simulation is to define what kinds of messages each 
object should be required to handle. 

Once this is decided, though, the task of inter
obj ect conununication is enormously reduced; if both 
Level I areas and Level II centers are required to 
reply to the message "how many aircraft do you have 
now", it does not matter to the object requesting 
the data whether this data is obtained by simply 
look;ing it up somewhere, or by laborious computation: 
it simply is returned in response to the message. If 
the internal makeup of an object must be· modified -
say, in response to the requirements of a new experi
ment - only its way of handling its incoming messages 
must be modified, whereas in the traditional 
technology every object that could possibly interact 
with the modified object would have to be modified 
as a consequence of this change. 

The development of this simulation architecture 
is the most exciting ATC-related project at the MIT 
Flight Transportation Laboratory in the last decade. 
If successful - and there are a number of major 
technological obstacles still to overcome - it may 
enable for the first time the testing and evaluation 
of truly advanced ATC concepts in a sufficiently 
realistic environment, at reasonable cost. 

The concept of building a real-time ATC 
simulation based on software building blocks as just 
described has been demonstrated at the Flight 
Transportation Laboratory, where a full scale 
Level III simulator using this technique is in daily 
use. The largest technology risk associated with 
this simulation is related to its ha1·dware; in 
addition to the building block software approach 
described, it is designed around a building block 

hardware architecture; the same message-based 
interaction technique that allows different kinds 
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of objects to interface in a homogeneous manner wil l 
also al low these objects, and the funct.ionality they 
carry, to reside in different processors, with s·ome 
Iimi tations, so that the exact numbe1· of processors 
available to run the simulation is invisible to the 
software, although, of course, the resulting perfor
mance will be very visible to the user. 

This will also allow incremental growth in the 
capabilities of the simulator, as more processors 
and di splay hardware are added without the need for 
software recoding, but is dependent on very recent, 
and still untried advances in symbolic computation 
hardware. 

An Expert System for Runway Configuration 
Management 

Curiously, there are fewer opportunities for 
classical expert systems such as mycin in ATC than 
one might expect. Indeed, tlrere are few circumstances 
where accumulated knowledge, as opposed to skill or 
ability, determir:esthe performance of a control 
function. 

Perhaps one of the most promising short-term 
applications of classical expert systems may be to 
the problem of runway configuration management, that 
i s, the selection of what runway configuration to 
use under changing weather and flow conditions. 
Complex airports, such as Chicago, or the New York 
City Metroplex, have hundreds of possible runway and 
approach configurations. _The problem consists in 
selecting which configuration to use, and, more 
particularly, selecting when to perform a configura
tion change. The relative timing of the arrival of 
a front at the airport terminal area with respect 
to the peak traffic hour may make a difference as to 
whether the runway configuration change should be 
performed in advance, or delayed with respect to the 
weather-optimum time. Moreover, weather at other 
airports may affect the normal traffic pattern at an 
airport so that, for example, a snow storm approach
ing the Boston area from a westerly direction 
requires a different runway configuration change 
strategy than one approaching from the northwest, 
since the former will hit New York before Boston, 
therefore causing potential diversion of traffic 
from the New York City area. 

This simultaneous consideration of multiple 
contradicting factors, some of which may be the 
result of many years of experience and observation 
at the station in question, lends itself ideally to 
mechanization as an expert system. Indeed, the MIT 
Flight Transportation Laboratory is developing such 
an expert system, under the code name Tower Chief. 
This name was selected to bring to mind the notion 
that the Tower Chief is usually the senior - and 
therefore the most experienced - controller in that 
facility, and therefore would be the ideal person to 
make runway configuration decisions at all times, not 
just when he is the actual shift supervisor. By 
capturing his expertise, the expert system would 
make available to any supervisor having to make such 
decisions the expertise and accumulated knowledge of 
the senior person. 

