
POTENTIAL USE OF ARTIFICIAL INTELLIGENCE
TECHNIQUES IN AIR TRAFFIC CONTROL

Antonio L. Elias and John D. Pararas
Massachusetts Institute of Technology

A Blasted Introduction to Artificial Intelligence

Edward Feigenbaum, in his "Handbook of
Artificial Intelligence" defines artificial
intelligence (AI) as "the part of computer science
concerned with designing intelligent computer
systems". This is a very easy definition to make,
since it shifts the burden of definition to another
one, namely that of "intelligent computer system".
Feigenbaum then proceeds to define intelligent
computer systems as those which "exhibit the
characteristics we associate with intelligence in
human behavior". Unfortunately, this one is not
very helpful · either, since we now must define
intelligence itself, a rather formidable task.

But even if we were able to define human
intelligence, we would still 'have a problem, since
"intelligent behavior", when applied to computers,
cannot be equated with intelligent behavior in
general. As little as a hund:red years ago, comput
ing the square root of a number was unequivocally a
manifestation of human intelligence, since it
required a number of decision-making steps deoending
on the signs of intermediate values, remainders, and
so on. Yet today, nobody would call the square
root calculating ability of a computer intelligent
behavior .

In view of this inability to satisfactorily
define intelligent behavior as applied to a computer,
some people have slightly altered the classical
definition to mean doing with a computer something
you normally don't expect a computer to be able to
do. This definition appears to be satisfactory,
since taking square roots, for example, is something
you expect a computer to do, so a system that takes
square roots of numbers is definitely not an
artificial intelligence system, while a system that
composes concert music does appear intelligent,
since computers do not usually compose concert
music.

The problem with this new definition is that
it is self-defeating: the moment one builds a
computer system that does something you do not
expect a computer to do, it does it, so it ceases
to become an artificial intelligence system. As
paradoxical as this may seem, it actually makes
some sense: today, one can purchase battery
powered toys at a department store that do a better
job at synthesizing speech or playing chess than
the most sophisticated experimental equipment did
just ten years ago.

In view of this difficulty in defining what
precisely artificial intelligence is, perhaps we
should simply describe a little of its history and
some of its typical products. AI research has
traditionally had three distinct objectives: first,
to understand the high- level workings of the human
brain by constructing functional computer models
of human activities, such as vision and reasoning;
second, to build computers based on the brain
model; and third, to build a mechanical man,
perhaps by combining the results of the other two
efforts.

The motivation of the first line of research
is a better und.erstanding of the human brain , and
any computer functionality that may 1·esult from
this research is purely secondary. The motivation
of the second, to build computer systems - both
hardware and software - patterned after the human

17

brain, is the goal of building better computer
systems, independently of the speci£ic applications.

Now the third goal is the most elusive one;
humans had the dream of building mechanical
replicas of themselves for at least as long as they
dreamed of flyin·g. If we have been able to fulfill
the dream of flying, is there any reason we will
not be able to build a true robot? Perhaps, but we
should be very careful not to identify artificial
intelligence with only ·this goal. If we do, we
will miss what perhaps are the most useful benefits
from AI research. However, these benefits are not
the intelligent machines per se, but rather the
computer technology that has been developed as a
consequence of the quest for machine intelligence.
AI is also not only expert systems. The popularity
and press coverage tl1at expert systems have recent!)
received have caused a lot of people to believe that
the only useful product of artificial intelligence
research consists of expert systems .

Historically artificial intelligence had its
roots in the discipline of mathematical logic,
sometimes also called symbolic logic, the study of
the processes by means of which we construct the
mental models we call mathematics. It was with the
discovery, by Turing and others, that these symbols
could be manipulated and operated upon mechanically
with the same ease as numbers - al though with a
different set of operations, naturally - that the
possibility of a computer performing these
intelligent functions was first postulated. Indeed,
Lisp, now considered to be the programming
'lingua franca of the AI co.mmuni ty, can be considered
either a progi·amming language, or a convenient,
elegant, an,d powerful method of expressing
mathematical concepts.

The first attempts at using computers to
manipulate symbols for a purpose started by
defining a simple problem to be solved. The kinds
of problems that early AI systems were capable of
handling had two common characteristics: the goal,
or problem, was very simple to state, but the
solution to the problem was complex and non-trivial.
The measure of success used in the development of
these game-playing systems was this: could the
program play a better game than the people that
build it?

The common technique used in these systems
was the generation of large sets of alternatives,
followed by a process of search (for a desired
solution), usually coupled with procedures that
reduce the number of alternatives to be evaluated
to a reasonable subset. In a chess-playing program,
the alternatives are the sequence- of legal moves
and counter-moves that can be made by the program
and its opponent from the current state of the
board, alternatives that can be structured as a
tree; the search consists in the successive
evaluation of each branch of the tree to find the
most convenient immediate move, evaluation that may
include not only the eventual end state of the board
at the end of that branch of the tree, but the
likelihood of each of the opponent's moves (Figure 1).

Before these solutions can be generated,
searched, reduced and evaluated, some SYl!lbols and
operations must be defined; in other words, a
representation of the problem must be designed.
For example, a ches·s-playing system may operate on
descriptions of the state of the chess board, that
is, the position of each of the pieces; the opera
tions that can be performed on these descriptions
would include valid piece movements, or functions
that measure the desirability of having a piece in
a certain position relative to other pieces. Other
symbols that may be involved could include standard

18

Figure 1. Demonstration of alternative moves on a chess board .

• ~ Lf'VEL [Q (l<T~) l(N(K11) • • • • •

j (KB)QJ~TP(KTJ)
/I'-- ~ ~

KIJ(QBt,) - OWAJ

.,._ OPPOAJ£AJT'S

. ·-

()

(/;--,

••
moves, such as the classical chess opening moves,
in such a way that the system can easily recognize
when the opponent has performed such a move, and
know what the consequences of tl1aL muvt; !h' t ,;. the.Lit
elaborate analysis.

In spite of the spectacular performances that
such systems exhibit - fe1~ human chess players can
outperform the best chess playing programs today -
these efforts were in a way disappointing because of
the extremely narrow focus of the results. While
some of the searching and problem reduction techniques
developed as a consequence of that research are
applicable to a large class of problems, the problem
representation aspects were extremely case-dependent:
the symbols and ope1•ations developed to solve chess
moves are of little Ol' no value outside t hat specific
problem domain.

This frustration led in the late 1960s and
early 1970s to a flurry of efforts to find more
universal problem representations; ideas such as
problem solving systems and logic reasoning systems
seemed attainable at the time. At one time work
actually began on a general purpose problem solver
system, with no clear limitations on what kind of
prohlems it could solve . l'lhen it became apparent
t hat finding truly domain-independent means of re
presenting problems was a little too difficult ,
researchers then directed their efforts to more
restricted, but still relatively generic problems,
for example proving mathematical theorems or
automatic computer programming.

Also at this time, and perhaps influenced by
the success of the early game-playing programs, some
i ndividuals beg11.n t.o make exaggerated claims about
the practical possibilities of AI systems. Actually,
this had already happened before , even before the
term artificial intelligence had been coined.
Grossly unrealistic estimates of t he potential of
computers to perform intelligent functions - whatever
those may be - were common during the ettrly <lays of
electr onic computers, as exemplified in the contem
porary label electronic brain.

Figure 2 was produced directly from the
terminal screen in the Flight Transportation
Laboratory of the Massachusetts Institute of
Technology computer complex. Lines with numbers
beginning with the letter C are the authors' inputs,
while lines identified ·with the letter D are the
outputs from M.I.T. 's MACSYMA program. We begin

R£$VLTiN'
13014~0

-- STATtS

this example by typing in an equation in a form which
looks very much like FORTRAN. Notice, howeve1-, that
MACSYMA displays the in1mt back in a form that
rasamblcs th ... way or..~ would ~·.1ri te this 43qu!\tion on
a blackboard; this is possible because the represen
tation of that equation used in MACSYMA has concepts
such as power and denominator.