Actually, such an expert system would be 
capable of storing knowledge and associations 
furnished by a number of individuals, and therefore 
be of use to the Tower Chief himself, specially in 
its ability to be comprehensive in examining all the 
knowledge elements pertinent to the current state 
of affairs. On the other hand, we· dislike the name 
Tower Chief since, in addition to the concept of 
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wisdom and experience, it also calls to mind the 
concept of authority, or responsibility. There is 
therefore the danger of concluding that such an 
expert system, by virtue of its superior data base, 
is able to make superior decisions than a human in 
this situation. This is clearly not so. In fact, 
beyond the assurance that the expert system has 
systematically tested all the knowledge contained in 
the data base, the greatest benefit that the shift 
supervisor can derive from the use of Tower Chief is 
not the final conclusion or recommendation that it 
may make regaxding the runway con£igu'.ration changes 
to select, but rather its compabi li ty to d · sp111y the 
logical process that l eads to that conclusion . This 
display can be used no·t only to help make a final 
decision , but also to enrich both the expert system's 
and the human' s knowledge base; therefore, we 1~ould 
have preferred to title this project supel"Visor ' s 
consultant , but jt. is a little late for this, so 1je 
111111 continue to call it Tower Chief. 

Some teclmical problems must be resolverl 
before rules and knowledge can begin to enter a 
To1~er CIU,ef prototype system. /Is with all knowledge 
based systP.ms, Axpe1·t or not, the wor"k begins 1dth 
the const1·uction of logic abstractions capable of 
representing, both to a computer and its user, t he 
elements of knowledge i n the particular field . For 
Tower Chief these may be runway, prevalent winds, 
primary flow direction, etc . with again, both data 
and functionality being associated with these 
abstractions . This is the knowledge engineering 
phase, and is now under active development for Tower 
Chief at the Flight Transportation Laboratory. 

Simultaneously with the knowledge enginee1·ing 
phase , an expert system systems design must be 
carried out. This is the design of the process by 
means of which the abstractions will be entered, 
sea1·ched, activated, processed, and displayed · n t he 
operation of the expert system . There ru:e a number 
of classical methodologies, such as fo1·1~ard chaining, 
1~h ere as many of the rules as may possibly be achieved 
given the established facts are invoked, until all 
the ru ! es ha.ve been used, and myci n 1 s back1~a1·ds 
chaining, whe1·e a number of hypotheses are postulated 
and tested by means of the rules, until as many of 
them as possible have been weeded out. Other 
classical techniques address the method of incorporat
ing rules into the knowledge base, requesting specific 

Figure 14. ATC e~perimental expert system RS-1. 

data items as the hypothesis tree is traversed to 
reduce the number of branches that must be explored. 
The collection of techniques and the software used 
to implement them are referred to as expert system 
cores. 

A small but growing industry of pre-fabricated 
expert system cores offers a large number of more or 
less off th shelf software systems. These cores 
consist of a. general-purpose structure for represent
ing knowledge, and the inference engine or logic that 
drives activation of the rules to achieve the final 
objective. Along with these features, some of these 
systems also come equipped with fabulous claiJ11s about 
the speed and ease with which useful expert systems 
can be built around them. 

Unfortunately, these claims are usually ex
aggerated for t1~0 reasons: first, because experience 
has shown that rule- processing procedures a1•e much 
less unive1·sal than p1•eviously thought; second, 
because even "fan existing core is adequate to 
p l·form the rule proco:;:;ing rcquil·ed in a partlo.:ula.i.· 
problem, a significant knowledge engineering effort 
is usually i·equired to case the particular knowl edge 
relevant Lo Liu~ proble1n in the forms required by the 
expert system core. 

Tower Chief is the second /ITC-ori.ented proto
type expe1·t system developed at the Flight Trans
portation Laboi·ato1·y. The first, kno1rn simply as 
Rule System One, or RS-1, was only an experimental 
systf?!m in Nhich cor.v!)ntion~l ~lgori thm5 co lJ Le L' t:

implemented as rules, and was developed to gain 
familiarity with expe1· t system techniques, and not 
to demonstrate any useful function (Figure 14). 
RS- 1 showed us, for example, that ATC problems are 
particularly ill-suited for p1·efabricated expert 
system cores. In RS-1, data, or rather assertions 
about the objects known to the system , arrived in 
time-sequenced frames, corresponding to entire 
i·evolutions of a terminal radar antenna; thus the 
assertion base, the data base of statements asserted 
to be true about the objects, was continually evolved. 
Moreover, rules may refer not only to current asser
tions, hut also to past assertions, or even changes 
in assertions, as for instanct:: "If aircraft-i 
appears to be on a base leg, and it was previously 
affirmed to be on final, something is wrong". 
Among the interesting consequences of the RS-1 work 
1~e found that the concept .of past, as applied to 

RULE·1 (AIRCRAFT1, RUNWAY1): 
,' "IF AIRCRA FT 1 IS-TRYING·TO·LANO·AT RUNWAY1 

PAll2 
\ 

AA32~r"' / IS TRUE AN O 
,' ~ / AIRCRAFT1 IS-CLEARED-FOR-APPROACH· TO 

,' ,<rwGll RUNWAY1 IS FALSE THEN 
I , , ALERT USER" 

I ; , , 
,/ RULE-2 (AIRCRAFT1, RUNWAY1) : 

"IF AIRCRAFT1 IS-CLOSE-TO RUNWAYl AND 
ABS (AIRCRAFT1 COURSE· RUNWAY1 HEADING) 

LESS THAN t ANO 
ABS ((RELA Tl VE-BEARING (AIRCAAFTl POSITION) 

(RUNWAYl TOZ)) • 
AUNWAYl HEADING) LESS THAN .t ANO 

AIRCAAFTl ALTITUDE-AGL LESS THAN 1500 THEN 
ASSERT AIRCRAFT1 IS-TRYING-TO-LANO-AT 

RUNAWAYl TRUE" 

RULE-3 (AIRCRAFT1 ): ASSERT AIRCRAFTl COURSE TAN· 1 ~ 7' x2 + x3) 
(Y1 + Y2 + V3) 



computer implementations of knowledge, is more 
complex than previously thought. 

Symbolic computation has taught us that the 
concept of equality is more complex than the simple 
equality of numerical values of Fortran. For 
example, a simple chair and an armchair are clearly 
not equal, while two identical armchairs are, to a 
certain degree, equal, although they are two 
different chairs, two different actions of equality. 
Similarly, we have two different notions of past . 
Suppose, for example, a rule 1ihich estimates the 
general direction of an aircraft track; this rule 
may ask the asse1·tion base fo1· the previous heading 
of the aircraft in order to compare it with the 
current heading. But suppose that, during the 
previous four-second revolution of the antenna, in
sufficient valid transponder hits were received and 
a missed reply was declared for that target during 
that antenna revolution; what should be answered to 
the question "what is the previous target data?" 
One possibility is to answer "not known", since 
there was no reply on that antenna pass. But 
another is to return the target data for the last 
antenna pass during which there was valid data. In 
a way, both are previous data, but the answers may 
be quite different. 

The consequence is, of course, that there are 
at least two different pasts, one relating to the 
sequence of known data, independently of the time at 
which it was asserted, and another relating to a 
sequence of instants of time. Such a feature was 
not available in off the Shelf cores at the time the 
RS-1 effort was started. 

In addition to this passage-of-time problem, 
Tower Chief will also be subject to three more time 
related problems. First, the elements of knowledge 
that Tower Chief will handle will have themselves a 
time component, similar, but more complex, than the 
time related questions asked by mycin. 

Second, the goal of this expert system is 
really a program, or timed sequence of runway con
figuration changes, so time is one of the components 
of the answer, as well as of the data used to arrive 
at the answer; nobody has had any significant 
experience in designing expert systems that deal 
with time as one of the parameters of the goal. 