We then ask MACSYMA to "solve" for the variable
Y in that equation; what happens next is that MACSYMA
recognizes a binomial equation pattern in that
expression, and invokes the rules to solve such
equations that we all lea~:ned in high school. If,
on the other hand , we ask MACSYMA to integrate the
right-hand side of that equation, it will recognize
a polynomial pattern, and invoke the classical poly
nomial integration r ules. Whilewe could do that
ourselves , we would be hard pressed to integrate the
expression shown in the next figure, which i nvolves
knowing some rather exotic rules of integration. We
use MACSYMA frequently in our work, especially to
manipulate rotation matrices that transform, for
example, position vectors in radar site coordi nates
to mosaic- relative coordinates . This kind of system
which is composed of an i nternal repvesentation of a
dornain, a set of rules representing knowledge in that
domain, and a set of conunands that allow the user tu
invoke the appropriate rule without knowing the
details of that r ule is called a knowledge-based
system, or more precisely, a stored-knowledge system;

Figure 2. A typical MACSYMA session.

(C1) x ~ 3 • 7·2 • 2 • 1 + 17;

(01) I • 3 T • 2 T + 17

(C2) •olY1(41,7);

SQRT(3 I • 60) • 1 SQRT(3 I · 60) • 1
(02) [T • • ················-· T • ··················)

3 3

(C3) 111t1grato(p1rt(cl,2) ,7);
3 2

(03) T • T • 17 T

Figure 3. A typical MACSYMA session (continued).

(C4) 1qrt((x+l)/(x-I));

(D4)

(C6) integrate (d4, x);

(06)

I + I
LOG(SQRT(-----) + !)

I - t

- 4 (- --------------------
4

(Ce) rat1imp(d6);

I • 1
SQRT(-----)

I - I

I + 1
LOG(SQRT(-----) - I)

I - I

4

I + 1
SQRT(---.--)

I - 1

- -------------)
:I (I • I)

--------- - 2
I - I

19

I+! I+t I+t
(D6) LOG(SQRT(-----) + I) - LOG(SQRT(-----) - I) + (I - I) SQRT(-----)

I- I-1 I-1

the computer program has the knowledge, but does
not know when and how to apply it unless
specifically instructed by the user (Figure 3).

The indisputable success of these stored
knowledge systems, coupled with the failure of
totally generic problem-solving or thinking
programs, resulted in the expert system concept.
Like the stored knowledge system, an expert system
operates with symbols and operations representing
knowledge in a particular field, and sets of pre
stored rules which embody knowledge, just like the
integration r ules of MACSYMA. The expert system,
however, has two additional ingredients: first,
the capability of chaining the given rules , perhaps
with the help of intermediate :results, to reach
conclusions that are not covered by any single rule;
and second, logic to direct both the invocation of
the rules and the chaining of simple rules to
achieve a specific objective.

Perhaps the best way to understand the notion
of expert systerrsis to observe one in operation,
The next figures will show a typical conversation
with perhaps the most famous, or successful, of
all expert systems: the mycin bacterial infection
diagnostic program. In the mycin system a
moderately large set of rules (about one hundred)
is used to store knowledge about bacterial infec

tions. But whereas in MACSYMA the rules were

Figure 4. A typical mycin session.

---------- PATl£HT•t

I) Pa that' a nuo: (fiut· lut)
••• Frod Smith

2) Su

••• Nale

3) Age:
••• 66

4) HaTo you boon able to obtain po1itiT• culturo1 tro• 1 lite
at which Frod Smith h11 an iaf octioa? ... , ..

INFECTIOH·t ····------

6) What 11 tho infection?
•• Primary·bactoremia

scanned to see if one of them satisfied the request
typed by the user (e.g., integrate a given expres
sion), mycin rules are automatically activated in a
complex way by a logic in the program called the
inference engine, whose puilt-in goal is fixed: to
determine the best antibiotic treatment for a
patient whose infection is not precisely known.

Figure 5. A typical mycin session (continued).

C) Plea•• giT• the date and approximate ti•• when algu1 or
1ymptom1 of tho pri•er7-bact1r1mi1 (infoctioa•I) tir1t appeared
(mo/da/yr)
••• Nay 6 1980

Tha moat recent podtiu culture a11ociated with thr,
primary·bactoremia (infoctloa·I) will bo reforrod to 11:

----·----- CIJtruRE-1 ----------

7) Fro• what •it• w11 the 1pecim1n for culture·! tak1af
••• Blood

8) Pl•••• giTo tho date and time •boa thi1 blood culture
(culture-I) wa1 obtainod. (mo/da/yr)
••• Nay II 11180

Tho tlr1t 1lgnif icant organl1• fro• tbia blood culture
(culturo·l) will be roforrod to 11:

To understand why mycin behaves the way it
does, i ndeed to understand the importance of the
development of mycin, we have to review briefly what
kind of problem it is solving. There are thousands
of bacteria that can cause infections in humans,
and hundreds of available antibiotic drugs that act
specifically on a bacteria, or groups of bacteria,
while having more or less desirable side effects.
If the identity of the bacteria causing a patient's
infection were to be known, a very precise anti
biotic treatment could be prescribed . lhfortunately
full identification of a bacteria from a culture
requires from a few days to a few weeks, while anti
biotic treatment must begin immediately. Thus,
treatment is begun with only sketchy data on what
kind of bacteria is involved - usually a two to
three hour culture yielding only very basic
information about the bacteria, not its precise
identity.

20

Figure 6. A typical mycin session (continued).

------···· ORCANJSM·l ---------·

9) tntor tho id•ntitJ of orgontaa-1:
••• WJ.lmon

10) 11 orguiioa-1 1 rod or coccua :
••• rod

11) Tbt rr11..11 ataia of org1.111••·1 : ... gr&m111g

12) Ha•• thoro b•ta poaiti•• cultur11 from •ltoa which art NOT
a11ociat1d with tnf 1ctloa1 about which JOU are 111tlag ad•lcoT
••• DO

13) Did orguii1m-l rro• aorobic1llJ?
••• JU (0 .8)

14) Did orguitom-1 grow 11.DaorobicallJ
••• 1••

Figure 7. A typical mycin session (continued).

16) What 11 tho 1u1p1ct1d portal of 1ntr7 of orguit1m-I tato
tht1 otorilo 1tt11
••• Cl (O.e)

NJ tboropJ rocomaoadottoa will bt baud oa tho following
probable tnf1ctioa(1) a.ad potential cauoat1Yt orgaalam(o):

INFECTION-1 11 PRINAJIT-BACTEJ\EMIA
<Item I> Tbt ideatitJ of organioa-1 .. , bt PSEUDONONAS-AEllUCINOSA
<Item 2> Tb• tdontltJ of organhm-1 ma7 b• kLEBSIELLA·PN£UMONIAE
<JtH 3> Tbt idtntl tJ of organhm-1 .. , bt E.COLI
<Item 4> Tho id1ntit7 of organha-1 .. , bt BACTDIOIOES· FRACILIS
<I tea 6> Tho idontitJ of organilm-1 .. , b• ENTEROBACTER
<Ittm ti> Tho ldentitJ of orgaah•-1 .. , bt PROTEUS· NON·NIRABILIS

4tl) On 1 1c1l1 of 0 to 4, •h•r• htghor nW1btr1 indtcato
tncroaalng ••••rtty, ho• would you rate Fred Smith'• d1gr11
of etcknua?
••• 3

Figure 9. A typical mycin rule.

Figure 8. A typical mycin session (continued).

47) Doti Fred Saith h••• 1 cltntc1llJ aignlfic1.11t ollorglc
r11ction to UIJ uitlaicrobtal ogoatT
••• AO

48) Fred Smith'• ••l1bt tn kilogra.ma (or <aW1b1r> pouada):
70

Ia ardor to COYtr for It••• <I 2 3 6 e> :
Cl•t: CENTAMICIN
Do11: 119 •1 (1.7 ag/kg) qBb IV (or IN} for 10 d171

Comaeat1: Nodif7 do11 la r1a1l failure

In order to co•or far It•• <4>
Cl••: CLINDAJIYCIN
Do11: 606 mg (B.6 mg/kg) q&h IV (or IN} far 14 day•
Coma1nt1: If diarrhea or other Cl 1:rmptoa1 daulop,

patient 1hould be •••luatod for poa1ibl1
p11udomembr1nou~ coltti1 .