Third, and this is a problem faced by all 
expert systems whose answer is required in real 
time - the search for answers may be terminated by 
the time available, rather than by exhaustion of the 
search, as in mycin, where the time required to 
arrive at the answer is not really important, as 
long as it is reasonable. There is little experience 
about time constrained expert system performance. 
Indeed, expert systems share with some operation 
research methods the property that, while monotonic, 
the rate of improvement of the answer may vary widely 
with time. In some cases an excellent answer may be 
arrived at very quickly, with only marginal improve
ments afterwards. In other cases, the bulk of the 
solution improvement may only be achieved at the 
very end of the search, so that an early termination 
may produce a very unsatisfactory answer. It is not 
known at this time if the amount of processing re
quired by Tower Chief will be such that time
terminated processing will be required; if it is, 
its performance may depend on new developments in 
solution search techniques which.guarantee uniform 
solution improvement with time. As an aside, one 
of the methods that have been proposed to achieve 
this uniformity involves the intentional randomiza
tion of the search procedure, in a Monte Carlo like 
process. 

Two Simple Applications of Mechanical 
Visi on In ATC 
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An entire field of research in artificial 
intelligence is that of visual scene recognition, 
that is, the processing of raw data from, say, a 
television camera or other means of converting 
visual information into bits, with the purpose of 
identifying objects, positions, three-dimensional 
shape, and even higher order relationships, such as 
attachment between objects or their constituent 
materials. 

At f i rst glance there would seem to be no 
obvious application of this robot vision capability 
in air traffic control, unless one wished to build 
a robot tower controller or a robot pilot. Actually 
there are two very good possibilities, one on the 
ground, and one in the air. 

A useful ground system based on mechanical 
vision and scene recognition would be a low cost, 
totally passive LIDAR, or Light - based Radar. Such 
a system would consist of two, perhaps three 
television cameras mounted on fast remote-controlled 
tilting and panning heads, and equipped with fast 
zoom lenses. Controlled by a computer with visual 
recognition software, this system could act as a VFR 
radar in congested small general aviation airports 
whose traffic density changes from being higher than 
that of Heathrow during fine VFR conditions, to 
practically nothing as the weather becomes IFR. 
Visually scanning for ~i rcraft, this system could 
present to the local to1~er controller a plan view 
display of the aircraf t within the airport's traffic 
area. 

In its si mplest f orm this system would 
periodically scan the horizon surrounding the air
port and create a visual map of the fixed features 
around the came1'<ls: trees, buildings, hills. Some 
of these features may change periodically, such as 
the foliage of the trees, but just as i n a modern 
rada1" s clutter map, t hey can be i mmedi ately recog
nized by thefr very, very slow rate of change. 

Real scene i·ecogni tion begins with slow, but 
really dynamic obj ects , such as clouds and birds . 
Clouds have such a characteri sti c texture, size , and 
speed that it should be tl·i vial to se1>arate them 
from aircraft targets . How can this system dis 
t i nguish a bird at five hundred meters from a light 
airplane at f i ve kilometers ? One possibili ty i s 
radial velocity: tl1e bird at five hundred meters can 
move faster across the camera's field of view than a 
similar-sized aircraft target. 

In addition to acquiring all this information 
the system has some unusual potential for presenting 
the information to the controller, For instance, 
instead of the usual bars we are accustomed to in 
high-intensity radar displays, we could have a small 
picture of the actual aircraft, in color, obtained 
by the system's cameras , and processed by the 
computer so that at any time in that aircraft's 
flight that picture should look just like what the 
controller should see with his binoculars were he 
to look for that aircraft. 