P~EDio, 7' ;:., ATTl?iBeiT"!i
I ce.rEcr I nULE 060 I VAlUC: OF A1TR/BuTt:

(AXD (SAICE CNTXT INFECT PRINAJIY-BACTEJIEH!Al ..._
(NEMBF CNTIT SITE STERILSITES) .. ---=:::-.......
(SAJIE CNTXT PORTAL CI)) - - (L,qU.Sf".S

(

(COllCLUDE CllTIT !DENT SACTEROIDES TALLY O.~ CtliiTAiA/T)"

(ENCLISH·TEIT'---~-:~ 1-~LU~ Of:.
"" 1

u A17R1aur1:~
('OtJCLUSiON "If 1) tho inhction h priiur7-boct1rHta, a.net

2) tho alto of tho culture i• oat of tho
1t1ril1 11tea, and

3) tho •uapoctod portal of ontr7 of tho orga.n11m
ia tho g11trointoottnal tract,

Tboa tboro 1• auffictont ••ldanco (0.7) that the
id1nttt7 of tho organ!•• ta b1ctoroid11 . •)

The way mycin achieves this objective is by
assuming a very llll'ge number of possible al tern.a.ti ves
and then asking the user to provide information that
it can use to eliminate as many alternatives as
possible, until all the information is exhausted.
This technique is known as backwards-chaining the
rules.

The conversation shown in Figures 4 to 9 is a
little long, but interesting. Mycin's questions are
preceded by a number, while the user's answers are
preceded by three asterisks. After the usual basic
questions about the patient, mycin checks in
question (4) that the basic operating premise, that
is, the existence of an infection, is indeed true.
If one we1·e to ans1<1er no to that question mycin
1~ould simply say goodbye.

At the very beginning of the conversation
mycin printed the label PATIENT-!; after question
(4) it prints the label INFECTION-I; these labels
are an indication of the context of the conversation.
\\'hen humans exchange information verbally we
implicitly establish a context in which indefinite
articles such as it or the have a unique meaning.
Although mycin does not understand English it always
has a current <;ontext, or im1,licit object of inquii'y
which begins with the patient, switches to the first
infection (for that patient), and then may change to
an organism, to a cultur.e, change back to the patient,
and so on.

After establishing that the type of infection
is known, so that a series of questions leading to
the identification of the type or possible types of
infection is not necessary, mycin then proceeds to
find out what laborato1·y information has been
obtained on the organism or organisms producing the
infection. Answers to a question, including the
answer "don't know", dynamically modify the sequence
of successive questions. Note also that the user's
answers can be followed by a number in parenthesis,
such as in question 13; this indicates the degree of
confidence that the user has in that piece of
informatio'n, with 1 indicating absolute certainty,
and 0 being equivalent to a don 1 t know answer.

After about forty or so questions mycin is
ready to display a conclusion; perhaps it is
satisfied that this ·conclusion has a low enough
uncertainty facto1· , or, more likely, the user has
begun to answer "I don't know" to so many questions
that mycin d.ecided that to give up asking. In any
case mycin displays first, its conclusions regarding
the possible identity of the organism causing the
infection. As you can see, it is not a single
conclusion, but rather six conclusions. Next, after
three additional questions mycin proceeds to issue a
'preferred treatment', preferred in that there may
be other treatments covering the same set of
bacterial infections and which may be preferable
to the user for reasons that mycin cannot handle
(for example, local availability).

Tho next figure sho1~s the form of a typ.ical
mycin rule. On the top of the figure is the text
of the 50th rule, as stored in mycin, while a
comment in English .at the bottom of the figure
explains the meaning of the rnle {for the benefit
of hu111ans). The rule has two parts: a premise and
a conclusion. If the premise is true then the con
clusion is true, much like an if - then statement
in a traditional programming language such as
rortran. A program using this kind of rules is
sometimes called a production system.

· The premise is in itself composed of the
boolean, or logical combination of three clauses;
each clause in itself consists of a predicate - a
statement that may or may not be true ~ relating an
attribute of an obj .~ct to a value. For example, in

21

the second clause of rule 50's premise, MEMBF
(meaning "a member of") is the predicate, CNTXT is
the object - actually, this stands for "the current
context, whatever it may be" - SITE is the attribute,
and STERILSITES is the va~ue with respect to which
that object's attribute must satisfy the predicate.
This clause would be true if the value of the SITE
attribute of the current context is a member of
STERILSITES (presumably a list of values).

The action part of Rule 50 consists simply of
the identifier CONCLUDE followed by a statement of
value of an object's attribute, possibly followed by
a certainty index: here, the rule affirms that the
!DENT attribute of the context is BACTEROIDES with
a certainty of 0.7. Note that this fact could have
been established by the user if he had answered
positively question number 9, which asked "Enter the
identity of organism-I". Mycin rules are triggered
by values of attributes, and these values can be
established either by user's answers or by rules'
conclusions. Indeed, mycin's backwards chaining
logic determines which questions to ask the user by
determining which rules, if triggered, would restrict
the potential conclusions the most.

Air Traffic Control Applications of AI Technology

This overview of the world of artificial
intelligence has been, by necessity, very brief. It
has not covered, for instance, any of the work done
in a natural language processing, that is, the
analysis of human language - written or oral - to
extract specific information. We have not covered
speech synthesis and recognition - a different
problem than that of undel:standing natu1·a1 language.
We have not covered robotics, the discipline that
deals with mechanical manipulators and touch sensors .
Pinally, we will only mention vision and image re
cognition, even though we believe there may be an
opportunity for air traffic conttol (ATC) applications
of artificial vision.

It seems that in order to do justice to the
title of this presentation we should also briefly
mention what we mean by ATC. By air traffic control
we do not mean exclusively the activity of the man
or . woman behind the radar screen issuing vectors
and clearances to aircraft and looking out for con
flicts; we very specifically include all the activity
that, combined, makes for a safe and efficient ATC
system, such as planning the command and control
structure of the system - that is, determining when
and where information is transmitted, and when and
where decisions are made - or selecting the set of
airways that will constitute the preferential routes
from two busy terminal areas in a particular complex
weather situation. The possibilities for useful
applications of AI technology to the world of ATC
go well beyond the radar controller's screen.

Some of the technologies of AI can be of quite
immediate applications; others may have to wait five,
ten or even twenty years before they can be seriously
considered. We will mention both short term and
long term applications and will divide these
immediate and future applications in a different
way, namely two groups which we call visible and
invisible.

Invisible applications are those where the AI
component is hidden from the final user of the ATC
product or system . Perhaps Al technology was used
in the design, development or implementations of the
system for economic reasons, or perhaps it is the
only way in which to mechanize a certain function,
but as far as the user is concerned, it is just
another computer program.

22

In a visible application, on the other hand,
the particular behavior of an AI product, as
typified in the mycin example, is an essential part
of the usefulness of the tool, and the user must be
prepared and trained to use it in this way. In the
invisible category we would like to mention symbolic
programming, experimental simulation, radar tracking
algorithms, and procedure genera ti on. Tn the
visible category we would like to propose a
theoretical flow orientP-d command and control
structure, an expert system to help select runway
configurations, two very similar applications of
visual scene recognition, and the controller's
assistant concept.

"What?" you will say, "they are not going to
talk about applications of voice recognition?"
About the only application we can foresee for this
technology is the simulation of pilots' voices -
and ears - in a real time ATC simulation, and we
are afraid that the available technology is not
capable of doing even this. At the present time
voice recognition and synthesis seems to be more of
a solution looking for a problem, than a solution
to an existing problem.

Artificial Intelligence and the Management
of Complexity

The history of aeronautical technology has
al;·:a.y~ b~crL ch~T~cteTized by barrie-rs., 0!' m~B5tJre~
of performance that were considered unattainable:
transoceanic flight, stratospheric flight, blind
flying, the sound barrier, the heat barrier, ~pace.

One by one these barriers have been conquered. We
believe that the current barrier, the one performance
limit we must conquer today, is the complexity
barrier. Consider this: Charles Lindberg's aircraft,
the Spirit of St. Louis, required 850 man-hours of
engineering effort to design ; the Lockheed CSA
Galaxy transport jet took 49 million man-hours to
design. As aircraft become more complex, and as the
relationships between aerodynamics, propulsion,
avionics, and even rac\ar signature become morp, and
more interrelated in determining the performance of
the aircraft, this complexity, and the cost of
designing it, will become greater and greater.

Nowhere is this more dramatic than in present
and future ATC systems. the United States ATC
system has already been dubbed "the 111u:>L cornvlex
man-machine system in the world"; indeed, its com
plexity has reached a point where nobody quite knows

how the entire system operates, and it is becoming
more and more difficult to estimate what effect on
the entire system the introduction of a new component,
such as direct routings, will have.

Another area where the cost of this complexity
is quite evident is computer software; it is a well
established fact that the cost of developing a soft
ware system is not proportional to the size of the
system: "two progranuners can do in nine months what
any of t hem could do in twelve months" is the popular
proverb. A more detailed analysis of the additional
costs incu1·red when a large software project is
partitioned in N smaller components is N to the one
and one-half power, and this, coupled with the de
creasing cost of computer hardware has resulted in
a reversal of the relative importance of hardware
and software costs. Whereas fifteen years ago hard
ware costs for a large system were typically ten
times larger than software costs, today it is soft
ware which is about ten times more expensive than
hardware for a typical command and control system.

The differences in progranuning productivity
are tremendous. While the industry standard for
fully developed, tested and documented code rAngp,s
between 1200 and 2000 lines of code per man-year,
project-wide averages of 20000 to 50000 lines are
not uncolM\on in AI projects. In addition to the
simple increase in single-programmer productivity,
this difference is compounded by the reduction in
the number of individual pieces in which a large
project must be subdivided in order to meet the
required schedule (the N to the one-and-a half power
law), with overall differences in softwru:e rost of
up to 100 to 1, for the same resulting software
functionality.

The reason for this difference is actually
quite simple. Programming is nothing more than the
translation of the original functional specifications
of the system to be designed into the simpler elements
that can be executed in a computer. In the early
days these were individual bits, representing either
data or instructions, so that the entire translation
process had to be performed by the human programmer.
Next came the assembler or machine language which,
while operating with the same machine-level elements,
at least allowed the programmer to refer to them by
names and symbols, rather than by anonymous numbers.
The advent of the so-called high-order languages
raised the interface to the level of vectors, arrays,
strings and passive data structures, and produced
what appeared to be a miraculous increase in program
ming productivity (Figure 10).

Figure 10. Man-machine interface in programming an ATC system.

(~lOb/C PRO,~HHl!V&~1)
fR0/3£ FH COAJC~P.T ~
S'IH80Lic PRD€fl.AH~iA/&, (Oot1rr (.>.le Aill.CRAFT-Lltf')

ACT/I/Ii' Oll7£crs HA A/ (J~JvD Ale :S/:7-IKC.Efftr.ATiOAJ o))

- - - - - - - - -11AJJ-~C-IW' IA.JTF'ftFAC:•- - - - - - - - - -
t-1;.CN:/NE

/.(1,1./-0ROw""R LANCOMES 1
A~~'(S, V£'CTOR.S

srr - J.. fiV£(,. COOG.,
.DArA

FOil I, I 7t> /./0... Of:;. AC DO
CAl.L JvPfi!DO (AC<:.~.) vvt:t:r,, ~FSCX.T)
~Tr/ 10 3 tn; A(T) r 11(r)-R~

LO'(#01
UlA Vt:LJ t'
CHP ~.:loo
'311~ 1.-ABt:"-3

4~6,S S D1-(,I J t=FFD .•••

High-o-rder languages, even in thei-r most
complex form such as Ada, are still rooted in the
Von Neumann concept of the computer as a sequential
executor of instructions. Code and data, for
example, are two distinct and unmixable elements,
linkable only through the process of compilation.
By comparison, symbolic computation removes itself
one step furthe1· from the details of hardware, and
allows truly abstract concepts to be represented and
mruiipul ated on a computer. Probably the most
spectacular consequence of this increased level of
abstraction is that the program itself, or code
becomes simply one more abstraction, and thus can be
directly mani1rnlated by a pl.·ogram without the com
pilation or interpretation barrier of high-order
languages.

And this is only the beginning. AI research
is fast advancing in the direction of declarative
programming languages, or rather, programming
models, that allow the user to state the functional
specifications for a computer system in extremely
abstract terms without having to specify, for
instance, t11e sequence in which operations have to
be performed to arrive at the desired effect. 'J11ese
languages, while still many yeai•s away, may make
Lisp look as mechanical and complex as high-order
languages look in comparison to Lisp.

It is interesting to observe that while the
attempts to build an automatic programming system
during the early seventies were dismal failures, the
same results are being arrived at by a diametrically
opposite route. Instead of a very high level program
that transforms any program specification to the
detailed instructions that computer hardw1U'e
:requires, we axe seeing computer hardware and soft
ware that operate at higher and higher levels of
abstraction: a bottom-up approach , rather than the
top-down appl'oach of the automatic prograuuning
concept.

Of course, nothing comes free. This increase
in the level of abstraction at which the machine
interfaces with the human programmer entails an in
evitable increase in the processing power required
in hardware. But one should not look at this
increase as inefficiency or overhead; in fact, this
additional processing is performing an extremely
useful function, namely the translation process from
abstraction to machine bits and back, of both code
and data. Therefore, we will have to learn to
accept much higher computer processing requirements
as a natural by-product of our increase in complexity.
However, the continuing decline in the cost of -pro
cessing, ·or , if you wish, the inc1·easing performance
of compute1· hardware 1~ill make it more palatable.
The important point to consider is that the computm.•
technology, both hardware and software, used today
by Al researchel's may become the only economical way
of implementing very complex software systems in the
near future.

Research Simulation Technology

Leaving behind the world of computer software,
we find that some of the same problems that plague
builders of large software systems also haunt
designers of large human systems. Even if the ATC
system used no computers at all, the flow of
information, and the distribution of decision-making
authority makes the system look very much like a
gigantic computer, with procedures, rules, regula
tions, and letters of agreement being its program.

We have long passed the stage where the effects
of major changes in procedures or technology can be
evaluated effectively by simple analysis: simulation
becomes the ultimate evaluation and verification
tool. Unfortunately, building and running a

23

sufficiently good simulation of a very complex system
can be extremely costly.

Consider the difference between an aircraft
simulator and, for example, the simulation of an
advanced ATC controller station of the year 2000.
ll'hile the basic principles 0£ aerodyi1runics, structures,
propulsion and so on cannot change radically from now
to the yeai· 2000, the same cannot be said, at least
in principle, of air traffic procedw·es . The.re are
few physical limitations to what can be displayed on
a futuristic cont1·011e1" s sc1·een . So whereas the
aircraft simulation can count on a number of essential
fixed elements no matter what the configuration of
the experiment may be, the same cannot be said of an
ATC systems simulation.

The traditional way of designing, implementing,
and using large system simulators was this: a
detailed specification was drawn of the fixed part
of the system, that is, the part that is not expected
to change from one experiment to another. Next, the
user defined some bounds on the kind of experiments
that would be run on the simulator. The simulator
designer then would convert the fixed part of the
specification to detailed formulations of the core
of the simulator, which would include generation of
large amounts of data that could be used to feed the
expected experiments. Also, the behavior of the core
system would be dete1'mined, as much as possible, by
parameters that could be read from a data file in a
simulation initialization time, so that the core
could be tailored as much as possible to the
particular experiment that was to be run.

The alternative to this traditional approach
is to build not a core simulator, and an array of
ad hoc extensions for each new experiment to be run,
but rather a kit of building blocks with which a
customized simulation can be built in a very short
period of time. In other words, we not only accept,
but actually encourage the notion that a new
simulation will have to be built for each new
experiment in ATC technology (Figure ·11).

The key to this approach is the level of
abstraction of these building blocks. Using symbolic
progranuning techniques, it is possible to build
blocks such as "VOR", "Aircraft", "Random Aircraft
Generation Point", "Airport Runway", "Airway Inter
section", "Radar", "Display Screen", and the like.
Moreover, there can be many different types of these
blocks, not only in terms of their performance para
meters - you can do this in Fortran with initializa
tion files - but even in the level of detail being
simulated (Figure 12).