Now we have a system that not only is more 
sensitive than a human controller in detecting and 
processing visual targets, but may even provide him 
with additional information about the target that a 
conventional radar certainly could not. And being 
only software, it is a cheap system to produce in 
large numbers, so as to offset its probably large 
software development cost. 
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An Abstract Concept of Flow Control 

The next concept in air traffic control that 
we will consider is not a gadget like Tower Chief or 
the visual radar, but actually a concept. It is 
related to artificial intelligence because it is 
the i·esul t of building abstract representations of 
knowledge, capable of being implemented on a computer, 
but also independent of any computer implementallou. 
Indeed, they cou l d very well be implemented as 
procedures, with humans performing all the information 
handling and decision making. 

These abstractions are models of how a flow 
of aircraft could be regulatetl by control elements 
that interact only with their neighbors; at what 
level this flow control would be carried out is 
immaterial. The test prototype we have implemented 
in our computer at the MIT Flight Transportation 
Laboratory operates at the tactical, terminal area 
level; but the concept could equally well be imple
mented at the central flow control level. It is far 
too curly to decide whether Lhe::.e abstractions 1~ould 
be of any use in a future ATC environment or not. 
Our purpose in presenting this work is to show a 
tllfferent kind of product of artificial intelligence 
thinking in air traffic control research. 

The development of these abstractions began as 
an attempt to state, in knowledge representation 
terms, the classical time based metered merge 
control problem, which can be simp-ly stated as 
f~ 11 CW.'S: mc1~g~ t :-.·o s tr'3-ams of i vud ' 1g a.i1·craf 
with l'andom interarrival times to form a single 
output stream with uniform aircraft separation 
(Figure 15). This is usually performed by assuming 

Figure 15. Stream merge problem of an ATC system. 
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an ideal conveyor belt of t ime slots, and by a!isign
ing aircraft from both incoming streams to a slot in 
the conveyor belt, and then maneuvering the aircraft 
- in the time dimension, hence the name time-based 
merge - to their assigned slot. This maneuvering in 
time may, of course, require complex maneuvering in 
two-dimensional space, (J1igure 16). 

The picture is a little more complicated when 
not two, but a number of incoming streams must merge 
into a single one. Each route begins at one of the 
sources; the routes merge in pairs, until a single 

... ...... 

path arrives at the sink, thus creating a binary 
converging tree. 

Flow control is only one of the tasks to be 
performed by the ATC system. Indeed, separation 
assurance is by far more important, in the short 
term, than orderly flow of traffic. For a number 
of technical, operational and historical reasons 
responsibility for separation assurance requires 
that ATC functions be divided into small sectors 
unde1· the authority of a single human controller, 
as opposed to a central control authority. This 
federated approach, which is optimal for separation 
assurance and responsi bi li ty accounting, conflicts 
with the centralized approach of traditional flow 
control algorithms . In a federated approach, each 
control element, that is, each controller, interacts 
mainly with his immediate neighbors, rather than 
with a centralized arbitrator. llandoffs are 
initiated, accepted, or rejected on a one-to-one 
basis, and not as a result of the decision-making 
of a central authority . 

ror this reason, flow control procedures are 
difficult to implement and interface with in a 
federated ATC environment. It wn11l rl he · nteresting 
to develop and test a flow cont1·01 approach that 
operated as a numbe1· of independent elements which 
interact only among neighbors, in the same way 
tactical ATC elements do. This approach, developed 
at MIT's Plight TTansportation Laboratory, is called 
the Metered Merge Control Element, or MMCE, concept. 
Again, it is too early to decide if this approach 
has any merit, and is presented here only to 
illustrate the kind of product that can be developed 
using the AI approach to co1nputers. 

...... -... _ 
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Conceptually the MMCE consists of the follow
ing elements: two entry gates, a single exit gate, 
and two nominal transit times from each of the 
entry gates to the exit gate. While it is useful 
to visualize the MMCE as a Y-shaped merging path, 
the geometry of the MMCE is irrelevant to the 
concept, except insomuch as the transit times are 
related to the size and shape of the paths(Figure 17). 

Connected to the exit gate, each MMCE has a 
downstream correspondent which can be either another 
MMCE or, in the case of the last MMCE of the tree, 
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Figure 16. Time-based metered merge-base model of an ATC system. 
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the aircraft sink. Connected to each entry gate is 
an upstream correspondent, either another MMCE or, 
in the case of the first MMCE in the tree, the air
craft sources. Sources, MMCEs, and the sink 
comprise the entire metered merge flow control 
abstraction. This abstraction is independent of 
the scale of the problem: it could be the terminal 
area around an airport, with the sources being the 
feeder fixes, and the arrival runway; or it could be 
an enroute problem, with the sources being originat
ing ai rports and the sink the destination airport 1 s 
terminal area. In any case the operation of the 
abstraction is as follows. 

When an aircraft appears at a source, its 
existence is inunediately made known to the MMCE 
immediately downstream of this source. In the 
absence of any flow control, that aircraft would 
reach the MMCE's exit gate at a time which is equal 
to the time at which the aircraft appeared, plus 
the nominal transit time through the MMCE's right 
or left branch, as appropriate. Therefore, that 
aircraft should appear at the entry gate of the 

Figure 17. MMCE flow control procedure . 

current MMCE's downstream correspondent at that time. 
This information is passed on by the current MMCE 
to that downstream correspondent, who then performs 
the equivalent computation and passing of the 
information to its downstream correspondent. 
Finally, the ultimate downstream correspondent, the 
sink, is told that an aircraft would nominally reach 
it at a time equal to the current time plus the sum 
of the nominal times through all the appropriate 
branches of all the intervening MMCEs. 

At this point the sink has to perform its own 
decision-making, which may include previously re
ceived notifications of incoming aircraft. The 
result of this decision-making is a desired arrival 
time for that aircraft, which may or may not be the 
nominal arrival time. This information must then 
be made known to all the MMCEsthat the aircraft must 
traverse to get there. Since the sink only has 
conununications with the last MMCE, ' this element 
receives the desired arrival time at the sink for 
that aircraft. 

'-..__ Al~CRAFi JouRCGS" 
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The process used to propagate the nominal 
arrival time downstream is reversed, in that the 
MMCE's nominal transit times are subtracted from 
the desired arrival times before submission to the 
next upstream correspondent. Finally, the first 
MMCE (the one currently responsible for that air
craft) receives the time at which the aircraft 
should leave its exit gate so that, flying at the 
nominal speed through Lhe rema:wing MMCEs, it would 
arrive at the sink at the time that the sink 
desires it. 

Actually, this upstream propagation of 
information is not as symmetric with the downstream 
propagation as we described it. Indeed, when pro
pagating the information upstream, each MMCE has to 
send it to its right or left upstream correspondent, 
as appropriate, a decision-making not required when 
propagating the information downstream. 

Figure 18. A radar controller's display of the 
MMCE concept. 
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In the Flight Transportation Laboratory 
implementation, the MMCE concept is used to drive 
a Radar Controller's display. In this display, 
the MMCEs are made to correspond to actual con
verging ATC paths. In this way each controller is 
given an indication as to how early or late the 
aircraft is with respect to the ultimate sink's 
wishes (Figure 18). This display concept, or 
conveyor belt had been proposed before, although 
it has never been mechanized, even experimentally, 
beyond the final approach path. It is clear that 
this kind of display could be constructed without 
the need for MMCEs, downstream ripples, upstream 
ripples, and the like. 

While the development of this abstraction 
does not imply its computer mechanization - it 
could be mechanized, for example, as a series of 
controller-to-controller interactions - we are 
able to simulate them, and therefore perform 
experiments with them, using software objects in 
Lisp in the MIT Flight Transportation Laboratory's 
symbolic ATC simulator. A number of instances of 
sources, sinks, and MMCEs can be created, linked, 
and positioned interactively. Image objects 
corresponding to the MMCEs'nominal paths and the 
previously described slots are created and 
manipulated as easily as numbers of a calculator 
or characters on a word processing system. 