For example, the MIT Flight Transportation
Laboratory is currently designing a building block
kit which will allow the experimenter to intermix
three very different levels of simulation at the
same time: a Level I, where the smallest geographic
unit represented is a control area, say several
sectors large, and aircraft dynamics consist only in
movements from an area to an adjacent area (Figure 13).
At this level of detail, the entire continental
United States could be modeled, with some 2000 air
craft, with very little effort required to set up
the experiment. A Level II would look into the
actual geometry of the airway structure, as well as
direct routings, and be able to model individual
sectors. At this level of detail, the position of
each individual aircraft along an airway or along
its direct route would be modeled, but not, for
example, the effects of individual radar vectoring.
The maximum number of sectors that one would like to
model this way is probably ten or fifteen, with a
total of one to two hundred aircraft, enough to
analyze problems relating to the communications and
handoffs between two centers. Finally , Level III of
simulation detail would look at individual aircraft

24

Figure 11. ATC customized simulation building blocks.

TRADiTiQIVP.l (HODUlAR)
.SIHULATIO)J srt?UC.TURt

!.IH
CO~'Tfi:OL OISPL'-'I'

S't'IT~H

1'TC

LO"C R l'<D /\f~
HOOeL Hoott.

A/C p,'rRw'-'r'
D~CS HODEL

Figure 12. Typical symbolic-object simulation.

OB:T£CT STRUCTURE'

SiHBOLiC -08.JFCT
STIWCTtJRE

Figure 13. Example of levels of simulation at the same time.

lFVEL I

i.EV£L :or

AillP'OlfT

TYPICAL TOPOLOGY OF CONTROLLER'S PROCESS

dynamics and the performance of radar sensors, and
would be the level of detail at which to look at
problems such as simultanous instrument arrivals to
closely-spaced parallel runways, or the sector-to-·
sector interactions for a maximum of, say, three
sectors and thirty or forty aircraft.

This building block kit would then include not
only three levels of airspace models and three levels
of aircraft models, but also different display format
for each level. The important feature of this
approach is the possibility, if designed correctly,
to run a simulation where the entire country is
modeled with Level 1 elements, except for two
centers, which are modeled with Level II elements,
and have within these two centers two or three
sectors modeled with Level III elements.

Object-oriented and symbolic technology are
capable of solving the problem of interfacing these
rather dissimilar objects together. Conside1· a flow
cont1·ol algorithm that wants to know ho1~ many air
craft are in a certain area, the smallest Level I
unit of airspace. In traditional progranuning, the
progranuner would have to know the location of that
number in whatever d.ata structure contai11s that
information for a Level I area, but would probably
have to write a subroutine to obtain that information
from a Level II center, since it would have to add
all the aircraft in each of that center's sectors.
With object-oriented programming, the burden of pro
viding any information about an object is shifted
from the seeker of the information to the supplier
of the information.

The technique in question is called message
passing; each object in the kit is known to respond
to a certain numbe~ of requests, or messages . These
requests can either ask for information about the
object, or ask that the object perform some action
that lias a side effect, such as displaying a symbol
on a screen. All the interactions between objects
must be through these publicly advertised messages.
Part of the effort required in designing such a
simulation is to define what kinds of messages each
object should be required to handle.

Once this is decided, though, the task of inter
obj ect conununication is enormously reduced; if both
Level I areas and Level II centers are required to
reply to the message "how many aircraft do you have
now", it does not matter to the object requesting
the data whether this data is obtained by simply
look;ing it up somewhere, or by laborious computation:
it simply is returned in response to the message. If
the internal makeup of an object must be· modified -
say, in response to the requirements of a new experi
ment - only its way of handling its incoming messages
must be modified, whereas in the traditional
technology every object that could possibly interact
with the modified object would have to be modified
as a consequence of this change.

The development of this simulation architecture
is the most exciting ATC-related project at the MIT
Flight Transportation Laboratory in the last decade.
If successful - and there are a number of major
technological obstacles still to overcome - it may
enable for the first time the testing and evaluation
of truly advanced ATC concepts in a sufficiently
realistic environment, at reasonable cost.

The concept of building a real-time ATC
simulation based on software building blocks as just
described has been demonstrated at the Flight
Transportation Laboratory, where a full scale
Level III simulator using this technique is in daily
use. The largest technology risk associated with
this simulation is related to its ha1·dware; in
addition to the building block software approach
described, it is designed around a building block

hardware architecture; the same message-based
interaction technique that allows different kinds

25

of objects to interface in a homogeneous manner wil l
also al low these objects, and the funct.ionality they
carry, to reside in different processors, with s·ome
Iimi tations, so that the exact numbe1· of processors
available to run the simulation is invisible to the
software, although, of course, the resulting perfor
mance will be very visible to the user.

This will also allow incremental growth in the
capabilities of the simulator, as more processors
and di splay hardware are added without the need for
software recoding, but is dependent on very recent,
and still untried advances in symbolic computation
hardware.

An Expert System for Runway Configuration
Management

Curiously, there are fewer opportunities for
classical expert systems such as mycin in ATC than
one might expect. Indeed, tlrere are few circumstances
where accumulated knowledge, as opposed to skill or
ability, determir:esthe performance of a control
function.

Perhaps one of the most promising short-term
applications of classical expert systems may be to
the problem of runway configuration management, that
i s, the selection of what runway configuration to
use under changing weather and flow conditions.
Complex airports, such as Chicago, or the New York
City Metroplex, have hundreds of possible runway and
approach configurations. _The problem consists in
selecting which configuration to use, and, more
particularly, selecting when to perform a configura
tion change. The relative timing of the arrival of
a front at the airport terminal area with respect
to the peak traffic hour may make a difference as to
whether the runway configuration change should be
performed in advance, or delayed with respect to the
weather-optimum time. Moreover, weather at other
airports may affect the normal traffic pattern at an
airport so that, for example, a snow storm approach
ing the Boston area from a westerly direction
requires a different runway configuration change
strategy than one approaching from the northwest,
since the former will hit New York before Boston,
therefore causing potential diversion of traffic
from the New York City area.

This simultaneous consideration of multiple
contradicting factors, some of which may be the
result of many years of experience and observation
at the station in question, lends itself ideally to
mechanization as an expert system. Indeed, the MIT
Flight Transportation Laboratory is developing such
an expert system, under the code name Tower Chief.
This name was selected to bring to mind the notion
that the Tower Chief is usually the senior - and
therefore the most experienced - controller in that
facility, and therefore would be the ideal person to
make runway configuration decisions at all times, not
just when he is the actual shift supervisor. By
capturing his expertise, the expert system would
make available to any supervisor having to make such
decisions the expertise and accumulated knowledge of
the senior person.

Actually, such an expert system would be
capable of storing knowledge and associations
furnished by a number of individuals, and therefore
be of use to the Tower Chief himself, specially in
its ability to be comprehensive in examining all the
knowledge elements pertinent to the current state
of affairs. On the other hand, we· dislike the name
Tower Chief since, in addition to the concept of

26

wisdom and experience, it also calls to mind the
concept of authority, or responsibility. There is
therefore the danger of concluding that such an
expert system, by virtue of its superior data base,
is able to make superior decisions than a human in
this situation. This is clearly not so. In fact,
beyond the assurance that the expert system has
systematically tested all the knowledge contained in
the data base, the greatest benefit that the shift
supervisor can derive from the use of Tower Chief is
not the final conclusion or recommendation that it
may make regaxding the runway con£igu'.ration changes
to select, but rather its compabi li ty to d · sp111y the
logical process that l eads to that conclusion . This
display can be used no·t only to help make a final
decision , but also to enrich both the expert system's
and the human' s knowledge base; therefore, we 1~ould
have preferred to title this project supel"Visor ' s
consultant , but jt. is a little late for this, so 1je
111111 continue to call it Tower Chief.

Some teclmical problems must be resolverl
before rules and knowledge can begin to enter a
To1~er CIU,ef prototype system. /Is with all knowledge
based systP.ms, Axpe1·t or not, the wor"k begins 1dth
the const1·uction of logic abstractions capable of
representing, both to a computer and its user, t he
elements of knowledge i n the particular field . For
Tower Chief these may be runway, prevalent winds,
primary flow direction, etc . with again, both data
and functionality being associated with these
abstractions . This is the knowledge engineering
phase, and is now under active development for Tower
Chief at the Flight Transportation Laboratory.

Simultaneously with the knowledge enginee1·ing
phase , an expert system systems design must be
carried out. This is the design of the process by
means of which the abstractions will be entered,
sea1·ched, activated, processed, and displayed · n t he
operation of the expert system . There ru:e a number
of classical methodologies, such as fo1·1~ard chaining,
1~h ere as many of the rules as may possibly be achieved
given the established facts are invoked, until all
the ru ! es ha.ve been used, and myci n 1 s back1~a1·ds
chaining, whe1·e a number of hypotheses are postulated
and tested by means of the rules, until as many of
them as possible have been weeded out. Other
classical techniques address the method of incorporat
ing rules into the knowledge base, requesting specific

Figure 14. ATC e~perimental expert system RS-1.

data items as the hypothesis tree is traversed to
reduce the number of branches that must be explored.
The collection of techniques and the software used
to implement them are referred to as expert system
cores.

A small but growing industry of pre-fabricated
expert system cores offers a large number of more or
less off th shelf software systems. These cores
consist of a. general-purpose structure for represent
ing knowledge, and the inference engine or logic that
drives activation of the rules to achieve the final
objective. Along with these features, some of these
systems also come equipped with fabulous claiJ11s about
the speed and ease with which useful expert systems
can be built around them.

Unfortunately, these claims are usually ex
aggerated for t1~0 reasons: first, because experience
has shown that rule- processing procedures a1•e much
less unive1·sal than p1•eviously thought; second,
because even "fan existing core is adequate to
p l·form the rule proco:;:;ing rcquil·ed in a partlo.:ula.i.·
problem, a significant knowledge engineering effort
is usually i·equired to case the particular knowl edge
relevant Lo Liu~ proble1n in the forms required by the
expert system core.

Tower Chief is the second /ITC-ori.ented proto
type expe1·t system developed at the Flight Trans
portation Laboi·ato1·y. The first, kno1rn simply as
Rule System One, or RS-1, was only an experimental
systf?!m in Nhich cor.v!)ntion~l ~lgori thm5 co lJ Le L' t:

implemented as rules, and was developed to gain
familiarity with expe1· t system techniques, and not
to demonstrate any useful function (Figure 14).
RS- 1 showed us, for example, that ATC problems are
particularly ill-suited for p1·efabricated expert
system cores. In RS-1, data, or rather assertions
about the objects known to the system , arrived in
time-sequenced frames, corresponding to entire
i·evolutions of a terminal radar antenna; thus the
assertion base, the data base of statements asserted
to be true about the objects, was continually evolved.
Moreover, rules may refer not only to current asser
tions, hut also to past assertions, or even changes
in assertions, as for instanct:: "If aircraft-i
appears to be on a base leg, and it was previously
affirmed to be on final, something is wrong".
Among the interesting consequences of the RS-1 work
1~e found that the concept .of past, as applied to

RULE·1 (AIRCRAFT1, RUNWAY1):
,' "IF AIRCRA FT 1 IS-TRYING·TO·LANO·AT RUNWAY1

PAll2
\

AA32~r"' / IS TRUE AN O
,' ~ / AIRCRAFT1 IS-CLEARED-FOR-APPROACH· TO

,' ,<rwGll RUNWAY1 IS FALSE THEN
I , , ALERT USER"

I ; , ,
,/ RULE-2 (AIRCRAFT1, RUNWAY1) :

"IF AIRCRAFT1 IS-CLOSE-TO RUNWAYl AND
ABS (AIRCRAFT1 COURSE· RUNWAY1 HEADING)

LESS THAN t ANO
ABS ((RELA Tl VE-BEARING (AIRCAAFTl POSITION)

(RUNWAYl TOZ)) •
AUNWAYl HEADING) LESS THAN .t ANO

AIRCAAFTl ALTITUDE-AGL LESS THAN 1500 THEN
ASSERT AIRCRAFT1 IS-TRYING-TO-LANO-AT

RUNAWAYl TRUE"

RULE-3 (AIRCRAFT1): ASSERT AIRCRAFTl COURSE TAN· 1 ~ 7' x2 + x3)
(Y1 + Y2 + V3)

computer implementations of knowledge, is more
complex than previously thought.

Symbolic computation has taught us that the
concept of equality is more complex than the simple
equality of numerical values of Fortran. For
example, a simple chair and an armchair are clearly
not equal, while two identical armchairs are, to a
certain degree, equal, although they are two
different chairs, two different actions of equality.
Similarly, we have two different notions of past .
Suppose, for example, a rule 1ihich estimates the
general direction of an aircraft track; this rule
may ask the asse1·tion base fo1· the previous heading
of the aircraft in order to compare it with the
current heading. But suppose that, during the
previous four-second revolution of the antenna, in
sufficient valid transponder hits were received and
a missed reply was declared for that target during
that antenna revolution; what should be answered to
the question "what is the previous target data?"
One possibility is to answer "not known", since
there was no reply on that antenna pass. But
another is to return the target data for the last
antenna pass during which there was valid data. In
a way, both are previous data, but the answers may
be quite different.

The consequence is, of course, that there are
at least two different pasts, one relating to the
sequence of known data, independently of the time at
which it was asserted, and another relating to a
sequence of instants of time. Such a feature was
not available in off the Shelf cores at the time the
RS-1 effort was started.

In addition to this passage-of-time problem,
Tower Chief will also be subject to three more time
related problems. First, the elements of knowledge
that Tower Chief will handle will have themselves a
time component, similar, but more complex, than the
time related questions asked by mycin.

Second, the goal of this expert system is
really a program, or timed sequence of runway con
figuration changes, so time is one of the components
of the answer, as well as of the data used to arrive
at the answer; nobody has had any significant
experience in designing expert systems that deal
with time as one of the parameters of the goal.

Third, and this is a problem faced by all
expert systems whose answer is required in real
time - the search for answers may be terminated by
the time available, rather than by exhaustion of the
search, as in mycin, where the time required to
arrive at the answer is not really important, as
long as it is reasonable. There is little experience
about time constrained expert system performance.
Indeed, expert systems share with some operation
research methods the property that, while monotonic,
the rate of improvement of the answer may vary widely
with time. In some cases an excellent answer may be
arrived at very quickly, with only marginal improve
ments afterwards. In other cases, the bulk of the
solution improvement may only be achieved at the
very end of the search, so that an early termination
may produce a very unsatisfactory answer. It is not
known at this time if the amount of processing re
quired by Tower Chief will be such that time
terminated processing will be required; if it is,
its performance may depend on new developments in
solution search techniques which.guarantee uniform
solution improvement with time. As an aside, one
of the methods that have been proposed to achieve
this uniformity involves the intentional randomiza
tion of the search procedure, in a Monte Carlo like
process.

Two Simple Applications of Mechanical
Visi on In ATC

27

An entire field of research in artificial
intelligence is that of visual scene recognition,
that is, the processing of raw data from, say, a
television camera or other means of converting
visual information into bits, with the purpose of
identifying objects, positions, three-dimensional
shape, and even higher order relationships, such as
attachment between objects or their constituent
materials.

At f i rst glance there would seem to be no
obvious application of this robot vision capability
in air traffic control, unless one wished to build
a robot tower controller or a robot pilot. Actually
there are two very good possibilities, one on the
ground, and one in the air.

A useful ground system based on mechanical
vision and scene recognition would be a low cost,
totally passive LIDAR, or Light - based Radar. Such
a system would consist of two, perhaps three
television cameras mounted on fast remote-controlled
tilting and panning heads, and equipped with fast
zoom lenses. Controlled by a computer with visual
recognition software, this system could act as a VFR
radar in congested small general aviation airports
whose traffic density changes from being higher than
that of Heathrow during fine VFR conditions, to
practically nothing as the weather becomes IFR.
Visually scanning for ~i rcraft, this system could
present to the local to1~er controller a plan view
display of the aircraf t within the airport's traffic
area.

In its si mplest f orm this system would
periodically scan the horizon surrounding the air
port and create a visual map of the fixed features
around the came1'<ls: trees, buildings, hills. Some
of these features may change periodically, such as
the foliage of the trees, but just as i n a modern
rada1" s clutter map, t hey can be i mmedi ately recog
nized by thefr very, very slow rate of change.

Real scene i·ecogni tion begins with slow, but
really dynamic obj ects , such as clouds and birds .
Clouds have such a characteri sti c texture, size , and
speed that it should be tl·i vial to se1>arate them
from aircraft targets . How can this system dis
t i nguish a bird at five hundred meters from a light
airplane at f i ve kilometers ? One possibili ty i s
radial velocity: tl1e bird at five hundred meters can
move faster across the camera's field of view than a
similar-sized aircraft target.