A Distant Dream: The Controller's Assistant 

Finally, and as an example of a truly long-term 
possible application of AI technology to air traffic 
control, we would like to propose the idea of a 
personalized controller's assistant. This device 
would consist of a knowledge base made up of four 
parts: a general part reflecting the genedc kind 
of controller know-hOI~ that would be reflected, for 
example, in the Controller ' s Handbook, or in training 
material; a second pa1•t, at a highe1· priority level 
than the firs-t, would include position-dependent 
knowledge, such as the route and air1~ay structure 
pertinent to that faci lit)', letters of agreement 
between facilities, and the like; the third part 
would i nclude the daily weathe1· , notam and similar 
information, while the last part would be made up 
of the individual controller's performances and 
personal techniques. 

Exactly what functions such a system could 
perform is not very clear at this time; one 
possibility is to act as a dununy of the controller, 
that is, display for his benefit what control 
actions the c-.1 nn1>. would take. By periodically 
observing that dummy controller the human controller 
could detect his own blunders, especially missed 
control actions, early enough to take effective 
corrective action. 

If such a feature is to be a real help, rather 
than an additional burden, it is likely that the 
display of such dummy directives would have to be 
at a rather high level of abstraction. For example, 
rather than the clone displaying the command 
"TW6ll turn right heading 220 11

, to which the human 
controller may think "Why is he doing that?", the 
display should read something like "I would like to 
send T\\1611 west to make him a little late on his 
turn to final, or else he is going to be too close 
to that heavy ahead of him". 

The key characteristic of such a system would 
be its personalization capabilities: personalization 
with respect to the position being assisted, the 
current weather, navaid and traffic information, 
and most important, the individual controller. The 
controller ' s individual knowledge base could , per
swnably, be pal't of his personal equipment for the 
du1·ation of his career. If we may be allowed to 
dream for a moment , 1~e can imagine the days when 
the controller, upon taking over a position from 
the previous person, 1~ould insert his or her 
magnetically-coded ID card on the console, to 
indicate to the system that his pe1·sonal knowledge 
base is to be used. This knowledge base would 
replace the previous controller ' s personal set of 
rules, and i nteract with the facility 's rule set, 
as well as the knowledge of the day which 1~as 
entered by the same shift supervisor that briefed 
the incoming controller on the day's situation. 
Thus, there is a one-to-one correspondence between 
one element of the knowledge base and the 
controller's basic training, knowledge of the local 
environment, personal controlling style, and 
knowledge of the current traffic, weather and 
facilities situation. 

What the form of this knowledge would have 
will have to wait for the appropriate knowledge 
engineering to be performed . We can only vent.ure to 
suggest that it wi ll involve abstract concepts both 
i ntuitively obvious to the human and manipulable by 
the compu te1·, similar to ti1e geographic lo ca ti on and 
intersection objects of our symbolic ATC simulator. 
The collection of abstractions, which would include 
both objects and actions, would in effect create a 
rich, unambiguous and intuitively attractive 
language which could be useful not only for humans 



and machines to communicate, but even for human-to
human communications, much in the same way that the 
language Lisp is today used not only to program, 
but also to describe logical process in scientific 
publications. 

The same uncertainty about how knowledge 
would be represented in such a system also applies 
to what kind of inference engine or rule-processing 
logic it should have. To begin with, several 
simultaneous goals may be required, and these goals 
may be more complex than the simple diagnosis-seek
ing of the mycin or the runway configuration change 
program of Tower Chief. Certainly today's expert 
system technology is not sufficient to achieve this 
functionality. 