In addition to acquiring all this information
the system has some unusual potential for presenting
the information to the controller, For instance,
instead of the usual bars we are accustomed to in
high-intensity radar displays, we could have a small
picture of the actual aircraft, in color, obtained
by the system's cameras , and processed by the
computer so that at any time in that aircraft's
flight that picture should look just like what the
controller should see with his binoculars were he
to look for that aircraft.

Now we have a system that not only is more
sensitive than a human controller in detecting and
processing visual targets, but may even provide him
with additional information about the target that a
conventional radar certainly could not. And being
only software, it is a cheap system to produce in
large numbers, so as to offset its probably large
software development cost.

28

An Abstract Concept of Flow Control

The next concept in air traffic control that
we will consider is not a gadget like Tower Chief or
the visual radar, but actually a concept. It is
related to artificial intelligence because it is
the i·esul t of building abstract representations of
knowledge, capable of being implemented on a computer,
but also independent of any computer implementallou.
Indeed, they cou l d very well be implemented as
procedures, with humans performing all the information
handling and decision making.

These abstractions are models of how a flow
of aircraft could be regulatetl by control elements
that interact only with their neighbors; at what
level this flow control would be carried out is
immaterial. The test prototype we have implemented
in our computer at the MIT Flight Transportation
Laboratory operates at the tactical, terminal area
level; but the concept could equally well be imple
mented at the central flow control level. It is far
too curly to decide whether Lhe::.e abstractions 1~ould
be of any use in a future ATC environment or not.
Our purpose in presenting this work is to show a
tllfferent kind of product of artificial intelligence
thinking in air traffic control research.

The development of these abstractions began as
an attempt to state, in knowledge representation
terms, the classical time based metered merge
control problem, which can be simp-ly stated as
f~ 11 CW.'S: mc1~g~ t :-.·o s tr'3-ams of i vud ' 1g a.i1·craf
with l'andom interarrival times to form a single
output stream with uniform aircraft separation
(Figure 15). This is usually performed by assuming

Figure 15. Stream merge problem of an ATC system.

fL.330~
fL. 310 I ,'WIND

fL 290 /

ALPHA ----

-4

R • 113
TO FL 310
MON-FRI

an ideal conveyor belt of t ime slots, and by a!isign
ing aircraft from both incoming streams to a slot in
the conveyor belt, and then maneuvering the aircraft
- in the time dimension, hence the name time-based
merge - to their assigned slot. This maneuvering in
time may, of course, require complex maneuvering in
two-dimensional space, (J1igure 16).

The picture is a little more complicated when
not two, but a number of incoming streams must merge
into a single one. Each route begins at one of the
sources; the routes merge in pairs, until a single

...

path arrives at the sink, thus creating a binary
converging tree.

Flow control is only one of the tasks to be
performed by the ATC system. Indeed, separation
assurance is by far more important, in the short
term, than orderly flow of traffic. For a number
of technical, operational and historical reasons
responsibility for separation assurance requires
that ATC functions be divided into small sectors
unde1· the authority of a single human controller,
as opposed to a central control authority. This
federated approach, which is optimal for separation
assurance and responsi bi li ty accounting, conflicts
with the centralized approach of traditional flow
control algorithms . In a federated approach, each
control element, that is, each controller, interacts
mainly with his immediate neighbors, rather than
with a centralized arbitrator. llandoffs are
initiated, accepted, or rejected on a one-to-one
basis, and not as a result of the decision-making
of a central authority .

ror this reason, flow control procedures are
difficult to implement and interface with in a
federated ATC environment. It wn11l rl he · nteresting
to develop and test a flow cont1·01 approach that
operated as a numbe1· of independent elements which
interact only among neighbors, in the same way
tactical ATC elements do. This approach, developed
at MIT's Plight TTansportation Laboratory, is called
the Metered Merge Control Element, or MMCE, concept.
Again, it is too early to decide if this approach
has any merit, and is presented here only to
illustrate the kind of product that can be developed
using the AI approach to co1nputers.

...... -... _

GOLF

INl!OUNO•STREAM-B /"'

Conceptually the MMCE consists of the follow
ing elements: two entry gates, a single exit gate,
and two nominal transit times from each of the
entry gates to the exit gate. While it is useful
to visualize the MMCE as a Y-shaped merging path,
the geometry of the MMCE is irrelevant to the
concept, except insomuch as the transit times are
related to the size and shape of the paths(Figure 17).

Connected to the exit gate, each MMCE has a
downstream correspondent which can be either another
MMCE or, in the case of the last MMCE of the tree,

29

Figure 16. Time-based metered merge-base model of an ATC system.

4-- --0IRECTION OF MOTION
"Now•

~-"""'' BELT"

TIME --•~ -• ·~rn I '--'--'_,___,
u u '-'· .._. ._.... L.J..J...U ~_.__,___, MERGE POINT

TIMES TO
MERGE POINT:

O·STREAM I ARRIVALS

•·STREAM 2 ARRIVALS

LATEST USING PATH

'----of-'-- --' / ANO SPEED CONTROL

EARLIEST POSSIBLE .,..,._... // \

----- LATEST USING PATH STRETCHING
"NOMINAL"

LATEST USING SPEED
CONTROL ALONE

the aircraft sink. Connected to each entry gate is
an upstream correspondent, either another MMCE or,
in the case of the first MMCE in the tree, the air
craft sources. Sources, MMCEs, and the sink
comprise the entire metered merge flow control
abstraction. This abstraction is independent of
the scale of the problem: it could be the terminal
area around an airport, with the sources being the
feeder fixes, and the arrival runway; or it could be
an enroute problem, with the sources being originat
ing ai rports and the sink the destination airport 1 s
terminal area. In any case the operation of the
abstraction is as follows.

When an aircraft appears at a source, its
existence is inunediately made known to the MMCE
immediately downstream of this source. In the
absence of any flow control, that aircraft would
reach the MMCE's exit gate at a time which is equal
to the time at which the aircraft appeared, plus
the nominal transit time through the MMCE's right
or left branch, as appropriate. Therefore, that
aircraft should appear at the entry gate of the

Figure 17. MMCE flow control procedure .

current MMCE's downstream correspondent at that time.
This information is passed on by the current MMCE
to that downstream correspondent, who then performs
the equivalent computation and passing of the
information to its downstream correspondent.
Finally, the ultimate downstream correspondent, the
sink, is told that an aircraft would nominally reach
it at a time equal to the current time plus the sum
of the nominal times through all the appropriate
branches of all the intervening MMCEs.

At this point the sink has to perform its own
decision-making, which may include previously re
ceived notifications of incoming aircraft. The
result of this decision-making is a desired arrival
time for that aircraft, which may or may not be the
nominal arrival time. This information must then
be made known to all the MMCEsthat the aircraft must
traverse to get there. Since the sink only has
conununications with the last MMCE, ' this element
receives the desired arrival time at the sink for
that aircraft.

'-..__ Al~CRAFi JouRCGS"

\

30

The process used to propagate the nominal
arrival time downstream is reversed, in that the
MMCE's nominal transit times are subtracted from
the desired arrival times before submission to the
next upstream correspondent. Finally, the first
MMCE (the one currently responsible for that air
craft) receives the time at which the aircraft
should leave its exit gate so that, flying at the
nominal speed through Lhe rema:wing MMCEs, it would
arrive at the sink at the time that the sink
desires it.

Actually, this upstream propagation of
information is not as symmetric with the downstream
propagation as we described it. Indeed, when pro
pagating the information upstream, each MMCE has to
send it to its right or left upstream correspondent,
as appropriate, a decision-making not required when
propagating the information downstream.

Figure 18. A radar controller's display of the
MMCE concept.

, '"-.,
ATJ
7J • .J O
1PS

i\1611

m/ " VA69
so c
110

In the Flight Transportation Laboratory
implementation, the MMCE concept is used to drive
a Radar Controller's display. In this display,
the MMCEs are made to correspond to actual con
verging ATC paths. In this way each controller is
given an indication as to how early or late the
aircraft is with respect to the ultimate sink's
wishes (Figure 18). This display concept, or
conveyor belt had been proposed before, although
it has never been mechanized, even experimentally,
beyond the final approach path. It is clear that
this kind of display could be constructed without
the need for MMCEs, downstream ripples, upstream
ripples, and the like.

While the development of this abstraction
does not imply its computer mechanization - it
could be mechanized, for example, as a series of
controller-to-controller interactions - we are
able to simulate them, and therefore perform
experiments with them, using software objects in
Lisp in the MIT Flight Transportation Laboratory's
symbolic ATC simulator. A number of instances of
sources, sinks, and MMCEs can be created, linked,
and positioned interactively. Image objects
corresponding to the MMCEs'nominal paths and the
previously described slots are created and
manipulated as easily as numbers of a calculator
or characters on a word processing system.

A Distant Dream: The Controller's Assistant

Finally, and as an example of a truly long-term
possible application of AI technology to air traffic
control, we would like to propose the idea of a
personalized controller's assistant. This device
would consist of a knowledge base made up of four
parts: a general part reflecting the genedc kind
of controller know-hOI~ that would be reflected, for
example, in the Controller ' s Handbook, or in training
material; a second pa1•t, at a highe1· priority level
than the firs-t, would include position-dependent
knowledge, such as the route and air1~ay structure
pertinent to that faci lit)', letters of agreement
between facilities, and the like; the third part
would i nclude the daily weathe1· , notam and similar
information, while the last part would be made up
of the individual controller's performances and
personal techniques.

Exactly what functions such a system could
perform is not very clear at this time; one
possibility is to act as a dununy of the controller,
that is, display for his benefit what control
actions the c-.1 nn1>. would take. By periodically
observing that dummy controller the human controller
could detect his own blunders, especially missed
control actions, early enough to take effective
corrective action.

If such a feature is to be a real help, rather
than an additional burden, it is likely that the
display of such dummy directives would have to be
at a rather high level of abstraction. For example,
rather than the clone displaying the command
"TW6ll turn right heading 220 11

, to which the human
controller may think "Why is he doing that?", the
display should read something like "I would like to
send T\\1611 west to make him a little late on his
turn to final, or else he is going to be too close
to that heavy ahead of him".

The key characteristic of such a system would
be its personalization capabilities: personalization
with respect to the position being assisted, the
current weather, navaid and traffic information,
and most important, the individual controller. The
controller ' s individual knowledge base could , per
swnably, be pal't of his personal equipment for the
du1·ation of his career. If we may be allowed to
dream for a moment , 1~e can imagine the days when
the controller, upon taking over a position from
the previous person, 1~ould insert his or her
magnetically-coded ID card on the console, to
indicate to the system that his pe1·sonal knowledge
base is to be used. This knowledge base would
replace the previous controller ' s personal set of
rules, and i nteract with the facility 's rule set,
as well as the knowledge of the day which 1~as
entered by the same shift supervisor that briefed
the incoming controller on the day's situation.
Thus, there is a one-to-one correspondence between
one element of the knowledge base and the
controller's basic training, knowledge of the local
environment, personal controlling style, and
knowledge of the current traffic, weather and
facilities situation.

What the form of this knowledge would have
will have to wait for the appropriate knowledge
engineering to be performed . We can only vent.ure to
suggest that it wi ll involve abstract concepts both
i ntuitively obvious to the human and manipulable by
the compu te1·, similar to ti1e geographic lo ca ti on and
intersection objects of our symbolic ATC simulator.
The collection of abstractions, which would include
both objects and actions, would in effect create a
rich, unambiguous and intuitively attractive
language which could be useful not only for humans

and machines to communicate, but even for human-to
human communications, much in the same way that the
language Lisp is today used not only to program,
but also to describe logical process in scientific
publications.

The same uncertainty about how knowledge
would be represented in such a system also applies
to what kind of inference engine or rule-processing
logic it should have. To begin with, several
simultaneous goals may be required, and these goals
may be more complex than the simple diagnosis-seek
ing of the mycin or the runway configuration change
program of Tower Chief. Certainly today's expert
system technology is not sufficient to achieve this
functionality.

A Final Caveat

As ambiguous as all these promises are, they
appear to hold a lot of promise for performance
that we know cannot be achieved by today's com
putational techniques. It is also fair, however,
to point out some potential problems, principally
that of software verification and validation. A
significant part of the cost of today's software
is associated with achieving a satisfactory degree
of confidence that the behavior of the software in
a system as critical as the air traffic control
system will be correct. The cost of this valida
tion increases, of course as the complexity of the
desired behavior increases; the problem with the
personalized algorithm just described is not only
that its behavior is radically more complex than
that of any software ever used in ATC automation,
but that its behavior cannot, by definition, be
completely known and specified a priori.

This problem is not unique to the controller
clone idea. Indeed, imprecise a priori knowledge
of the behavior of the system seems to be a
fundamental feature of most AI-oriented devices.
What is the solution, then? Abandon this class of
software as untestable? Abandon the notion that
we can validate the software to be used in air
traffic control? Both extremes seem unjustified.
A new concept of software reliability must be
developed, a concept more sophisticated than just
the idea that it meets the prescribed specifications.
For example, the notion of a software defect could
be organized in various categories. Category one
would be a software defect that simply and
catastrophically causes the entire system to stop
functioning. Probably we can devise methods for
testing against that type of bug, no matter how
complex the software and the expert system rules
become.

A second category of bug would involve a less
than perfect solution to a problem, such as not
finding a solution to a specific problem. In this
case it is clear to the user that the system is not
functioning properly in that particular instance,
but in all likelihood it will function properly on
the next problem. This we would categorize more as
a performance limitation of the technology than a
real bug, and the difficulty here is that we cannot
predict, therefore specify, what the performance of
an AI-based product will or should be. We will have
to learn to live with this type of software
deficiencies.

A final and perhaps the most devastating type
of bug would be one which involves a definite mal
function whose effects, however, are not immediately
apparent to the user. Such a defect, for instance,
would involve making decisions about an aircraft on
final approach using data pertaining to another
aircraft on final approach. Since the aircraft are

31

in similar situations, the control actions
suggested may look reasonable for the aircraft in
question, even though they were based on information
about the wrong aircraft.

How would one be protected from such defects?
Perhaps a way out would be to implement software
redundancy in the same way as today we implement
hardware redundancy to protect against hardware
malfunctions. The notion of redundant software is,
however, very different from that of hardware re
dundancy. While two identical ILS receivers do
offer a significant amount of protection against
receiver failure, two copies of the same program
offer no protection against a programming bug.
Indeed, programs, or, in the case of AI products,
the rules or other language data that determine the
behavior of the program, must be independently
developed, implemented and tested, to offer any
degree of protection.

We are at the very infancy of software re
dundancy. With today's programming technology,
exhaustive validation and verification are cheaper
than redundant software development. With the next
generation software technology and systems complexity
it is possible that redundant software development
may be the cheapest way, or may be the only way, of
gaining confidence in critical software.

To summarize, artificial intelligence is a
source of extremely powerful tools and ideas, and
in particular, it opens up a new viewpoint on the
use of computers for any kind of applications. One
should not expect miracles from this technology in
the near future, except perhaps in the areas of
software productivity and simulation technology. We
would like to compare the state of AI today with that
of the transistor in the late 1950s. At that time
there was little a transistor could do that could not
be done with vacuum tubes. Admittedly, the tran
sistor was a little smaller and used a little less
power than a vacuum tube, but in many respects, such
as frequency response, it was in fact inferior. Yet
today it would be a little hard for us to walk around
with a wrist watch that computes inverse trigono
metric functions if it were built with vacuum tubes,
even if we had a long enough extension cord. So,
sometime between 1960 and 1985 the mere quantitative
advantage that the transistor had over the vacuum
tube was transformed into an insurperable qualitative
advantage. Perhaps we will wake up some day in the
year 2000 and realize that sometime between 1985 and
2000 the mere quantitative differences between
artificial intelligence and conventional use of
computers was also transformed.

Acknowledgments

Research described in this paper has been
sponsored by the Federal Aviati.on Administration and
the Transportation Systems Center of the U.S.
Department of Transportation. The authors wish to
recognize the important contributions of the following
individuals: Professor Robert Simpson, Mr. Lyman
Hazelton and Mr. Jim Butler of the MIT Flight
Transportation Laboratory; Mr. John Fabry of the
FAA Technical Center, Atlantic City; Mr. Richard
Wright of the MIT Transportation Systems Center,
Cambridge, Massachusetts; and Messrs. Paul Neumann and
Steve Alvania of the FAA Headquarters, Washington,
D.C.