A Final Caveat 

As ambiguous as all these promises are, they 
appear to hold a lot of promise for performance 
that we know cannot be achieved by today's com
putational techniques. It is also fair, however, 
to point out some potential problems, principally 
that of software verification and validation. A 
significant part of the cost of today's software 
is associated with achieving a satisfactory degree 
of confidence that the behavior of the software in 
a system as critical as the air traffic control 
system will be correct. The cost of this valida
tion increases, of course as the complexity of the 
desired behavior increases; the problem with the 
personalized algorithm just described is not only 
that its behavior is radically more complex than 
that of any software ever used in ATC automation, 
but that its behavior cannot, by definition, be 
completely known and specified a priori. 

This problem is not unique to the controller 
clone idea. Indeed, imprecise a priori knowledge 
of the behavior of the system seems to be a 
fundamental feature of most AI-oriented devices. 
What is the solution, then? Abandon this class of 
software as untestable? Abandon the notion that 
we can validate the software to be used in air 
traffic control? Both extremes seem unjustified. 
A new concept of software reliability must be 
developed, a concept more sophisticated than just 
the idea that it meets the prescribed specifications. 
For example, the notion of a software defect could 
be organized in various categories. Category one 
would be a software defect that simply and 
catastrophically causes the entire system to stop 
functioning. Probably we can devise methods for 
testing against that type of bug, no matter how 
complex the software and the expert system rules 
become. 

A second category of bug would involve a less 
than perfect solution to a problem, such as not 
finding a solution to a specific problem. In this 
case it is clear to the user that the system is not 
functioning properly in that particular instance, 
but in all likelihood it will function properly on 
the next problem. This we would categorize more as 
a performance limitation of the technology than a 
real bug, and the difficulty here is that we cannot 
predict, therefore specify, what the performance of 
an AI-based product will or should be. We will have 
to learn to live with this type of software 
deficiencies. 

A final and perhaps the most devastating type 
of bug would be one which involves a definite mal
function whose effects, however, are not immediately 
apparent to the user. Such a defect, for instance, 
would involve making decisions about an aircraft on 
final approach using data pertaining to another 
aircraft on final approach. Since the aircraft are 
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in similar situations, the control actions 
suggested may look reasonable for the aircraft in 
question, even though they were based on information 
about the wrong aircraft. 

How would one be protected from such defects? 
Perhaps a way out would be to implement software 
redundancy in the same way as today we implement 
hardware redundancy to protect against hardware 
malfunctions. The notion of redundant software is, 
however, very different from that of hardware re
dundancy. While two identical ILS receivers do 
offer a significant amount of protection against 
receiver failure, two copies of the same program 
offer no protection against a programming bug. 
Indeed, programs, or, in the case of AI products, 
the rules or other language data that determine the 
behavior of the program, must be independently 
developed, implemented and tested, to offer any 
degree of protection. 

We are at the very infancy of software re
dundancy. With today's programming technology, 
exhaustive validation and verification are cheaper 
than redundant software development. With the next 
generation software technology and systems complexity 
it is possible that redundant software development 
may be the cheapest way, or may be the only way, of 
gaining confidence in critical software. 

To summarize, artificial intelligence is a 
source of extremely powerful tools and ideas, and 
in particular, it opens up a new viewpoint on the 
use of computers for any kind of applications. One 
should not expect miracles from this technology in 
the near future, except perhaps in the areas of 
software productivity and simulation technology. We 
would like to compare the state of AI today with that 
of the transistor in the late 1950s. At that time 
there was little a transistor could do that could not 
be done with vacuum tubes. Admittedly, the tran
sistor was a little smaller and used a little less 
power than a vacuum tube, but in many respects, such 
as frequency response, it was in fact inferior. Yet 
today it would be a little hard for us to walk around 
with a wrist watch that computes inverse trigono
metric functions if it were built with vacuum tubes, 
even if we had a long enough extension cord. So, 
sometime between 1960 and 1985 the mere quantitative 
advantage that the transistor had over the vacuum 
tube was transformed into an insurperable qualitative 
advantage. Perhaps we will wake up some day in the 
year 2000 and realize that sometime between 1985 and 
2000 the mere quantitative differences between 
artificial intelligence and conventional use of 
computers was also transformed. 
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